1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
/* aes.c
*
* The aes/rijndael block cipher.
*/
/* nettle, low-level cryptographics library
*
* Copyright (C) 2000, 2001 Rafael R. Sevilla, Niels Möller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*/
/* Originally written by Rafael R. Sevilla <dido@pacific.net.ph> */
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include "aes-internal.h"
#include "macros.h"
#ifndef AES_DEBUG
# define AES_DEBUG 0
#endif
#if AES_DEBUG
# include <stdio.h>
static void
d4(const char *name, unsigned r, const uint32_t *data)
{
unsigned j;
fprintf(stderr, "aes, %d, %s: ", r, name);
for (j = 0; j<4; j++)
fprintf(stderr, "%08x, ", data[j]);
fprintf(stderr, "\n");
}
static void
d2(const char *aname, uint32_t a, const char *bname, uint32_t b)
{
fprintf(stderr, "aes, %s: %08x, %s, %08x\n",
aname, a, bname, b);
}
# define D4(x) d4 x
# define D2(x) d2 x
#else
# define D4(x)
# define D2(x)
#endif
/* Get the byte with index 0, 1, 2 and 3 */
#define B0(x) ((x) & 0xff)
#define B1(x) (((x) >> 8) & 0xff)
#define B2(x) (((x) >> 16) & 0xff)
#define B3(x) (((x) >> 24) & 0xff)
#define IDX0(j) (j)
#define IDX1(j) (T->idx[0][j])
#define IDX2(j) (T->idx[1][j])
#define IDX3(j) (T->idx[2][j])
void
_aes_crypt(const struct aes_ctx *ctx,
const struct aes_table *T,
unsigned length, uint8_t *dst,
const uint8_t *src)
{
FOR_BLOCKS(length, dst, src, AES_BLOCK_SIZE)
{
uint32_t wtxt[4]; /* working ciphertext */
unsigned i;
unsigned round;
/* Get clear text, using little-endian byte order.
* Also XOR with the first subkey. */
for (i = 0; i<4; i++)
wtxt[i] = LE_READ_UINT32(src + 4*i) ^ ctx->keys[i];
for (round = 1; round < ctx->nrounds; round++)
{
uint32_t t[4];
unsigned j;
D4(("wtxt", round, wtxt));
D4(("key", round, &ctx->keys[4*round]));
/* What's the best way to order this loop? Ideally,
* we'd want to keep both t and wtxt in registers. */
for (j=0; j<4; j++)
{
/* FIXME: Figure out how the indexing should really be
* done. With the current idx arrays, it looks like the
* code shifts the rows in the wrong direction. But it
* passes the testsuite. Perhaps the tables are rotated
* in the wrong direction, but I don't think so. */
#if AES_SMALL
t[j] = T->table[0][ B0(wtxt[IDX0(j)]) ] ^
ROTRBYTE( T->table[0][ B1(wtxt[IDX1(j)]) ]^
ROTRBYTE( T->table[0][ B2(wtxt[IDX2(j)]) ] ^
ROTRBYTE(T->table[0][ B3(wtxt[IDX3(j)]) ])));
#else /* !AES_SMALL */
t[j] = ( T->table[0][ B0(wtxt[IDX0(j)]) ]
^ T->table[1][ B1(wtxt[IDX1(j)]) ]
^ T->table[2][ B2(wtxt[IDX2(j)]) ]
^ T->table[3][ B3(wtxt[IDX3(j)]) ]);
#endif /* !AES_SMALL */
}
D4(("t", round, t));
for (j = 0; j<4; j++)
wtxt[j] = t[j] ^ ctx->keys[4*round + j];
}
/* Final round */
{
uint32_t out;
unsigned j;
for (j = 0; j<4; j++)
{
/* FIXME: Figure out how the indexing should really be done.
* It looks like this code shifts the rows in the wrong
* direction, but it passes the testsuite. */
out = ( (uint32_t) T->sbox[ B0(wtxt[IDX0(j)]) ]
| ((uint32_t) T->sbox[ B1(wtxt[IDX1(j)]) ] << 8)
| ((uint32_t) T->sbox[ B2(wtxt[IDX2(j)]) ] << 16)
| ((uint32_t) T->sbox[ B3(wtxt[IDX3(j)]) ] << 24));
D2(("t", out, "key", ctx->keys[4*round + j]));
out ^= ctx->keys[4*round + j];
LE_WRITE_UINT32(dst + 4*j, out);
}
}
}
}
|