1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
/* Compute cubic root of long double value.
Copyright (C) 2012-2015 Free Software Foundation, Inc.
Cephes Math Library Release 2.2: January, 1991
Copyright 1984, 1991 by Stephen L. Moshier
Adapted for glibc October, 2001.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include <config.h>
/* Specification. */
#include <math.h>
#if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
long double
cbrtl (long double x)
{
return cbrt (x);
}
#else
/* Code based on glibc/sysdeps/ieee754/ldbl-128/s_cbrtl.c. */
/* cbrtl.c
*
* Cube root, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, cbrtl();
*
* y = cbrtl( x );
*
*
*
* DESCRIPTION:
*
* Returns the cube root of the argument, which may be negative.
*
* Range reduction involves determining the power of 2 of
* the argument. A polynomial of degree 2 applied to the
* mantissa, and multiplication by the cube root of 1, 2, or 4
* approximates the root to within about 0.1%. Then Newton's
* iteration is used three times to converge to an accurate
* result.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -8,8 100000 1.3e-34 3.9e-35
* IEEE exp(+-707) 100000 1.3e-34 4.3e-35
*
*/
static const long double CBRT2 = 1.259921049894873164767210607278228350570251L;
static const long double CBRT4 = 1.587401051968199474751705639272308260391493L;
static const long double CBRT2I = 0.7937005259840997373758528196361541301957467L;
static const long double CBRT4I = 0.6299605249474365823836053036391141752851257L;
long double
cbrtl (long double x)
{
if (isfinite (x) && x != 0.0L)
{
int e, rem, sign;
long double z;
if (x > 0)
sign = 1;
else
{
sign = -1;
x = -x;
}
z = x;
/* extract power of 2, leaving mantissa between 0.5 and 1 */
x = frexpl (x, &e);
/* Approximate cube root of number between .5 and 1,
peak relative error = 1.2e-6 */
x = ((((1.3584464340920900529734e-1L * x
- 6.3986917220457538402318e-1L) * x
+ 1.2875551670318751538055e0L) * x
- 1.4897083391357284957891e0L) * x
+ 1.3304961236013647092521e0L) * x + 3.7568280825958912391243e-1L;
/* exponent divided by 3 */
if (e >= 0)
{
rem = e;
e /= 3;
rem -= 3 * e;
if (rem == 1)
x *= CBRT2;
else if (rem == 2)
x *= CBRT4;
}
else
{ /* argument less than 1 */
e = -e;
rem = e;
e /= 3;
rem -= 3 * e;
if (rem == 1)
x *= CBRT2I;
else if (rem == 2)
x *= CBRT4I;
e = -e;
}
/* multiply by power of 2 */
x = ldexpl (x, e);
/* Newton iteration */
x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
if (sign < 0)
x = -x;
return x;
}
else
{
# ifdef __sgi /* so that when x == -0.0L, the result is -0.0L not +0.0L */
return x;
# else
return x + x;
# endif
}
}
#endif
|