1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
/* Test of isinf() substitute.
Copyright (C) 2007-2011 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Written by Ben Pfaff, 2008, using Bruno Haible's code as a
template. */
#include <config.h>
#include <math.h>
/* isinf must be a macro. */
#ifndef isinf
# error missing declaration
#endif
#include <float.h>
#include <limits.h>
#include "macros.h"
float zerof = 0.0f;
double zerod = 0.0;
long double zerol = 0.0L;
static void
test_isinff ()
{
/* Zero. */
ASSERT (!isinf (0.0f));
/* Subnormal values. */
ASSERT (!isinf (FLT_MIN / 2));
ASSERT (!isinf (-FLT_MIN / 2));
/* Finite values. */
ASSERT (!isinf (3.141f));
ASSERT (!isinf (3.141e30f));
ASSERT (!isinf (3.141e-30f));
ASSERT (!isinf (-2.718f));
ASSERT (!isinf (-2.718e30f));
ASSERT (!isinf (-2.718e-30f));
ASSERT (!isinf (FLT_MAX));
ASSERT (!isinf (-FLT_MAX));
/* Infinite values. */
ASSERT (isinf (1.0f / 0.0f));
ASSERT (isinf (-1.0f / 0.0f));
/* Quiet NaN. */
ASSERT (!isinf (zerof / zerof));
#if defined FLT_EXPBIT0_WORD && defined FLT_EXPBIT0_BIT
/* Signalling NaN. */
{
#define NWORDS \
((sizeof (float) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
typedef union { float value; unsigned int word[NWORDS]; } memory_float;
memory_float m;
m.value = zerof / zerof;
# if FLT_EXPBIT0_BIT > 0
m.word[FLT_EXPBIT0_WORD] ^= (unsigned int) 1 << (FLT_EXPBIT0_BIT - 1);
# else
m.word[FLT_EXPBIT0_WORD + (FLT_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)]
^= (unsigned int) 1 << (sizeof (unsigned int) * CHAR_BIT - 1);
# endif
if (FLT_EXPBIT0_WORD < NWORDS / 2)
m.word[FLT_EXPBIT0_WORD + 1] |= (unsigned int) 1 << FLT_EXPBIT0_BIT;
else
m.word[0] |= (unsigned int) 1;
ASSERT (!isinf (m.value));
#undef NWORDS
}
#endif
}
static void
test_isinfd ()
{
/* Zero. */
ASSERT (!isinf (0.0));
/* Subnormal values. */
ASSERT (!isinf (DBL_MIN / 2));
ASSERT (!isinf (-DBL_MIN / 2));
/* Finite values. */
ASSERT (!isinf (3.141));
ASSERT (!isinf (3.141e30));
ASSERT (!isinf (3.141e-30));
ASSERT (!isinf (-2.718));
ASSERT (!isinf (-2.718e30));
ASSERT (!isinf (-2.718e-30));
ASSERT (!isinf (DBL_MAX));
ASSERT (!isinf (-DBL_MAX));
/* Infinite values. */
ASSERT (isinf (1.0 / 0.0));
ASSERT (isinf (-1.0 / 0.0));
/* Quiet NaN. */
ASSERT (!isinf (zerod / zerod));
#if defined DBL_EXPBIT0_WORD && defined DBL_EXPBIT0_BIT
/* Signalling NaN. */
{
#define NWORDS \
((sizeof (double) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
typedef union { double value; unsigned int word[NWORDS]; } memory_double;
memory_double m;
m.value = zerod / zerod;
# if DBL_EXPBIT0_BIT > 0
m.word[DBL_EXPBIT0_WORD] ^= (unsigned int) 1 << (DBL_EXPBIT0_BIT - 1);
# else
m.word[DBL_EXPBIT0_WORD + (DBL_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)]
^= (unsigned int) 1 << (sizeof (unsigned int) * CHAR_BIT - 1);
# endif
m.word[DBL_EXPBIT0_WORD + (DBL_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)]
|= (unsigned int) 1 << DBL_EXPBIT0_BIT;
ASSERT (!isinf (m.value));
#undef NWORDS
}
#endif
}
static void
test_isinfl ()
{
#define NWORDS \
((sizeof (long double) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
typedef union { unsigned int word[NWORDS]; long double value; }
memory_long_double;
/* Zero. */
ASSERT (!isinf (0.0L));
/* Subnormal values. */
ASSERT (!isinf (LDBL_MIN / 2));
ASSERT (!isinf (-LDBL_MIN / 2));
/* Finite values. */
ASSERT (!isinf (3.141L));
ASSERT (!isinf (3.141e30L));
ASSERT (!isinf (3.141e-30L));
ASSERT (!isinf (-2.718L));
ASSERT (!isinf (-2.718e30L));
ASSERT (!isinf (-2.718e-30L));
ASSERT (!isinf (LDBL_MAX));
ASSERT (!isinf (-LDBL_MAX));
/* Infinite values. */
ASSERT (isinf (1.0L / 0.0L));
ASSERT (isinf (-1.0L / 0.0L));
/* Quiet NaN. */
ASSERT (!isinf (zerol / zerol));
#if defined LDBL_EXPBIT0_WORD && defined LDBL_EXPBIT0_BIT
/* A bit pattern that is different from a Quiet NaN. With a bit of luck,
it's a Signalling NaN. */
{
memory_long_double m;
m.value = zerol / zerol;
# if LDBL_EXPBIT0_BIT > 0
m.word[LDBL_EXPBIT0_WORD] ^= (unsigned int) 1 << (LDBL_EXPBIT0_BIT - 1);
# else
m.word[LDBL_EXPBIT0_WORD + (LDBL_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)]
^= (unsigned int) 1 << (sizeof (unsigned int) * CHAR_BIT - 1);
# endif
m.word[LDBL_EXPBIT0_WORD + (LDBL_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)]
|= (unsigned int) 1 << LDBL_EXPBIT0_BIT;
ASSERT (!isinf (m.value));
}
#endif
#if ((defined __ia64 && LDBL_MANT_DIG == 64) || (defined __x86_64__ || defined __amd64__) || (defined __i386 || defined __i386__ || defined _I386 || defined _M_IX86 || defined _X86_))
/* Representation of an 80-bit 'long double' as an initializer for a sequence
of 'unsigned int' words. */
# ifdef WORDS_BIGENDIAN
# define LDBL80_WORDS(exponent,manthi,mantlo) \
{ ((unsigned int) (exponent) << 16) | ((unsigned int) (manthi) >> 16), \
((unsigned int) (manthi) << 16) | (unsigned int) (mantlo) >> 16), \
(unsigned int) (mantlo) << 16 \
}
# else
# define LDBL80_WORDS(exponent,manthi,mantlo) \
{ mantlo, manthi, exponent }
# endif
{ /* Quiet NaN. */
static memory_long_double x =
{ LDBL80_WORDS (0xFFFF, 0xC3333333, 0x00000000) };
ASSERT (!isinf (x.value));
}
{
/* Signalling NaN. */
static memory_long_double x =
{ LDBL80_WORDS (0xFFFF, 0x83333333, 0x00000000) };
ASSERT (!isinf (x.value));
}
/* The isnanl function should recognize Pseudo-NaNs, Pseudo-Infinities,
Pseudo-Zeroes, Unnormalized Numbers, and Pseudo-Denormals, as defined in
Intel IA-64 Architecture Software Developer's Manual, Volume 1:
Application Architecture.
Table 5-2 "Floating-Point Register Encodings"
Figure 5-6 "Memory to Floating-Point Register Data Translation"
*/
{ /* Pseudo-NaN. */
static memory_long_double x =
{ LDBL80_WORDS (0xFFFF, 0x40000001, 0x00000000) };
ASSERT (!isinf (x.value));
}
{ /* Pseudo-Infinity. */
static memory_long_double x =
{ LDBL80_WORDS (0xFFFF, 0x00000000, 0x00000000) };
ASSERT (!isinf (x.value));
}
{ /* Pseudo-Zero. */
static memory_long_double x =
{ LDBL80_WORDS (0x4004, 0x00000000, 0x00000000) };
ASSERT (!isinf (x.value));
}
{ /* Unnormalized number. */
static memory_long_double x =
{ LDBL80_WORDS (0x4000, 0x63333333, 0x00000000) };
ASSERT (!isinf (x.value));
}
{ /* Pseudo-Denormal. */
static memory_long_double x =
{ LDBL80_WORDS (0x0000, 0x83333333, 0x00000000) };
ASSERT (!isinf (x.value));
}
#endif
#undef NWORDS
}
int
main ()
{
test_isinff ();
test_isinfd ();
test_isinfl ();
return 0;
}
|