1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
|
/* mpz_bin_uiui - compute n over k.
Contributed to the GNU project by Torbjorn Granlund and Marco Bodrato.
Copyright 2010-2012 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library. If not, see https://www.gnu.org/licenses/. */
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
#ifndef BIN_GOETGHELUCK_THRESHOLD
#define BIN_GOETGHELUCK_THRESHOLD 1000
#endif
#ifndef BIN_UIUI_ENABLE_SMALLDC
#define BIN_UIUI_ENABLE_SMALLDC 1
#endif
#ifndef BIN_UIUI_RECURSIVE_SMALLDC
#define BIN_UIUI_RECURSIVE_SMALLDC (GMP_NUMB_BITS > 32)
#endif
/* Algorithm:
Accumulate chunks of factors first limb-by-limb (using one of mul0-mul8)
which are then accumulated into mpn numbers. The first inner loop
accumulates divisor factors, the 2nd inner loop accumulates exactly the same
number of dividend factors. We avoid accumulating more for the divisor,
even with its smaller factors, since we else cannot guarantee divisibility.
Since we know each division will yield an integer, we compute the quotient
using Hensel norm: If the quotient is limited by 2^t, we compute A / B mod
2^t.
Improvements:
(1) An obvious improvement to this code would be to compute mod 2^t
everywhere. Unfortunately, we cannot determine t beforehand, unless we
invoke some approximation, such as Stirling's formula. Of course, we don't
need t to be tight. However, it is not clear that this would help much,
our numbers are kept reasonably small already.
(2) Compute nmax/kmax semi-accurately, without scalar division or a loop.
Extracting the 3 msb, then doing a table lookup using cnt*8+msb as index,
would make it both reasonably accurate and fast. (We could use a table
stored into a limb, perhaps.) The table should take the removed factors of
2 into account (those done on-the-fly in mulN).
(3) The first time in the loop we compute the odd part of a
factorial in kp, we might use oddfac_1 for this task.
*/
/* This threshold determines how large divisor to accumulate before we call
bdiv. Perhaps we should never call bdiv, and accumulate all we are told,
since we are just basecase code anyway? Presumably, this depends on the
relative speed of the asymptotically fast code and this code. */
#define SOME_THRESHOLD 20
/* Multiply-into-limb functions. These remove factors of 2 on-the-fly. FIXME:
All versions of MAXFACS don't take this 2 removal into account now, meaning
that then, shifting just adds some overhead. (We remove factors from the
completed limb anyway.) */
static mp_limb_t
mul1 (mp_limb_t m)
{
return m;
}
static mp_limb_t
mul2 (mp_limb_t m)
{
/* We need to shift before multiplying, to avoid an overflow. */
mp_limb_t m01 = (m | 1) * ((m + 1) >> 1);
return m01;
}
static mp_limb_t
mul3 (mp_limb_t m)
{
mp_limb_t m01 = (m + 0) * (m + 1) >> 1;
mp_limb_t m2 = (m + 2);
return m01 * m2;
}
static mp_limb_t
mul4 (mp_limb_t m)
{
mp_limb_t m01 = (m + 0) * (m + 1) >> 1;
mp_limb_t m23 = (m + 2) * (m + 3) >> 1;
return m01 * m23;
}
static mp_limb_t
mul5 (mp_limb_t m)
{
mp_limb_t m012 = (m + 0) * (m + 1) * (m + 2) >> 1;
mp_limb_t m34 = (m + 3) * (m + 4) >> 1;
return m012 * m34;
}
static mp_limb_t
mul6 (mp_limb_t m)
{
mp_limb_t m01 = (m + 0) * (m + 1);
mp_limb_t m23 = (m + 2) * (m + 3);
mp_limb_t m45 = (m + 4) * (m + 5) >> 1;
mp_limb_t m0123 = m01 * m23 >> 3;
return m0123 * m45;
}
static mp_limb_t
mul7 (mp_limb_t m)
{
mp_limb_t m01 = (m + 0) * (m + 1);
mp_limb_t m23 = (m + 2) * (m + 3);
mp_limb_t m456 = (m + 4) * (m + 5) * (m + 6) >> 1;
mp_limb_t m0123 = m01 * m23 >> 3;
return m0123 * m456;
}
static mp_limb_t
mul8 (mp_limb_t m)
{
mp_limb_t m01 = (m + 0) * (m + 1);
mp_limb_t m23 = (m + 2) * (m + 3);
mp_limb_t m45 = (m + 4) * (m + 5);
mp_limb_t m67 = (m + 6) * (m + 7);
mp_limb_t m0123 = m01 * m23 >> 3;
mp_limb_t m4567 = m45 * m67 >> 3;
return m0123 * m4567;
}
typedef mp_limb_t (* mulfunc_t) (mp_limb_t);
static const mulfunc_t mulfunc[] = {mul1,mul2,mul3,mul4,mul5,mul6,mul7,mul8};
#define M (numberof(mulfunc))
/* Number of factors-of-2 removed by the corresponding mulN function. */
static const unsigned char tcnttab[] = {0, 1, 1, 2, 2, 4, 4, 6};
#if 1
/* This variant is inaccurate but share the code with other functions. */
#define MAXFACS(max,l) \
do { \
(max) = log_n_max (l); \
} while (0)
#else
/* This variant is exact(?) but uses a loop. It takes the 2 removal
of mulN into account. */
static const unsigned long ftab[] =
#if GMP_NUMB_BITS == 64
/* 1 to 8 factors per iteration */
{CNST_LIMB(0xffffffffffffffff),CNST_LIMB(0x100000000),0x32cbfe,0x16a0b,0x24c4,0xa16,0x34b,0x1b2 /*,0xdf,0x8d */};
#endif
#if GMP_NUMB_BITS == 32
/* 1 to 7 factors per iteration */
{0xffffffff,0x10000,0x801,0x16b,0x71,0x42,0x26 /* ,0x1e */};
#endif
#define MAXFACS(max,l) \
do { \
int __i; \
for (__i = numberof (ftab) - 1; l > ftab[__i]; __i--) \
; \
(max) = __i + 1; \
} while (0)
#endif
/* Entry i contains (i!/2^t)^(-1) where t is chosen such that the parenthesis
is an odd integer. */
static const mp_limb_t facinv[] = { ONE_LIMB_ODD_FACTORIAL_INVERSES_TABLE };
static void
mpz_bdiv_bin_uiui (mpz_ptr r, unsigned long int n, unsigned long int k)
{
int nmax, kmax, nmaxnow, numfac;
mp_ptr np, kp;
mp_size_t nn, kn, alloc;
mp_limb_t i, j, t, iii, jjj, cy, dinv;
mp_bitcnt_t i2cnt, j2cnt;
int cnt;
mp_size_t maxn;
TMP_DECL;
ASSERT (k > ODD_FACTORIAL_TABLE_LIMIT);
TMP_MARK;
maxn = 1 + n / GMP_NUMB_BITS; /* absolutely largest result size (limbs) */
/* FIXME: This allocation might be insufficient, but is usually way too
large. */
alloc = SOME_THRESHOLD - 1 + MAX (3 * maxn / 2, SOME_THRESHOLD);
alloc = MIN (alloc, k) + 1;
np = TMP_ALLOC_LIMBS (alloc);
kp = TMP_ALLOC_LIMBS (SOME_THRESHOLD + 1);
MAXFACS (nmax, n);
ASSERT (nmax <= M);
MAXFACS (kmax, k);
ASSERT (kmax <= M);
ASSERT (k >= M);
i = n - k + 1;
np[0] = 1; nn = 1;
i2cnt = 0; /* total low zeros in dividend */
j2cnt = __gmp_fac2cnt_table[ODD_FACTORIAL_TABLE_LIMIT / 2 - 1];
/* total low zeros in divisor */
numfac = 1;
j = ODD_FACTORIAL_TABLE_LIMIT + 1;
jjj = ODD_FACTORIAL_TABLE_MAX;
ASSERT (__gmp_oddfac_table[ODD_FACTORIAL_TABLE_LIMIT] == ODD_FACTORIAL_TABLE_MAX);
while (1)
{
kp[0] = jjj; /* store new factors */
kn = 1;
t = k - j + 1;
kmax = MIN (kmax, t);
while (kmax != 0 && kn < SOME_THRESHOLD)
{
jjj = mulfunc[kmax - 1] (j);
j += kmax; /* number of factors used */
count_trailing_zeros (cnt, jjj); /* count low zeros */
jjj >>= cnt; /* remove remaining low zeros */
j2cnt += tcnttab[kmax - 1] + cnt; /* update low zeros count */
cy = mpn_mul_1 (kp, kp, kn, jjj); /* accumulate new factors */
kp[kn] = cy;
kn += cy != 0;
t = k - j + 1;
kmax = MIN (kmax, t);
}
numfac = j - numfac;
while (numfac != 0)
{
nmaxnow = MIN (nmax, numfac);
iii = mulfunc[nmaxnow - 1] (i);
i += nmaxnow; /* number of factors used */
count_trailing_zeros (cnt, iii); /* count low zeros */
iii >>= cnt; /* remove remaining low zeros */
i2cnt += tcnttab[nmaxnow - 1] + cnt; /* update low zeros count */
cy = mpn_mul_1 (np, np, nn, iii); /* accumulate new factors */
np[nn] = cy;
nn += cy != 0;
numfac -= nmaxnow;
}
ASSERT (nn < alloc);
binvert_limb (dinv, kp[0]);
nn += (np[nn - 1] >= kp[kn - 1]);
nn -= kn;
mpn_sbpi1_bdiv_q (np, np, nn, kp, MIN(kn,nn), -dinv);
if (kmax == 0)
break;
numfac = j;
jjj = mulfunc[kmax - 1] (j);
j += kmax; /* number of factors used */
count_trailing_zeros (cnt, jjj); /* count low zeros */
jjj >>= cnt; /* remove remaining low zeros */
j2cnt += tcnttab[kmax - 1] + cnt; /* update low zeros count */
}
/* Put back the right number of factors of 2. */
cnt = i2cnt - j2cnt;
if (cnt != 0)
{
ASSERT (cnt < GMP_NUMB_BITS); /* can happen, but not for intended use */
cy = mpn_lshift (np, np, nn, cnt);
np[nn] = cy;
nn += cy != 0;
}
nn -= np[nn - 1] == 0; /* normalisation */
kp = MPZ_NEWALLOC (r, nn);
SIZ(r) = nn;
MPN_COPY (kp, np, nn);
TMP_FREE;
}
static void
mpz_smallk_bin_uiui (mpz_ptr r, unsigned long int n, unsigned long int k)
{
int nmax, numfac;
mp_ptr rp;
mp_size_t rn, alloc;
mp_limb_t i, iii, cy;
mp_bitcnt_t i2cnt, cnt;
count_leading_zeros (cnt, (mp_limb_t) n);
cnt = GMP_LIMB_BITS - cnt;
alloc = cnt * k / GMP_NUMB_BITS + 3; /* FIXME: ensure rounding is enough. */
rp = MPZ_NEWALLOC (r, alloc);
MAXFACS (nmax, n);
nmax = MIN (nmax, M);
i = n - k + 1;
nmax = MIN (nmax, k);
rp[0] = mulfunc[nmax - 1] (i);
rn = 1;
i += nmax; /* number of factors used */
i2cnt = tcnttab[nmax - 1]; /* low zeros count */
numfac = k - nmax;
while (numfac != 0)
{
nmax = MIN (nmax, numfac);
iii = mulfunc[nmax - 1] (i);
i += nmax; /* number of factors used */
i2cnt += tcnttab[nmax - 1]; /* update low zeros count */
cy = mpn_mul_1 (rp, rp, rn, iii); /* accumulate new factors */
rp[rn] = cy;
rn += cy != 0;
numfac -= nmax;
}
ASSERT (rn < alloc);
mpn_pi1_bdiv_q_1 (rp, rp, rn, __gmp_oddfac_table[k], facinv[k - 2],
__gmp_fac2cnt_table[k / 2 - 1] - i2cnt);
/* A two-fold, branch-free normalisation is possible :*/
/* rn -= rp[rn - 1] == 0; */
/* rn -= rp[rn - 1] == 0; */
MPN_NORMALIZE_NOT_ZERO (rp, rn);
SIZ(r) = rn;
}
/* Algorithm:
Plain and simply multiply things together.
We tabulate factorials (k!/2^t)^(-1) mod B (where t is chosen such
that k!/2^t is odd).
*/
static mp_limb_t
bc_bin_uiui (unsigned int n, unsigned int k)
{
return ((__gmp_oddfac_table[n] * facinv[k - 2] * facinv[n - k - 2])
<< (__gmp_fac2cnt_table[n / 2 - 1] - __gmp_fac2cnt_table[k / 2 - 1] - __gmp_fac2cnt_table[(n-k) / 2 - 1]))
& GMP_NUMB_MASK;
}
/* Algorithm:
Recursively exploit the relation
bin(n,k) = bin(n,k>>1)*bin(n-k>>1,k-k>>1)/bin(k,k>>1) .
Values for binomial(k,k>>1) that fit in a limb are precomputed
(with inverses).
*/
/* bin2kk[i - ODD_CENTRAL_BINOMIAL_OFFSET] =
binomial(i*2,i)/2^t (where t is chosen so that it is odd). */
static const mp_limb_t bin2kk[] = { ONE_LIMB_ODD_CENTRAL_BINOMIAL_TABLE };
/* bin2kkinv[i] = bin2kk[i]^-1 mod B */
static const mp_limb_t bin2kkinv[] = { ONE_LIMB_ODD_CENTRAL_BINOMIAL_INVERSE_TABLE };
/* bin2kk[i] = binomial((i+MIN_S)*2,i+MIN_S)/2^t. This table contains the t values. */
static const unsigned char fac2bin[] = { CENTRAL_BINOMIAL_2FAC_TABLE };
static void
mpz_smallkdc_bin_uiui (mpz_ptr r, unsigned long int n, unsigned long int k)
{
mp_ptr rp;
mp_size_t rn;
unsigned long int hk;
hk = k >> 1;
if ((! BIN_UIUI_RECURSIVE_SMALLDC) || hk <= ODD_FACTORIAL_TABLE_LIMIT)
mpz_smallk_bin_uiui (r, n, hk);
else
mpz_smallkdc_bin_uiui (r, n, hk);
k -= hk;
n -= hk;
if (n <= ODD_FACTORIAL_EXTTABLE_LIMIT) {
mp_limb_t cy;
rn = SIZ (r);
rp = MPZ_REALLOC (r, rn + 1);
cy = mpn_mul_1 (rp, rp, rn, bc_bin_uiui (n, k));
rp [rn] = cy;
rn += cy != 0;
} else {
mp_limb_t buffer[ODD_CENTRAL_BINOMIAL_TABLE_LIMIT + 3];
mpz_t t;
ALLOC (t) = ODD_CENTRAL_BINOMIAL_TABLE_LIMIT + 3;
PTR (t) = buffer;
if ((! BIN_UIUI_RECURSIVE_SMALLDC) || k <= ODD_FACTORIAL_TABLE_LIMIT)
mpz_smallk_bin_uiui (t, n, k);
else
mpz_smallkdc_bin_uiui (t, n, k);
mpz_mul (r, r, t);
rp = PTR (r);
rn = SIZ (r);
}
mpn_pi1_bdiv_q_1 (rp, rp, rn, bin2kk[k - ODD_CENTRAL_BINOMIAL_OFFSET],
bin2kkinv[k - ODD_CENTRAL_BINOMIAL_OFFSET],
fac2bin[k - ODD_CENTRAL_BINOMIAL_OFFSET] - (k != hk));
/* A two-fold, branch-free normalisation is possible :*/
/* rn -= rp[rn - 1] == 0; */
/* rn -= rp[rn - 1] == 0; */
MPN_NORMALIZE_NOT_ZERO (rp, rn);
SIZ(r) = rn;
}
/* mpz_goetgheluck_bin_uiui(RESULT, N, K) -- Set RESULT to binomial(N,K).
*
* Contributed to the GNU project by Marco Bodrato.
*
* Implementation of the algorithm by P. Goetgheluck, "Computing
* Binomial Coefficients", The American Mathematical Monthly, Vol. 94,
* No. 4 (April 1987), pp. 360-365.
*
* Acknowledgment: Peter Luschny did spot the slowness of the previous
* code and suggested the reference.
*/
/* TODO: Remove duplicated constants / macros / static functions...
*/
/*************************************************************/
/* Section macros: common macros, for swing/fac/bin (&sieve) */
/*************************************************************/
#define FACTOR_LIST_APPEND(PR, MAX_PR, VEC, I) \
if ((PR) > (MAX_PR)) { \
(VEC)[(I)++] = (PR); \
(PR) = 1; \
}
#define FACTOR_LIST_STORE(P, PR, MAX_PR, VEC, I) \
do { \
if ((PR) > (MAX_PR)) { \
(VEC)[(I)++] = (PR); \
(PR) = (P); \
} else \
(PR) *= (P); \
} while (0)
#define LOOP_ON_SIEVE_CONTINUE(prime,end,sieve) \
__max_i = (end); \
\
do { \
++__i; \
if (((sieve)[__index] & __mask) == 0) \
{ \
(prime) = id_to_n(__i)
#define LOOP_ON_SIEVE_BEGIN(prime,start,end,off,sieve) \
do { \
mp_limb_t __mask, __index, __max_i, __i; \
\
__i = (start)-(off); \
__index = __i / GMP_LIMB_BITS; \
__mask = CNST_LIMB(1) << (__i % GMP_LIMB_BITS); \
__i += (off); \
\
LOOP_ON_SIEVE_CONTINUE(prime,end,sieve)
#define LOOP_ON_SIEVE_STOP \
} \
__mask = __mask << 1 | __mask >> (GMP_LIMB_BITS-1); \
__index += __mask & 1; \
} while (__i <= __max_i) \
#define LOOP_ON_SIEVE_END \
LOOP_ON_SIEVE_STOP; \
} while (0)
/*********************************************************/
/* Section sieve: sieving functions and tools for primes */
/*********************************************************/
#if WANT_ASSERT
static mp_limb_t
bit_to_n (mp_limb_t bit) { return (bit*3+4)|1; }
#endif
/* id_to_n (x) = bit_to_n (x-1) = (id*3+1)|1*/
static mp_limb_t
id_to_n (mp_limb_t id) { return id*3+1+(id&1); }
/* n_to_bit (n) = ((n-1)&(-CNST_LIMB(2)))/3U-1 */
static mp_limb_t
n_to_bit (mp_limb_t n) { return ((n-5)|1)/3U; }
static mp_size_t
primesieve_size (mp_limb_t n) { return n_to_bit(n) / GMP_LIMB_BITS + 1; }
/*********************************************************/
/* Section binomial: fast binomial implementation */
/*********************************************************/
#define COUNT_A_PRIME(P, N, K, PR, MAX_PR, VEC, I) \
do { \
mp_limb_t __a, __b, __prime, __ma,__mb; \
__prime = (P); \
__a = (N); __b = (K); __mb = 0; \
FACTOR_LIST_APPEND(PR, MAX_PR, VEC, I); \
do { \
__mb += __b % __prime; __b /= __prime; \
__ma = __a % __prime; __a /= __prime; \
if (__ma < __mb) { \
__mb = 1; (PR) *= __prime; \
} else __mb = 0; \
} while (__a >= __prime); \
} while (0)
#define SH_COUNT_A_PRIME(P, N, K, PR, MAX_PR, VEC, I) \
do { \
mp_limb_t __prime; \
__prime = (P); \
if (((N) % __prime) < ((K) % __prime)) { \
FACTOR_LIST_STORE (__prime, PR, MAX_PR, VEC, I); \
} \
} while (0)
/* Returns an approximation of the sqare root of x. *
* It gives: x <= limb_apprsqrt (x) ^ 2 < x * 9/4 */
static mp_limb_t
limb_apprsqrt (mp_limb_t x)
{
int s;
ASSERT (x > 2);
count_leading_zeros (s, x - 1);
s = GMP_LIMB_BITS - 1 - s;
return (CNST_LIMB(1) << (s >> 1)) + (CNST_LIMB(1) << ((s - 1) >> 1));
}
static void
mpz_goetgheluck_bin_uiui (mpz_ptr r, unsigned long int n, unsigned long int k)
{
mp_limb_t *sieve, *factors, count;
mp_limb_t prod, max_prod, j;
TMP_DECL;
ASSERT (BIN_GOETGHELUCK_THRESHOLD >= 13);
ASSERT (n >= 25);
TMP_MARK;
sieve = TMP_ALLOC_LIMBS (primesieve_size (n));
count = gmp_primesieve (sieve, n) + 1;
factors = TMP_ALLOC_LIMBS (count / log_n_max (n) + 1);
max_prod = GMP_NUMB_MAX / n;
/* Handle primes = 2, 3 separately. */
popc_limb (count, n - k);
popc_limb (j, k);
count += j;
popc_limb (j, n);
count -= j;
prod = CNST_LIMB(1) << count;
j = 0;
COUNT_A_PRIME (3, n, k, prod, max_prod, factors, j);
/* Accumulate prime factors from 5 to n/2 */
{
mp_limb_t s;
{
mp_limb_t prime;
s = limb_apprsqrt(n);
s = n_to_bit (s);
LOOP_ON_SIEVE_BEGIN (prime, n_to_bit (5), s, 0,sieve);
COUNT_A_PRIME (prime, n, k, prod, max_prod, factors, j);
LOOP_ON_SIEVE_END;
s++;
}
ASSERT (max_prod <= GMP_NUMB_MAX / 2);
max_prod <<= 1;
ASSERT (bit_to_n (s) * bit_to_n (s) > n);
ASSERT (s <= n_to_bit (n >> 1));
{
mp_limb_t prime;
LOOP_ON_SIEVE_BEGIN (prime, s, n_to_bit (n >> 1), 0,sieve);
SH_COUNT_A_PRIME (prime, n, k, prod, max_prod, factors, j);
LOOP_ON_SIEVE_END;
}
max_prod >>= 1;
}
/* Store primes from (n-k)+1 to n */
ASSERT (n_to_bit (n - k) < n_to_bit (n));
{
mp_limb_t prime;
LOOP_ON_SIEVE_BEGIN (prime, n_to_bit (n - k) + 1, n_to_bit (n), 0,sieve);
FACTOR_LIST_STORE (prime, prod, max_prod, factors, j);
LOOP_ON_SIEVE_END;
}
if (LIKELY (j != 0))
{
factors[j++] = prod;
mpz_prodlimbs (r, factors, j);
}
else
{
PTR (r)[0] = prod;
SIZ (r) = 1;
}
TMP_FREE;
}
#undef COUNT_A_PRIME
#undef SH_COUNT_A_PRIME
#undef LOOP_ON_SIEVE_END
#undef LOOP_ON_SIEVE_STOP
#undef LOOP_ON_SIEVE_BEGIN
#undef LOOP_ON_SIEVE_CONTINUE
/*********************************************************/
/* End of implementation of Goetgheluck's algorithm */
/*********************************************************/
void
mpz_bin_uiui (mpz_ptr r, unsigned long int n, unsigned long int k)
{
if (UNLIKELY (n < k)) {
SIZ (r) = 0;
#if BITS_PER_ULONG > GMP_NUMB_BITS
} else if (UNLIKELY (n > GMP_NUMB_MAX)) {
mpz_t tmp;
mpz_init_set_ui (tmp, n);
mpz_bin_ui (r, tmp, k);
mpz_clear (tmp);
#endif
} else {
ASSERT (n <= GMP_NUMB_MAX);
/* Rewrite bin(n,k) as bin(n,n-k) if that is smaller. */
k = MIN (k, n - k);
if (k < 2) {
PTR(r)[0] = k ? n : 1; /* 1 + ((-k) & (n-1)); */
SIZ(r) = 1;
} else if (n <= ODD_FACTORIAL_EXTTABLE_LIMIT) { /* k >= 2, n >= 4 */
PTR(r)[0] = bc_bin_uiui (n, k);
SIZ(r) = 1;
} else if (k <= ODD_FACTORIAL_TABLE_LIMIT)
mpz_smallk_bin_uiui (r, n, k);
else if (BIN_UIUI_ENABLE_SMALLDC &&
k <= (BIN_UIUI_RECURSIVE_SMALLDC ? ODD_CENTRAL_BINOMIAL_TABLE_LIMIT : ODD_FACTORIAL_TABLE_LIMIT)* 2)
mpz_smallkdc_bin_uiui (r, n, k);
else if (ABOVE_THRESHOLD (k, BIN_GOETGHELUCK_THRESHOLD) &&
k > (n >> 4)) /* k > ODD_FACTORIAL_TABLE_LIMIT */
mpz_goetgheluck_bin_uiui (r, n, k);
else
mpz_bdiv_bin_uiui (r, n, k);
}
}
|