summaryrefslogtreecommitdiff
path: root/lib/sha512.c
blob: 2865d6e588d6eaa8033bf1685e984b5ff20289d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/* sha512.c - Functions to compute SHA512 and SHA384 message digest of files or
   memory blocks according to the NIST specification FIPS-180-2.

   Copyright (C) 2005-2006, 2008-2021 Free Software Foundation, Inc.

   This file is free software: you can redistribute it and/or modify
   it under the terms of the GNU Lesser General Public License as
   published by the Free Software Foundation; either version 2.1 of the
   License, or (at your option) any later version.

   This file is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public License
   along with this program.  If not, see <https://www.gnu.org/licenses/>.  */

/* Written by David Madore, considerably copypasting from
   Scott G. Miller's sha1.c
*/

#include <config.h>

/* Specification.  */
#if HAVE_OPENSSL_SHA512
# define GL_OPENSSL_INLINE _GL_EXTERN_INLINE
#endif
#include "sha512.h"

#include <stdalign.h>
#include <stdint.h>
#include <string.h>

#include <byteswap.h>
#ifdef WORDS_BIGENDIAN
# define SWAP(n) (n)
#else
# define SWAP(n) bswap_64 (n)
#endif

#if ! HAVE_OPENSSL_SHA512

/* This array contains the bytes used to pad the buffer to the next
   128-byte boundary.  */
static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ...  */ };


/*
  Takes a pointer to a 512 bit block of data (eight 64 bit ints) and
  initializes it to the start constants of the SHA512 algorithm.  This
  must be called before using hash in the call to sha512_hash
*/
void
sha512_init_ctx (struct sha512_ctx *ctx)
{
  ctx->state[0] = u64hilo (0x6a09e667, 0xf3bcc908);
  ctx->state[1] = u64hilo (0xbb67ae85, 0x84caa73b);
  ctx->state[2] = u64hilo (0x3c6ef372, 0xfe94f82b);
  ctx->state[3] = u64hilo (0xa54ff53a, 0x5f1d36f1);
  ctx->state[4] = u64hilo (0x510e527f, 0xade682d1);
  ctx->state[5] = u64hilo (0x9b05688c, 0x2b3e6c1f);
  ctx->state[6] = u64hilo (0x1f83d9ab, 0xfb41bd6b);
  ctx->state[7] = u64hilo (0x5be0cd19, 0x137e2179);

  ctx->total[0] = ctx->total[1] = u64lo (0);
  ctx->buflen = 0;
}

void
sha384_init_ctx (struct sha512_ctx *ctx)
{
  ctx->state[0] = u64hilo (0xcbbb9d5d, 0xc1059ed8);
  ctx->state[1] = u64hilo (0x629a292a, 0x367cd507);
  ctx->state[2] = u64hilo (0x9159015a, 0x3070dd17);
  ctx->state[3] = u64hilo (0x152fecd8, 0xf70e5939);
  ctx->state[4] = u64hilo (0x67332667, 0xffc00b31);
  ctx->state[5] = u64hilo (0x8eb44a87, 0x68581511);
  ctx->state[6] = u64hilo (0xdb0c2e0d, 0x64f98fa7);
  ctx->state[7] = u64hilo (0x47b5481d, 0xbefa4fa4);

  ctx->total[0] = ctx->total[1] = u64lo (0);
  ctx->buflen = 0;
}

/* Copy the value from V into the memory location pointed to by *CP,
   If your architecture allows unaligned access, this is equivalent to
   * (__typeof__ (v) *) cp = v  */
static void
set_uint64 (char *cp, u64 v)
{
  memcpy (cp, &v, sizeof v);
}

/* Put result from CTX in first 64 bytes following RESBUF.
   The result must be in little endian byte order.  */
void *
sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
{
  int i;
  char *r = resbuf;

  for (i = 0; i < 8; i++)
    set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));

  return resbuf;
}

void *
sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
{
  int i;
  char *r = resbuf;

  for (i = 0; i < 6; i++)
    set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));

  return resbuf;
}

/* Process the remaining bytes in the internal buffer and the usual
   prolog according to the standard and write the result to RESBUF.  */
static void
sha512_conclude_ctx (struct sha512_ctx *ctx)
{
  /* Take yet unprocessed bytes into account.  */
  size_t bytes = ctx->buflen;
  size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8;

  /* Now count remaining bytes.  */
  ctx->total[0] = u64plus (ctx->total[0], u64lo (bytes));
  if (u64lt (ctx->total[0], u64lo (bytes)))
    ctx->total[1] = u64plus (ctx->total[1], u64lo (1));

  /* Put the 128-bit file length in *bits* at the end of the buffer.
     Use set_uint64 rather than a simple assignment, to avoid risk of
     unaligned access.  */
  set_uint64 ((char *) &ctx->buffer[size - 2],
              SWAP (u64or (u64shl (ctx->total[1], 3),
                           u64shr (ctx->total[0], 61))));
  set_uint64 ((char *) &ctx->buffer[size - 1],
              SWAP (u64shl (ctx->total[0], 3)));

  memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 8 - bytes);

  /* Process last bytes.  */
  sha512_process_block (ctx->buffer, size * 8, ctx);
}

void *
sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
{
  sha512_conclude_ctx (ctx);
  return sha512_read_ctx (ctx, resbuf);
}

void *
sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
{
  sha512_conclude_ctx (ctx);
  return sha384_read_ctx (ctx, resbuf);
}

/* Compute SHA512 message digest for LEN bytes beginning at BUFFER.  The
   result is always in little endian byte order, so that a byte-wise
   output yields to the wanted ASCII representation of the message
   digest.  */
void *
sha512_buffer (const char *buffer, size_t len, void *resblock)
{
  struct sha512_ctx ctx;

  /* Initialize the computation context.  */
  sha512_init_ctx (&ctx);

  /* Process whole buffer but last len % 128 bytes.  */
  sha512_process_bytes (buffer, len, &ctx);

  /* Put result in desired memory area.  */
  return sha512_finish_ctx (&ctx, resblock);
}

void *
sha384_buffer (const char *buffer, size_t len, void *resblock)
{
  struct sha512_ctx ctx;

  /* Initialize the computation context.  */
  sha384_init_ctx (&ctx);

  /* Process whole buffer but last len % 128 bytes.  */
  sha512_process_bytes (buffer, len, &ctx);

  /* Put result in desired memory area.  */
  return sha384_finish_ctx (&ctx, resblock);
}

void
sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
{
  /* When we already have some bits in our internal buffer concatenate
     both inputs first.  */
  if (ctx->buflen != 0)
    {
      size_t left_over = ctx->buflen;
      size_t add = 256 - left_over > len ? len : 256 - left_over;

      memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
      ctx->buflen += add;

      if (ctx->buflen > 128)
        {
          sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);

          ctx->buflen &= 127;
          /* The regions in the following copy operation cannot overlap,
             because ctx->buflen < 128 ≤ (left_over + add) & ~127.  */
          memcpy (ctx->buffer,
                  &((char *) ctx->buffer)[(left_over + add) & ~127],
                  ctx->buflen);
        }

      buffer = (const char *) buffer + add;
      len -= add;
    }

  /* Process available complete blocks.  */
  if (len >= 128)
    {
#if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned)
# define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (u64) != 0)
      if (UNALIGNED_P (buffer))
        while (len > 128)
          {
            sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx);
            buffer = (const char *) buffer + 128;
            len -= 128;
          }
      else
#endif
        {
          sha512_process_block (buffer, len & ~127, ctx);
          buffer = (const char *) buffer + (len & ~127);
          len &= 127;
        }
    }

  /* Move remaining bytes in internal buffer.  */
  if (len > 0)
    {
      size_t left_over = ctx->buflen;

      memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
      left_over += len;
      if (left_over >= 128)
        {
          sha512_process_block (ctx->buffer, 128, ctx);
          left_over -= 128;
          /* The regions in the following copy operation cannot overlap,
             because left_over ≤ 128.  */
          memcpy (ctx->buffer, &ctx->buffer[16], left_over);
        }
      ctx->buflen = left_over;
    }
}

/* --- Code below is the primary difference between sha1.c and sha512.c --- */

/* SHA512 round constants */
#define K(I) sha512_round_constants[I]
static u64 const sha512_round_constants[80] = {
  u64init (0x428a2f98, 0xd728ae22), u64init (0x71374491, 0x23ef65cd),
  u64init (0xb5c0fbcf, 0xec4d3b2f), u64init (0xe9b5dba5, 0x8189dbbc),
  u64init (0x3956c25b, 0xf348b538), u64init (0x59f111f1, 0xb605d019),
  u64init (0x923f82a4, 0xaf194f9b), u64init (0xab1c5ed5, 0xda6d8118),
  u64init (0xd807aa98, 0xa3030242), u64init (0x12835b01, 0x45706fbe),
  u64init (0x243185be, 0x4ee4b28c), u64init (0x550c7dc3, 0xd5ffb4e2),
  u64init (0x72be5d74, 0xf27b896f), u64init (0x80deb1fe, 0x3b1696b1),
  u64init (0x9bdc06a7, 0x25c71235), u64init (0xc19bf174, 0xcf692694),
  u64init (0xe49b69c1, 0x9ef14ad2), u64init (0xefbe4786, 0x384f25e3),
  u64init (0x0fc19dc6, 0x8b8cd5b5), u64init (0x240ca1cc, 0x77ac9c65),
  u64init (0x2de92c6f, 0x592b0275), u64init (0x4a7484aa, 0x6ea6e483),
  u64init (0x5cb0a9dc, 0xbd41fbd4), u64init (0x76f988da, 0x831153b5),
  u64init (0x983e5152, 0xee66dfab), u64init (0xa831c66d, 0x2db43210),
  u64init (0xb00327c8, 0x98fb213f), u64init (0xbf597fc7, 0xbeef0ee4),
  u64init (0xc6e00bf3, 0x3da88fc2), u64init (0xd5a79147, 0x930aa725),
  u64init (0x06ca6351, 0xe003826f), u64init (0x14292967, 0x0a0e6e70),
  u64init (0x27b70a85, 0x46d22ffc), u64init (0x2e1b2138, 0x5c26c926),
  u64init (0x4d2c6dfc, 0x5ac42aed), u64init (0x53380d13, 0x9d95b3df),
  u64init (0x650a7354, 0x8baf63de), u64init (0x766a0abb, 0x3c77b2a8),
  u64init (0x81c2c92e, 0x47edaee6), u64init (0x92722c85, 0x1482353b),
  u64init (0xa2bfe8a1, 0x4cf10364), u64init (0xa81a664b, 0xbc423001),
  u64init (0xc24b8b70, 0xd0f89791), u64init (0xc76c51a3, 0x0654be30),
  u64init (0xd192e819, 0xd6ef5218), u64init (0xd6990624, 0x5565a910),
  u64init (0xf40e3585, 0x5771202a), u64init (0x106aa070, 0x32bbd1b8),
  u64init (0x19a4c116, 0xb8d2d0c8), u64init (0x1e376c08, 0x5141ab53),
  u64init (0x2748774c, 0xdf8eeb99), u64init (0x34b0bcb5, 0xe19b48a8),
  u64init (0x391c0cb3, 0xc5c95a63), u64init (0x4ed8aa4a, 0xe3418acb),
  u64init (0x5b9cca4f, 0x7763e373), u64init (0x682e6ff3, 0xd6b2b8a3),
  u64init (0x748f82ee, 0x5defb2fc), u64init (0x78a5636f, 0x43172f60),
  u64init (0x84c87814, 0xa1f0ab72), u64init (0x8cc70208, 0x1a6439ec),
  u64init (0x90befffa, 0x23631e28), u64init (0xa4506ceb, 0xde82bde9),
  u64init (0xbef9a3f7, 0xb2c67915), u64init (0xc67178f2, 0xe372532b),
  u64init (0xca273ece, 0xea26619c), u64init (0xd186b8c7, 0x21c0c207),
  u64init (0xeada7dd6, 0xcde0eb1e), u64init (0xf57d4f7f, 0xee6ed178),
  u64init (0x06f067aa, 0x72176fba), u64init (0x0a637dc5, 0xa2c898a6),
  u64init (0x113f9804, 0xbef90dae), u64init (0x1b710b35, 0x131c471b),
  u64init (0x28db77f5, 0x23047d84), u64init (0x32caab7b, 0x40c72493),
  u64init (0x3c9ebe0a, 0x15c9bebc), u64init (0x431d67c4, 0x9c100d4c),
  u64init (0x4cc5d4be, 0xcb3e42b6), u64init (0x597f299c, 0xfc657e2a),
  u64init (0x5fcb6fab, 0x3ad6faec), u64init (0x6c44198c, 0x4a475817),
};

/* Round functions.  */
#define F2(A, B, C) u64or (u64and (A, B), u64and (C, u64or (A, B)))
#define F1(E, F, G) u64xor (G, u64and (E, u64xor (F, G)))

/* Process LEN bytes of BUFFER, accumulating context into CTX.
   It is assumed that LEN % 128 == 0.
   Most of this code comes from GnuPG's cipher/sha1.c.  */

void
sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
{
  u64 const *words = buffer;
  u64 const *endp = words + len / sizeof (u64);
  u64 x[16];
  u64 a = ctx->state[0];
  u64 b = ctx->state[1];
  u64 c = ctx->state[2];
  u64 d = ctx->state[3];
  u64 e = ctx->state[4];
  u64 f = ctx->state[5];
  u64 g = ctx->state[6];
  u64 h = ctx->state[7];
  u64 lolen = u64size (len);

  /* First increment the byte count.  FIPS PUB 180-2 specifies the possible
     length of the file up to 2^128 bits.  Here we only compute the
     number of bytes.  Do a double word increment.  */
  ctx->total[0] = u64plus (ctx->total[0], lolen);
  ctx->total[1] = u64plus (ctx->total[1],
                           u64plus (u64size (len >> 31 >> 31 >> 2),
                                    u64lo (u64lt (ctx->total[0], lolen))));

#define S0(x) u64xor (u64rol(x, 63), u64xor (u64rol (x, 56), u64shr (x, 7)))
#define S1(x) u64xor (u64rol (x, 45), u64xor (u64rol (x, 3), u64shr (x, 6)))
#define SS0(x) u64xor (u64rol (x, 36), u64xor (u64rol (x, 30), u64rol (x, 25)))
#define SS1(x) u64xor (u64rol(x, 50), u64xor (u64rol (x, 46), u64rol (x, 23)))

#define M(I) (x[(I) & 15]                                                 \
              = u64plus (x[(I) & 15],                                     \
                         u64plus (S1 (x[((I) - 2) & 15]),                 \
                                  u64plus (x[((I) - 7) & 15],             \
                                           S0 (x[((I) - 15) & 15])))))

#define R(A, B, C, D, E, F, G, H, K, M)                                   \
  do                                                                      \
    {                                                                     \
      u64 t0 = u64plus (SS0 (A), F2 (A, B, C));                           \
      u64 t1 =                                                            \
        u64plus (H, u64plus (SS1 (E),                                     \
                             u64plus (F1 (E, F, G), u64plus (K, M))));    \
      D = u64plus (D, t1);                                                \
      H = u64plus (t0, t1);                                               \
    }                                                                     \
  while (0)

  while (words < endp)
    {
      int t;
      /* FIXME: see sha1.c for a better implementation.  */
      for (t = 0; t < 16; t++)
        {
          x[t] = SWAP (*words);
          words++;
        }

      R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
      R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
      R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
      R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
      R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
      R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
      R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
      R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
      R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
      R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
      R( g, h, a, b, c, d, e, f, K(10), x[10] );
      R( f, g, h, a, b, c, d, e, K(11), x[11] );
      R( e, f, g, h, a, b, c, d, K(12), x[12] );
      R( d, e, f, g, h, a, b, c, K(13), x[13] );
      R( c, d, e, f, g, h, a, b, K(14), x[14] );
      R( b, c, d, e, f, g, h, a, K(15), x[15] );
      R( a, b, c, d, e, f, g, h, K(16), M(16) );
      R( h, a, b, c, d, e, f, g, K(17), M(17) );
      R( g, h, a, b, c, d, e, f, K(18), M(18) );
      R( f, g, h, a, b, c, d, e, K(19), M(19) );
      R( e, f, g, h, a, b, c, d, K(20), M(20) );
      R( d, e, f, g, h, a, b, c, K(21), M(21) );
      R( c, d, e, f, g, h, a, b, K(22), M(22) );
      R( b, c, d, e, f, g, h, a, K(23), M(23) );
      R( a, b, c, d, e, f, g, h, K(24), M(24) );
      R( h, a, b, c, d, e, f, g, K(25), M(25) );
      R( g, h, a, b, c, d, e, f, K(26), M(26) );
      R( f, g, h, a, b, c, d, e, K(27), M(27) );
      R( e, f, g, h, a, b, c, d, K(28), M(28) );
      R( d, e, f, g, h, a, b, c, K(29), M(29) );
      R( c, d, e, f, g, h, a, b, K(30), M(30) );
      R( b, c, d, e, f, g, h, a, K(31), M(31) );
      R( a, b, c, d, e, f, g, h, K(32), M(32) );
      R( h, a, b, c, d, e, f, g, K(33), M(33) );
      R( g, h, a, b, c, d, e, f, K(34), M(34) );
      R( f, g, h, a, b, c, d, e, K(35), M(35) );
      R( e, f, g, h, a, b, c, d, K(36), M(36) );
      R( d, e, f, g, h, a, b, c, K(37), M(37) );
      R( c, d, e, f, g, h, a, b, K(38), M(38) );
      R( b, c, d, e, f, g, h, a, K(39), M(39) );
      R( a, b, c, d, e, f, g, h, K(40), M(40) );
      R( h, a, b, c, d, e, f, g, K(41), M(41) );
      R( g, h, a, b, c, d, e, f, K(42), M(42) );
      R( f, g, h, a, b, c, d, e, K(43), M(43) );
      R( e, f, g, h, a, b, c, d, K(44), M(44) );
      R( d, e, f, g, h, a, b, c, K(45), M(45) );
      R( c, d, e, f, g, h, a, b, K(46), M(46) );
      R( b, c, d, e, f, g, h, a, K(47), M(47) );
      R( a, b, c, d, e, f, g, h, K(48), M(48) );
      R( h, a, b, c, d, e, f, g, K(49), M(49) );
      R( g, h, a, b, c, d, e, f, K(50), M(50) );
      R( f, g, h, a, b, c, d, e, K(51), M(51) );
      R( e, f, g, h, a, b, c, d, K(52), M(52) );
      R( d, e, f, g, h, a, b, c, K(53), M(53) );
      R( c, d, e, f, g, h, a, b, K(54), M(54) );
      R( b, c, d, e, f, g, h, a, K(55), M(55) );
      R( a, b, c, d, e, f, g, h, K(56), M(56) );
      R( h, a, b, c, d, e, f, g, K(57), M(57) );
      R( g, h, a, b, c, d, e, f, K(58), M(58) );
      R( f, g, h, a, b, c, d, e, K(59), M(59) );
      R( e, f, g, h, a, b, c, d, K(60), M(60) );
      R( d, e, f, g, h, a, b, c, K(61), M(61) );
      R( c, d, e, f, g, h, a, b, K(62), M(62) );
      R( b, c, d, e, f, g, h, a, K(63), M(63) );
      R( a, b, c, d, e, f, g, h, K(64), M(64) );
      R( h, a, b, c, d, e, f, g, K(65), M(65) );
      R( g, h, a, b, c, d, e, f, K(66), M(66) );
      R( f, g, h, a, b, c, d, e, K(67), M(67) );
      R( e, f, g, h, a, b, c, d, K(68), M(68) );
      R( d, e, f, g, h, a, b, c, K(69), M(69) );
      R( c, d, e, f, g, h, a, b, K(70), M(70) );
      R( b, c, d, e, f, g, h, a, K(71), M(71) );
      R( a, b, c, d, e, f, g, h, K(72), M(72) );
      R( h, a, b, c, d, e, f, g, K(73), M(73) );
      R( g, h, a, b, c, d, e, f, K(74), M(74) );
      R( f, g, h, a, b, c, d, e, K(75), M(75) );
      R( e, f, g, h, a, b, c, d, K(76), M(76) );
      R( d, e, f, g, h, a, b, c, K(77), M(77) );
      R( c, d, e, f, g, h, a, b, K(78), M(78) );
      R( b, c, d, e, f, g, h, a, K(79), M(79) );

      a = ctx->state[0] = u64plus (ctx->state[0], a);
      b = ctx->state[1] = u64plus (ctx->state[1], b);
      c = ctx->state[2] = u64plus (ctx->state[2], c);
      d = ctx->state[3] = u64plus (ctx->state[3], d);
      e = ctx->state[4] = u64plus (ctx->state[4], e);
      f = ctx->state[5] = u64plus (ctx->state[5], f);
      g = ctx->state[6] = u64plus (ctx->state[6], g);
      h = ctx->state[7] = u64plus (ctx->state[7], h);
    }
}

#endif

/*
 * Hey Emacs!
 * Local Variables:
 * coding: utf-8
 * End:
 */