1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
|
/* Schoenhage's fast multiplication modulo 2^N+1.
Contributed by Paul Zimmermann.
THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY
SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST
GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
Copyright 1998-2010, 2012, 2013, 2018 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
/* References:
Schnelle Multiplikation grosser Zahlen, by Arnold Schoenhage and Volker
Strassen, Computing 7, p. 281-292, 1971.
Asymptotically fast algorithms for the numerical multiplication and division
of polynomials with complex coefficients, by Arnold Schoenhage, Computer
Algebra, EUROCAM'82, LNCS 144, p. 3-15, 1982.
Tapes versus Pointers, a study in implementing fast algorithms, by Arnold
Schoenhage, Bulletin of the EATCS, 30, p. 23-32, 1986.
TODO:
Implement some of the tricks published at ISSAC'2007 by Gaudry, Kruppa, and
Zimmermann.
It might be possible to avoid a small number of MPN_COPYs by using a
rotating temporary or two.
Cleanup and simplify the code!
*/
#ifdef TRACE
#undef TRACE
#define TRACE(x) x
#include <stdio.h>
#else
#define TRACE(x)
#endif
#include "gmp-impl.h"
#ifdef WANT_ADDSUB
#include "generic/add_n_sub_n.c"
#define HAVE_NATIVE_mpn_add_n_sub_n 1
#endif
static mp_limb_t mpn_mul_fft_internal (mp_ptr, mp_size_t, int, mp_ptr *,
mp_ptr *, mp_ptr, mp_ptr, mp_size_t,
mp_size_t, mp_size_t, int **, mp_ptr, int);
static void mpn_mul_fft_decompose (mp_ptr, mp_ptr *, mp_size_t, mp_size_t, mp_srcptr,
mp_size_t, mp_size_t, mp_size_t, mp_ptr);
/* Find the best k to use for a mod 2^(m*GMP_NUMB_BITS)+1 FFT for m >= n.
We have sqr=0 if for a multiply, sqr=1 for a square.
There are three generations of this code; we keep the old ones as long as
some gmp-mparam.h is not updated. */
/*****************************************************************************/
#if TUNE_PROGRAM_BUILD || (defined (MUL_FFT_TABLE3) && defined (SQR_FFT_TABLE3))
#ifndef FFT_TABLE3_SIZE /* When tuning this is defined in gmp-impl.h */
#if defined (MUL_FFT_TABLE3_SIZE) && defined (SQR_FFT_TABLE3_SIZE)
#if MUL_FFT_TABLE3_SIZE > SQR_FFT_TABLE3_SIZE
#define FFT_TABLE3_SIZE MUL_FFT_TABLE3_SIZE
#else
#define FFT_TABLE3_SIZE SQR_FFT_TABLE3_SIZE
#endif
#endif
#endif
#ifndef FFT_TABLE3_SIZE
#define FFT_TABLE3_SIZE 200
#endif
FFT_TABLE_ATTRS struct fft_table_nk mpn_fft_table3[2][FFT_TABLE3_SIZE] =
{
MUL_FFT_TABLE3,
SQR_FFT_TABLE3
};
int
mpn_fft_best_k (mp_size_t n, int sqr)
{
const struct fft_table_nk *fft_tab, *tab;
mp_size_t tab_n, thres;
int last_k;
fft_tab = mpn_fft_table3[sqr];
last_k = fft_tab->k;
for (tab = fft_tab + 1; ; tab++)
{
tab_n = tab->n;
thres = tab_n << last_k;
if (n <= thres)
break;
last_k = tab->k;
}
return last_k;
}
#define MPN_FFT_BEST_READY 1
#endif
/*****************************************************************************/
#if ! defined (MPN_FFT_BEST_READY)
FFT_TABLE_ATTRS mp_size_t mpn_fft_table[2][MPN_FFT_TABLE_SIZE] =
{
MUL_FFT_TABLE,
SQR_FFT_TABLE
};
int
mpn_fft_best_k (mp_size_t n, int sqr)
{
int i;
for (i = 0; mpn_fft_table[sqr][i] != 0; i++)
if (n < mpn_fft_table[sqr][i])
return i + FFT_FIRST_K;
/* treat 4*last as one further entry */
if (i == 0 || n < 4 * mpn_fft_table[sqr][i - 1])
return i + FFT_FIRST_K;
else
return i + FFT_FIRST_K + 1;
}
#endif
/*****************************************************************************/
/* Returns smallest possible number of limbs >= pl for a fft of size 2^k,
i.e. smallest multiple of 2^k >= pl.
Don't declare static: needed by tuneup.
*/
mp_size_t
mpn_fft_next_size (mp_size_t pl, int k)
{
pl = 1 + ((pl - 1) >> k); /* ceil (pl/2^k) */
return pl << k;
}
/* Initialize l[i][j] with bitrev(j) */
static void
mpn_fft_initl (int **l, int k)
{
int i, j, K;
int *li;
l[0][0] = 0;
for (i = 1, K = 1; i <= k; i++, K *= 2)
{
li = l[i];
for (j = 0; j < K; j++)
{
li[j] = 2 * l[i - 1][j];
li[K + j] = 1 + li[j];
}
}
}
/* r <- a*2^d mod 2^(n*GMP_NUMB_BITS)+1 with a = {a, n+1}
Assumes a is semi-normalized, i.e. a[n] <= 1.
r and a must have n+1 limbs, and not overlap.
*/
static void
mpn_fft_mul_2exp_modF (mp_ptr r, mp_srcptr a, mp_bitcnt_t d, mp_size_t n)
{
unsigned int sh;
mp_size_t m;
mp_limb_t cc, rd;
sh = d % GMP_NUMB_BITS;
m = d / GMP_NUMB_BITS;
if (m >= n) /* negate */
{
/* r[0..m-1] <-- lshift(a[n-m]..a[n-1], sh)
r[m..n-1] <-- -lshift(a[0]..a[n-m-1], sh) */
m -= n;
if (sh != 0)
{
/* no out shift below since a[n] <= 1 */
mpn_lshift (r, a + n - m, m + 1, sh);
rd = r[m];
cc = mpn_lshiftc (r + m, a, n - m, sh);
}
else
{
MPN_COPY (r, a + n - m, m);
rd = a[n];
mpn_com (r + m, a, n - m);
cc = 0;
}
/* add cc to r[0], and add rd to r[m] */
/* now add 1 in r[m], subtract 1 in r[n], i.e. add 1 in r[0] */
r[n] = 0;
/* cc < 2^sh <= 2^(GMP_NUMB_BITS-1) thus no overflow here */
cc++;
mpn_incr_u (r, cc);
rd++;
/* rd might overflow when sh=GMP_NUMB_BITS-1 */
cc = (rd == 0) ? 1 : rd;
r = r + m + (rd == 0);
mpn_incr_u (r, cc);
}
else
{
/* r[0..m-1] <-- -lshift(a[n-m]..a[n-1], sh)
r[m..n-1] <-- lshift(a[0]..a[n-m-1], sh) */
if (sh != 0)
{
/* no out bits below since a[n] <= 1 */
mpn_lshiftc (r, a + n - m, m + 1, sh);
rd = ~r[m];
/* {r, m+1} = {a+n-m, m+1} << sh */
cc = mpn_lshift (r + m, a, n - m, sh); /* {r+m, n-m} = {a, n-m}<<sh */
}
else
{
/* r[m] is not used below, but we save a test for m=0 */
mpn_com (r, a + n - m, m + 1);
rd = a[n];
MPN_COPY (r + m, a, n - m);
cc = 0;
}
/* now complement {r, m}, subtract cc from r[0], subtract rd from r[m] */
/* if m=0 we just have r[0]=a[n] << sh */
if (m != 0)
{
/* now add 1 in r[0], subtract 1 in r[m] */
if (cc-- == 0) /* then add 1 to r[0] */
cc = mpn_add_1 (r, r, n, CNST_LIMB(1));
cc = mpn_sub_1 (r, r, m, cc) + 1;
/* add 1 to cc instead of rd since rd might overflow */
}
/* now subtract cc and rd from r[m..n] */
r[n] = -mpn_sub_1 (r + m, r + m, n - m, cc);
r[n] -= mpn_sub_1 (r + m, r + m, n - m, rd);
if (r[n] & GMP_LIMB_HIGHBIT)
r[n] = mpn_add_1 (r, r, n, CNST_LIMB(1));
}
}
#if HAVE_NATIVE_mpn_add_n_sub_n
static inline void
mpn_fft_add_sub_modF (mp_ptr A0, mp_ptr Ai, mp_srcptr tp, mp_size_t n)
{
mp_limb_t cyas, c, x;
cyas = mpn_add_n_sub_n (A0, Ai, A0, tp, n);
c = A0[n] - tp[n] - (cyas & 1);
x = (-c) & -((c & GMP_LIMB_HIGHBIT) != 0);
Ai[n] = x + c;
MPN_INCR_U (Ai, n + 1, x);
c = A0[n] + tp[n] + (cyas >> 1);
x = (c - 1) & -(c != 0);
A0[n] = c - x;
MPN_DECR_U (A0, n + 1, x);
}
#else /* ! HAVE_NATIVE_mpn_add_n_sub_n */
/* r <- a+b mod 2^(n*GMP_NUMB_BITS)+1.
Assumes a and b are semi-normalized.
*/
static inline void
mpn_fft_add_modF (mp_ptr r, mp_srcptr a, mp_srcptr b, mp_size_t n)
{
mp_limb_t c, x;
c = a[n] + b[n] + mpn_add_n (r, a, b, n);
/* 0 <= c <= 3 */
#if 1
/* GCC 4.1 outsmarts most expressions here, and generates a 50% branch. The
result is slower code, of course. But the following outsmarts GCC. */
x = (c - 1) & -(c != 0);
r[n] = c - x;
MPN_DECR_U (r, n + 1, x);
#endif
#if 0
if (c > 1)
{
r[n] = 1; /* r[n] - c = 1 */
MPN_DECR_U (r, n + 1, c - 1);
}
else
{
r[n] = c;
}
#endif
}
/* r <- a-b mod 2^(n*GMP_NUMB_BITS)+1.
Assumes a and b are semi-normalized.
*/
static inline void
mpn_fft_sub_modF (mp_ptr r, mp_srcptr a, mp_srcptr b, mp_size_t n)
{
mp_limb_t c, x;
c = a[n] - b[n] - mpn_sub_n (r, a, b, n);
/* -2 <= c <= 1 */
#if 1
/* GCC 4.1 outsmarts most expressions here, and generates a 50% branch. The
result is slower code, of course. But the following outsmarts GCC. */
x = (-c) & -((c & GMP_LIMB_HIGHBIT) != 0);
r[n] = x + c;
MPN_INCR_U (r, n + 1, x);
#endif
#if 0
if ((c & GMP_LIMB_HIGHBIT) != 0)
{
r[n] = 0;
MPN_INCR_U (r, n + 1, -c);
}
else
{
r[n] = c;
}
#endif
}
#endif /* HAVE_NATIVE_mpn_add_n_sub_n */
/* input: A[0] ... A[inc*(K-1)] are residues mod 2^N+1 where
N=n*GMP_NUMB_BITS, and 2^omega is a primitive root mod 2^N+1
output: A[inc*l[k][i]] <- \sum (2^omega)^(ij) A[inc*j] mod 2^N+1 */
static void
mpn_fft_fft (mp_ptr *Ap, mp_size_t K, int **ll,
mp_size_t omega, mp_size_t n, mp_size_t inc, mp_ptr tp)
{
if (K == 2)
{
mp_limb_t cy;
#if HAVE_NATIVE_mpn_add_n_sub_n
cy = mpn_add_n_sub_n (Ap[0], Ap[inc], Ap[0], Ap[inc], n + 1) & 1;
#else
MPN_COPY (tp, Ap[0], n + 1);
mpn_add_n (Ap[0], Ap[0], Ap[inc], n + 1);
cy = mpn_sub_n (Ap[inc], tp, Ap[inc], n + 1);
#endif
if (Ap[0][n] > 1) /* can be 2 or 3 */
Ap[0][n] = 1 - mpn_sub_1 (Ap[0], Ap[0], n, Ap[0][n] - 1);
if (cy) /* Ap[inc][n] can be -1 or -2 */
Ap[inc][n] = mpn_add_1 (Ap[inc], Ap[inc], n, ~Ap[inc][n] + 1);
}
else
{
mp_size_t j, K2 = K >> 1;
int *lk = *ll;
mpn_fft_fft (Ap, K2, ll-1, 2 * omega, n, inc * 2, tp);
mpn_fft_fft (Ap+inc, K2, ll-1, 2 * omega, n, inc * 2, tp);
/* A[2*j*inc] <- A[2*j*inc] + omega^l[k][2*j*inc] A[(2j+1)inc]
A[(2j+1)inc] <- A[2*j*inc] + omega^l[k][(2j+1)inc] A[(2j+1)inc] */
for (j = 0; j < K2; j++, lk += 2, Ap += 2 * inc)
{
/* Ap[inc] <- Ap[0] + Ap[inc] * 2^(lk[1] * omega)
Ap[0] <- Ap[0] + Ap[inc] * 2^(lk[0] * omega) */
mpn_fft_mul_2exp_modF (tp, Ap[inc], lk[0] * omega, n);
#if HAVE_NATIVE_mpn_add_n_sub_n
mpn_fft_add_sub_modF (Ap[0], Ap[inc], tp, n);
#else
mpn_fft_sub_modF (Ap[inc], Ap[0], tp, n);
mpn_fft_add_modF (Ap[0], Ap[0], tp, n);
#endif
}
}
}
/* input: A[0] ... A[inc*(K-1)] are residues mod 2^N+1 where
N=n*GMP_NUMB_BITS, and 2^omega is a primitive root mod 2^N+1
output: A[inc*l[k][i]] <- \sum (2^omega)^(ij) A[inc*j] mod 2^N+1
tp must have space for 2*(n+1) limbs.
*/
/* Given ap[0..n] with ap[n]<=1, reduce it modulo 2^(n*GMP_NUMB_BITS)+1,
by subtracting that modulus if necessary.
If ap[0..n] is exactly 2^(n*GMP_NUMB_BITS) then mpn_sub_1 produces a
borrow and the limbs must be zeroed out again. This will occur very
infrequently. */
static inline void
mpn_fft_normalize (mp_ptr ap, mp_size_t n)
{
if (ap[n] != 0)
{
MPN_DECR_U (ap, n + 1, CNST_LIMB(1));
if (ap[n] == 0)
{
/* This happens with very low probability; we have yet to trigger it,
and thereby make sure this code is correct. */
MPN_ZERO (ap, n);
ap[n] = 1;
}
else
ap[n] = 0;
}
}
/* a[i] <- a[i]*b[i] mod 2^(n*GMP_NUMB_BITS)+1 for 0 <= i < K */
static void
mpn_fft_mul_modF_K (mp_ptr *ap, mp_ptr *bp, mp_size_t n, mp_size_t K)
{
int i;
int sqr = (ap == bp);
TMP_DECL;
TMP_MARK;
if (n >= (sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD))
{
mp_size_t K2, nprime2, Nprime2, M2, maxLK, l, Mp2;
int k;
int **fft_l, *tmp;
mp_ptr *Ap, *Bp, A, B, T;
k = mpn_fft_best_k (n, sqr);
K2 = (mp_size_t) 1 << k;
ASSERT_ALWAYS((n & (K2 - 1)) == 0);
maxLK = (K2 > GMP_NUMB_BITS) ? K2 : GMP_NUMB_BITS;
M2 = n * GMP_NUMB_BITS >> k;
l = n >> k;
Nprime2 = ((2 * M2 + k + 2 + maxLK) / maxLK) * maxLK;
/* Nprime2 = ceil((2*M2+k+3)/maxLK)*maxLK*/
nprime2 = Nprime2 / GMP_NUMB_BITS;
/* we should ensure that nprime2 is a multiple of the next K */
if (nprime2 >= (sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD))
{
mp_size_t K3;
for (;;)
{
K3 = (mp_size_t) 1 << mpn_fft_best_k (nprime2, sqr);
if ((nprime2 & (K3 - 1)) == 0)
break;
nprime2 = (nprime2 + K3 - 1) & -K3;
Nprime2 = nprime2 * GMP_LIMB_BITS;
/* warning: since nprime2 changed, K3 may change too! */
}
}
ASSERT_ALWAYS(nprime2 < n); /* otherwise we'll loop */
Mp2 = Nprime2 >> k;
Ap = TMP_BALLOC_MP_PTRS (K2);
Bp = TMP_BALLOC_MP_PTRS (K2);
A = TMP_BALLOC_LIMBS (2 * (nprime2 + 1) << k);
T = TMP_BALLOC_LIMBS (2 * (nprime2 + 1));
B = A + ((nprime2 + 1) << k);
fft_l = TMP_BALLOC_TYPE (k + 1, int *);
tmp = TMP_BALLOC_TYPE ((size_t) 2 << k, int);
for (i = 0; i <= k; i++)
{
fft_l[i] = tmp;
tmp += (mp_size_t) 1 << i;
}
mpn_fft_initl (fft_l, k);
TRACE (printf ("recurse: %ldx%ld limbs -> %ld times %ldx%ld (%1.2f)\n", n,
n, K2, nprime2, nprime2, 2.0*(double)n/nprime2/K2));
for (i = 0; i < K; i++, ap++, bp++)
{
mp_limb_t cy;
mpn_fft_normalize (*ap, n);
if (!sqr)
mpn_fft_normalize (*bp, n);
mpn_mul_fft_decompose (A, Ap, K2, nprime2, *ap, (l << k) + 1, l, Mp2, T);
if (!sqr)
mpn_mul_fft_decompose (B, Bp, K2, nprime2, *bp, (l << k) + 1, l, Mp2, T);
cy = mpn_mul_fft_internal (*ap, n, k, Ap, Bp, A, B, nprime2,
l, Mp2, fft_l, T, sqr);
(*ap)[n] = cy;
}
}
else
{
mp_ptr a, b, tp, tpn;
mp_limb_t cc;
mp_size_t n2 = 2 * n;
tp = TMP_BALLOC_LIMBS (n2);
tpn = tp + n;
TRACE (printf (" mpn_mul_n %ld of %ld limbs\n", K, n));
for (i = 0; i < K; i++)
{
a = *ap++;
b = *bp++;
if (sqr)
mpn_sqr (tp, a, n);
else
mpn_mul_n (tp, b, a, n);
if (a[n] != 0)
cc = mpn_add_n (tpn, tpn, b, n);
else
cc = 0;
if (b[n] != 0)
cc += mpn_add_n (tpn, tpn, a, n) + a[n];
if (cc != 0)
{
cc = mpn_add_1 (tp, tp, n2, cc);
/* If mpn_add_1 give a carry (cc != 0),
the result (tp) is at most GMP_NUMB_MAX - 1,
so the following addition can't overflow.
*/
tp[0] += cc;
}
a[n] = mpn_sub_n (a, tp, tpn, n) && mpn_add_1 (a, a, n, CNST_LIMB(1));
}
}
TMP_FREE;
}
/* input: A^[l[k][0]] A^[l[k][1]] ... A^[l[k][K-1]]
output: K*A[0] K*A[K-1] ... K*A[1].
Assumes the Ap[] are pseudo-normalized, i.e. 0 <= Ap[][n] <= 1.
This condition is also fulfilled at exit.
*/
static void
mpn_fft_fftinv (mp_ptr *Ap, mp_size_t K, mp_size_t omega, mp_size_t n, mp_ptr tp)
{
if (K == 2)
{
mp_limb_t cy;
#if HAVE_NATIVE_mpn_add_n_sub_n
cy = mpn_add_n_sub_n (Ap[0], Ap[1], Ap[0], Ap[1], n + 1) & 1;
#else
MPN_COPY (tp, Ap[0], n + 1);
mpn_add_n (Ap[0], Ap[0], Ap[1], n + 1);
cy = mpn_sub_n (Ap[1], tp, Ap[1], n + 1);
#endif
if (Ap[0][n] > 1) /* can be 2 or 3 */
Ap[0][n] = 1 - mpn_sub_1 (Ap[0], Ap[0], n, Ap[0][n] - 1);
if (cy) /* Ap[1][n] can be -1 or -2 */
Ap[1][n] = mpn_add_1 (Ap[1], Ap[1], n, ~Ap[1][n] + 1);
}
else
{
mp_size_t j, K2 = K >> 1;
mpn_fft_fftinv (Ap, K2, 2 * omega, n, tp);
mpn_fft_fftinv (Ap + K2, K2, 2 * omega, n, tp);
/* A[j] <- A[j] + omega^j A[j+K/2]
A[j+K/2] <- A[j] + omega^(j+K/2) A[j+K/2] */
for (j = 0; j < K2; j++, Ap++)
{
/* Ap[K2] <- Ap[0] + Ap[K2] * 2^((j + K2) * omega)
Ap[0] <- Ap[0] + Ap[K2] * 2^(j * omega) */
mpn_fft_mul_2exp_modF (tp, Ap[K2], j * omega, n);
#if HAVE_NATIVE_mpn_add_n_sub_n
mpn_fft_add_sub_modF (Ap[0], Ap[K2], tp, n);
#else
mpn_fft_sub_modF (Ap[K2], Ap[0], tp, n);
mpn_fft_add_modF (Ap[0], Ap[0], tp, n);
#endif
}
}
}
/* R <- A/2^k mod 2^(n*GMP_NUMB_BITS)+1 */
static void
mpn_fft_div_2exp_modF (mp_ptr r, mp_srcptr a, mp_bitcnt_t k, mp_size_t n)
{
mp_bitcnt_t i;
ASSERT (r != a);
i = (mp_bitcnt_t) 2 * n * GMP_NUMB_BITS - k;
mpn_fft_mul_2exp_modF (r, a, i, n);
/* 1/2^k = 2^(2nL-k) mod 2^(n*GMP_NUMB_BITS)+1 */
/* normalize so that R < 2^(n*GMP_NUMB_BITS)+1 */
mpn_fft_normalize (r, n);
}
/* {rp,n} <- {ap,an} mod 2^(n*GMP_NUMB_BITS)+1, n <= an <= 3*n.
Returns carry out, i.e. 1 iff {ap,an} = -1 mod 2^(n*GMP_NUMB_BITS)+1,
then {rp,n}=0.
*/
static mp_size_t
mpn_fft_norm_modF (mp_ptr rp, mp_size_t n, mp_ptr ap, mp_size_t an)
{
mp_size_t l, m, rpn;
mp_limb_t cc;
ASSERT ((n <= an) && (an <= 3 * n));
m = an - 2 * n;
if (m > 0)
{
l = n;
/* add {ap, m} and {ap+2n, m} in {rp, m} */
cc = mpn_add_n (rp, ap, ap + 2 * n, m);
/* copy {ap+m, n-m} to {rp+m, n-m} */
rpn = mpn_add_1 (rp + m, ap + m, n - m, cc);
}
else
{
l = an - n; /* l <= n */
MPN_COPY (rp, ap, n);
rpn = 0;
}
/* remains to subtract {ap+n, l} from {rp, n+1} */
cc = mpn_sub_n (rp, rp, ap + n, l);
rpn -= mpn_sub_1 (rp + l, rp + l, n - l, cc);
if (rpn < 0) /* necessarily rpn = -1 */
rpn = mpn_add_1 (rp, rp, n, CNST_LIMB(1));
return rpn;
}
/* store in A[0..nprime] the first M bits from {n, nl},
in A[nprime+1..] the following M bits, ...
Assumes M is a multiple of GMP_NUMB_BITS (M = l * GMP_NUMB_BITS).
T must have space for at least (nprime + 1) limbs.
We must have nl <= 2*K*l.
*/
static void
mpn_mul_fft_decompose (mp_ptr A, mp_ptr *Ap, mp_size_t K, mp_size_t nprime,
mp_srcptr n, mp_size_t nl, mp_size_t l, mp_size_t Mp,
mp_ptr T)
{
mp_size_t i, j;
mp_ptr tmp;
mp_size_t Kl = K * l;
TMP_DECL;
TMP_MARK;
if (nl > Kl) /* normalize {n, nl} mod 2^(Kl*GMP_NUMB_BITS)+1 */
{
mp_size_t dif = nl - Kl;
mp_limb_signed_t cy;
tmp = TMP_BALLOC_LIMBS(Kl + 1);
if (dif > Kl)
{
int subp = 0;
cy = mpn_sub_n (tmp, n, n + Kl, Kl);
n += 2 * Kl;
dif -= Kl;
/* now dif > 0 */
while (dif > Kl)
{
if (subp)
cy += mpn_sub_n (tmp, tmp, n, Kl);
else
cy -= mpn_add_n (tmp, tmp, n, Kl);
subp ^= 1;
n += Kl;
dif -= Kl;
}
/* now dif <= Kl */
if (subp)
cy += mpn_sub (tmp, tmp, Kl, n, dif);
else
cy -= mpn_add (tmp, tmp, Kl, n, dif);
if (cy >= 0)
cy = mpn_add_1 (tmp, tmp, Kl, cy);
else
cy = mpn_sub_1 (tmp, tmp, Kl, -cy);
}
else /* dif <= Kl, i.e. nl <= 2 * Kl */
{
cy = mpn_sub (tmp, n, Kl, n + Kl, dif);
cy = mpn_add_1 (tmp, tmp, Kl, cy);
}
tmp[Kl] = cy;
nl = Kl + 1;
n = tmp;
}
for (i = 0; i < K; i++)
{
Ap[i] = A;
/* store the next M bits of n into A[0..nprime] */
if (nl > 0) /* nl is the number of remaining limbs */
{
j = (l <= nl && i < K - 1) ? l : nl; /* store j next limbs */
nl -= j;
MPN_COPY (T, n, j);
MPN_ZERO (T + j, nprime + 1 - j);
n += l;
mpn_fft_mul_2exp_modF (A, T, i * Mp, nprime);
}
else
MPN_ZERO (A, nprime + 1);
A += nprime + 1;
}
ASSERT_ALWAYS (nl == 0);
TMP_FREE;
}
/* op <- n*m mod 2^N+1 with fft of size 2^k where N=pl*GMP_NUMB_BITS
op is pl limbs, its high bit is returned.
One must have pl = mpn_fft_next_size (pl, k).
T must have space for 2 * (nprime + 1) limbs.
*/
static mp_limb_t
mpn_mul_fft_internal (mp_ptr op, mp_size_t pl, int k,
mp_ptr *Ap, mp_ptr *Bp, mp_ptr A, mp_ptr B,
mp_size_t nprime, mp_size_t l, mp_size_t Mp,
int **fft_l, mp_ptr T, int sqr)
{
mp_size_t K, i, pla, lo, sh, j;
mp_ptr p;
mp_limb_t cc;
K = (mp_size_t) 1 << k;
/* direct fft's */
mpn_fft_fft (Ap, K, fft_l + k, 2 * Mp, nprime, 1, T);
if (!sqr)
mpn_fft_fft (Bp, K, fft_l + k, 2 * Mp, nprime, 1, T);
/* term to term multiplications */
mpn_fft_mul_modF_K (Ap, sqr ? Ap : Bp, nprime, K);
/* inverse fft's */
mpn_fft_fftinv (Ap, K, 2 * Mp, nprime, T);
/* division of terms after inverse fft */
Bp[0] = T + nprime + 1;
mpn_fft_div_2exp_modF (Bp[0], Ap[0], k, nprime);
for (i = 1; i < K; i++)
{
Bp[i] = Ap[i - 1];
mpn_fft_div_2exp_modF (Bp[i], Ap[i], k + (K - i) * Mp, nprime);
}
/* addition of terms in result p */
MPN_ZERO (T, nprime + 1);
pla = l * (K - 1) + nprime + 1; /* number of required limbs for p */
p = B; /* B has K*(n' + 1) limbs, which is >= pla, i.e. enough */
MPN_ZERO (p, pla);
cc = 0; /* will accumulate the (signed) carry at p[pla] */
for (i = K - 1, lo = l * i + nprime,sh = l * i; i >= 0; i--,lo -= l,sh -= l)
{
mp_ptr n = p + sh;
j = (K - i) & (K - 1);
if (mpn_add_n (n, n, Bp[j], nprime + 1))
cc += mpn_add_1 (n + nprime + 1, n + nprime + 1,
pla - sh - nprime - 1, CNST_LIMB(1));
T[2 * l] = i + 1; /* T = (i + 1)*2^(2*M) */
if (mpn_cmp (Bp[j], T, nprime + 1) > 0)
{ /* subtract 2^N'+1 */
cc -= mpn_sub_1 (n, n, pla - sh, CNST_LIMB(1));
cc -= mpn_sub_1 (p + lo, p + lo, pla - lo, CNST_LIMB(1));
}
}
if (cc == -CNST_LIMB(1))
{
if ((cc = mpn_add_1 (p + pla - pl, p + pla - pl, pl, CNST_LIMB(1))))
{
/* p[pla-pl]...p[pla-1] are all zero */
mpn_sub_1 (p + pla - pl - 1, p + pla - pl - 1, pl + 1, CNST_LIMB(1));
mpn_sub_1 (p + pla - 1, p + pla - 1, 1, CNST_LIMB(1));
}
}
else if (cc == 1)
{
if (pla >= 2 * pl)
{
while ((cc = mpn_add_1 (p + pla - 2 * pl, p + pla - 2 * pl, 2 * pl, cc)))
;
}
else
{
cc = mpn_sub_1 (p + pla - pl, p + pla - pl, pl, cc);
ASSERT (cc == 0);
}
}
else
ASSERT (cc == 0);
/* here p < 2^(2M) [K 2^(M(K-1)) + (K-1) 2^(M(K-2)) + ... ]
< K 2^(2M) [2^(M(K-1)) + 2^(M(K-2)) + ... ]
< K 2^(2M) 2^(M(K-1))*2 = 2^(M*K+M+k+1) */
return mpn_fft_norm_modF (op, pl, p, pla);
}
/* return the lcm of a and 2^k */
static mp_bitcnt_t
mpn_mul_fft_lcm (mp_bitcnt_t a, int k)
{
mp_bitcnt_t l = k;
while (a % 2 == 0 && k > 0)
{
a >>= 1;
k --;
}
return a << l;
}
mp_limb_t
mpn_mul_fft (mp_ptr op, mp_size_t pl,
mp_srcptr n, mp_size_t nl,
mp_srcptr m, mp_size_t ml,
int k)
{
int i;
mp_size_t K, maxLK;
mp_size_t N, Nprime, nprime, M, Mp, l;
mp_ptr *Ap, *Bp, A, T, B;
int **fft_l, *tmp;
int sqr = (n == m && nl == ml);
mp_limb_t h;
TMP_DECL;
TRACE (printf ("\nmpn_mul_fft pl=%ld nl=%ld ml=%ld k=%d\n", pl, nl, ml, k));
ASSERT_ALWAYS (mpn_fft_next_size (pl, k) == pl);
TMP_MARK;
N = pl * GMP_NUMB_BITS;
fft_l = TMP_BALLOC_TYPE (k + 1, int *);
tmp = TMP_BALLOC_TYPE ((size_t) 2 << k, int);
for (i = 0; i <= k; i++)
{
fft_l[i] = tmp;
tmp += (mp_size_t) 1 << i;
}
mpn_fft_initl (fft_l, k);
K = (mp_size_t) 1 << k;
M = N >> k; /* N = 2^k M */
l = 1 + (M - 1) / GMP_NUMB_BITS;
maxLK = mpn_mul_fft_lcm (GMP_NUMB_BITS, k); /* lcm (GMP_NUMB_BITS, 2^k) */
Nprime = (1 + (2 * M + k + 2) / maxLK) * maxLK;
/* Nprime = ceil((2*M+k+3)/maxLK)*maxLK; */
nprime = Nprime / GMP_NUMB_BITS;
TRACE (printf ("N=%ld K=%ld, M=%ld, l=%ld, maxLK=%ld, Np=%ld, np=%ld\n",
N, K, M, l, maxLK, Nprime, nprime));
/* we should ensure that recursively, nprime is a multiple of the next K */
if (nprime >= (sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD))
{
mp_size_t K2;
for (;;)
{
K2 = (mp_size_t) 1 << mpn_fft_best_k (nprime, sqr);
if ((nprime & (K2 - 1)) == 0)
break;
nprime = (nprime + K2 - 1) & -K2;
Nprime = nprime * GMP_LIMB_BITS;
/* warning: since nprime changed, K2 may change too! */
}
TRACE (printf ("new maxLK=%ld, Np=%ld, np=%ld\n", maxLK, Nprime, nprime));
}
ASSERT_ALWAYS (nprime < pl); /* otherwise we'll loop */
T = TMP_BALLOC_LIMBS (2 * (nprime + 1));
Mp = Nprime >> k;
TRACE (printf ("%ldx%ld limbs -> %ld times %ldx%ld limbs (%1.2f)\n",
pl, pl, K, nprime, nprime, 2.0 * (double) N / Nprime / K);
printf (" temp space %ld\n", 2 * K * (nprime + 1)));
A = TMP_BALLOC_LIMBS (K * (nprime + 1));
Ap = TMP_BALLOC_MP_PTRS (K);
mpn_mul_fft_decompose (A, Ap, K, nprime, n, nl, l, Mp, T);
if (sqr)
{
mp_size_t pla;
pla = l * (K - 1) + nprime + 1; /* number of required limbs for p */
B = TMP_BALLOC_LIMBS (pla);
Bp = TMP_BALLOC_MP_PTRS (K);
}
else
{
B = TMP_BALLOC_LIMBS (K * (nprime + 1));
Bp = TMP_BALLOC_MP_PTRS (K);
mpn_mul_fft_decompose (B, Bp, K, nprime, m, ml, l, Mp, T);
}
h = mpn_mul_fft_internal (op, pl, k, Ap, Bp, A, B, nprime, l, Mp, fft_l, T, sqr);
TMP_FREE;
return h;
}
#if WANT_OLD_FFT_FULL
/* multiply {n, nl} by {m, ml}, and put the result in {op, nl+ml} */
void
mpn_mul_fft_full (mp_ptr op,
mp_srcptr n, mp_size_t nl,
mp_srcptr m, mp_size_t ml)
{
mp_ptr pad_op;
mp_size_t pl, pl2, pl3, l;
mp_size_t cc, c2, oldcc;
int k2, k3;
int sqr = (n == m && nl == ml);
pl = nl + ml; /* total number of limbs of the result */
/* perform a fft mod 2^(2N)+1 and one mod 2^(3N)+1.
We must have pl3 = 3/2 * pl2, with pl2 a multiple of 2^k2, and
pl3 a multiple of 2^k3. Since k3 >= k2, both are multiples of 2^k2,
and pl2 must be an even multiple of 2^k2. Thus (pl2,pl3) =
(2*j*2^k2,3*j*2^k2), which works for 3*j <= pl/2^k2 <= 5*j.
We need that consecutive intervals overlap, i.e. 5*j >= 3*(j+1),
which requires j>=2. Thus this scheme requires pl >= 6 * 2^FFT_FIRST_K. */
/* ASSERT_ALWAYS(pl >= 6 * (1 << FFT_FIRST_K)); */
pl2 = (2 * pl - 1) / 5; /* ceil (2pl/5) - 1 */
do
{
pl2++;
k2 = mpn_fft_best_k (pl2, sqr); /* best fft size for pl2 limbs */
pl2 = mpn_fft_next_size (pl2, k2);
pl3 = 3 * pl2 / 2; /* since k>=FFT_FIRST_K=4, pl2 is a multiple of 2^4,
thus pl2 / 2 is exact */
k3 = mpn_fft_best_k (pl3, sqr);
}
while (mpn_fft_next_size (pl3, k3) != pl3);
TRACE (printf ("mpn_mul_fft_full nl=%ld ml=%ld -> pl2=%ld pl3=%ld k=%d\n",
nl, ml, pl2, pl3, k2));
ASSERT_ALWAYS(pl3 <= pl);
cc = mpn_mul_fft (op, pl3, n, nl, m, ml, k3); /* mu */
ASSERT(cc == 0);
pad_op = __GMP_ALLOCATE_FUNC_LIMBS (pl2);
cc = mpn_mul_fft (pad_op, pl2, n, nl, m, ml, k2); /* lambda */
cc = -cc + mpn_sub_n (pad_op, pad_op, op, pl2); /* lambda - low(mu) */
/* 0 <= cc <= 1 */
ASSERT(0 <= cc && cc <= 1);
l = pl3 - pl2; /* l = pl2 / 2 since pl3 = 3/2 * pl2 */
c2 = mpn_add_n (pad_op, pad_op, op + pl2, l);
cc = mpn_add_1 (pad_op + l, pad_op + l, l, (mp_limb_t) c2) - cc;
ASSERT(-1 <= cc && cc <= 1);
if (cc < 0)
cc = mpn_add_1 (pad_op, pad_op, pl2, (mp_limb_t) -cc);
ASSERT(0 <= cc && cc <= 1);
/* now lambda-mu = {pad_op, pl2} - cc mod 2^(pl2*GMP_NUMB_BITS)+1 */
oldcc = cc;
#if HAVE_NATIVE_mpn_add_n_sub_n
c2 = mpn_add_n_sub_n (pad_op + l, pad_op, pad_op, pad_op + l, l);
cc += c2 >> 1; /* carry out from high <- low + high */
c2 = c2 & 1; /* borrow out from low <- low - high */
#else
{
mp_ptr tmp;
TMP_DECL;
TMP_MARK;
tmp = TMP_BALLOC_LIMBS (l);
MPN_COPY (tmp, pad_op, l);
c2 = mpn_sub_n (pad_op, pad_op, pad_op + l, l);
cc += mpn_add_n (pad_op + l, tmp, pad_op + l, l);
TMP_FREE;
}
#endif
c2 += oldcc;
/* first normalize {pad_op, pl2} before dividing by 2: c2 is the borrow
at pad_op + l, cc is the carry at pad_op + pl2 */
/* 0 <= cc <= 2 */
cc -= mpn_sub_1 (pad_op + l, pad_op + l, l, (mp_limb_t) c2);
/* -1 <= cc <= 2 */
if (cc > 0)
cc = -mpn_sub_1 (pad_op, pad_op, pl2, (mp_limb_t) cc);
/* now -1 <= cc <= 0 */
if (cc < 0)
cc = mpn_add_1 (pad_op, pad_op, pl2, (mp_limb_t) -cc);
/* now {pad_op, pl2} is normalized, with 0 <= cc <= 1 */
if (pad_op[0] & 1) /* if odd, add 2^(pl2*GMP_NUMB_BITS)+1 */
cc += 1 + mpn_add_1 (pad_op, pad_op, pl2, CNST_LIMB(1));
/* now 0 <= cc <= 2, but cc=2 cannot occur since it would give a carry
out below */
mpn_rshift (pad_op, pad_op, pl2, 1); /* divide by two */
if (cc) /* then cc=1 */
pad_op [pl2 - 1] |= (mp_limb_t) 1 << (GMP_NUMB_BITS - 1);
/* now {pad_op,pl2}-cc = (lambda-mu)/(1-2^(l*GMP_NUMB_BITS))
mod 2^(pl2*GMP_NUMB_BITS) + 1 */
c2 = mpn_add_n (op, op, pad_op, pl2); /* no need to add cc (is 0) */
/* since pl2+pl3 >= pl, necessary the extra limbs (including cc) are zero */
MPN_COPY (op + pl3, pad_op, pl - pl3);
ASSERT_MPN_ZERO_P (pad_op + pl - pl3, pl2 + pl3 - pl);
__GMP_FREE_FUNC_LIMBS (pad_op, pl2);
/* since the final result has at most pl limbs, no carry out below */
mpn_add_1 (op + pl2, op + pl2, pl - pl2, (mp_limb_t) c2);
}
#endif
|