1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
/* Test of locking in multithreaded situations.
Copyright (C) 2005, 2008-2022 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
/* Written by Bruno Haible <bruno@clisp.org>, 2005. */
#include <config.h>
/* Whether to enable locking.
Uncomment this to get a test program without locking, to verify that
it crashes. */
#define ENABLE_LOCKING 1
/* Which tests to perform.
Uncomment some of these, to verify that all tests crash if no locking
is enabled. */
#define DO_TEST_LOCK 1
#define DO_TEST_RECURSIVE_LOCK 1
#define DO_TEST_ONCE 1
/* Whether to help the scheduler through explicit thrd_yield().
Uncomment this to see if the operating system has a fair scheduler. */
#define EXPLICIT_YIELD 1
/* Whether to print debugging messages. */
#define ENABLE_DEBUGGING 0
/* Number of simultaneous threads. */
#define THREAD_COUNT 10
/* Number of operations performed in each thread.
This is quite high, because with a smaller count, say 5000, we often get
an "OK" result even without ENABLE_LOCKING (on Linux/x86). */
#define REPEAT_COUNT 50000
#include <threads.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "glthread/lock.h"
#if HAVE_DECL_ALARM
# include <signal.h>
# include <unistd.h>
#endif
#include "macros.h"
#include "atomic-int-isoc.h"
#if ENABLE_DEBUGGING
# define dbgprintf printf
#else
# define dbgprintf if (0) printf
#endif
#if EXPLICIT_YIELD
# define yield() thrd_yield ()
#else
# define yield()
#endif
/* Returns a reference to the current thread as a pointer, for debugging. */
#if defined __MVS__
/* On IBM z/OS, pthread_t is a struct with an 8-byte '__' field.
The first three bytes of this field appear to uniquely identify a
pthread_t, though not necessarily representing a pointer. */
# define thrd_current_pointer() (*((void **) thrd_current ().__))
#elif defined __sun
/* On Solaris, thrd_t is merely an 'unsigned int'. */
# define thrd_current_pointer() ((void *) (uintptr_t) thrd_current ())
#else
# define thrd_current_pointer() ((void *) thrd_current ())
#endif
#define ACCOUNT_COUNT 4
static int account[ACCOUNT_COUNT];
static int
random_account (void)
{
return ((unsigned int) rand () >> 3) % ACCOUNT_COUNT;
}
static void
check_accounts (void)
{
int i, sum;
sum = 0;
for (i = 0; i < ACCOUNT_COUNT; i++)
sum += account[i];
if (sum != ACCOUNT_COUNT * 1000)
abort ();
}
/* ------------------- Test normal (non-recursive) locks ------------------- */
/* Test normal locks by having several bank accounts and several threads
which shuffle around money between the accounts and another thread
checking that all the money is still there. */
static mtx_t my_lock;
static int
lock_mutator_thread (void *arg)
{
int repeat;
for (repeat = REPEAT_COUNT; repeat > 0; repeat--)
{
int i1, i2, value;
dbgprintf ("Mutator %p before lock\n", thrd_current_pointer ());
ASSERT (mtx_lock (&my_lock) == thrd_success);
dbgprintf ("Mutator %p after lock\n", thrd_current_pointer ());
i1 = random_account ();
i2 = random_account ();
value = ((unsigned int) rand () >> 3) % 10;
account[i1] += value;
account[i2] -= value;
dbgprintf ("Mutator %p before unlock\n", thrd_current_pointer ());
ASSERT (mtx_unlock (&my_lock) == thrd_success);
dbgprintf ("Mutator %p after unlock\n", thrd_current_pointer ());
dbgprintf ("Mutator %p before check lock\n", thrd_current_pointer ());
ASSERT (mtx_lock (&my_lock) == thrd_success);
check_accounts ();
ASSERT (mtx_unlock (&my_lock) == thrd_success);
dbgprintf ("Mutator %p after check unlock\n", thrd_current_pointer ());
yield ();
}
dbgprintf ("Mutator %p dying.\n", thrd_current_pointer ());
return 0;
}
static struct atomic_int lock_checker_done;
static int
lock_checker_thread (void *arg)
{
while (get_atomic_int_value (&lock_checker_done) == 0)
{
dbgprintf ("Checker %p before check lock\n", thrd_current_pointer ());
ASSERT (mtx_lock (&my_lock) == thrd_success);
check_accounts ();
ASSERT (mtx_unlock (&my_lock) == thrd_success);
dbgprintf ("Checker %p after check unlock\n", thrd_current_pointer ());
yield ();
}
dbgprintf ("Checker %p dying.\n", thrd_current_pointer ());
return 0;
}
static void
test_mtx_plain (void)
{
int i;
thrd_t checkerthread;
thrd_t threads[THREAD_COUNT];
/* Initialization. */
for (i = 0; i < ACCOUNT_COUNT; i++)
account[i] = 1000;
init_atomic_int (&lock_checker_done);
set_atomic_int_value (&lock_checker_done, 0);
/* Spawn the threads. */
ASSERT (thrd_create (&checkerthread, lock_checker_thread, NULL)
== thrd_success);
for (i = 0; i < THREAD_COUNT; i++)
ASSERT (thrd_create (&threads[i], lock_mutator_thread, NULL)
== thrd_success);
/* Wait for the threads to terminate. */
for (i = 0; i < THREAD_COUNT; i++)
ASSERT (thrd_join (threads[i], NULL) == thrd_success);
set_atomic_int_value (&lock_checker_done, 1);
ASSERT (thrd_join (checkerthread, NULL) == thrd_success);
check_accounts ();
}
/* -------------------------- Test recursive locks -------------------------- */
/* Test recursive locks by having several bank accounts and several threads
which shuffle around money between the accounts (recursively) and another
thread checking that all the money is still there. */
static mtx_t my_reclock;
static void
recshuffle (void)
{
int i1, i2, value;
dbgprintf ("Mutator %p before lock\n", thrd_current_pointer ());
ASSERT (mtx_lock (&my_reclock) == thrd_success);
dbgprintf ("Mutator %p after lock\n", thrd_current_pointer ());
i1 = random_account ();
i2 = random_account ();
value = ((unsigned int) rand () >> 3) % 10;
account[i1] += value;
account[i2] -= value;
/* Recursive with probability 0.5. */
if (((unsigned int) rand () >> 3) % 2)
recshuffle ();
dbgprintf ("Mutator %p before unlock\n", thrd_current_pointer ());
ASSERT (mtx_unlock (&my_reclock) == thrd_success);
dbgprintf ("Mutator %p after unlock\n", thrd_current_pointer ());
}
static int
reclock_mutator_thread (void *arg)
{
int repeat;
for (repeat = REPEAT_COUNT; repeat > 0; repeat--)
{
recshuffle ();
dbgprintf ("Mutator %p before check lock\n", thrd_current_pointer ());
ASSERT (mtx_lock (&my_reclock) == thrd_success);
check_accounts ();
ASSERT (mtx_unlock (&my_reclock) == thrd_success);
dbgprintf ("Mutator %p after check unlock\n", thrd_current_pointer ());
yield ();
}
dbgprintf ("Mutator %p dying.\n", thrd_current_pointer ());
return 0;
}
static struct atomic_int reclock_checker_done;
static int
reclock_checker_thread (void *arg)
{
while (get_atomic_int_value (&reclock_checker_done) == 0)
{
dbgprintf ("Checker %p before check lock\n", thrd_current_pointer ());
ASSERT (mtx_lock (&my_reclock) == thrd_success);
check_accounts ();
ASSERT (mtx_unlock (&my_reclock) == thrd_success);
dbgprintf ("Checker %p after check unlock\n", thrd_current_pointer ());
yield ();
}
dbgprintf ("Checker %p dying.\n", thrd_current_pointer ());
return 0;
}
static void
test_mtx_recursive (void)
{
int i;
thrd_t checkerthread;
thrd_t threads[THREAD_COUNT];
/* Initialization. */
for (i = 0; i < ACCOUNT_COUNT; i++)
account[i] = 1000;
init_atomic_int (&reclock_checker_done);
set_atomic_int_value (&reclock_checker_done, 0);
/* Spawn the threads. */
ASSERT (thrd_create (&checkerthread, reclock_checker_thread, NULL)
== thrd_success);
for (i = 0; i < THREAD_COUNT; i++)
ASSERT (thrd_create (&threads[i], reclock_mutator_thread, NULL)
== thrd_success);
/* Wait for the threads to terminate. */
for (i = 0; i < THREAD_COUNT; i++)
ASSERT (thrd_join (threads[i], NULL) == thrd_success);
set_atomic_int_value (&reclock_checker_done, 1);
ASSERT (thrd_join (checkerthread, NULL) == thrd_success);
check_accounts ();
}
/* ------------------------ Test once-only execution ------------------------ */
/* Test once-only execution by having several threads attempt to grab a
once-only task simultaneously (triggered by releasing a read-write lock). */
static once_flag fresh_once = ONCE_FLAG_INIT;
static int ready[THREAD_COUNT];
static mtx_t ready_lock[THREAD_COUNT];
#if ENABLE_LOCKING
static gl_rwlock_t fire_signal[REPEAT_COUNT];
#else
static volatile int fire_signal_state;
#endif
static once_flag once_control;
static int performed;
static mtx_t performed_lock;
static void
once_execute (void)
{
ASSERT (mtx_lock (&performed_lock) == thrd_success);
performed++;
ASSERT (mtx_unlock (&performed_lock) == thrd_success);
}
static int
once_contender_thread (void *arg)
{
int id = (int) (intptr_t) arg;
int repeat;
for (repeat = 0; repeat <= REPEAT_COUNT; repeat++)
{
/* Tell the main thread that we're ready. */
ASSERT (mtx_lock (&ready_lock[id]) == thrd_success);
ready[id] = 1;
ASSERT (mtx_unlock (&ready_lock[id]) == thrd_success);
if (repeat == REPEAT_COUNT)
break;
dbgprintf ("Contender %p waiting for signal for round %d\n",
thrd_current_pointer (), repeat);
#if ENABLE_LOCKING
/* Wait for the signal to go. */
gl_rwlock_rdlock (fire_signal[repeat]);
/* And don't hinder the others (if the scheduler is unfair). */
gl_rwlock_unlock (fire_signal[repeat]);
#else
/* Wait for the signal to go. */
while (fire_signal_state <= repeat)
yield ();
#endif
dbgprintf ("Contender %p got the signal for round %d\n",
thrd_current_pointer (), repeat);
/* Contend for execution. */
call_once (&once_control, once_execute);
}
return 0;
}
static void
test_once (void)
{
int i, repeat;
thrd_t threads[THREAD_COUNT];
/* Initialize all variables. */
for (i = 0; i < THREAD_COUNT; i++)
{
ready[i] = 0;
ASSERT (mtx_init (&ready_lock[i], mtx_plain) == thrd_success);
}
#if ENABLE_LOCKING
for (i = 0; i < REPEAT_COUNT; i++)
gl_rwlock_init (fire_signal[i]);
#else
fire_signal_state = 0;
#endif
#if ENABLE_LOCKING
/* Block all fire_signals. */
for (i = REPEAT_COUNT-1; i >= 0; i--)
gl_rwlock_wrlock (fire_signal[i]);
#endif
/* Spawn the threads. */
for (i = 0; i < THREAD_COUNT; i++)
ASSERT (thrd_create (&threads[i],
once_contender_thread, (void *) (intptr_t) i)
== thrd_success);
for (repeat = 0; repeat <= REPEAT_COUNT; repeat++)
{
/* Wait until every thread is ready. */
dbgprintf ("Main thread before synchronizing for round %d\n", repeat);
for (;;)
{
int ready_count = 0;
for (i = 0; i < THREAD_COUNT; i++)
{
ASSERT (mtx_lock (&ready_lock[i]) == thrd_success);
ready_count += ready[i];
ASSERT (mtx_unlock (&ready_lock[i]) == thrd_success);
}
if (ready_count == THREAD_COUNT)
break;
yield ();
}
dbgprintf ("Main thread after synchronizing for round %d\n", repeat);
if (repeat > 0)
{
/* Check that exactly one thread executed the once_execute()
function. */
if (performed != 1)
abort ();
}
if (repeat == REPEAT_COUNT)
break;
/* Preparation for the next round: Initialize once_control. */
memcpy (&once_control, &fresh_once, sizeof (once_flag));
/* Preparation for the next round: Reset the performed counter. */
performed = 0;
/* Preparation for the next round: Reset the ready flags. */
for (i = 0; i < THREAD_COUNT; i++)
{
ASSERT (mtx_lock (&ready_lock[i]) == thrd_success);
ready[i] = 0;
ASSERT (mtx_unlock (&ready_lock[i]) == thrd_success);
}
/* Signal all threads simultaneously. */
dbgprintf ("Main thread giving signal for round %d\n", repeat);
#if ENABLE_LOCKING
gl_rwlock_unlock (fire_signal[repeat]);
#else
fire_signal_state = repeat + 1;
#endif
}
/* Wait for the threads to terminate. */
for (i = 0; i < THREAD_COUNT; i++)
ASSERT (thrd_join (threads[i], NULL) == thrd_success);
}
/* -------------------------------------------------------------------------- */
int
main ()
{
#if HAVE_DECL_ALARM
/* Declare failure if test takes too long, by using default abort
caused by SIGALRM. */
int alarm_value = 600;
signal (SIGALRM, SIG_DFL);
alarm (alarm_value);
#endif
ASSERT (mtx_init (&my_lock, mtx_plain) == thrd_success);
ASSERT (mtx_init (&my_reclock, mtx_plain | mtx_recursive) == thrd_success);
ASSERT (mtx_init (&performed_lock, mtx_plain) == thrd_success);
#if DO_TEST_LOCK
printf ("Starting test_mtx_plain ..."); fflush (stdout);
test_mtx_plain ();
printf (" OK\n"); fflush (stdout);
#endif
#if DO_TEST_RECURSIVE_LOCK
printf ("Starting test_mtx_recursive ..."); fflush (stdout);
test_mtx_recursive ();
printf (" OK\n"); fflush (stdout);
#endif
#if DO_TEST_ONCE
printf ("Starting test_once ..."); fflush (stdout);
test_once ();
printf (" OK\n"); fflush (stdout);
#endif
return 0;
}
|