1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
/* Substring test for UTF-8/UTF-16/UTF-32 strings. -*- coding: utf-8 -*-
Copyright (C) 1999, 2002, 2006, 2010-2017 Free Software Foundation, Inc.
Written by Bruno Haible <bruno@clisp.org>, 2002, 2005.
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
UNIT *
FUNC (const UNIT *haystack, const UNIT *needle)
{
UNIT first = needle[0];
/* Is needle empty? */
if (first == 0)
return (UNIT *) haystack;
/* Is needle nearly empty (only one unit)? */
if (needle[1] == 0)
return U_STRCHR (haystack, first);
#ifdef U_STRMBTOUC
/* Is needle nearly empty (only one character)? */
{
ucs4_t first_uc;
int count = U_STRMBTOUC (&first_uc, needle);
if (count > 0 && needle[count] == 0)
return U_STRCHR (haystack, first_uc);
}
#endif
#if UNIT_IS_UINT8_T
return (uint8_t *) strstr ((const char *) haystack, (const char *) needle);
#else
{
/* Minimizing the worst-case complexity:
Let n = U_STRLEN(haystack), m = U_STRLEN(needle).
The naïve algorithm is O(n*m) worst-case.
The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
memory allocation.
To achieve linear complexity and yet amortize the cost of the
memory allocation, we activate the Knuth-Morris-Pratt algorithm
only once the naïve algorithm has already run for some time; more
precisely, when
- the outer loop count is >= 10,
- the average number of comparisons per outer loop is >= 5,
- the total number of comparisons is >= m.
But we try it only once. If the memory allocation attempt failed,
we don't retry it. */
bool try_kmp = true;
size_t outer_loop_count = 0;
size_t comparison_count = 0;
size_t last_ccount = 0; /* last comparison count */
const UNIT *needle_last_ccount = needle; /* = needle + last_ccount */
/* Speed up the following searches of needle by caching its first
character. */
UNIT b = *needle++;
for (;; haystack++)
{
if (*haystack == 0)
/* No match. */
return NULL;
/* See whether it's advisable to use an asymptotically faster
algorithm. */
if (try_kmp
&& outer_loop_count >= 10
&& comparison_count >= 5 * outer_loop_count)
{
/* See if needle + comparison_count now reaches the end of
needle. */
if (needle_last_ccount != NULL)
{
needle_last_ccount +=
U_STRNLEN (needle_last_ccount,
comparison_count - last_ccount);
if (*needle_last_ccount == 0)
needle_last_ccount = NULL;
last_ccount = comparison_count;
}
if (needle_last_ccount == NULL)
{
/* Try the Knuth-Morris-Pratt algorithm. */
const UNIT *result;
bool success =
knuth_morris_pratt (haystack,
needle - 1, U_STRLEN (needle - 1),
&result);
if (success)
return (UNIT *) result;
try_kmp = false;
}
}
outer_loop_count++;
comparison_count++;
if (*haystack == b)
/* The first character matches. */
{
const UNIT *rhaystack = haystack + 1;
const UNIT *rneedle = needle;
for (;; rhaystack++, rneedle++)
{
if (*rneedle == 0)
/* Found a match. */
return (UNIT *) haystack;
if (*rhaystack == 0)
/* No match. */
return NULL;
comparison_count++;
if (*rhaystack != *rneedle)
/* Nothing in this round. */
break;
}
}
}
}
#endif
}
|