1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
/* mpn_toom32_mul -- Multiply {ap,an} and {bp,bn} where an is nominally 1.5
times as large as bn. Or more accurately, bn < an < 3bn.
Contributed to the GNU project by Torbjorn Granlund.
Improvements by Marco Bodrato and Niels Möller.
The idea of applying toom to unbalanced multiplication is due to Marco
Bodrato and Alberto Zanoni.
THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. IT IS ONLY
SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST
GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
#include "gmp.h"
#include "gmp-impl.h"
/* Evaluate in: -1, 0, +1, +inf
<-s-><--n--><--n-->
___ ______ ______
|a2_|___a1_|___a0_|
|_b1_|___b0_|
<-t--><--n-->
v0 = a0 * b0 # A(0)*B(0)
v1 = (a0+ a1+ a2)*(b0+ b1) # A(1)*B(1) ah <= 2 bh <= 1
vm1 = (a0- a1+ a2)*(b0- b1) # A(-1)*B(-1) |ah| <= 1 bh = 0
vinf= a2 * b1 # A(inf)*B(inf)
*/
#define TOOM32_MUL_N_REC(p, a, b, n, ws) \
do { \
mpn_mul_n (p, a, b, n); \
} while (0)
void
mpn_toom32_mul (mp_ptr pp,
mp_srcptr ap, mp_size_t an,
mp_srcptr bp, mp_size_t bn,
mp_ptr scratch)
{
mp_size_t n, s, t;
int vm1_neg;
mp_limb_t cy;
mp_limb_signed_t hi;
mp_limb_t ap1_hi, bp1_hi;
#define a0 ap
#define a1 (ap + n)
#define a2 (ap + 2 * n)
#define b0 bp
#define b1 (bp + n)
/* Required, to ensure that s + t >= n. */
ASSERT (bn + 2 <= an && an + 6 <= 3*bn);
n = 1 + (2 * an >= 3 * bn ? (an - 1) / (size_t) 3 : (bn - 1) >> 1);
s = an - 2 * n;
t = bn - n;
ASSERT (0 < s && s <= n);
ASSERT (0 < t && t <= n);
ASSERT (s + t >= n);
/* Product area of size an + bn = 3*n + s + t >= 4*n + 2. */
#define ap1 (pp) /* n, most significant limb in ap1_hi */
#define bp1 (pp + n) /* n, most significant bit in bp1_hi */
#define am1 (pp + 2*n) /* n, most significant bit in hi */
#define bm1 (pp + 3*n) /* n */
#define v1 (scratch) /* 2n + 1 */
#define vm1 (pp) /* 2n + 1 */
#define scratch_out (scratch + 2*n + 1) /* Currently unused. */
/* Scratch need: 2*n + 1 + scratch for the recursive multiplications. */
/* FIXME: Keep v1[2*n] and vm1[2*n] in scalar variables? */
/* Compute ap1 = a0 + a1 + a3, am1 = a0 - a1 + a3 */
ap1_hi = mpn_add (ap1, a0, n, a2, s);
#if HAVE_NATIVE_mpn_add_n_sub_n
if (ap1_hi == 0 && mpn_cmp (ap1, a1, n) < 0)
{
ap1_hi = mpn_add_n_sub_n (ap1, am1, a1, ap1, n) >> 1;
hi = 0;
vm1_neg = 1;
}
else
{
cy = mpn_add_n_sub_n (ap1, am1, ap1, a1, n);
hi = ap1_hi - (cy & 1);
ap1_hi += (cy >> 1);
vm1_neg = 0;
}
#else
if (ap1_hi == 0 && mpn_cmp (ap1, a1, n) < 0)
{
ASSERT_NOCARRY (mpn_sub_n (am1, a1, ap1, n));
hi = 0;
vm1_neg = 1;
}
else
{
hi = ap1_hi - mpn_sub_n (am1, ap1, a1, n);
vm1_neg = 0;
}
ap1_hi += mpn_add_n (ap1, ap1, a1, n);
#endif
/* Compute bp1 = b0 + b1 and bm1 = b0 - b1. */
if (t == n)
{
#if HAVE_NATIVE_mpn_add_n_sub_n
if (mpn_cmp (b0, b1, n) < 0)
{
cy = mpn_add_n_sub_n (bp1, bm1, b1, b0, n);
vm1_neg ^= 1;
}
else
{
cy = mpn_add_n_sub_n (bp1, bm1, b0, b1, n);
}
bp1_hi = cy >> 1;
#else
bp1_hi = mpn_add_n (bp1, b0, b1, n);
if (mpn_cmp (b0, b1, n) < 0)
{
ASSERT_NOCARRY (mpn_sub_n (bm1, b1, b0, n));
vm1_neg ^= 1;
}
else
{
ASSERT_NOCARRY (mpn_sub_n (bm1, b0, b1, n));
}
#endif
}
else
{
/* FIXME: Should still use mpn_add_n_sub_n for the main part. */
bp1_hi = mpn_add (bp1, b0, n, b1, t);
if (mpn_zero_p (b0 + t, n - t) && mpn_cmp (b0, b1, t) < 0)
{
ASSERT_NOCARRY (mpn_sub_n (bm1, b1, b0, t));
MPN_ZERO (bm1 + t, n - t);
vm1_neg ^= 1;
}
else
{
ASSERT_NOCARRY (mpn_sub (bm1, b0, n, b1, t));
}
}
TOOM32_MUL_N_REC (v1, ap1, bp1, n, scratch_out);
if (ap1_hi == 1)
{
cy = bp1_hi + mpn_add_n (v1 + n, v1 + n, bp1, n);
}
else if (ap1_hi == 2)
{
#if HAVE_NATIVE_mpn_addlsh1_n
cy = 2 * bp1_hi + mpn_addlsh1_n (v1 + n, v1 + n, bp1, n);
#else
cy = 2 * bp1_hi + mpn_addmul_1 (v1 + n, bp1, n, CNST_LIMB(2));
#endif
}
else
cy = 0;
if (bp1_hi != 0)
cy += mpn_add_n (v1 + n, v1 + n, ap1, n);
v1[2 * n] = cy;
TOOM32_MUL_N_REC (vm1, am1, bm1, n, scratch_out);
if (hi)
hi = mpn_add_n (vm1+n, vm1+n, bm1, n);
vm1[2*n] = hi;
/* v1 <-- (v1 + vm1) / 2 = x0 + x2 */
if (vm1_neg)
{
#if HAVE_NATIVE_mpn_rsh1sub_n
mpn_rsh1sub_n (v1, v1, vm1, 2*n+1);
#else
mpn_sub_n (v1, v1, vm1, 2*n+1);
ASSERT_NOCARRY (mpn_rshift (v1, v1, 2*n+1, 1));
#endif
}
else
{
#if HAVE_NATIVE_mpn_rsh1add_n
mpn_rsh1add_n (v1, v1, vm1, 2*n+1);
#else
mpn_add_n (v1, v1, vm1, 2*n+1);
ASSERT_NOCARRY (mpn_rshift (v1, v1, 2*n+1, 1));
#endif
}
/* We get x1 + x3 = (x0 + x2) - (x0 - x1 + x2 - x3), and hence
y = x1 + x3 + (x0 + x2) * B
= (x0 + x2) * B + (x0 + x2) - vm1.
y is 3*n + 1 limbs, y = y0 + y1 B + y2 B^2. We store them as
follows: y0 at scratch, y1 at pp + 2*n, and y2 at scratch + n
(already in place, except for carry propagation).
We thus add
B^3 B^2 B 1
| | | |
+-----+----+
+ | x0 + x2 |
+----+-----+----+
+ | x0 + x2 |
+----------+
- | vm1 |
--+----++----+----+-
| y2 | y1 | y0 |
+-----+----+----+
Since we store y0 at the same location as the low half of x0 + x2, we
need to do the middle sum first. */
hi = vm1[2*n];
cy = mpn_add_n (pp + 2*n, v1, v1 + n, n);
MPN_INCR_U (v1 + n, n + 1, cy + v1[2*n]);
/* FIXME: Can we get rid of this second vm1_neg conditional by
swapping the location of +1 and -1 values? */
if (vm1_neg)
{
cy = mpn_add_n (v1, v1, vm1, n);
hi += mpn_add_nc (pp + 2*n, pp + 2*n, vm1 + n, n, cy);
MPN_INCR_U (v1 + n, n+1, hi);
}
else
{
cy = mpn_sub_n (v1, v1, vm1, n);
hi += mpn_sub_nc (pp + 2*n, pp + 2*n, vm1 + n, n, cy);
MPN_DECR_U (v1 + n, n+1, hi);
}
TOOM32_MUL_N_REC (pp, a0, b0, n, scratch_out);
/* vinf, s+t limbs. Use mpn_mul for now, to handle unbalanced operands */
if (s > t) mpn_mul (pp+3*n, a2, s, b1, t);
else mpn_mul (pp+3*n, b1, t, a2, s);
/* Remaining interpolation.
y * B + x0 + x3 B^3 - x0 B^2 - x3 B
= (x1 + x3) B + (x0 + x2) B^2 + x0 + x3 B^3 - x0 B^2 - x3 B
= y0 B + y1 B^2 + y3 B^3 + Lx0 + H x0 B
+ L x3 B^3 + H x3 B^4 - Lx0 B^2 - H x0 B^3 - L x3 B - H x3 B^2
= L x0 + (y0 + H x0 - L x3) B + (y1 - L x0 - H x3) B^2
+ (y2 - (H x0 - L x3)) B^3 + H x3 B^4
B^4 B^3 B^2 B 1
| | | | | |
+-------+ +---------+---------+
| Hx3 | | Hx0-Lx3 | Lx0 |
+------+----------+---------+---------+---------+
| y2 | y1 | y0 |
++---------+---------+---------+
-| Hx0-Lx3 | - Lx0 |
+---------+---------+
| - Hx3 |
+--------+
We must take into account the carry from Hx0 - Lx3.
*/
cy = mpn_sub_n (pp + n, pp + n, pp+3*n, n);
hi = scratch[2*n] + cy;
cy = mpn_sub_nc (pp + 2*n, pp + 2*n, pp, n, cy);
hi -= mpn_sub_nc (pp + 3*n, scratch + n, pp + n, n, cy);
hi += mpn_add (pp + n, pp + n, 3*n, scratch, n);
/* FIXME: Is support for s + t == n needed? */
if (LIKELY (s + t > n))
{
hi -= mpn_sub (pp + 2*n, pp + 2*n, 2*n, pp + 4*n, s+t-n);
if (hi < 0)
MPN_DECR_U (pp + 4*n, s+t-n, -hi);
else
MPN_INCR_U (pp + 4*n, s+t-n, hi);
}
else
ASSERT (hi == 0);
}
|