summaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/inline/inl.go
blob: cd856b9a9ad34fafd850c66aa54c57e2a69b26b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// The inlining facility makes 2 passes: first CanInline determines which
// functions are suitable for inlining, and for those that are it
// saves a copy of the body. Then InlineCalls walks each function body to
// expand calls to inlinable functions.
//
// The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1,
// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
// are not supported.
//      0: disabled
//      1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
//      2: (unassigned)
//      3: (unassigned)
//      4: allow non-leaf functions
//
// At some point this may get another default and become switch-offable with -N.
//
// The -d typcheckinl flag enables early typechecking of all imported bodies,
// which is useful to flush out bugs.
//
// The Debug.m flag enables diagnostic output.  a single -m is useful for verifying
// which calls get inlined or not, more is for debugging, and may go away at any point.

package inline

import (
	"fmt"
	"go/constant"
	"sort"
	"strconv"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/logopt"
	"cmd/compile/internal/pgo"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
)

// Inlining budget parameters, gathered in one place
const (
	inlineMaxBudget       = 80
	inlineExtraAppendCost = 0
	// default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
	inlineExtraCallCost  = 57              // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
	inlineExtraPanicCost = 1               // do not penalize inlining panics.
	inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.

	inlineBigFunctionNodes   = 5000 // Functions with this many nodes are considered "big".
	inlineBigFunctionMaxCost = 20   // Max cost of inlinee when inlining into a "big" function.
)

var (
	// List of all hot callee nodes.
	// TODO(prattmic): Make this non-global.
	candHotCalleeMap = make(map[*pgo.IRNode]struct{})

	// List of all hot call sites. CallSiteInfo.Callee is always nil.
	// TODO(prattmic): Make this non-global.
	candHotEdgeMap = make(map[pgo.CallSiteInfo]struct{})

	// Threshold in percentage for hot callsite inlining.
	inlineHotCallSiteThresholdPercent float64

	// Threshold in CDF percentage for hot callsite inlining,
	// that is, for a threshold of X the hottest callsites that
	// make up the top X% of total edge weight will be
	// considered hot for inlining candidates.
	inlineCDFHotCallSiteThresholdPercent = float64(99)

	// Budget increased due to hotness.
	inlineHotMaxBudget int32 = 2000
)

// pgoInlinePrologue records the hot callsites from ir-graph.
func pgoInlinePrologue(p *pgo.Profile, decls []ir.Node) {
	if base.Debug.PGOInlineCDFThreshold != "" {
		if s, err := strconv.ParseFloat(base.Debug.PGOInlineCDFThreshold, 64); err == nil && s >= 0 && s <= 100 {
			inlineCDFHotCallSiteThresholdPercent = s
		} else {
			base.Fatalf("invalid PGOInlineCDFThreshold, must be between 0 and 100")
		}
	}
	var hotCallsites []pgo.NodeMapKey
	inlineHotCallSiteThresholdPercent, hotCallsites = hotNodesFromCDF(p)
	if base.Debug.PGOInline > 0 {
		fmt.Printf("hot-callsite-thres-from-CDF=%v\n", inlineHotCallSiteThresholdPercent)
	}

	if x := base.Debug.PGOInlineBudget; x != 0 {
		inlineHotMaxBudget = int32(x)
	}

	for _, n := range hotCallsites {
		// mark inlineable callees from hot edges
		if callee := p.WeightedCG.IRNodes[n.CalleeName]; callee != nil {
			candHotCalleeMap[callee] = struct{}{}
		}
		// mark hot call sites
		if caller := p.WeightedCG.IRNodes[n.CallerName]; caller != nil {
			csi := pgo.CallSiteInfo{LineOffset: n.CallSiteOffset, Caller: caller.AST}
			candHotEdgeMap[csi] = struct{}{}
		}
	}

	if base.Debug.PGOInline >= 2 {
		fmt.Printf("hot-cg before inline in dot format:")
		p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent)
	}
}

// hotNodesFromCDF computes an edge weight threshold and the list of hot
// nodes that make up the given percentage of the CDF. The threshold, as
// a percent, is the lower bound of weight for nodes to be considered hot
// (currently only used in debug prints) (in case of equal weights,
// comparing with the threshold may not accurately reflect which nodes are
// considiered hot).
func hotNodesFromCDF(p *pgo.Profile) (float64, []pgo.NodeMapKey) {
	nodes := make([]pgo.NodeMapKey, len(p.NodeMap))
	i := 0
	for n := range p.NodeMap {
		nodes[i] = n
		i++
	}
	sort.Slice(nodes, func(i, j int) bool {
		ni, nj := nodes[i], nodes[j]
		if wi, wj := p.NodeMap[ni].EWeight, p.NodeMap[nj].EWeight; wi != wj {
			return wi > wj // want larger weight first
		}
		// same weight, order by name/line number
		if ni.CallerName != nj.CallerName {
			return ni.CallerName < nj.CallerName
		}
		if ni.CalleeName != nj.CalleeName {
			return ni.CalleeName < nj.CalleeName
		}
		return ni.CallSiteOffset < nj.CallSiteOffset
	})
	cum := int64(0)
	for i, n := range nodes {
		w := p.NodeMap[n].EWeight
		cum += w
		if pgo.WeightInPercentage(cum, p.TotalEdgeWeight) > inlineCDFHotCallSiteThresholdPercent {
			// nodes[:i+1] to include the very last node that makes it to go over the threshold.
			// (Say, if the CDF threshold is 50% and one hot node takes 60% of weight, we want to
			// include that node instead of excluding it.)
			return pgo.WeightInPercentage(w, p.TotalEdgeWeight), nodes[:i+1]
		}
	}
	return 0, nodes
}

// InlinePackage finds functions that can be inlined and clones them before walk expands them.
func InlinePackage(p *pgo.Profile) {
	InlineDecls(p, typecheck.Target.Decls, true)

	// Perform a garbage collection of hidden closures functions that
	// are no longer reachable from top-level functions following
	// inlining. See #59404 and #59638 for more context.
	garbageCollectUnreferencedHiddenClosures()
}

// InlineDecls applies inlining to the given batch of declarations.
func InlineDecls(p *pgo.Profile, decls []ir.Node, doInline bool) {
	if p != nil {
		pgoInlinePrologue(p, decls)
	}

	doCanInline := func(n *ir.Func, recursive bool, numfns int) {
		if !recursive || numfns > 1 {
			// We allow inlining if there is no
			// recursion, or the recursion cycle is
			// across more than one function.
			CanInline(n, p)
		} else {
			if base.Flag.LowerM > 1 && n.OClosure == nil {
				fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(n), n.Nname)
			}
		}
	}

	ir.VisitFuncsBottomUp(decls, func(list []*ir.Func, recursive bool) {
		numfns := numNonClosures(list)
		// We visit functions within an SCC in fairly arbitrary order,
		// so by computing inlinability for all functions in the SCC
		// before performing any inlining, the results are less
		// sensitive to the order within the SCC (see #58905 for an
		// example).

		// First compute inlinability for all functions in the SCC ...
		for _, n := range list {
			doCanInline(n, recursive, numfns)
		}
		// ... then make a second pass to do inlining of calls.
		if doInline {
			for _, n := range list {
				InlineCalls(n, p)
			}
		}
	})
}

// garbageCollectUnreferencedHiddenClosures makes a pass over all the
// top-level (non-hidden-closure) functions looking for nested closure
// functions that are reachable, then sweeps through the Target.Decls
// list and marks any non-reachable hidden closure function as dead.
// See issues #59404 and #59638 for more context.
func garbageCollectUnreferencedHiddenClosures() {

	liveFuncs := make(map[*ir.Func]bool)

	var markLiveFuncs func(fn *ir.Func)
	markLiveFuncs = func(fn *ir.Func) {
		if liveFuncs[fn] {
			return
		}
		liveFuncs[fn] = true
		ir.Visit(fn, func(n ir.Node) {
			if clo, ok := n.(*ir.ClosureExpr); ok {
				markLiveFuncs(clo.Func)
			}
		})
	}

	for i := 0; i < len(typecheck.Target.Decls); i++ {
		if fn, ok := typecheck.Target.Decls[i].(*ir.Func); ok {
			if fn.IsHiddenClosure() {
				continue
			}
			markLiveFuncs(fn)
		}
	}

	for i := 0; i < len(typecheck.Target.Decls); i++ {
		if fn, ok := typecheck.Target.Decls[i].(*ir.Func); ok {
			if !fn.IsHiddenClosure() {
				continue
			}
			if fn.IsDeadcodeClosure() {
				continue
			}
			if liveFuncs[fn] {
				continue
			}
			fn.SetIsDeadcodeClosure(true)
			if base.Flag.LowerM > 2 {
				fmt.Printf("%v: unreferenced closure %v marked as dead\n", ir.Line(fn), fn)
			}
			if fn.Inl != nil && fn.LSym == nil {
				ir.InitLSym(fn, true)
			}
		}
	}
}

// CanInline determines whether fn is inlineable.
// If so, CanInline saves copies of fn.Body and fn.Dcl in fn.Inl.
// fn and fn.Body will already have been typechecked.
func CanInline(fn *ir.Func, profile *pgo.Profile) {
	if fn.Nname == nil {
		base.Fatalf("CanInline no nname %+v", fn)
	}

	var reason string // reason, if any, that the function was not inlined
	if base.Flag.LowerM > 1 || logopt.Enabled() {
		defer func() {
			if reason != "" {
				if base.Flag.LowerM > 1 {
					fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason)
				}
				if logopt.Enabled() {
					logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason)
				}
			}
		}()
	}

	// If marked "go:noinline", don't inline
	if fn.Pragma&ir.Noinline != 0 {
		reason = "marked go:noinline"
		return
	}

	// If marked "go:norace" and -race compilation, don't inline.
	if base.Flag.Race && fn.Pragma&ir.Norace != 0 {
		reason = "marked go:norace with -race compilation"
		return
	}

	// If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
	if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 {
		reason = "marked go:nocheckptr"
		return
	}

	// If marked "go:cgo_unsafe_args", don't inline, since the
	// function makes assumptions about its argument frame layout.
	if fn.Pragma&ir.CgoUnsafeArgs != 0 {
		reason = "marked go:cgo_unsafe_args"
		return
	}

	// If marked as "go:uintptrkeepalive", don't inline, since the
	// keep alive information is lost during inlining.
	//
	// TODO(prattmic): This is handled on calls during escape analysis,
	// which is after inlining. Move prior to inlining so the keep-alive is
	// maintained after inlining.
	if fn.Pragma&ir.UintptrKeepAlive != 0 {
		reason = "marked as having a keep-alive uintptr argument"
		return
	}

	// If marked as "go:uintptrescapes", don't inline, since the
	// escape information is lost during inlining.
	if fn.Pragma&ir.UintptrEscapes != 0 {
		reason = "marked as having an escaping uintptr argument"
		return
	}

	// The nowritebarrierrec checker currently works at function
	// granularity, so inlining yeswritebarrierrec functions can
	// confuse it (#22342). As a workaround, disallow inlining
	// them for now.
	if fn.Pragma&ir.Yeswritebarrierrec != 0 {
		reason = "marked go:yeswritebarrierrec"
		return
	}

	// If fn has no body (is defined outside of Go), cannot inline it.
	if len(fn.Body) == 0 {
		reason = "no function body"
		return
	}

	// If fn is synthetic hash or eq function, cannot inline it.
	// The function is not generated in Unified IR frontend at this moment.
	if ir.IsEqOrHashFunc(fn) {
		reason = "type eq/hash function"
		return
	}

	if fn.Typecheck() == 0 {
		base.Fatalf("CanInline on non-typechecked function %v", fn)
	}

	n := fn.Nname
	if n.Func.InlinabilityChecked() {
		return
	}
	defer n.Func.SetInlinabilityChecked(true)

	cc := int32(inlineExtraCallCost)
	if base.Flag.LowerL == 4 {
		cc = 1 // this appears to yield better performance than 0.
	}

	// Update the budget for profile-guided inlining.
	budget := int32(inlineMaxBudget)
	if profile != nil {
		if n, ok := profile.WeightedCG.IRNodes[ir.LinkFuncName(fn)]; ok {
			if _, ok := candHotCalleeMap[n]; ok {
				budget = int32(inlineHotMaxBudget)
				if base.Debug.PGOInline > 0 {
					fmt.Printf("hot-node enabled increased budget=%v for func=%v\n", budget, ir.PkgFuncName(fn))
				}
			}
		}
	}

	// At this point in the game the function we're looking at may
	// have "stale" autos, vars that still appear in the Dcl list, but
	// which no longer have any uses in the function body (due to
	// elimination by deadcode). We'd like to exclude these dead vars
	// when creating the "Inline.Dcl" field below; to accomplish this,
	// the hairyVisitor below builds up a map of used/referenced
	// locals, and we use this map to produce a pruned Inline.Dcl
	// list. See issue 25249 for more context.

	visitor := hairyVisitor{
		curFunc:       fn,
		budget:        budget,
		maxBudget:     budget,
		extraCallCost: cc,
		profile:       profile,
	}
	if visitor.tooHairy(fn) {
		reason = visitor.reason
		return
	}

	n.Func.Inl = &ir.Inline{
		Cost: budget - visitor.budget,
		Dcl:  pruneUnusedAutos(n.Defn.(*ir.Func).Dcl, &visitor),
		Body: inlcopylist(fn.Body),

		CanDelayResults: canDelayResults(fn),
	}

	if base.Flag.LowerM > 1 {
		fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, budget-visitor.budget, fn.Type(), ir.Nodes(n.Func.Inl.Body))
	} else if base.Flag.LowerM != 0 {
		fmt.Printf("%v: can inline %v\n", ir.Line(fn), n)
	}
	if logopt.Enabled() {
		logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", budget-visitor.budget))
	}
}

// canDelayResults reports whether inlined calls to fn can delay
// declaring the result parameter until the "return" statement.
func canDelayResults(fn *ir.Func) bool {
	// We can delay declaring+initializing result parameters if:
	// (1) there's exactly one "return" statement in the inlined function;
	// (2) it's not an empty return statement (#44355); and
	// (3) the result parameters aren't named.

	nreturns := 0
	ir.VisitList(fn.Body, func(n ir.Node) {
		if n, ok := n.(*ir.ReturnStmt); ok {
			nreturns++
			if len(n.Results) == 0 {
				nreturns++ // empty return statement (case 2)
			}
		}
	})

	if nreturns != 1 {
		return false // not exactly one return statement (case 1)
	}

	// temporaries for return values.
	for _, param := range fn.Type().Results().FieldSlice() {
		if sym := types.OrigSym(param.Sym); sym != nil && !sym.IsBlank() {
			return false // found a named result parameter (case 3)
		}
	}

	return true
}

// hairyVisitor visits a function body to determine its inlining
// hairiness and whether or not it can be inlined.
type hairyVisitor struct {
	// This is needed to access the current caller in the doNode function.
	curFunc       *ir.Func
	budget        int32
	maxBudget     int32
	reason        string
	extraCallCost int32
	usedLocals    ir.NameSet
	do            func(ir.Node) bool
	profile       *pgo.Profile
}

func (v *hairyVisitor) tooHairy(fn *ir.Func) bool {
	v.do = v.doNode // cache closure
	if ir.DoChildren(fn, v.do) {
		return true
	}
	if v.budget < 0 {
		v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", v.maxBudget-v.budget, v.maxBudget)
		return true
	}
	return false
}

// doNode visits n and its children, updates the state in v, and returns true if
// n makes the current function too hairy for inlining.
func (v *hairyVisitor) doNode(n ir.Node) bool {
	if n == nil {
		return false
	}
	switch n.Op() {
	// Call is okay if inlinable and we have the budget for the body.
	case ir.OCALLFUNC:
		n := n.(*ir.CallExpr)
		// Functions that call runtime.getcaller{pc,sp} can not be inlined
		// because getcaller{pc,sp} expect a pointer to the caller's first argument.
		//
		// runtime.throw is a "cheap call" like panic in normal code.
		var cheap bool
		if n.X.Op() == ir.ONAME {
			name := n.X.(*ir.Name)
			if name.Class == ir.PFUNC && types.IsRuntimePkg(name.Sym().Pkg) {
				fn := name.Sym().Name
				if fn == "getcallerpc" || fn == "getcallersp" {
					v.reason = "call to " + fn
					return true
				}
				if fn == "throw" {
					v.budget -= inlineExtraThrowCost
					break
				}
			}
			// Special case for reflect.noescpae. It does just type
			// conversions to appease the escape analysis, and doesn't
			// generate code.
			if name.Class == ir.PFUNC && types.IsReflectPkg(name.Sym().Pkg) {
				if name.Sym().Name == "noescape" {
					cheap = true
				}
			}
			// Special case for coverage counter updates; although
			// these correspond to real operations, we treat them as
			// zero cost for the moment. This is due to the existence
			// of tests that are sensitive to inlining-- if the
			// insertion of coverage instrumentation happens to tip a
			// given function over the threshold and move it from
			// "inlinable" to "not-inlinable", this can cause changes
			// in allocation behavior, which can then result in test
			// failures (a good example is the TestAllocations in
			// crypto/ed25519).
			if isAtomicCoverageCounterUpdate(n) {
				return false
			}
		}
		if n.X.Op() == ir.OMETHEXPR {
			if meth := ir.MethodExprName(n.X); meth != nil {
				if fn := meth.Func; fn != nil {
					s := fn.Sym()
					if types.IsRuntimePkg(s.Pkg) && s.Name == "heapBits.nextArena" {
						// Special case: explicitly allow mid-stack inlining of
						// runtime.heapBits.next even though it calls slow-path
						// runtime.heapBits.nextArena.
						cheap = true
					}
					// Special case: on architectures that can do unaligned loads,
					// explicitly mark encoding/binary methods as cheap,
					// because in practice they are, even though our inlining
					// budgeting system does not see that. See issue 42958.
					if base.Ctxt.Arch.CanMergeLoads && s.Pkg.Path == "encoding/binary" {
						switch s.Name {
						case "littleEndian.Uint64", "littleEndian.Uint32", "littleEndian.Uint16",
							"bigEndian.Uint64", "bigEndian.Uint32", "bigEndian.Uint16",
							"littleEndian.PutUint64", "littleEndian.PutUint32", "littleEndian.PutUint16",
							"bigEndian.PutUint64", "bigEndian.PutUint32", "bigEndian.PutUint16",
							"littleEndian.AppendUint64", "littleEndian.AppendUint32", "littleEndian.AppendUint16",
							"bigEndian.AppendUint64", "bigEndian.AppendUint32", "bigEndian.AppendUint16":
							cheap = true
						}
					}
				}
			}
		}
		if cheap {
			break // treat like any other node, that is, cost of 1
		}

		// Determine if the callee edge is for an inlinable hot callee or not.
		if v.profile != nil && v.curFunc != nil {
			if fn := inlCallee(n.X, v.profile); fn != nil && typecheck.HaveInlineBody(fn) {
				lineOffset := pgo.NodeLineOffset(n, fn)
				csi := pgo.CallSiteInfo{LineOffset: lineOffset, Caller: v.curFunc}
				if _, o := candHotEdgeMap[csi]; o {
					if base.Debug.PGOInline > 0 {
						fmt.Printf("hot-callsite identified at line=%v for func=%v\n", ir.Line(n), ir.PkgFuncName(v.curFunc))
					}
				}
			}
		}

		if ir.IsIntrinsicCall(n) {
			// Treat like any other node.
			break
		}

		if fn := inlCallee(n.X, v.profile); fn != nil && typecheck.HaveInlineBody(fn) {
			v.budget -= fn.Inl.Cost
			break
		}

		// Call cost for non-leaf inlining.
		v.budget -= v.extraCallCost

	case ir.OCALLMETH:
		base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")

	// Things that are too hairy, irrespective of the budget
	case ir.OCALL, ir.OCALLINTER:
		// Call cost for non-leaf inlining.
		v.budget -= v.extraCallCost

	case ir.OPANIC:
		n := n.(*ir.UnaryExpr)
		if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() {
			// Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining.
			// Before CL 284412, these conversions were introduced later in the
			// compiler, so they didn't count against inlining budget.
			v.budget++
		}
		v.budget -= inlineExtraPanicCost

	case ir.ORECOVER:
		// recover matches the argument frame pointer to find
		// the right panic value, so it needs an argument frame.
		v.reason = "call to recover"
		return true

	case ir.OCLOSURE:
		if base.Debug.InlFuncsWithClosures == 0 {
			v.reason = "not inlining functions with closures"
			return true
		}

		// TODO(danscales): Maybe make budget proportional to number of closure
		// variables, e.g.:
		//v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3)
		// TODO(austin): However, if we're able to inline this closure into
		// v.curFunc, then we actually pay nothing for the closure captures. We
		// should try to account for that if we're going to account for captures.
		v.budget -= 15

	case ir.OGO,
		ir.ODEFER,
		ir.ODCLTYPE, // can't print yet
		ir.OTAILCALL:
		v.reason = "unhandled op " + n.Op().String()
		return true

	case ir.OAPPEND:
		v.budget -= inlineExtraAppendCost

	case ir.OADDR:
		n := n.(*ir.AddrExpr)
		// Make "&s.f" cost 0 when f's offset is zero.
		if dot, ok := n.X.(*ir.SelectorExpr); ok && (dot.Op() == ir.ODOT || dot.Op() == ir.ODOTPTR) {
			if _, ok := dot.X.(*ir.Name); ok && dot.Selection.Offset == 0 {
				v.budget += 2 // undo ir.OADDR+ir.ODOT/ir.ODOTPTR
			}
		}

	case ir.ODEREF:
		// *(*X)(unsafe.Pointer(&x)) is low-cost
		n := n.(*ir.StarExpr)

		ptr := n.X
		for ptr.Op() == ir.OCONVNOP {
			ptr = ptr.(*ir.ConvExpr).X
		}
		if ptr.Op() == ir.OADDR {
			v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR
		}

	case ir.OCONVNOP:
		// This doesn't produce code, but the children might.
		v.budget++ // undo default cost

	case ir.ODCLCONST, ir.OFALL, ir.OTYPE:
		// These nodes don't produce code; omit from inlining budget.
		return false

	case ir.OIF:
		n := n.(*ir.IfStmt)
		if ir.IsConst(n.Cond, constant.Bool) {
			// This if and the condition cost nothing.
			if doList(n.Init(), v.do) {
				return true
			}
			if ir.BoolVal(n.Cond) {
				return doList(n.Body, v.do)
			} else {
				return doList(n.Else, v.do)
			}
		}

	case ir.ONAME:
		n := n.(*ir.Name)
		if n.Class == ir.PAUTO {
			v.usedLocals.Add(n)
		}

	case ir.OBLOCK:
		// The only OBLOCK we should see at this point is an empty one.
		// In any event, let the visitList(n.List()) below take care of the statements,
		// and don't charge for the OBLOCK itself. The ++ undoes the -- below.
		v.budget++

	case ir.OMETHVALUE, ir.OSLICELIT:
		v.budget-- // Hack for toolstash -cmp.

	case ir.OMETHEXPR:
		v.budget++ // Hack for toolstash -cmp.

	case ir.OAS2:
		n := n.(*ir.AssignListStmt)

		// Unified IR unconditionally rewrites:
		//
		//	a, b = f()
		//
		// into:
		//
		//	DCL tmp1
		//	DCL tmp2
		//	tmp1, tmp2 = f()
		//	a, b = tmp1, tmp2
		//
		// so that it can insert implicit conversions as necessary. To
		// minimize impact to the existing inlining heuristics (in
		// particular, to avoid breaking the existing inlinability regress
		// tests), we need to compensate for this here.
		//
		// See also identical logic in isBigFunc.
		if init := n.Rhs[0].Init(); len(init) == 1 {
			if _, ok := init[0].(*ir.AssignListStmt); ok {
				// 4 for each value, because each temporary variable now
				// appears 3 times (DCL, LHS, RHS), plus an extra DCL node.
				//
				// 1 for the extra "tmp1, tmp2 = f()" assignment statement.
				v.budget += 4*int32(len(n.Lhs)) + 1
			}
		}

	case ir.OAS:
		// Special case for coverage counter updates and coverage
		// function registrations. Although these correspond to real
		// operations, we treat them as zero cost for the moment. This
		// is primarily due to the existence of tests that are
		// sensitive to inlining-- if the insertion of coverage
		// instrumentation happens to tip a given function over the
		// threshold and move it from "inlinable" to "not-inlinable",
		// this can cause changes in allocation behavior, which can
		// then result in test failures (a good example is the
		// TestAllocations in crypto/ed25519).
		n := n.(*ir.AssignStmt)
		if n.X.Op() == ir.OINDEX && isIndexingCoverageCounter(n.X) {
			return false
		}
	}

	v.budget--

	// When debugging, don't stop early, to get full cost of inlining this function
	if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() {
		v.reason = "too expensive"
		return true
	}

	return ir.DoChildren(n, v.do)
}

func isBigFunc(fn *ir.Func) bool {
	budget := inlineBigFunctionNodes
	return ir.Any(fn, func(n ir.Node) bool {
		// See logic in hairyVisitor.doNode, explaining unified IR's
		// handling of "a, b = f()" assignments.
		if n, ok := n.(*ir.AssignListStmt); ok && n.Op() == ir.OAS2 {
			if init := n.Rhs[0].Init(); len(init) == 1 {
				if _, ok := init[0].(*ir.AssignListStmt); ok {
					budget += 4*len(n.Lhs) + 1
				}
			}
		}

		budget--
		return budget <= 0
	})
}

// inlcopylist (together with inlcopy) recursively copies a list of nodes, except
// that it keeps the same ONAME, OTYPE, and OLITERAL nodes. It is used for copying
// the body and dcls of an inlineable function.
func inlcopylist(ll []ir.Node) []ir.Node {
	s := make([]ir.Node, len(ll))
	for i, n := range ll {
		s[i] = inlcopy(n)
	}
	return s
}

// inlcopy is like DeepCopy(), but does extra work to copy closures.
func inlcopy(n ir.Node) ir.Node {
	var edit func(ir.Node) ir.Node
	edit = func(x ir.Node) ir.Node {
		switch x.Op() {
		case ir.ONAME, ir.OTYPE, ir.OLITERAL, ir.ONIL:
			return x
		}
		m := ir.Copy(x)
		ir.EditChildren(m, edit)
		if x.Op() == ir.OCLOSURE {
			x := x.(*ir.ClosureExpr)
			// Need to save/duplicate x.Func.Nname,
			// x.Func.Nname.Ntype, x.Func.Dcl, x.Func.ClosureVars, and
			// x.Func.Body for iexport and local inlining.
			oldfn := x.Func
			newfn := ir.NewFunc(oldfn.Pos())
			m.(*ir.ClosureExpr).Func = newfn
			newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), oldfn.Nname.Sym())
			// XXX OK to share fn.Type() ??
			newfn.Nname.SetType(oldfn.Nname.Type())
			newfn.Body = inlcopylist(oldfn.Body)
			// Make shallow copy of the Dcl and ClosureVar slices
			newfn.Dcl = append([]*ir.Name(nil), oldfn.Dcl...)
			newfn.ClosureVars = append([]*ir.Name(nil), oldfn.ClosureVars...)
		}
		return m
	}
	return edit(n)
}

// InlineCalls/inlnode walks fn's statements and expressions and substitutes any
// calls made to inlineable functions. This is the external entry point.
func InlineCalls(fn *ir.Func, profile *pgo.Profile) {
	savefn := ir.CurFunc
	ir.CurFunc = fn
	bigCaller := isBigFunc(fn)
	if bigCaller && base.Flag.LowerM > 1 {
		fmt.Printf("%v: function %v considered 'big'; reducing max cost of inlinees\n", ir.Line(fn), fn)
	}
	var inlCalls []*ir.InlinedCallExpr
	var edit func(ir.Node) ir.Node
	edit = func(n ir.Node) ir.Node {
		return inlnode(n, bigCaller, &inlCalls, edit, profile)
	}
	ir.EditChildren(fn, edit)

	// If we inlined any calls, we want to recursively visit their
	// bodies for further inlining. However, we need to wait until
	// *after* the original function body has been expanded, or else
	// inlCallee can have false positives (e.g., #54632).
	for len(inlCalls) > 0 {
		call := inlCalls[0]
		inlCalls = inlCalls[1:]
		ir.EditChildren(call, edit)
	}

	ir.CurFunc = savefn
}

// inlnode recurses over the tree to find inlineable calls, which will
// be turned into OINLCALLs by mkinlcall. When the recursion comes
// back up will examine left, right, list, rlist, ninit, ntest, nincr,
// nbody and nelse and use one of the 4 inlconv/glue functions above
// to turn the OINLCALL into an expression, a statement, or patch it
// in to this nodes list or rlist as appropriate.
// NOTE it makes no sense to pass the glue functions down the
// recursion to the level where the OINLCALL gets created because they
// have to edit /this/ n, so you'd have to push that one down as well,
// but then you may as well do it here.  so this is cleaner and
// shorter and less complicated.
// The result of inlnode MUST be assigned back to n, e.g.
//
//	n.Left = inlnode(n.Left)
func inlnode(n ir.Node, bigCaller bool, inlCalls *[]*ir.InlinedCallExpr, edit func(ir.Node) ir.Node, profile *pgo.Profile) ir.Node {
	if n == nil {
		return n
	}

	switch n.Op() {
	case ir.ODEFER, ir.OGO:
		n := n.(*ir.GoDeferStmt)
		switch call := n.Call; call.Op() {
		case ir.OCALLMETH:
			base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck")
		case ir.OCALLFUNC:
			call := call.(*ir.CallExpr)
			call.NoInline = true
		}
	case ir.OTAILCALL:
		n := n.(*ir.TailCallStmt)
		n.Call.NoInline = true // Not inline a tail call for now. Maybe we could inline it just like RETURN fn(arg)?

	// TODO do them here (or earlier),
	// so escape analysis can avoid more heapmoves.
	case ir.OCLOSURE:
		return n
	case ir.OCALLMETH:
		base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")
	case ir.OCALLFUNC:
		n := n.(*ir.CallExpr)
		if n.X.Op() == ir.OMETHEXPR {
			// Prevent inlining some reflect.Value methods when using checkptr,
			// even when package reflect was compiled without it (#35073).
			if meth := ir.MethodExprName(n.X); meth != nil {
				s := meth.Sym()
				if base.Debug.Checkptr != 0 && types.IsReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") {
					return n
				}
			}
		}
	}

	lno := ir.SetPos(n)

	ir.EditChildren(n, edit)

	// with all the branches out of the way, it is now time to
	// transmogrify this node itself unless inhibited by the
	// switch at the top of this function.
	switch n.Op() {
	case ir.OCALLMETH:
		base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")

	case ir.OCALLFUNC:
		call := n.(*ir.CallExpr)
		if call.NoInline {
			break
		}
		if base.Flag.LowerM > 3 {
			fmt.Printf("%v:call to func %+v\n", ir.Line(n), call.X)
		}
		if ir.IsIntrinsicCall(call) {
			break
		}
		if fn := inlCallee(call.X, profile); fn != nil && typecheck.HaveInlineBody(fn) {
			n = mkinlcall(call, fn, bigCaller, inlCalls)
		}
	}

	base.Pos = lno

	return n
}

// inlCallee takes a function-typed expression and returns the underlying function ONAME
// that it refers to if statically known. Otherwise, it returns nil.
func inlCallee(fn ir.Node, profile *pgo.Profile) *ir.Func {
	fn = ir.StaticValue(fn)
	switch fn.Op() {
	case ir.OMETHEXPR:
		fn := fn.(*ir.SelectorExpr)
		n := ir.MethodExprName(fn)
		// Check that receiver type matches fn.X.
		// TODO(mdempsky): Handle implicit dereference
		// of pointer receiver argument?
		if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
			return nil
		}
		return n.Func
	case ir.ONAME:
		fn := fn.(*ir.Name)
		if fn.Class == ir.PFUNC {
			return fn.Func
		}
	case ir.OCLOSURE:
		fn := fn.(*ir.ClosureExpr)
		c := fn.Func
		CanInline(c, profile)
		return c
	}
	return nil
}

var inlgen int

// SSADumpInline gives the SSA back end a chance to dump the function
// when producing output for debugging the compiler itself.
var SSADumpInline = func(*ir.Func) {}

// InlineCall allows the inliner implementation to be overridden.
// If it returns nil, the function will not be inlined.
var InlineCall = func(call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr {
	base.Fatalf("inline.InlineCall not overridden")
	panic("unreachable")
}

// inlineCostOK returns true if call n from caller to callee is cheap enough to
// inline. bigCaller indicates that caller is a big function.
//
// If inlineCostOK returns false, it also returns the max cost that the callee
// exceeded.
func inlineCostOK(n *ir.CallExpr, caller, callee *ir.Func, bigCaller bool) (bool, int32) {
	maxCost := int32(inlineMaxBudget)
	if bigCaller {
		// We use this to restrict inlining into very big functions.
		// See issue 26546 and 17566.
		maxCost = inlineBigFunctionMaxCost
	}

	if callee.Inl.Cost <= maxCost {
		// Simple case. Function is already cheap enough.
		return true, 0
	}

	// We'll also allow inlining of hot functions below inlineHotMaxBudget,
	// but only in small functions.

	lineOffset := pgo.NodeLineOffset(n, caller)
	csi := pgo.CallSiteInfo{LineOffset: lineOffset, Caller: caller}
	if _, ok := candHotEdgeMap[csi]; !ok {
		// Cold
		return false, maxCost
	}

	// Hot

	if bigCaller {
		if base.Debug.PGOInline > 0 {
			fmt.Printf("hot-big check disallows inlining for call %s (cost %d) at %v in big function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller))
		}
		return false, maxCost
	}

	if callee.Inl.Cost > inlineHotMaxBudget {
		return false, inlineHotMaxBudget
	}

	if base.Debug.PGOInline > 0 {
		fmt.Printf("hot-budget check allows inlining for call %s (cost %d) at %v in function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller))
	}

	return true, 0
}

// If n is a OCALLFUNC node, and fn is an ONAME node for a
// function with an inlinable body, return an OINLCALL node that can replace n.
// The returned node's Ninit has the parameter assignments, the Nbody is the
// inlined function body, and (List, Rlist) contain the (input, output)
// parameters.
// The result of mkinlcall MUST be assigned back to n, e.g.
//
//	n.Left = mkinlcall(n.Left, fn, isddd)
func mkinlcall(n *ir.CallExpr, fn *ir.Func, bigCaller bool, inlCalls *[]*ir.InlinedCallExpr) ir.Node {
	if fn.Inl == nil {
		if logopt.Enabled() {
			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
				fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(fn)))
		}
		return n
	}

	if ok, maxCost := inlineCostOK(n, ir.CurFunc, fn, bigCaller); !ok {
		if logopt.Enabled() {
			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
				fmt.Sprintf("cost %d of %s exceeds max caller cost %d", fn.Inl.Cost, ir.PkgFuncName(fn), maxCost))
		}
		return n
	}

	if fn == ir.CurFunc {
		// Can't recursively inline a function into itself.
		if logopt.Enabled() {
			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(ir.CurFunc)))
		}
		return n
	}

	if base.Flag.Cfg.Instrumenting && types.IsRuntimePkg(fn.Sym().Pkg) {
		// Runtime package must not be instrumented.
		// Instrument skips runtime package. However, some runtime code can be
		// inlined into other packages and instrumented there. To avoid this,
		// we disable inlining of runtime functions when instrumenting.
		// The example that we observed is inlining of LockOSThread,
		// which lead to false race reports on m contents.
		return n
	}

	parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex()
	sym := fn.Linksym()

	// Check if we've already inlined this function at this particular
	// call site, in order to stop inlining when we reach the beginning
	// of a recursion cycle again. We don't inline immediately recursive
	// functions, but allow inlining if there is a recursion cycle of
	// many functions. Most likely, the inlining will stop before we
	// even hit the beginning of the cycle again, but this catches the
	// unusual case.
	for inlIndex := parent; inlIndex >= 0; inlIndex = base.Ctxt.InlTree.Parent(inlIndex) {
		if base.Ctxt.InlTree.InlinedFunction(inlIndex) == sym {
			if base.Flag.LowerM > 1 {
				fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), fn, ir.FuncName(ir.CurFunc))
			}
			return n
		}
	}

	typecheck.AssertFixedCall(n)

	inlIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym)

	closureInitLSym := func(n *ir.CallExpr, fn *ir.Func) {
		// The linker needs FuncInfo metadata for all inlined
		// functions. This is typically handled by gc.enqueueFunc
		// calling ir.InitLSym for all function declarations in
		// typecheck.Target.Decls (ir.UseClosure adds all closures to
		// Decls).
		//
		// However, non-trivial closures in Decls are ignored, and are
		// insteaded enqueued when walk of the calling function
		// discovers them.
		//
		// This presents a problem for direct calls to closures.
		// Inlining will replace the entire closure definition with its
		// body, which hides the closure from walk and thus suppresses
		// symbol creation.
		//
		// Explicitly create a symbol early in this edge case to ensure
		// we keep this metadata.
		//
		// TODO: Refactor to keep a reference so this can all be done
		// by enqueueFunc.

		if n.Op() != ir.OCALLFUNC {
			// Not a standard call.
			return
		}
		if n.X.Op() != ir.OCLOSURE {
			// Not a direct closure call.
			return
		}

		clo := n.X.(*ir.ClosureExpr)
		if ir.IsTrivialClosure(clo) {
			// enqueueFunc will handle trivial closures anyways.
			return
		}

		ir.InitLSym(fn, true)
	}

	closureInitLSym(n, fn)

	if base.Flag.GenDwarfInl > 0 {
		if !sym.WasInlined() {
			base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn)
			sym.Set(obj.AttrWasInlined, true)
		}
	}

	if base.Flag.LowerM != 0 {
		fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn)
	}
	if base.Flag.LowerM > 2 {
		fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n)
	}

	res := InlineCall(n, fn, inlIndex)

	if res == nil {
		base.FatalfAt(n.Pos(), "inlining call to %v failed", fn)
	}

	if base.Flag.LowerM > 2 {
		fmt.Printf("%v: After inlining %+v\n\n", ir.Line(res), res)
	}

	*inlCalls = append(*inlCalls, res)

	return res
}

// CalleeEffects appends any side effects from evaluating callee to init.
func CalleeEffects(init *ir.Nodes, callee ir.Node) {
	for {
		init.Append(ir.TakeInit(callee)...)

		switch callee.Op() {
		case ir.ONAME, ir.OCLOSURE, ir.OMETHEXPR:
			return // done

		case ir.OCONVNOP:
			conv := callee.(*ir.ConvExpr)
			callee = conv.X

		case ir.OINLCALL:
			ic := callee.(*ir.InlinedCallExpr)
			init.Append(ic.Body.Take()...)
			callee = ic.SingleResult()

		default:
			base.FatalfAt(callee.Pos(), "unexpected callee expression: %v", callee)
		}
	}
}

func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name {
	s := make([]*ir.Name, 0, len(ll))
	for _, n := range ll {
		if n.Class == ir.PAUTO {
			if !vis.usedLocals.Has(n) {
				continue
			}
		}
		s = append(s, n)
	}
	return s
}

// numNonClosures returns the number of functions in list which are not closures.
func numNonClosures(list []*ir.Func) int {
	count := 0
	for _, fn := range list {
		if fn.OClosure == nil {
			count++
		}
	}
	return count
}

func doList(list []ir.Node, do func(ir.Node) bool) bool {
	for _, x := range list {
		if x != nil {
			if do(x) {
				return true
			}
		}
	}
	return false
}

// isIndexingCoverageCounter returns true if the specified node 'n' is indexing
// into a coverage counter array.
func isIndexingCoverageCounter(n ir.Node) bool {
	if n.Op() != ir.OINDEX {
		return false
	}
	ixn := n.(*ir.IndexExpr)
	if ixn.X.Op() != ir.ONAME || !ixn.X.Type().IsArray() {
		return false
	}
	nn := ixn.X.(*ir.Name)
	return nn.CoverageCounter()
}

// isAtomicCoverageCounterUpdate examines the specified node to
// determine whether it represents a call to sync/atomic.AddUint32 to
// increment a coverage counter.
func isAtomicCoverageCounterUpdate(cn *ir.CallExpr) bool {
	if cn.X.Op() != ir.ONAME {
		return false
	}
	name := cn.X.(*ir.Name)
	if name.Class != ir.PFUNC {
		return false
	}
	fn := name.Sym().Name
	if name.Sym().Pkg.Path != "sync/atomic" ||
		(fn != "AddUint32" && fn != "StoreUint32") {
		return false
	}
	if len(cn.Args) != 2 || cn.Args[0].Op() != ir.OADDR {
		return false
	}
	adn := cn.Args[0].(*ir.AddrExpr)
	v := isIndexingCoverageCounter(adn.X)
	return v
}