1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
|
@node Container data types
@section Container data types
@c Copyright (C) 2019--2023 Free Software Foundation, Inc.
@c Permission is granted to copy, distribute and/or modify this document
@c under the terms of the GNU Free Documentation License, Version 1.3 or
@c any later version published by the Free Software Foundation; with no
@c Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
@c copy of the license is at <https://www.gnu.org/licenses/fdl-1.3.en.html>.
@c Written by Bruno Haible.
@c This macro expands to \log in TeX mode, but just 'log' in HTML and info
@c modes.
@ifnottex
@macro log
log
@end macro
@end ifnottex
@c This macro expands to \mathopsup in TeX mode, to a superscript in HTML
@c mode, and to ^ without braces in info mode.
@ifhtml
@macro mathopsup {EXP}
@sup{\EXP\}
@end macro
@end ifhtml
@ifinfo
@macro mathopsup {EXP}
^\EXP\
@end macro
@end ifinfo
Gnulib provides several generic container data types. They can be used
to organize collections of application-defined objects.
@node Ordinary containers
@subsection Ordinary container data types
@multitable @columnfractions .15 .5 .1 .1 .15
@headitem Data type
@tab Details
@tab Module
@tab Main include file
@tab Include file for operations with out-of-memory checking
@item Sequential list
@tab Can contain any number of objects in any given order.
Duplicates are allowed, but can optionally be forbidden.
@tab @code{list}
@tab @code{"gl_list.h"}
@tab @code{"gl_xlist.h"}
@item Set
@tab Can contain any number of objects; the order does not matter.
Duplicates (in the sense of the comparator) are forbidden.
@tab @code{set}
@tab @code{"gl_set.h"}
@tab @code{"gl_xset.h"}
@item Ordered set
@tab Can contain any number of objects in the order of a given comparator
function.
Duplicates (in the sense of the comparator) are forbidden.
@tab @code{oset}
@tab @code{"gl_oset.h"}
@tab @code{"gl_xoset.h"}
@item Map
@tab Can contain any number of (key, value) pairs, where keys and values
are objects;
there are no (key, value1) and (key, value2) pairs with the same key
(in the sense of a given comparator function).
@tab @code{map}
@tab @code{"gl_map.h"}
@tab @code{"gl_xmap.h"}
@item Ordered map
@tab Can contain any number of (key, value) pairs, where keys and values
are objects;
the (key, value) pairs are ordered by the key, in the order of a given
comparator function;
there are no (key, value1) and (key, value2) pairs with the same key
(in the sense of the comparator function).
@tab @code{omap}
@tab @code{"gl_omap.h"}
@tab @code{"gl_xomap.h"}
@end multitable
Operations without out-of-memory checking (suitable for use in libraries) are
declared in the ``main include file''. Whereas operations with out-of-memory
checking (suitable only in programs) are declared in the ``include file for
operations with out-of-memory checking''.
For each of the data types, several implementations are available, with
different performance profiles with respect to the available operations.
This enables you to start with the simplest implementation (ARRAY) initially,
and switch to a more suitable implementation after profiling your application.
The implementation of each container instance is specified in a single place
only: in the invocation of the function @code{gl_*_create_empty} that creates
the instance.
The implementations and the guaranteed average performance for the operations
for the ``sequential list'' data type are:
@multitable @columnfractions 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
@headitem Operation
@tab ARRAY
@tab CARRAY
@tab LINKED
@tab TREE
@tab LINKEDHASH with duplicates
@tab LINKEDHASH without duplicates
@tab TREEHASH with duplicates
@tab TREEHASH without duplicates
@item @code{gl_list_size}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@item @code{gl_list_node_value}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@item @code{gl_list_node_set_value}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(1)}
@item @code{gl_list_next_node}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_list_previous_node}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_list_first_node}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_list_last_node}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_list_get_at}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_list_get_first}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_list_get_last}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_list_set_at}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_set_first}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_set_last}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_search}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@item @code{gl_list_search_from}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_search_from_to}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_indexof}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_list_indexof_from}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_indexof_from_to}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_add_first}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_add_last}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_add_before}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_add_after}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_add_at}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_remove_node}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_remove_at}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_remove_first}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_remove_last}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_remove}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(1)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_list_iterator}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_list_iterator_from_to}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_list_iterator_next}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(1)}
@tab @math{O(1)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_sortedlist_search}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_sortedlist_search_from}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_sortedlist_indexof}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_sortedlist_indexof_from}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_sortedlist_add}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@item @code{gl_sortedlist_remove}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O(@log n)}
@tab @math{O(n)}
@tab @math{O(n)}
@tab @math{O((@log n)@mathopsup{2})}
@tab @math{O(@log n)}
@end multitable
The implementations and the guaranteed average performance for the operations
for the ``set'' data type are:
@multitable @columnfractions 0.4 0.2 0.4
@headitem Operation
@tab ARRAY
@tab LINKEDHASH, HASH
@item @code{gl_set_size}
@tab @math{O(1)}
@tab @math{O(1)}
@item @code{gl_set_add}
@tab @math{O(n)}
@tab @math{O(1)}
@item @code{gl_set_remove}
@tab @math{O(n)}
@tab @math{O(1)}
@item @code{gl_set_search}
@tab @math{O(n)}
@tab @math{O(1)}
@item @code{gl_set_iterator}
@tab @math{O(1)}
@tab @math{O(1)}
@item @code{gl_set_iterator_next}
@tab @math{O(1)}
@tab @math{O(1)}
@end multitable
The implementations and the guaranteed average performance for the operations
for the ``ordered set'' data type are:
@multitable @columnfractions 0.5 0.25 0.25
@headitem Operation
@tab ARRAY
@tab TREE
@item @code{gl_oset_size}
@tab @math{O(1)}
@tab @math{O(1)}
@item @code{gl_oset_add}
@tab @math{O(n)}
@tab @math{O(@log n)}
@item @code{gl_oset_remove}
@tab @math{O(n)}
@tab @math{O(@log n)}
@item @code{gl_oset_search}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_oset_search_atleast}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_oset_iterator}
@tab @math{O(1)}
@tab @math{O(@log n)}
@item @code{gl_oset_iterator_next}
@tab @math{O(1)}
@tab @math{O(@log n)}
@end multitable
The implementations and the guaranteed average performance for the operations
for the ``map'' data type are:
@multitable @columnfractions 0.4 0.2 0.4
@headitem Operation
@tab ARRAY
@tab LINKEDHASH, HASH
@item @code{gl_map_size}
@tab @math{O(1)}
@tab @math{O(1)}
@item @code{gl_map_get}
@tab @math{O(n)}
@tab @math{O(1)}
@item @code{gl_map_put}
@tab @math{O(n)}
@tab @math{O(1)}
@item @code{gl_map_remove}
@tab @math{O(n)}
@tab @math{O(1)}
@item @code{gl_map_search}
@tab @math{O(n)}
@tab @math{O(1)}
@item @code{gl_map_iterator}
@tab @math{O(1)}
@tab @math{O(1)}
@item @code{gl_map_iterator_next}
@tab @math{O(1)}
@tab @math{O(1)}
@end multitable
The implementations and the guaranteed average performance for the operations
for the ``ordered map'' data type are:
@multitable @columnfractions 0.5 0.25 0.25
@headitem Operation
@tab ARRAY
@tab TREE
@item @code{gl_omap_size}
@tab @math{O(1)}
@tab @math{O(1)}
@item @code{gl_omap_get}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_omap_put}
@tab @math{O(n)}
@tab @math{O(@log n)}
@item @code{gl_omap_remove}
@tab @math{O(n)}
@tab @math{O(@log n)}
@item @code{gl_omap_search}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_omap_search_atleast}
@tab @math{O(@log n)}
@tab @math{O(@log n)}
@item @code{gl_omap_iterator}
@tab @math{O(1)}
@tab @math{O(@log n)}
@item @code{gl_omap_iterator_next}
@tab @math{O(1)}
@tab @math{O(@log n)}
@end multitable
For C++, Gnulib provides a C++ template class for each of these container data types.
@multitable @columnfractions .30 .20 .25 .25
@headitem Data type
@tab C++ class
@tab Module
@tab Include file
@item Sequential list
@tab @code{gl_List}
@tab @code{list-c++}
@tab @code{"gl_list.hh"}
@item Set
@tab @code{gl_Set}
@tab @code{set-c++}
@tab @code{"gl_set.hh"}
@item Ordered set
@tab @code{gl_OSet}
@tab @code{oset-c++}
@tab @code{"gl_oset.hh"}
@item Map
@tab @code{gl_Map}
@tab @code{map-c++}
@tab @code{"gl_map.hh"}
@item Ordered map
@tab @code{gl_OMap}
@tab @code{omap-c++}
@tab @code{"gl_omap.hh"}
@end multitable
@node Specialized containers
@subsection Specialized container data types
The @code{hamt} module implements the hash array mapped trie (HAMT) data
structure. This is a data structure that contains (key, value) pairs.
Lookup of a (key, value) pair given the key is on average an @math{O(1)}
operation, assuming a good hash function for the keys is employed.
The HAMT data structure is useful when you want modifications (additions
of pairs, removal, value changes) to be visible only to some part of
your program, whereas other parts of the program continue to use the
unmodified HAMT. The HAMT makes this possible in a space-efficient
manner: the modified and the unmodified HAMT share most of their
allocated memory. It is also time-efficient: Every such modification
is @math{O(1)} on average, again assuming a good hash function for the keys.
A HAMT can be used whenever an ordinary hash table would be used. It
does however, provide non-destructive updating operations without the
need to copy the whole container. On the other hand, a hash table is
simpler so that its performance may be better when non-destructive
update operations are not needed.
For example, a HAMT can be used to model the dynamic environment in a
LISP interpreter. Updating a value in the dynamic environment of one
continuation frame would not modify values in earlier frames.
To use the module, include @code{hamt.h} in your code. The public
interface is documented in that header file. You have to provide a hash
function and an equivalence relation, which defines key equality. The
module includes a test file @code{test-hamt.c}, which demonstrates how
the API can be used.
In the current implementation, each inner node of the HAMT can store up
to @math{32 = 2^5} entries and subtries. Whenever a collision between
the initial bits of the hash values of two entries would happen, the
next @math{5} bits of the hash values are examined and the two entries
pushed down one level in the trie.
HAMTs have the same average access times as hash tables but grow and
shrink dynamically, so they use memory more economically and do not have
to be periodically resized.
They were described and analyzed in @cite{Phil Bagwell (2000). Ideal
Hash Trees (Report). Infoscience Department, École Polytechnique
Fédérale de Lausanne.}
The persistence aspect of the HAMT data structure, which means that each
updating operation (like inserting, replacing, or removing an entry)
returns a new HAMT while leaving the original one intact, is achieved
through structure sharing, which is even safe in the presence of
multiple threads when the used C compiler supports atomics.
@ifnottex
@unmacro log
@end ifnottex
@ifhtml
@unmacro mathopsup
@end ifhtml
@ifinfo
@unmacro mathopsup
@end ifinfo
|