1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
/* Exponential function.
Copyright (C) 2011-2022 Free Software Foundation, Inc.
This file is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
#include <config.h>
/* Specification. */
#include <math.h>
#if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
long double
expl (long double x)
{
return exp (x);
}
#else
# include <float.h>
/* gl_expl_table[i] = exp((i - 128) * log(2)/256). */
extern const long double gl_expl_table[257];
/* A value slightly larger than log(2). */
#define LOG2_PLUS_EPSILON 0.6931471805599454L
/* Best possible approximation of log(2) as a 'long double'. */
#define LOG2 0.693147180559945309417232121458176568075L
/* Best possible approximation of 1/log(2) as a 'long double'. */
#define LOG2_INVERSE 1.44269504088896340735992468100189213743L
/* Best possible approximation of log(2)/256 as a 'long double'. */
#define LOG2_BY_256 0.00270760617406228636491106297444600221904L
/* Best possible approximation of 256/log(2) as a 'long double'. */
#define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181L
/* The upper 32 bits of log(2)/256. */
#define LOG2_BY_256_HI_PART 0.0027076061733168899081647396087646484375L
/* log(2)/256 - LOG2_HI_PART. */
#define LOG2_BY_256_LO_PART \
0.000000000000745396456746323365681353781544922399845L
long double
expl (long double x)
{
if (isnanl (x))
return x;
if (x >= (long double) LDBL_MAX_EXP * LOG2_PLUS_EPSILON)
/* x > LDBL_MAX_EXP * log(2)
hence exp(x) > 2^LDBL_MAX_EXP, overflows to Infinity. */
return HUGE_VALL;
if (x <= (long double) (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG) * LOG2_PLUS_EPSILON)
/* x < (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG) * log(2)
hence exp(x) < 2^(LDBL_MIN_EXP-1-LDBL_MANT_DIG),
underflows to zero. */
return 0.0L;
/* Decompose x into
x = n * log(2) + m * log(2)/256 + y
where
n is an integer,
m is an integer, -128 <= m <= 128,
y is a number, |y| <= log(2)/512 + epsilon = 0.00135...
Then
exp(x) = 2^n * exp(m * log(2)/256) * exp(y)
The first factor is an ldexpl() call.
The second factor is a table lookup.
The third factor is computed
- either as sinh(y) + cosh(y)
where sinh(y) is computed through the power series:
sinh(y) = y + y^3/3! + y^5/5! + ...
and cosh(y) is computed as hypot(1, sinh(y)),
- or as exp(2*z) = (1 + tanh(z)) / (1 - tanh(z))
where z = y/2
and tanh(z) is computed through its power series:
tanh(z) = z
- 1/3 * z^3
+ 2/15 * z^5
- 17/315 * z^7
+ 62/2835 * z^9
- 1382/155925 * z^11
+ 21844/6081075 * z^13
- 929569/638512875 * z^15
+ ...
Since |z| <= log(2)/1024 < 0.0007, the relative contribution of the
z^13 term is < 0.0007^12 < 2^-120 <= 2^-LDBL_MANT_DIG, therefore we
can truncate the series after the z^11 term.
Given the usual bounds LDBL_MAX_EXP <= 16384, LDBL_MIN_EXP >= -16381,
LDBL_MANT_DIG <= 120, we can estimate x: -11440 <= x <= 11357.
This means, when dividing x by log(2), where we want x mod log(2)
to be precise to LDBL_MANT_DIG bits, we have to use an approximation
to log(2) that has 14+LDBL_MANT_DIG bits. */
{
long double nm = roundl (x * LOG2_BY_256_INVERSE); /* = 256 * n + m */
/* n has at most 15 bits, nm therefore has at most 23 bits, therefore
n * LOG2_HI_PART is computed exactly, and n * LOG2_LO_PART is computed
with an absolute error < 2^15 * 2e-10 * 2^-LDBL_MANT_DIG. */
long double y_tmp = x - nm * LOG2_BY_256_HI_PART;
long double y = y_tmp - nm * LOG2_BY_256_LO_PART;
long double z = 0.5L * y;
/* Coefficients of the power series for tanh(z). */
#define TANH_COEFF_1 1.0L
#define TANH_COEFF_3 -0.333333333333333333333333333333333333334L
#define TANH_COEFF_5 0.133333333333333333333333333333333333334L
#define TANH_COEFF_7 -0.053968253968253968253968253968253968254L
#define TANH_COEFF_9 0.0218694885361552028218694885361552028218L
#define TANH_COEFF_11 -0.00886323552990219656886323552990219656886L
#define TANH_COEFF_13 0.00359212803657248101692546136990581435026L
#define TANH_COEFF_15 -0.00145583438705131826824948518070211191904L
long double z2 = z * z;
long double tanh_z =
(((((TANH_COEFF_11
* z2 + TANH_COEFF_9)
* z2 + TANH_COEFF_7)
* z2 + TANH_COEFF_5)
* z2 + TANH_COEFF_3)
* z2 + TANH_COEFF_1)
* z;
long double exp_y = (1.0L + tanh_z) / (1.0L - tanh_z);
int n = (int) roundl (nm * (1.0L / 256.0L));
int m = (int) nm - 256 * n;
return ldexpl (gl_expl_table[128 + m] * exp_y, n);
}
}
#endif
|