summaryrefslogtreecommitdiff
path: root/lib/expl.c
blob: 202d35952ec8465227ed876442e437b825deffa5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/* Emulation for expl.
   Contributed by Paolo Bonzini

   Copyright 2002, 2003, 2007 Free Software Foundation, Inc.

   This file is part of gnulib.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include <config.h>

/* Specification.  */
#include <math.h>

#include <float.h>

static const long double C[] = {
/* Chebyshev polynom coeficients for (exp(x)-1)/x */
#define P1 C[0]
#define P2 C[1]
#define P3 C[2]
#define P4 C[3]
#define P5 C[4]
#define P6 C[5]
 0.5L,
 1.66666666666666666666666666666666683E-01L,
 4.16666666666666666666654902320001674E-02L,
 8.33333333333333333333314659767198461E-03L,
 1.38888888889899438565058018857254025E-03L,
 1.98412698413981650382436541785404286E-04L,

/* Smallest integer x for which e^x overflows.  */
#define himark C[6]
 11356.523406294143949491931077970765L,

/* Largest integer x for which e^x underflows.  */
#define lomark C[7]
-11433.4627433362978788372438434526231L,

/* very small number */
#define TINY C[8]
 1.0e-4900L,

/* 2^16383 */
#define TWO16383 C[9]
 5.94865747678615882542879663314003565E+4931L};

long double
expl (long double x)
{
  /* Check for usual case.  */
  if (x < himark && x > lomark)
    {
      int exponent;
      long double t, x22;
      int k = 1;
      long double result = 1.0;

      /* Compute an integer power of e with a granularity of 0.125.  */
      exponent = (int) floorl (x * 8.0L);
      x -= exponent / 8.0L;

      if (x > 0.0625)
	{
	  exponent++;
	  x -= 0.125L;
	}

      if (exponent < 0)
        {
          t = 0.8824969025845954028648921432290507362220L; /* e^-0.25 */
	  exponent = -exponent;
	}
      else
        t = 1.1331484530668263168290072278117938725655L; /* e^0.25 */

      while (exponent)
        {
          if (exponent & k)
            {
              result *= t;
              exponent ^= k;
            }
          t *= t;
          k <<= 1;
        }

      /* Approximate (e^x - 1)/x, using a seventh-degree polynomial,
	 with maximum error in [-2^-16-2^-53,2^-16+2^-53]
	 less than 4.8e-39.  */
      x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6)))));

      return result + result * x22;
    }
  /* Exceptional cases:  */
  else if (x < himark)
    {
      if (x + x == x)
	/* e^-inf == 0, with no error.  */
	return 0;
      else
	/* Underflow */
	return TINY * TINY;
    }
  else
    /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */
    return TWO16383*x;
}

#if 0
int
main (void)
{
  printf ("%.16Lg\n", expl(1.0L));
  printf ("%.16Lg\n", expl(-1.0L));
  printf ("%.16Lg\n", expl(2.0L));
  printf ("%.16Lg\n", expl(4.0L));
  printf ("%.16Lg\n", expl(-2.0L));
  printf ("%.16Lg\n", expl(-4.0L));
  printf ("%.16Lg\n", expl(0.0625L));
  printf ("%.16Lg\n", expl(0.3L));
  printf ("%.16Lg\n", expl(0.6L));
}
#endif