1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
|
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// A note on line numbers: when working with line numbers, we always use the
// binary-visible relative line number. i.e., the line number as adjusted by
// //line directives (ctxt.InnermostPos(ir.Node.Pos()).RelLine()). Use
// NodeLineOffset to compute line offsets.
//
// If you are thinking, "wait, doesn't that just make things more complex than
// using the real line number?", then you are 100% correct. Unfortunately,
// pprof profiles generated by the runtime always contain line numbers as
// adjusted by //line directives (because that is what we put in pclntab). Thus
// for the best behavior when attempting to match the source with the profile
// it makes sense to use the same line number space.
//
// Some of the effects of this to keep in mind:
//
// - For files without //line directives there is no impact, as RelLine() ==
// Line().
// - For functions entirely covered by the same //line directive (i.e., a
// directive before the function definition and no directives within the
// function), there should also be no impact, as line offsets within the
// function should be the same as the real line offsets.
// - Functions containing //line directives may be impacted. As fake line
// numbers need not be monotonic, we may compute negative line offsets. We
// should accept these and attempt to use them for best-effort matching, as
// these offsets should still match if the source is unchanged, and may
// continue to match with changed source depending on the impact of the
// changes on fake line numbers.
// - Functions containing //line directives may also contain duplicate lines,
// making it ambiguous which call the profile is referencing. This is a
// similar problem to multiple calls on a single real line, as we don't
// currently track column numbers.
//
// Long term it would be best to extend pprof profiles to include real line
// numbers. Until then, we have to live with these complexities. Luckily,
// //line directives that change line numbers in strange ways should be rare,
// and failing PGO matching on these files is not too big of a loss.
package pgo
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/pgo/internal/graph"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"fmt"
"internal/profile"
"os"
)
// IRGraph is the key data structure that is built from profile. It is
// essentially a call graph with nodes pointing to IRs of functions and edges
// carrying weights and callsite information. The graph is bidirectional that
// helps in removing nodes efficiently.
type IRGraph struct {
// Nodes of the graph
IRNodes map[string]*IRNode
OutEdges IREdgeMap
InEdges IREdgeMap
}
// IRNode represents a node in the IRGraph.
type IRNode struct {
// Pointer to the IR of the Function represented by this node.
AST *ir.Func
}
// IREdgeMap maps an IRNode to its successors.
type IREdgeMap map[*IRNode][]*IREdge
// IREdge represents a call edge in the IRGraph with source, destination,
// weight, callsite, and line number information.
type IREdge struct {
// Source and destination of the edge in IRNode.
Src, Dst *IRNode
Weight int64
CallSiteOffset int // Line offset from function start line.
}
// NodeMapKey represents a hash key to identify unique call-edges in profile
// and in IR. Used for deduplication of call edges found in profile.
type NodeMapKey struct {
CallerName string
CalleeName string
CallSiteOffset int // Line offset from function start line.
}
// Weights capture both node weight and edge weight.
type Weights struct {
NFlat int64
NCum int64
EWeight int64
}
// CallSiteInfo captures call-site information and its caller/callee.
type CallSiteInfo struct {
LineOffset int // Line offset from function start line.
Caller *ir.Func
Callee *ir.Func
}
// Profile contains the processed PGO profile and weighted call graph used for
// PGO optimizations.
type Profile struct {
// Aggregated NodeWeights and EdgeWeights across the profile. This
// helps us determine the percentage threshold for hot/cold
// partitioning.
TotalNodeWeight int64
TotalEdgeWeight int64
// NodeMap contains all unique call-edges in the profile and their
// aggregated weight.
NodeMap map[NodeMapKey]*Weights
// WeightedCG represents the IRGraph built from profile, which we will
// update as part of inlining.
WeightedCG *IRGraph
}
// New generates a profile-graph from the profile.
func New(profileFile string) (*Profile, error) {
f, err := os.Open(profileFile)
if err != nil {
return nil, fmt.Errorf("error opening profile: %w", err)
}
defer f.Close()
profile, err := profile.Parse(f)
if err != nil {
return nil, fmt.Errorf("error parsing profile: %w", err)
}
if len(profile.Sample) == 0 {
// We accept empty profiles, but there is nothing to do.
return nil, nil
}
valueIndex := -1
for i, s := range profile.SampleType {
// Samples count is the raw data collected, and CPU nanoseconds is just
// a scaled version of it, so either one we can find is fine.
if (s.Type == "samples" && s.Unit == "count") ||
(s.Type == "cpu" && s.Unit == "nanoseconds") {
valueIndex = i
break
}
}
if valueIndex == -1 {
return nil, fmt.Errorf(`profile does not contain a sample index with value/type "samples/count" or cpu/nanoseconds"`)
}
g := graph.NewGraph(profile, &graph.Options{
SampleValue: func(v []int64) int64 { return v[valueIndex] },
})
p := &Profile{
NodeMap: make(map[NodeMapKey]*Weights),
WeightedCG: &IRGraph{
IRNodes: make(map[string]*IRNode),
},
}
// Build the node map and totals from the profile graph.
if err := p.processprofileGraph(g); err != nil {
return nil, err
}
if p.TotalNodeWeight == 0 || p.TotalEdgeWeight == 0 {
return nil, nil // accept but ignore profile with no samples.
}
// Create package-level call graph with weights from profile and IR.
p.initializeIRGraph()
return p, nil
}
// processprofileGraph builds various maps from the profile-graph.
//
// It initializes NodeMap and Total{Node,Edge}Weight based on the name and
// callsite to compute node and edge weights which will be used later on to
// create edges for WeightedCG.
//
// Caller should ignore the profile if p.TotalNodeWeight == 0 || p.TotalEdgeWeight == 0.
func (p *Profile) processprofileGraph(g *graph.Graph) error {
nFlat := make(map[string]int64)
nCum := make(map[string]int64)
seenStartLine := false
// Accummulate weights for the same node.
for _, n := range g.Nodes {
canonicalName := n.Info.Name
nFlat[canonicalName] += n.FlatValue()
nCum[canonicalName] += n.CumValue()
}
// Process graph and build various node and edge maps which will
// be consumed by AST walk.
for _, n := range g.Nodes {
seenStartLine = seenStartLine || n.Info.StartLine != 0
p.TotalNodeWeight += n.FlatValue()
canonicalName := n.Info.Name
// Create the key to the nodeMapKey.
nodeinfo := NodeMapKey{
CallerName: canonicalName,
CallSiteOffset: n.Info.Lineno - n.Info.StartLine,
}
for _, e := range n.Out {
p.TotalEdgeWeight += e.WeightValue()
nodeinfo.CalleeName = e.Dest.Info.Name
if w, ok := p.NodeMap[nodeinfo]; ok {
w.EWeight += e.WeightValue()
} else {
weights := new(Weights)
weights.NFlat = nFlat[canonicalName]
weights.NCum = nCum[canonicalName]
weights.EWeight = e.WeightValue()
p.NodeMap[nodeinfo] = weights
}
}
}
if p.TotalNodeWeight == 0 || p.TotalEdgeWeight == 0 {
return nil // accept but ignore profile with no samples.
}
if !seenStartLine {
// TODO(prattmic): If Function.start_line is missing we could
// fall back to using absolute line numbers, which is better
// than nothing.
return fmt.Errorf("profile missing Function.start_line data (Go version of profiled application too old? Go 1.20+ automatically adds this to profiles)")
}
return nil
}
// initializeIRGraph builds the IRGraph by visiting all the ir.Func in decl list
// of a package.
func (p *Profile) initializeIRGraph() {
// Bottomup walk over the function to create IRGraph.
ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) {
for _, n := range list {
p.VisitIR(n)
}
})
}
// VisitIR traverses the body of each ir.Func and use NodeMap to determine if
// we need to add an edge from ir.Func and any node in the ir.Func body.
func (p *Profile) VisitIR(fn *ir.Func) {
g := p.WeightedCG
if g.IRNodes == nil {
g.IRNodes = make(map[string]*IRNode)
}
if g.OutEdges == nil {
g.OutEdges = make(map[*IRNode][]*IREdge)
}
if g.InEdges == nil {
g.InEdges = make(map[*IRNode][]*IREdge)
}
name := ir.LinkFuncName(fn)
node, ok := g.IRNodes[name]
if !ok {
node = &IRNode{
AST: fn,
}
g.IRNodes[name] = node
}
// Recursively walk over the body of the function to create IRGraph edges.
p.createIRGraphEdge(fn, node, name)
}
// NodeLineOffset returns the line offset of n in fn.
func NodeLineOffset(n ir.Node, fn *ir.Func) int {
// See "A note on line numbers" at the top of the file.
line := int(base.Ctxt.InnermostPos(n.Pos()).RelLine())
startLine := int(base.Ctxt.InnermostPos(fn.Pos()).RelLine())
return line - startLine
}
// addIREdge adds an edge between caller and new node that points to `callee`
// based on the profile-graph and NodeMap.
func (p *Profile) addIREdge(callerNode *IRNode, callerName string, call ir.Node, callee *ir.Func) {
g := p.WeightedCG
calleeName := ir.LinkFuncName(callee)
calleeNode, ok := g.IRNodes[calleeName]
if !ok {
calleeNode = &IRNode{
AST: callee,
}
g.IRNodes[calleeName] = calleeNode
}
nodeinfo := NodeMapKey{
CallerName: callerName,
CalleeName: calleeName,
CallSiteOffset: NodeLineOffset(call, callerNode.AST),
}
var weight int64
if weights, ok := p.NodeMap[nodeinfo]; ok {
weight = weights.EWeight
}
// Add edge in the IRGraph from caller to callee.
edge := &IREdge{
Src: callerNode,
Dst: calleeNode,
Weight: weight,
CallSiteOffset: nodeinfo.CallSiteOffset,
}
g.OutEdges[callerNode] = append(g.OutEdges[callerNode], edge)
g.InEdges[calleeNode] = append(g.InEdges[calleeNode], edge)
}
// createIRGraphEdge traverses the nodes in the body of ir.Func and add edges between callernode which points to the ir.Func and the nodes in the body.
func (p *Profile) createIRGraphEdge(fn *ir.Func, callernode *IRNode, name string) {
var doNode func(ir.Node) bool
doNode = func(n ir.Node) bool {
switch n.Op() {
default:
ir.DoChildren(n, doNode)
case ir.OCALLFUNC:
call := n.(*ir.CallExpr)
// Find the callee function from the call site and add the edge.
callee := inlCallee(call.X)
if callee != nil {
p.addIREdge(callernode, name, n, callee)
}
case ir.OCALLMETH:
call := n.(*ir.CallExpr)
// Find the callee method from the call site and add the edge.
callee := ir.MethodExprName(call.X).Func
p.addIREdge(callernode, name, n, callee)
}
return false
}
doNode(fn)
}
// WeightInPercentage converts profile weights to a percentage.
func WeightInPercentage(value int64, total int64) float64 {
return (float64(value) / float64(total)) * 100
}
// PrintWeightedCallGraphDOT prints IRGraph in DOT format.
func (p *Profile) PrintWeightedCallGraphDOT(edgeThreshold float64) {
fmt.Printf("\ndigraph G {\n")
fmt.Printf("forcelabels=true;\n")
// List of functions in this package.
funcs := make(map[string]struct{})
ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) {
for _, f := range list {
name := ir.LinkFuncName(f)
funcs[name] = struct{}{}
}
})
// Determine nodes of DOT.
nodes := make(map[string]*ir.Func)
for name := range funcs {
if n, ok := p.WeightedCG.IRNodes[name]; ok {
for _, e := range p.WeightedCG.OutEdges[n] {
if _, ok := nodes[ir.LinkFuncName(e.Src.AST)]; !ok {
nodes[ir.LinkFuncName(e.Src.AST)] = e.Src.AST
}
if _, ok := nodes[ir.LinkFuncName(e.Dst.AST)]; !ok {
nodes[ir.LinkFuncName(e.Dst.AST)] = e.Dst.AST
}
}
if _, ok := nodes[ir.LinkFuncName(n.AST)]; !ok {
nodes[ir.LinkFuncName(n.AST)] = n.AST
}
}
}
// Print nodes.
for name, ast := range nodes {
if _, ok := p.WeightedCG.IRNodes[name]; ok {
color := "black"
if ast.Inl != nil {
fmt.Printf("\"%v\" [color=%v,label=\"%v,inl_cost=%d\"];\n", ir.LinkFuncName(ast), color, ir.LinkFuncName(ast), ast.Inl.Cost)
} else {
fmt.Printf("\"%v\" [color=%v, label=\"%v\"];\n", ir.LinkFuncName(ast), color, ir.LinkFuncName(ast))
}
}
}
// Print edges.
ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) {
for _, f := range list {
name := ir.LinkFuncName(f)
if n, ok := p.WeightedCG.IRNodes[name]; ok {
for _, e := range p.WeightedCG.OutEdges[n] {
edgepercent := WeightInPercentage(e.Weight, p.TotalEdgeWeight)
if edgepercent > edgeThreshold {
fmt.Printf("edge [color=red, style=solid];\n")
} else {
fmt.Printf("edge [color=black, style=solid];\n")
}
fmt.Printf("\"%v\" -> \"%v\" [label=\"%.2f\"];\n", ir.LinkFuncName(n.AST), ir.LinkFuncName(e.Dst.AST), edgepercent)
}
}
}
})
fmt.Printf("}\n")
}
// inlCallee is same as the implementation for inl.go with one change. The change is that we do not invoke CanInline on a closure.
func inlCallee(fn ir.Node) *ir.Func {
fn = ir.StaticValue(fn)
switch fn.Op() {
case ir.OMETHEXPR:
fn := fn.(*ir.SelectorExpr)
n := ir.MethodExprName(fn)
// Check that receiver type matches fn.X.
// TODO(mdempsky): Handle implicit dereference
// of pointer receiver argument?
if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
return nil
}
return n.Func
case ir.ONAME:
fn := fn.(*ir.Name)
if fn.Class == ir.PFUNC {
return fn.Func
}
case ir.OCLOSURE:
fn := fn.(*ir.ClosureExpr)
c := fn.Func
return c
}
return nil
}
|