1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
/* mpz_ior -- Logical inclusive or.
Copyright 1991, 1993, 1994, 1996, 1997, 2000, 2001, 2005, 2012 Free
Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
#include "gmp.h"
#include "gmp-impl.h"
void
mpz_ior (mpz_ptr res, mpz_srcptr op1, mpz_srcptr op2)
{
mp_srcptr op1_ptr, op2_ptr;
mp_size_t op1_size, op2_size;
mp_ptr res_ptr;
mp_size_t res_size;
mp_size_t i;
TMP_DECL;
TMP_MARK;
op1_size = SIZ(op1);
op2_size = SIZ(op2);
op1_ptr = PTR(op1);
op2_ptr = PTR(op2);
res_ptr = PTR(res);
if (op1_size >= 0)
{
if (op2_size >= 0)
{
if (op1_size >= op2_size)
{
if (ALLOC(res) < op1_size)
{
_mpz_realloc (res, op1_size);
/* No overlapping possible: op1_ptr = PTR(op1); */
op2_ptr = PTR(op2);
res_ptr = PTR(res);
}
if (res_ptr != op1_ptr)
MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size,
op1_size - op2_size);
if (LIKELY (op2_size != 0))
mpn_ior_n (res_ptr, op1_ptr, op2_ptr, op2_size);
res_size = op1_size;
}
else
{
if (ALLOC(res) < op2_size)
{
_mpz_realloc (res, op2_size);
op1_ptr = PTR(op1);
/* No overlapping possible: op2_ptr = PTR(op2); */
res_ptr = PTR(res);
}
if (res_ptr != op2_ptr)
MPN_COPY (res_ptr + op1_size, op2_ptr + op1_size,
op2_size - op1_size);
if (LIKELY (op1_size != 0))
mpn_ior_n (res_ptr, op1_ptr, op2_ptr, op1_size);
res_size = op2_size;
}
SIZ(res) = res_size;
return;
}
else /* op2_size < 0 */
{
/* Fall through to the code at the end of the function. */
}
}
else
{
if (op2_size < 0)
{
mp_ptr opx, opy;
mp_limb_t cy;
/* Both operands are negative, so will be the result.
-((-OP1) | (-OP2)) = -(~(OP1 - 1) | ~(OP2 - 1)) =
= ~(~(OP1 - 1) | ~(OP2 - 1)) + 1 =
= ((OP1 - 1) & (OP2 - 1)) + 1 */
op1_size = -op1_size;
op2_size = -op2_size;
res_size = MIN (op1_size, op2_size);
/* Possible optimization: Decrease mpn_sub precision,
as we won't use the entire res of both. */
TMP_ALLOC_LIMBS_2 (opx, res_size, opy, res_size);
mpn_sub_1 (opx, op1_ptr, res_size, (mp_limb_t) 1);
op1_ptr = opx;
mpn_sub_1 (opy, op2_ptr, res_size, (mp_limb_t) 1);
op2_ptr = opy;
/* First loop finds the size of the result. */
for (i = res_size - 1; i >= 0; i--)
if ((op1_ptr[i] & op2_ptr[i]) != 0)
break;
res_size = i + 1;
if (res_size != 0)
{
res_ptr = MPZ_REALLOC (res, res_size);
/* Second loop computes the real result. */
mpn_and_n (res_ptr, op1_ptr, op2_ptr, res_size);
cy = mpn_add_1 (res_ptr, res_ptr, res_size, (mp_limb_t) 1);
if (cy)
{
res_ptr[res_size] = cy;
res_size++;
}
}
else
{
res_ptr[0] = 1;
res_size = 1;
}
SIZ(res) = -res_size;
TMP_FREE;
return;
}
else
{
/* We should compute -OP1 | OP2. Swap OP1 and OP2 and fall
through to the code that handles OP1 | -OP2. */
MPZ_SRCPTR_SWAP (op1, op2);
MPN_SRCPTR_SWAP (op1_ptr,op1_size, op2_ptr,op2_size);
}
}
{
mp_ptr opx;
mp_limb_t cy;
mp_size_t res_alloc;
mp_size_t count;
/* Operand 2 negative, so will be the result.
-(OP1 | (-OP2)) = -(OP1 | ~(OP2 - 1)) =
= ~(OP1 | ~(OP2 - 1)) + 1 =
= (~OP1 & (OP2 - 1)) + 1 */
op2_size = -op2_size;
res_alloc = op2_size;
opx = TMP_ALLOC_LIMBS (op2_size);
mpn_sub_1 (opx, op2_ptr, op2_size, (mp_limb_t) 1);
op2_ptr = opx;
op2_size -= op2_ptr[op2_size - 1] == 0;
if (ALLOC(res) < res_alloc)
{
_mpz_realloc (res, res_alloc);
op1_ptr = PTR(op1);
/* op2_ptr points to temporary space. */
res_ptr = PTR(res);
}
if (op1_size >= op2_size)
{
/* We can just ignore the part of OP1 that stretches above OP2,
because the result limbs are zero there. */
/* First loop finds the size of the result. */
for (i = op2_size - 1; i >= 0; i--)
if ((~op1_ptr[i] & op2_ptr[i]) != 0)
break;
res_size = i + 1;
count = res_size;
}
else
{
res_size = op2_size;
/* Copy the part of OP2 that stretches above OP1, to RES. */
MPN_COPY (res_ptr + op1_size, op2_ptr + op1_size, op2_size - op1_size);
count = op1_size;
}
if (res_size != 0)
{
/* Second loop computes the real result. */
if (LIKELY (count != 0))
mpn_andn_n (res_ptr, op2_ptr, op1_ptr, count);
cy = mpn_add_1 (res_ptr, res_ptr, res_size, (mp_limb_t) 1);
if (cy)
{
res_ptr[res_size] = cy;
res_size++;
}
}
else
{
res_ptr[0] = 1;
res_size = 1;
}
SIZ(res) = -res_size;
}
TMP_FREE;
}
|