summaryrefslogtreecommitdiff
path: root/mpz/oddfac_1.c
blob: a6bc9d26339afbdff1e360de19669405f49785c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/* mpz_oddfac_1(RESULT, N) -- Set RESULT to the odd factor of N!.

Contributed to the GNU project by Marco Bodrato.

THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.
IT IS ONLY SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.
IN FACT, IT IS ALMOST GUARANTEED THAT IT WILL CHANGE OR
DISAPPEAR IN A FUTURE GNU MP RELEASE.

Copyright 2010, 2011, 2012 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library.  If not, see http://www.gnu.org/licenses/.  */

#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"

/* TODO:
   - split this file in smaller parts with functions that can be recycled for different computations.
 */

/**************************************************************/
/* Section macros: common macros, for mswing/fac/bin (&sieve) */
/**************************************************************/

#define FACTOR_LIST_APPEND(PR, MAX_PR, VEC, I)			\
  if ((PR) > (MAX_PR)) {					\
    (VEC)[(I)++] = (PR);					\
    (PR) = 1;							\
  }

#define FACTOR_LIST_STORE(P, PR, MAX_PR, VEC, I)		\
  do {								\
    if ((PR) > (MAX_PR)) {					\
      (VEC)[(I)++] = (PR);					\
      (PR) = (P);						\
    } else							\
      (PR) *= (P);						\
  } while (0)

#define LOOP_ON_SIEVE_CONTINUE(prime,end,sieve)			\
    __max_i = (end);						\
								\
    do {							\
      ++__i;							\
      if (((sieve)[__index] & __mask) == 0)			\
	{							\
	  (prime) = id_to_n(__i)

#define LOOP_ON_SIEVE_BEGIN(prime,start,end,off,sieve)		\
  do {								\
    mp_limb_t __mask, __index, __max_i, __i;			\
								\
    __i = (start)-(off);					\
    __index = __i / GMP_LIMB_BITS;				\
    __mask = CNST_LIMB(1) << (__i % GMP_LIMB_BITS);		\
    __i += (off);						\
								\
    LOOP_ON_SIEVE_CONTINUE(prime,end,sieve)

#define LOOP_ON_SIEVE_STOP					\
	}							\
      __mask = __mask << 1 | __mask >> (GMP_LIMB_BITS-1);	\
      __index += __mask & 1;					\
    }  while (__i <= __max_i)					\

#define LOOP_ON_SIEVE_END					\
    LOOP_ON_SIEVE_STOP;						\
  } while (0)

/*********************************************************/
/* Section sieve: sieving functions and tools for primes */
/*********************************************************/

#if WANT_ASSERT
static mp_limb_t
bit_to_n (mp_limb_t bit) { return (bit*3+4)|1; }
#endif

/* id_to_n (x) = bit_to_n (x-1) = (id*3+1)|1*/
static mp_limb_t
id_to_n  (mp_limb_t id)  { return id*3+1+(id&1); }

/* n_to_bit (n) = ((n-1)&(-CNST_LIMB(2)))/3U-1 */
static mp_limb_t
n_to_bit (mp_limb_t n) { return ((n-5)|1)/3U; }

#if WANT_ASSERT
static mp_size_t
primesieve_size (mp_limb_t n) { return n_to_bit(n) / GMP_LIMB_BITS + 1; }
#endif

/*********************************************************/
/* Section mswing: 2-multiswing factorial                 */
/*********************************************************/

/* Returns an approximation of the sqare root of x.  *
 * It gives: x <= limb_apprsqrt (x) ^ 2 < x * 9/4    */
static mp_limb_t
limb_apprsqrt (mp_limb_t x)
{
  int s;

  ASSERT (x > 2);
  count_leading_zeros (s, x - 1);
  s = GMP_LIMB_BITS - 1 - s;
  return (CNST_LIMB(1) << (s >> 1)) + (CNST_LIMB(1) << ((s - 1) >> 1));
}

#if 0
/* A count-then-exponentiate variant for SWING_A_PRIME */
#define SWING_A_PRIME(P, N, PR, MAX_PR, VEC, I)		\
  do {							\
    mp_limb_t __q, __prime;				\
    int __exp;						\
    __prime = (P);					\
    __exp = 0;						\
    __q = (N);						\
    do {						\
      __q /= __prime;					\
      __exp += __q & 1;					\
    } while (__q >= __prime);				\
    if (__exp) { /* Store $prime^{exp}$ */		\
      for (__q = __prime; --__exp; __q *= __prime);	\
      FACTOR_LIST_STORE(__q, PR, MAX_PR, VEC, I);	\
    };							\
  } while (0)
#else
#define SWING_A_PRIME(P, N, PR, MAX_PR, VEC, I)	\
  do {						\
    mp_limb_t __q, __prime;			\
    __prime = (P);				\
    FACTOR_LIST_APPEND(PR, MAX_PR, VEC, I);	\
    __q = (N);					\
    do {					\
      __q /= __prime;				\
      if ((__q & 1) != 0) (PR) *= __prime;	\
    } while (__q >= __prime);			\
  } while (0)
#endif

#define SH_SWING_A_PRIME(P, N, PR, MAX_PR, VEC, I)	\
  do {							\
    mp_limb_t __prime;					\
    __prime = (P);					\
    if ((((N) / __prime) & 1) != 0)			\
      FACTOR_LIST_STORE(__prime, PR, MAX_PR, VEC, I);	\
  } while (0)

/* mpz_2multiswing_1 computes the odd part of the 2-multiswing
   factorial of the parameter n.  The result x is an odd positive
   integer so that multiswing(n,2) = x 2^a.

   Uses the algorithm described by Peter Luschny in "Divide, Swing and
   Conquer the Factorial!".

   The pointer sieve points to primesieve_size(n) limbs containing a
   bit-array where primes are marked as 0.
   Enough (FIXME: explain :-) limbs must be pointed by factors.
 */

static void
mpz_2multiswing_1 (mpz_ptr x, mp_limb_t n, mp_ptr sieve, mp_ptr factors)
{
  mp_limb_t prod, max_prod;
  mp_size_t j;

  ASSERT (n >= 26);

  j = 0;
  prod  = -(n & 1);
  n &= ~ CNST_LIMB(1); /* n-1, if n is odd */

  prod = (prod & n) + 1; /* the original n, if it was odd, 1 otherwise */
  max_prod = GMP_NUMB_MAX / (n-1);

  /* Handle prime = 3 separately. */
  SWING_A_PRIME (3, n, prod, max_prod, factors, j);

  /* Swing primes from 5 to n/3 */
  {
    mp_limb_t s;

    {
      mp_limb_t prime;

      s = limb_apprsqrt(n);
      ASSERT (s >= 5);
      s = n_to_bit (s);
      LOOP_ON_SIEVE_BEGIN (prime, n_to_bit (5), s, 0,sieve);
      SWING_A_PRIME (prime, n, prod, max_prod, factors, j);
      LOOP_ON_SIEVE_END;
      s++;
    }

    ASSERT (max_prod <= GMP_NUMB_MAX / 3);
    ASSERT (bit_to_n (s) * bit_to_n (s) > n);
    ASSERT (s <= n_to_bit (n / 3));
    {
      mp_limb_t prime;
      mp_limb_t l_max_prod = max_prod * 3;

      LOOP_ON_SIEVE_BEGIN (prime, s, n_to_bit (n/3), 0, sieve);
      SH_SWING_A_PRIME (prime, n, prod, l_max_prod, factors, j);
      LOOP_ON_SIEVE_END;
    }
  }

  /* Store primes from (n+1)/2 to n */
  {
    mp_limb_t prime;
    LOOP_ON_SIEVE_BEGIN (prime, n_to_bit (n >> 1) + 1, n_to_bit (n), 0,sieve);
    FACTOR_LIST_STORE (prime, prod, max_prod, factors, j);
    LOOP_ON_SIEVE_END;
  }

  if (LIKELY (j != 0))
    {
      factors[j++] = prod;
      mpz_prodlimbs (x, factors, j);
    }
  else
    {
      PTR (x)[0] = prod;
      SIZ (x) = 1;
    }
}

#undef SWING_A_PRIME
#undef SH_SWING_A_PRIME
#undef LOOP_ON_SIEVE_END
#undef LOOP_ON_SIEVE_STOP
#undef LOOP_ON_SIEVE_BEGIN
#undef LOOP_ON_SIEVE_CONTINUE
#undef FACTOR_LIST_APPEND

/*********************************************************/
/* Section oddfac: odd factorial, needed also by binomial*/
/*********************************************************/

#if TUNE_PROGRAM_BUILD
#define FACTORS_PER_LIMB (GMP_NUMB_BITS / (LOG2C(FAC_DSC_THRESHOLD_LIMIT-1)+1))
#else
#define FACTORS_PER_LIMB (GMP_NUMB_BITS / (LOG2C(FAC_DSC_THRESHOLD-1)+1))
#endif

/* mpz_oddfac_1 computes the odd part of the factorial of the
   parameter n.  I.e. n! = x 2^a, where x is the returned value: an
   odd positive integer.

   If flag != 0 a square is skipped in the DSC part, e.g.
   if n is odd, n > FAC_DSC_THRESHOLD and flag = 1, x is set to n!!.

   If n is too small, flag is ignored, and an ASSERT can be triggered.

   TODO: FAC_DSC_THRESHOLD is used here with two different roles:
    - to decide when prime factorisation is needed,
    - to stop the recursion, once sieving is done.
   Maybe two thresholds can do a better job.
 */
void
mpz_oddfac_1 (mpz_ptr x, mp_limb_t n, unsigned flag)
{
  ASSERT (n <= GMP_NUMB_MAX);
  ASSERT (flag == 0 || (flag == 1 && n > ODD_FACTORIAL_TABLE_LIMIT && ABOVE_THRESHOLD (n, FAC_DSC_THRESHOLD)));

  if (n <= ODD_FACTORIAL_TABLE_LIMIT)
    {
      PTR (x)[0] = __gmp_oddfac_table[n];
      SIZ (x) = 1;
    }
  else if (n <= ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1)
    {
      mp_ptr   px;

      px = MPZ_NEWALLOC (x, 2);
      umul_ppmm (px[1], px[0], __gmp_odd2fac_table[(n - 1) >> 1], __gmp_oddfac_table[n >> 1]);
      SIZ (x) = 2;
    }
  else
    {
      unsigned s;
      mp_ptr   factors;

      s = 0;
      {
	mp_limb_t tn;
	mp_limb_t prod, max_prod, i;
	mp_size_t j;
	TMP_SDECL;

#if TUNE_PROGRAM_BUILD
	ASSERT (FAC_DSC_THRESHOLD_LIMIT >= FAC_DSC_THRESHOLD);
	ASSERT (FAC_DSC_THRESHOLD >= 2 * (ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 2));
#endif

	/* Compute the number of recursive steps for the DSC algorithm. */
	for (tn = n; ABOVE_THRESHOLD (tn, FAC_DSC_THRESHOLD); s++)
	  tn >>= 1;

	j = 0;

	TMP_SMARK;
	factors = TMP_SALLOC_LIMBS (1 + tn / FACTORS_PER_LIMB);
	ASSERT (tn >= FACTORS_PER_LIMB);

	prod = 1;
#if TUNE_PROGRAM_BUILD
	max_prod = GMP_NUMB_MAX / FAC_DSC_THRESHOLD_LIMIT;
#else
	max_prod = GMP_NUMB_MAX / FAC_DSC_THRESHOLD;
#endif

	ASSERT (tn > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1);
	do {
	  i = ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 2;
	  factors[j++] = ODD_DOUBLEFACTORIAL_TABLE_MAX;
	  do {
	    FACTOR_LIST_STORE (i, prod, max_prod, factors, j);
	    i += 2;
	  } while (i <= tn);
	  max_prod <<= 1;
	  tn >>= 1;
	} while (tn > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1);

	factors[j++] = prod;
	factors[j++] = __gmp_odd2fac_table[(tn - 1) >> 1];
	factors[j++] = __gmp_oddfac_table[tn >> 1];
	mpz_prodlimbs (x, factors, j);

	TMP_SFREE;
      }

      if (s != 0)
	/* Use the algorithm described by Peter Luschny in "Divide,
	   Swing and Conquer the Factorial!".

	   Improvement: there are two temporary buffers, factors and
	   square, that are never used together; with a good estimate
	   of the maximal needed size, they could share a single
	   allocation.
	*/
	{
	  mpz_t mswing;
	  mp_ptr sieve;
	  mp_size_t size;
	  TMP_DECL;

	  TMP_MARK;

	  flag--;
	  size = n / GMP_NUMB_BITS + 4;
	  ASSERT (primesieve_size (n - 1) <= size - (size / 2 + 1));
	  /* 2-multiswing(n) < 2^(n-1)*sqrt(n/pi) < 2^(n+GMP_NUMB_BITS);
	     one more can be overwritten by mul, another for the sieve */
	  MPZ_TMP_INIT (mswing, size);
#if WANT_ASSERT
	  SIZ(mswing) = 0; /* Initialize size, so that ASSERT can check it correctly. */
#endif
	  /* Put the sieve on the second half, it will be overwritten by the last mswing. */
	  sieve = PTR (mswing) + size / 2 + 1;

	  size = (gmp_primesieve (sieve, n - 1) + 1) / log_n_max (n) + 1;

	  factors = TMP_ALLOC_LIMBS (size);
	  do {
	    mp_ptr    square, px;
	    mp_size_t nx, ns;
	    mp_limb_t cy;
	    TMP_DECL;

	    s--;
	    ASSERT (ABSIZ (mswing) < ALLOC (mswing) / 2); /* Check: sieve has not been overwritten */
	    mpz_2multiswing_1 (mswing, n >> s, sieve, factors);

	    TMP_MARK;
	    nx = SIZ (x);
	    if (s == flag) {
	      size = nx;
	      square = TMP_ALLOC_LIMBS (size);
	      MPN_COPY (square, PTR (x), nx);
	    } else {
	      size = nx << 1;
	      square = TMP_ALLOC_LIMBS (size);
	      mpn_sqr (square, PTR (x), nx);
	      size -= (square[size - 1] == 0);
	    }
	    ns = SIZ (mswing);
	    nx = size + ns;
	    px = MPZ_NEWALLOC (x, nx);
	    ASSERT (ns <= size);
	    cy = mpn_mul (px, square, size, PTR(mswing), ns); /* n!= n$ * floor(n/2)!^2 */

	    TMP_FREE;
	    SIZ(x) = nx - (cy == 0);
	  } while (s != 0);
	  TMP_FREE;
	}
    }
}

#undef FACTORS_PER_LIMB
#undef FACTOR_LIST_STORE