summaryrefslogtreecommitdiff
path: root/src/cmd/link/internal/ppc64/asm.go
blob: d14e9322cf36da602cdcdde89991e1cb08061596 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
// Inferno utils/5l/asm.c
// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/5l/asm.c
//
//	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
//	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
//	Portions Copyright © 1997-1999 Vita Nuova Limited
//	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
//	Portions Copyright © 2004,2006 Bruce Ellis
//	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
//	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
//	Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

package ppc64

import (
	"cmd/internal/objabi"
	"cmd/internal/sys"
	"cmd/link/internal/ld"
	"cmd/link/internal/loader"
	"cmd/link/internal/sym"
	"debug/elf"
	"encoding/binary"
	"fmt"
	"internal/buildcfg"
	"log"
	"strconv"
	"strings"
)

// The build configuration supports PC-relative instructions and relocations (limited to tested targets).
var hasPCrel = buildcfg.GOPPC64 >= 10 && buildcfg.GOOS == "linux"

func genpltstub(ctxt *ld.Link, ldr *loader.Loader, r loader.Reloc, ri int, s loader.Sym) (sym loader.Sym, firstUse bool) {
	// The ppc64 ABI PLT has similar concepts to other
	// architectures, but is laid out quite differently. When we
	// see a relocation to a dynamic symbol (indicating that the
	// call needs to go through the PLT), we generate up to three
	// stubs and reserve a PLT slot.
	//
	// 1) The call site is a "bl x" where genpltstub rewrites it to
	//    "bl x_stub". Depending on the properties of the caller
	//    (see ELFv2 1.5 4.2.5.3), a nop may be expected immediately
	//    after the bl. This nop is rewritten to ld r2,24(r1) to
	//    restore the toc pointer saved by x_stub.
	//
	// 2) We reserve space for a pointer in the .plt section (once
	//    per referenced dynamic function).  .plt is a data
	//    section filled solely by the dynamic linker (more like
	//    .plt.got on other architectures).  Initially, the
	//    dynamic linker will fill each slot with a pointer to the
	//    corresponding x@plt entry point.
	//
	// 3) We generate a "call stub" x_stub based on the properties
	//    of the caller.
	//
	// 4) We generate the "symbol resolver stub" x@plt (once per
	//    dynamic function).  This is solely a branch to the glink
	//    resolver stub.
	//
	// 5) We generate the glink resolver stub (only once).  This
	//    computes which symbol resolver stub we came through and
	//    invokes the dynamic resolver via a pointer provided by
	//    the dynamic linker. This will patch up the .plt slot to
	//    point directly at the function so future calls go
	//    straight from the call stub to the real function, and
	//    then call the function.

	// NOTE: It's possible we could make ppc64 closer to other
	// architectures: ppc64's .plt is like .plt.got on other
	// platforms and ppc64's .glink is like .plt on other
	// platforms.

	// Find all relocations that reference dynamic imports.
	// Reserve PLT entries for these symbols and generate call
	// stubs. The call stubs need to live in .text, which is why we
	// need to do this pass this early.

	// Reserve PLT entry and generate symbol resolver
	addpltsym(ctxt, ldr, r.Sym())

	// The stub types are described in gencallstub.
	stubType := 0
	stubTypeStr := ""

	// For now, the choice of call stub type is determined by whether
	// the caller maintains a TOC pointer in R2. A TOC pointer implies
	// we can always generate a position independent stub.
	//
	// For dynamic calls made from an external object, it is safe to
	// assume a TOC pointer is maintained. These were imported from
	// a R_PPC64_REL24 relocation.
	//
	// For dynamic calls made from a Go object, the shared attribute
	// indicates a PIC symbol, which requires a TOC pointer be
	// maintained. Otherwise, a simpler non-PIC stub suffices.
	if ldr.AttrExternal(s) || ldr.AttrShared(s) {
		stubTypeStr = "_tocrel"
		stubType = 1
	} else {
		stubTypeStr = "_nopic"
		stubType = 3
	}
	n := fmt.Sprintf("_pltstub%s.%s", stubTypeStr, ldr.SymName(r.Sym()))

	// When internal linking, all text symbols share the same toc pointer.
	stub := ldr.CreateSymForUpdate(n, 0)
	firstUse = stub.Size() == 0
	if firstUse {
		gencallstub(ctxt, ldr, stubType, stub, r.Sym())
	}

	// Update the relocation to use the call stub
	su := ldr.MakeSymbolUpdater(s)
	su.SetRelocSym(ri, stub.Sym())

	// A type 1 call must restore the toc pointer after the call.
	if stubType == 1 {
		su.MakeWritable()
		p := su.Data()

		// Check for a toc pointer restore slot (a nop), and rewrite to restore the toc pointer.
		var nop uint32
		if len(p) >= int(r.Off()+8) {
			nop = ctxt.Arch.ByteOrder.Uint32(p[r.Off()+4:])
		}
		if nop != 0x60000000 {
			ldr.Errorf(s, "Symbol %s is missing toc restoration slot at offset %d", ldr.SymName(s), r.Off()+4)
		}
		const o1 = 0xe8410018 // ld r2,24(r1)
		ctxt.Arch.ByteOrder.PutUint32(p[r.Off()+4:], o1)
	}

	return stub.Sym(), firstUse
}

// Scan relocs and generate PLT stubs and generate/fixup ABI defined functions created by the linker.
func genstubs(ctxt *ld.Link, ldr *loader.Loader) {
	var stubs []loader.Sym
	var abifuncs []loader.Sym
	for _, s := range ctxt.Textp {
		relocs := ldr.Relocs(s)
		for i := 0; i < relocs.Count(); i++ {
			r := relocs.At(i)
			switch r.Type() {
			case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24):
				switch ldr.SymType(r.Sym()) {
				case sym.SDYNIMPORT:
					// This call goes through the PLT, generate and call through a PLT stub.
					if sym, firstUse := genpltstub(ctxt, ldr, r, i, s); firstUse {
						stubs = append(stubs, sym)
					}

				case sym.SXREF:
					// Is this an ELF ABI defined function which is (in practice)
					// generated by the linker to save/restore callee save registers?
					// These are defined similarly for both PPC64 ELF and ELFv2.
					targName := ldr.SymName(r.Sym())
					if strings.HasPrefix(targName, "_save") || strings.HasPrefix(targName, "_rest") {
						if sym, firstUse := rewriteABIFuncReloc(ctxt, ldr, targName, r); firstUse {
							abifuncs = append(abifuncs, sym)
						}
					}
				}

			// Handle objects compiled with -fno-plt. Rewrite local calls to avoid indirect calling.
			// These are 0 sized relocs. They mark the mtctr r12, or bctrl + ld r2,24(r1).
			case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLTSEQ):
				if ldr.SymType(r.Sym()) == sym.STEXT {
					// This should be an mtctr instruction. Turn it into a nop.
					su := ldr.MakeSymbolUpdater(s)
					const OP_MTCTR = 31<<26 | 0x9<<16 | 467<<1
					const MASK_OP_MTCTR = 63<<26 | 0x3FF<<11 | 0x1FF<<1
					rewritetonop(&ctxt.Target, ldr, su, int64(r.Off()), MASK_OP_MTCTR, OP_MTCTR)
				}
			case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLTCALL):
				if ldr.SymType(r.Sym()) == sym.STEXT {
					// This relocation should point to a bctrl followed by a ld r2, 24(41)
					const OP_BL = 0x48000001         // bl 0
					const OP_TOCRESTORE = 0xe8410018 // ld r2,24(r1)
					const OP_BCTRL = 0x4e800421      // bctrl

					// Convert the bctrl into a bl.
					su := ldr.MakeSymbolUpdater(s)
					rewritetoinsn(&ctxt.Target, ldr, su, int64(r.Off()), 0xFFFFFFFF, OP_BCTRL, OP_BL)

					// Turn this reloc into an R_CALLPOWER, and convert the TOC restore into a nop.
					su.SetRelocType(i, objabi.R_CALLPOWER)
					localEoffset := int64(ldr.SymLocalentry(r.Sym()))
					if localEoffset == 1 {
						ldr.Errorf(s, "Unsupported NOTOC call to %s", ldr.SymName(r.Sym()))
					}
					su.SetRelocAdd(i, r.Add()+localEoffset)
					r.SetSiz(4)
					rewritetonop(&ctxt.Target, ldr, su, int64(r.Off()+4), 0xFFFFFFFF, OP_TOCRESTORE)
				}
			}
		}
	}

	// Append any usage of the go versions of ELF save/restore
	// functions to the end of the callstub list to minimize
	// chances a trampoline might be needed.
	stubs = append(stubs, abifuncs...)

	// Put stubs at the beginning (instead of the end).
	// So when resolving the relocations to calls to the stubs,
	// the addresses are known and trampolines can be inserted
	// when necessary.
	ctxt.Textp = append(stubs, ctxt.Textp...)
}

func genaddmoduledata(ctxt *ld.Link, ldr *loader.Loader) {
	initfunc, addmoduledata := ld.PrepareAddmoduledata(ctxt)
	if initfunc == nil {
		return
	}

	o := func(op uint32) {
		initfunc.AddUint32(ctxt.Arch, op)
	}

	// Write a function to load this module's local.moduledata. This is shared code.
	//
	// package link
	// void addmoduledata() {
	//	runtime.addmoduledata(local.moduledata)
	// }

	// Regenerate TOC from R12 (the address of this function).
	sz := initfunc.AddSymRef(ctxt.Arch, ctxt.DotTOC[0], 0, objabi.R_ADDRPOWER_PCREL, 8)
	initfunc.SetUint32(ctxt.Arch, sz-8, 0x3c4c0000) // addis r2, r12, .TOC.-func@ha
	initfunc.SetUint32(ctxt.Arch, sz-4, 0x38420000) // addi r2, r2, .TOC.-func@l

	// This is Go ABI. Stack a frame and save LR.
	o(0x7c0802a6) // mflr r31
	o(0xf801ffe1) // stdu r31, -32(r1)

	// Get the moduledata pointer from GOT and put into R3.
	var tgt loader.Sym
	if s := ldr.Lookup("local.moduledata", 0); s != 0 {
		tgt = s
	} else if s := ldr.Lookup("local.pluginmoduledata", 0); s != 0 {
		tgt = s
	} else {
		tgt = ldr.LookupOrCreateSym("runtime.firstmoduledata", 0)
	}

	if !hasPCrel {
		sz = initfunc.AddSymRef(ctxt.Arch, tgt, 0, objabi.R_ADDRPOWER_GOT, 8)
		initfunc.SetUint32(ctxt.Arch, sz-8, 0x3c620000) // addis r3, r2, local.moduledata@got@ha
		initfunc.SetUint32(ctxt.Arch, sz-4, 0xe8630000) // ld r3, local.moduledata@got@l(r3)
	} else {
		sz = initfunc.AddSymRef(ctxt.Arch, tgt, 0, objabi.R_ADDRPOWER_GOT_PCREL34, 8)
		// Note, this is prefixed instruction. It must not cross a 64B boundary.
		// It is doubleworld aligned here, so it will never cross (this function is 16B aligned, minimum).
		initfunc.SetUint32(ctxt.Arch, sz-8, 0x04100000)
		initfunc.SetUint32(ctxt.Arch, sz-4, 0xe4600000) // pld r3, local.moduledata@got@pcrel
	}

	// Call runtime.addmoduledata
	sz = initfunc.AddSymRef(ctxt.Arch, addmoduledata, 0, objabi.R_CALLPOWER, 4)
	initfunc.SetUint32(ctxt.Arch, sz-4, 0x48000001) // bl runtime.addmoduledata
	o(0x60000000)                                   // nop (for TOC restore)

	// Pop stack frame and return.
	o(0xe8010000) // ld r31, 0(r1)
	o(0x7c0803a6) // mtlr r31
	o(0x38210020) // addi r1,r1,32
	o(0x4e800020) // blr
}

// Rewrite ELF (v1 or v2) calls to _savegpr0_n, _savegpr1_n, _savefpr_n, _restfpr_n, _savevr_m, or
// _restvr_m (14<=n<=31, 20<=m<=31). Redirect them to runtime.elf_restgpr0+(n-14)*4,
// runtime.elf_restvr+(m-20)*8, and similar.
//
// These functions are defined in the ELFv2 ABI (generated when using gcc -Os option) to save and
// restore callee-saved registers (as defined in the PPC64 ELF ABIs) from registers n or m to 31 of
// the named type. R12 and R0 are sometimes used in exceptional ways described in the ABI.
//
// Final note, this is only needed when linking internally. The external linker will generate these
// functions if they are used.
func rewriteABIFuncReloc(ctxt *ld.Link, ldr *loader.Loader, tname string, r loader.Reloc) (sym loader.Sym, firstUse bool) {
	s := strings.Split(tname, "_")
	// A valid call will split like {"", "savegpr0", "20"}
	if len(s) != 3 {
		return 0, false // Not an abi func.
	}
	minReg := 14 // _savegpr0_{n}, _savegpr1_{n}, _savefpr_{n}, 14 <= n <= 31
	offMul := 4  // 1 instruction per register op.
	switch s[1] {
	case "savegpr0", "savegpr1", "savefpr":
	case "restgpr0", "restgpr1", "restfpr":
	case "savevr", "restvr":
		minReg = 20 // _savevr_{n} or _restvr_{n}, 20 <= n <= 31
		offMul = 8  // 2 instructions per register op.
	default:
		return 0, false // Not an abi func
	}
	n, e := strconv.Atoi(s[2])
	if e != nil || n < minReg || n > 31 || r.Add() != 0 {
		return 0, false // Invalid register number, or non-zero addend. Not an abi func.
	}

	// tname is a valid relocation to an ABI defined register save/restore function. Re-relocate
	// them to a go version of these functions in runtime/asm_ppc64x.s
	ts := ldr.LookupOrCreateSym("runtime.elf_"+s[1], 0)
	r.SetSym(ts)
	r.SetAdd(int64((n - minReg) * offMul))
	firstUse = !ldr.AttrReachable(ts)
	if firstUse {
		ldr.SetAttrReachable(ts, true)
		// This function only becomes reachable now. It has been dropped from
		// the text section (it was unreachable until now), it needs included.
		//
		// Similarly, TOC regeneration should not happen for these functions,
		// remove it from this save/restore function.
		if ldr.AttrShared(ts) {
			sb := ldr.MakeSymbolUpdater(ts)
			sb.SetData(sb.Data()[8:])
			sb.SetSize(sb.Size() - 8)
			relocs := sb.Relocs()
			// Only one PCREL reloc to .TOC. should be present.
			if relocs.Count() != 1 {
				log.Fatalf("Unexpected number of relocs in %s\n", ldr.SymName(ts))
			}
			sb.ResetRelocs()

		}
	}
	return ts, firstUse
}

func gentext(ctxt *ld.Link, ldr *loader.Loader) {
	if ctxt.DynlinkingGo() {
		genaddmoduledata(ctxt, ldr)
	}

	if ctxt.LinkMode == ld.LinkInternal {
		genstubs(ctxt, ldr)
	}
}

// Create a calling stub. The stubType maps directly to the properties listed in the ELFv2 1.5
// section 4.2.5.3.
//
// There are 3 cases today (as paraphrased from the ELFv2 document):
//
//  1. R2 holds the TOC pointer on entry. The call stub must save R2 into the ELFv2 TOC stack save slot.
//
//  2. R2 holds the TOC pointer on entry. The caller has already saved R2 to the TOC stack save slot.
//
//  3. R2 does not hold the TOC pointer on entry. The caller has no expectations of R2.
//
// Go only needs case 1 and 3 today. Go symbols which have AttrShare set could use case 2, but case 1 always
// works in those cases too.
func gencallstub(ctxt *ld.Link, ldr *loader.Loader, stubType int, stub *loader.SymbolBuilder, targ loader.Sym) {
	plt := ctxt.PLT
	stub.SetType(sym.STEXT)

	switch stubType {
	case 1:
		// Save TOC, then load targ address from PLT using TOC.
		stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1)
		stub.AddSymRef(ctxt.Arch, plt, int64(ldr.SymPlt(targ)), objabi.R_ADDRPOWER_TOCREL_DS, 8)
		stub.SetUint32(ctxt.Arch, stub.Size()-8, 0x3d820000) // addis r12,r2,targ@plt@toc@ha
		stub.SetUint32(ctxt.Arch, stub.Size()-4, 0xe98c0000) // ld r12,targ@plt@toc@l(r12)
	case 3:
		// Load targ address from PLT. This is position dependent.
		stub.AddSymRef(ctxt.Arch, plt, int64(ldr.SymPlt(targ)), objabi.R_ADDRPOWER_DS, 8)
		stub.SetUint32(ctxt.Arch, stub.Size()-8, 0x3d800000) // lis r12,targ@plt@ha
		stub.SetUint32(ctxt.Arch, stub.Size()-4, 0xe98c0000) // ld r12,targ@plt@l(r12)
	default:
		log.Fatalf("gencallstub does not support ELFv2 ABI property %d", stubType)
	}

	// Jump to the loaded pointer
	stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
	stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr
}

// Rewrite the instruction at offset into newinsn. Also, verify the
// existing instruction under mask matches the check value.
func rewritetoinsn(target *ld.Target, ldr *loader.Loader, su *loader.SymbolBuilder, offset int64, mask, check, newinsn uint32) {
	su.MakeWritable()
	op := target.Arch.ByteOrder.Uint32(su.Data()[offset:])
	if op&mask != check {
		ldr.Errorf(su.Sym(), "Rewrite offset 0x%x to 0x%08X failed check (0x%08X&0x%08X != 0x%08X)", offset, newinsn, op, mask, check)
	}
	su.SetUint32(target.Arch, offset, newinsn)
}

// Rewrite the instruction at offset into a hardware nop instruction. Also, verify the
// existing instruction under mask matches the check value.
func rewritetonop(target *ld.Target, ldr *loader.Loader, su *loader.SymbolBuilder, offset int64, mask, check uint32) {
	const NOP = 0x60000000
	rewritetoinsn(target, ldr, su, offset, mask, check, NOP)
}

func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool {
	if target.IsElf() {
		return addelfdynrel(target, ldr, syms, s, r, rIdx)
	} else if target.IsAIX() {
		return ld.Xcoffadddynrel(target, ldr, syms, s, r, rIdx)
	}
	return false
}

func addelfdynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool {
	targ := r.Sym()
	var targType sym.SymKind
	if targ != 0 {
		targType = ldr.SymType(targ)
	}

	switch r.Type() {
	default:
		if r.Type() >= objabi.ElfRelocOffset {
			ldr.Errorf(s, "unexpected relocation type %d (%s)", r.Type(), sym.RelocName(target.Arch, r.Type()))
			return false
		}

		// Handle relocations found in ELF object files.
	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_CALLPOWER)

		// This is a local call, so the caller isn't setting
		// up r12 and r2 is the same for the caller and
		// callee. Hence, we need to go to the local entry
		// point.  (If we don't do this, the callee will try
		// to use r12 to compute r2.)
		localEoffset := int64(ldr.SymLocalentry(targ))
		if localEoffset == 1 {
			ldr.Errorf(s, "Unsupported NOTOC call to %s", targ)
		}
		su.SetRelocAdd(rIdx, r.Add()+localEoffset)

		if targType == sym.SDYNIMPORT {
			// Should have been handled in elfsetupplt
			ldr.Errorf(s, "unexpected R_PPC64_REL24 for dyn import")
		}

		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC_REL32):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_PCREL)
		su.SetRelocAdd(rIdx, r.Add()+4)

		if targType == sym.SDYNIMPORT {
			ldr.Errorf(s, "unexpected R_PPC_REL32 for dyn import")
		}

		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_ADDR64):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_ADDR)
		if targType == sym.SDYNIMPORT {
			// These happen in .toc sections
			ld.Adddynsym(ldr, target, syms, targ)

			rela := ldr.MakeSymbolUpdater(syms.Rela)
			rela.AddAddrPlus(target.Arch, s, int64(r.Off()))
			rela.AddUint64(target.Arch, elf.R_INFO(uint32(ldr.SymDynid(targ)), uint32(elf.R_PPC64_ADDR64)))
			rela.AddUint64(target.Arch, uint64(r.Add()))
			su.SetRelocType(rIdx, objabi.ElfRelocOffset) // ignore during relocsym
		} else if target.IsPIE() && target.IsInternal() {
			// For internal linking PIE, this R_ADDR relocation cannot
			// be resolved statically. We need to generate a dynamic
			// relocation. Let the code below handle it.
			break
		}
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO|sym.RV_CHECK_OVERFLOW)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HA):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HI):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_DS):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS|sym.RV_CHECK_OVERFLOW)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_LO):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_PCREL)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO)
		su.SetRelocAdd(rIdx, r.Add()+2) // Compensate for relocation size of 2
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HI):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_PCREL)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW)
		su.SetRelocAdd(rIdx, r.Add()+2)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HA):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_PCREL)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
		su.SetRelocAdd(rIdx, r.Add()+2)
		return true

	// When compiling with gcc's -fno-plt option (no PLT), the following code and relocation
	// sequences may be present to call an external function:
	//
	//   1. addis Rx,foo@R_PPC64_PLT16_HA
	//   2. ld 12,foo@R_PPC64_PLT16_LO_DS(Rx)
	//   3. mtctr 12 ; foo@R_PPC64_PLTSEQ
	//   4. bctrl ; foo@R_PPC64_PLTCALL
	//   5. ld r2,24(r1)
	//
	// Note, 5 is required to follow the R_PPC64_PLTCALL. Similarly, relocations targeting
	// instructions 3 and 4 are zero sized informational relocations.
	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLT16_HA),
		objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLT16_LO_DS):
		su := ldr.MakeSymbolUpdater(s)
		isPLT16_LO_DS := r.Type() == objabi.ElfRelocOffset+objabi.RelocType(elf.R_PPC64_PLT16_LO_DS)
		if isPLT16_LO_DS {
			ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS)
		} else {
			ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
		}
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		if targType == sym.SDYNIMPORT {
			// This is an external symbol, make space in the GOT and retarget the reloc.
			ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_PPC64_GLOB_DAT))
			su.SetRelocSym(rIdx, syms.GOT)
			su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ)))
		} else if targType == sym.STEXT {
			if isPLT16_LO_DS {
				// Expect an ld opcode to nop
				const MASK_OP_LD = 63<<26 | 0x3
				const OP_LD = 58 << 26
				rewritetonop(target, ldr, su, int64(r.Off()), MASK_OP_LD, OP_LD)
			} else {
				// Expect an addis opcode to nop
				const MASK_OP_ADDIS = 63 << 26
				const OP_ADDIS = 15 << 26
				rewritetonop(target, ldr, su, int64(r.Off()), MASK_OP_ADDIS, OP_ADDIS)
			}
			// And we can ignore this reloc now.
			su.SetRelocType(rIdx, objabi.ElfRelocOffset)
		} else {
			ldr.Errorf(s, "unexpected PLT relocation target symbol type %s", targType.String())
		}
		return true
	}

	// Handle references to ELF symbols from our own object files.
	relocs := ldr.Relocs(s)
	r = relocs.At(rIdx)

	switch r.Type() {
	case objabi.R_ADDR:
		if ldr.SymType(s) == sym.STEXT {
			log.Fatalf("R_ADDR relocation in text symbol %s is unsupported\n", ldr.SymName(s))
		}
		if target.IsPIE() && target.IsInternal() {
			// When internally linking, generate dynamic relocations
			// for all typical R_ADDR relocations. The exception
			// are those R_ADDR that are created as part of generating
			// the dynamic relocations and must be resolved statically.
			//
			// There are three phases relevant to understanding this:
			//
			//	dodata()  // we are here
			//	address() // symbol address assignment
			//	reloc()   // resolution of static R_ADDR relocs
			//
			// At this point symbol addresses have not been
			// assigned yet (as the final size of the .rela section
			// will affect the addresses), and so we cannot write
			// the Elf64_Rela.r_offset now. Instead we delay it
			// until after the 'address' phase of the linker is
			// complete. We do this via Addaddrplus, which creates
			// a new R_ADDR relocation which will be resolved in
			// the 'reloc' phase.
			//
			// These synthetic static R_ADDR relocs must be skipped
			// now, or else we will be caught in an infinite loop
			// of generating synthetic relocs for our synthetic
			// relocs.
			//
			// Furthermore, the rela sections contain dynamic
			// relocations with R_ADDR relocations on
			// Elf64_Rela.r_offset. This field should contain the
			// symbol offset as determined by reloc(), not the
			// final dynamically linked address as a dynamic
			// relocation would provide.
			switch ldr.SymName(s) {
			case ".dynsym", ".rela", ".rela.plt", ".got.plt", ".dynamic":
				return false
			}
		} else {
			// Either internally linking a static executable,
			// in which case we can resolve these relocations
			// statically in the 'reloc' phase, or externally
			// linking, in which case the relocation will be
			// prepared in the 'reloc' phase and passed to the
			// external linker in the 'asmb' phase.
			if ldr.SymType(s) != sym.SDATA && ldr.SymType(s) != sym.SRODATA {
				break
			}
		}
		// Generate R_PPC64_RELATIVE relocations for best
		// efficiency in the dynamic linker.
		//
		// As noted above, symbol addresses have not been
		// assigned yet, so we can't generate the final reloc
		// entry yet. We ultimately want:
		//
		// r_offset = s + r.Off
		// r_info = R_PPC64_RELATIVE
		// r_addend = targ + r.Add
		//
		// The dynamic linker will set *offset = base address +
		// addend.
		//
		// AddAddrPlus is used for r_offset and r_addend to
		// generate new R_ADDR relocations that will update
		// these fields in the 'reloc' phase.
		rela := ldr.MakeSymbolUpdater(syms.Rela)
		rela.AddAddrPlus(target.Arch, s, int64(r.Off()))
		if r.Siz() == 8 {
			rela.AddUint64(target.Arch, elf.R_INFO(0, uint32(elf.R_PPC64_RELATIVE)))
		} else {
			ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ))
		}
		rela.AddAddrPlus(target.Arch, targ, int64(r.Add()))

		// Not mark r done here. So we still apply it statically,
		// so in the file content we'll also have the right offset
		// to the relocation target. So it can be examined statically
		// (e.g. go version).
		return true
	}

	return false
}

func xcoffreloc1(arch *sys.Arch, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, sectoff int64) bool {
	rs := r.Xsym

	emitReloc := func(v uint16, off uint64) {
		out.Write64(uint64(sectoff) + off)
		out.Write32(uint32(ldr.SymDynid(rs)))
		out.Write16(v)
	}

	var v uint16
	switch r.Type {
	default:
		return false
	case objabi.R_ADDR, objabi.R_DWARFSECREF:
		v = ld.XCOFF_R_POS
		if r.Size == 4 {
			v |= 0x1F << 8
		} else {
			v |= 0x3F << 8
		}
		emitReloc(v, 0)
	case objabi.R_ADDRPOWER_TOCREL:
	case objabi.R_ADDRPOWER_TOCREL_DS:
		emitReloc(ld.XCOFF_R_TOCU|(0x0F<<8), 2)
		emitReloc(ld.XCOFF_R_TOCL|(0x0F<<8), 6)
	case objabi.R_POWER_TLS_LE:
		// This only supports 16b relocations.  It is fixed up in archreloc.
		emitReloc(ld.XCOFF_R_TLS_LE|0x0F<<8, 2)
	case objabi.R_CALLPOWER:
		if r.Size != 4 {
			return false
		}
		emitReloc(ld.XCOFF_R_RBR|0x19<<8, 0)
	case objabi.R_XCOFFREF:
		emitReloc(ld.XCOFF_R_REF|0x3F<<8, 0)
	}
	return true

}

func elfreloc1(ctxt *ld.Link, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, ri int, sectoff int64) bool {
	// Beware that bit0~bit15 start from the third byte of an instruction in Big-Endian machines.
	rt := r.Type
	if rt == objabi.R_ADDR || rt == objabi.R_POWER_TLS || rt == objabi.R_CALLPOWER || rt == objabi.R_DWARFSECREF {
	} else {
		if ctxt.Arch.ByteOrder == binary.BigEndian {
			sectoff += 2
		}
	}
	out.Write64(uint64(sectoff))

	elfsym := ld.ElfSymForReloc(ctxt, r.Xsym)
	switch rt {
	default:
		return false
	case objabi.R_ADDR, objabi.R_DWARFSECREF:
		switch r.Size {
		case 4:
			out.Write64(uint64(elf.R_PPC64_ADDR32) | uint64(elfsym)<<32)
		case 8:
			out.Write64(uint64(elf.R_PPC64_ADDR64) | uint64(elfsym)<<32)
		default:
			return false
		}
	case objabi.R_ADDRPOWER_D34:
		out.Write64(uint64(elf.R_PPC64_D34) | uint64(elfsym)<<32)
	case objabi.R_ADDRPOWER_PCREL34:
		out.Write64(uint64(elf.R_PPC64_PCREL34) | uint64(elfsym)<<32)
	case objabi.R_POWER_TLS:
		out.Write64(uint64(elf.R_PPC64_TLS) | uint64(elfsym)<<32)
	case objabi.R_POWER_TLS_LE:
		out.Write64(uint64(elf.R_PPC64_TPREL16_HA) | uint64(elfsym)<<32)
		out.Write64(uint64(r.Xadd))
		out.Write64(uint64(sectoff + 4))
		out.Write64(uint64(elf.R_PPC64_TPREL16_LO) | uint64(elfsym)<<32)
	case objabi.R_POWER_TLS_LE_TPREL34:
		out.Write64(uint64(elf.R_PPC64_TPREL34) | uint64(elfsym)<<32)
	case objabi.R_POWER_TLS_IE_PCREL34:
		out.Write64(uint64(elf.R_PPC64_GOT_TPREL_PCREL34) | uint64(elfsym)<<32)
	case objabi.R_POWER_TLS_IE:
		out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_HA) | uint64(elfsym)<<32)
		out.Write64(uint64(r.Xadd))
		out.Write64(uint64(sectoff + 4))
		out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_LO_DS) | uint64(elfsym)<<32)
	case objabi.R_ADDRPOWER:
		out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32)
		out.Write64(uint64(r.Xadd))
		out.Write64(uint64(sectoff + 4))
		out.Write64(uint64(elf.R_PPC64_ADDR16_LO) | uint64(elfsym)<<32)
	case objabi.R_ADDRPOWER_DS:
		out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32)
		out.Write64(uint64(r.Xadd))
		out.Write64(uint64(sectoff + 4))
		out.Write64(uint64(elf.R_PPC64_ADDR16_LO_DS) | uint64(elfsym)<<32)
	case objabi.R_ADDRPOWER_GOT:
		out.Write64(uint64(elf.R_PPC64_GOT16_HA) | uint64(elfsym)<<32)
		out.Write64(uint64(r.Xadd))
		out.Write64(uint64(sectoff + 4))
		out.Write64(uint64(elf.R_PPC64_GOT16_LO_DS) | uint64(elfsym)<<32)
	case objabi.R_ADDRPOWER_GOT_PCREL34:
		out.Write64(uint64(elf.R_PPC64_GOT_PCREL34) | uint64(elfsym)<<32)
	case objabi.R_ADDRPOWER_PCREL:
		out.Write64(uint64(elf.R_PPC64_REL16_HA) | uint64(elfsym)<<32)
		out.Write64(uint64(r.Xadd))
		out.Write64(uint64(sectoff + 4))
		out.Write64(uint64(elf.R_PPC64_REL16_LO) | uint64(elfsym)<<32)
		r.Xadd += 4
	case objabi.R_ADDRPOWER_TOCREL:
		out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32)
		out.Write64(uint64(r.Xadd))
		out.Write64(uint64(sectoff + 4))
		out.Write64(uint64(elf.R_PPC64_TOC16_LO) | uint64(elfsym)<<32)
	case objabi.R_ADDRPOWER_TOCREL_DS:
		out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32)
		out.Write64(uint64(r.Xadd))
		out.Write64(uint64(sectoff + 4))
		out.Write64(uint64(elf.R_PPC64_TOC16_LO_DS) | uint64(elfsym)<<32)
	case objabi.R_CALLPOWER:
		if r.Size != 4 {
			return false
		}
		out.Write64(uint64(elf.R_PPC64_REL24) | uint64(elfsym)<<32)

	}
	out.Write64(uint64(r.Xadd))

	return true
}

func elfsetupplt(ctxt *ld.Link, plt, got *loader.SymbolBuilder, dynamic loader.Sym) {
	if plt.Size() == 0 {
		// The dynamic linker stores the address of the
		// dynamic resolver and the DSO identifier in the two
		// doublewords at the beginning of the .plt section
		// before the PLT array. Reserve space for these.
		plt.SetSize(16)
	}
}

func machoreloc1(*sys.Arch, *ld.OutBuf, *loader.Loader, loader.Sym, loader.ExtReloc, int64) bool {
	return false
}

// Return the value of .TOC. for symbol s
func symtoc(ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym) int64 {
	v := ldr.SymVersion(s)
	if out := ldr.OuterSym(s); out != 0 {
		v = ldr.SymVersion(out)
	}

	toc := syms.DotTOC[v]
	if toc == 0 {
		ldr.Errorf(s, "TOC-relative relocation in object without .TOC.")
		return 0
	}

	return ldr.SymValue(toc)
}

// archreloctoc relocates a TOC relative symbol.
func archreloctoc(ldr *loader.Loader, target *ld.Target, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) int64 {
	rs := r.Sym()
	var o1, o2 uint32
	var t int64
	useAddi := false

	if target.IsBigEndian() {
		o1 = uint32(val >> 32)
		o2 = uint32(val)
	} else {
		o1 = uint32(val)
		o2 = uint32(val >> 32)
	}

	// On AIX, TOC data accesses are always made indirectly against R2 (a sequence of addis+ld+load/store). If the
	// The target of the load is known, the sequence can be written into addis+addi+load/store. On Linux,
	// TOC data accesses are always made directly against R2 (e.g addis+load/store).
	if target.IsAIX() {
		if !strings.HasPrefix(ldr.SymName(rs), "TOC.") {
			ldr.Errorf(s, "archreloctoc called for a symbol without TOC anchor")
		}
		relocs := ldr.Relocs(rs)
		tarSym := relocs.At(0).Sym()

		if target.IsInternal() && tarSym != 0 && ldr.AttrReachable(tarSym) && ldr.SymSect(tarSym).Seg == &ld.Segdata {
			t = ldr.SymValue(tarSym) + r.Add() - ldr.SymValue(syms.TOC)
			// change ld to addi in the second instruction
			o2 = (o2 & 0x03FF0000) | 0xE<<26
			useAddi = true
		} else {
			t = ldr.SymValue(rs) + r.Add() - ldr.SymValue(syms.TOC)
		}
	} else {
		t = ldr.SymValue(rs) + r.Add() - symtoc(ldr, syms, s)
	}

	if t != int64(int32(t)) {
		ldr.Errorf(s, "TOC relocation for %s is too big to relocate %s: 0x%x", ldr.SymName(s), rs, t)
	}

	if t&0x8000 != 0 {
		t += 0x10000
	}

	o1 |= uint32((t >> 16) & 0xFFFF)

	switch r.Type() {
	case objabi.R_ADDRPOWER_TOCREL_DS:
		if useAddi {
			o2 |= uint32(t) & 0xFFFF
		} else {
			if t&3 != 0 {
				ldr.Errorf(s, "bad DS reloc for %s: %d", ldr.SymName(s), ldr.SymValue(rs))
			}
			o2 |= uint32(t) & 0xFFFC
		}
	case objabi.R_ADDRPOWER_TOCREL:
		o2 |= uint32(t) & 0xffff
	default:
		return -1
	}

	if target.IsBigEndian() {
		return int64(o1)<<32 | int64(o2)
	}
	return int64(o2)<<32 | int64(o1)
}

// archrelocaddr relocates a symbol address.
// This code is for linux only.
func archrelocaddr(ldr *loader.Loader, target *ld.Target, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) int64 {
	rs := r.Sym()
	if target.IsAIX() {
		ldr.Errorf(s, "archrelocaddr called for %s relocation\n", ldr.SymName(rs))
	}
	o1, o2 := unpackInstPair(target, val)

	// Verify resulting address fits within a 31 bit (2GB) address space.
	// This is a restriction arising  from the usage of lis (HA) + d-form
	// (LO) instruction sequences used to implement absolute relocations
	// on PPC64 prior to ISA 3.1 (P10). For consistency, maintain this
	// restriction for ISA 3.1 unless it becomes problematic.
	t := ldr.SymAddr(rs) + r.Add()
	if t < 0 || t >= 1<<31 {
		ldr.Errorf(s, "relocation for %s is too big (>=2G): 0x%x", ldr.SymName(s), ldr.SymValue(rs))
	}

	switch r.Type() {
	case objabi.R_ADDRPOWER_PCREL34:
		// S + A - P
		t -= (ldr.SymValue(s) + int64(r.Off()))
		o1 |= computePrefix34HI(t)
		o2 |= computeLO(int32(t))
	case objabi.R_ADDRPOWER_D34:
		o1 |= computePrefix34HI(t)
		o2 |= computeLO(int32(t))
	case objabi.R_ADDRPOWER:
		o1 |= computeHA(int32(t))
		o2 |= computeLO(int32(t))
	case objabi.R_ADDRPOWER_DS:
		o1 |= computeHA(int32(t))
		o2 |= computeLO(int32(t))
		if t&3 != 0 {
			ldr.Errorf(s, "bad DS reloc for %s: %d", ldr.SymName(s), ldr.SymValue(rs))
		}
	default:
		return -1
	}

	return packInstPair(target, o1, o2)
}

// Determine if the code was compiled so that the TOC register R2 is initialized and maintained.
func r2Valid(ctxt *ld.Link) bool {
	switch ctxt.BuildMode {
	case ld.BuildModeCArchive, ld.BuildModeCShared, ld.BuildModePIE, ld.BuildModeShared, ld.BuildModePlugin:
		return true
	}
	// -linkshared option
	return ctxt.IsSharedGoLink()
}

// resolve direct jump relocation r in s, and add trampoline if necessary.
func trampoline(ctxt *ld.Link, ldr *loader.Loader, ri int, rs, s loader.Sym) {

	// Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it.
	// For internal linking, trampolines are always created for long calls.
	// For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in
	// r2.  For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created.
	if ctxt.IsExternal() && r2Valid(ctxt) {
		// The TOC pointer is valid. The external linker will insert trampolines.
		return
	}

	relocs := ldr.Relocs(s)
	r := relocs.At(ri)
	var t int64
	// ldr.SymValue(rs) == 0 indicates a cross-package jump to a function that is not yet
	// laid out. Conservatively use a trampoline. This should be rare, as we lay out packages
	// in dependency order.
	if ldr.SymValue(rs) != 0 {
		t = ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))
	}
	switch r.Type() {
	case objabi.R_CALLPOWER:

		// If branch offset is too far then create a trampoline.

		if (ctxt.IsExternal() && ldr.SymSect(s) != ldr.SymSect(rs)) || (ctxt.IsInternal() && int64(int32(t<<6)>>6) != t) || ldr.SymValue(rs) == 0 || (*ld.FlagDebugTramp > 1 && ldr.SymPkg(s) != ldr.SymPkg(rs)) {
			var tramp loader.Sym
			for i := 0; ; i++ {

				// Using r.Add as part of the name is significant in functions like duffzero where the call
				// target is at some offset within the function.  Calls to duff+8 and duff+256 must appear as
				// distinct trampolines.

				oName := ldr.SymName(rs)
				name := oName
				if r.Add() == 0 {
					name += fmt.Sprintf("-tramp%d", i)
				} else {
					name += fmt.Sprintf("%+x-tramp%d", r.Add(), i)
				}

				// Look up the trampoline in case it already exists

				tramp = ldr.LookupOrCreateSym(name, int(ldr.SymVersion(rs)))
				if oName == "runtime.deferreturn" {
					ldr.SetIsDeferReturnTramp(tramp, true)
				}
				if ldr.SymValue(tramp) == 0 {
					break
				}
				// Note, the trampoline is always called directly. The addend of the original relocation is accounted for in the
				// trampoline itself.
				t = ldr.SymValue(tramp) - (ldr.SymValue(s) + int64(r.Off()))

				// With internal linking, the trampoline can be used if it is not too far.
				// With external linking, the trampoline must be in this section for it to be reused.
				if (ctxt.IsInternal() && int64(int32(t<<6)>>6) == t) || (ctxt.IsExternal() && ldr.SymSect(s) == ldr.SymSect(tramp)) {
					break
				}
			}
			if ldr.SymType(tramp) == 0 {
				trampb := ldr.MakeSymbolUpdater(tramp)
				ctxt.AddTramp(trampb)
				gentramp(ctxt, ldr, trampb, rs, r.Add())
			}
			sb := ldr.MakeSymbolUpdater(s)
			relocs := sb.Relocs()
			r := relocs.At(ri)
			r.SetSym(tramp)
			r.SetAdd(0) // This was folded into the trampoline target address
		}
	default:
		ctxt.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type(), sym.RelocName(ctxt.Arch, r.Type()))
	}
}

func gentramp(ctxt *ld.Link, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) {
	tramp.SetSize(16) // 4 instructions
	P := make([]byte, tramp.Size())
	var o1, o2 uint32

	// ELFv2 save/restore functions use R0/R12 in special ways, therefore trampolines
	// as generated here will not always work correctly.
	if strings.HasPrefix(ldr.SymName(target), "runtime.elf_") {
		log.Fatalf("Internal linker does not support trampolines to ELFv2 ABI"+
			" register save/restore function %s", ldr.SymName(target))
	}

	if ctxt.IsAIX() {
		// On AIX, the address is retrieved with a TOC symbol.
		// For internal linking, the "Linux" way might still be used.
		// However, all text symbols are accessed with a TOC symbol as
		// text relocations aren't supposed to be possible.
		// So, keep using the external linking way to be more AIX friendly.
		o1 = uint32(0x3c000000) | 12<<21 | 2<<16  // addis r12,  r2, toctargetaddr hi
		o2 = uint32(0xe8000000) | 12<<21 | 12<<16 // ld    r12, r12, toctargetaddr lo

		toctramp := ldr.CreateSymForUpdate("TOC."+ldr.SymName(tramp.Sym()), 0)
		toctramp.SetType(sym.SXCOFFTOC)
		toctramp.AddAddrPlus(ctxt.Arch, target, offset)

		r, _ := tramp.AddRel(objabi.R_ADDRPOWER_TOCREL_DS)
		r.SetOff(0)
		r.SetSiz(8) // generates 2 relocations: HA + LO
		r.SetSym(toctramp.Sym())
	} else if hasPCrel {
		// pla r12, addr (PCrel). This works for static or PIC, with or without a valid TOC pointer.
		o1 = uint32(0x06100000)
		o2 = uint32(0x39800000) // pla r12, addr

		// The trampoline's position is not known yet, insert a relocation.
		r, _ := tramp.AddRel(objabi.R_ADDRPOWER_PCREL34)
		r.SetOff(0)
		r.SetSiz(8) // This spans 2 words.
		r.SetSym(target)
		r.SetAdd(offset)
	} else {
		// Used for default build mode for an executable
		// Address of the call target is generated using
		// relocation and doesn't depend on r2 (TOC).
		o1 = uint32(0x3c000000) | 12<<21          // lis  r12,targetaddr hi
		o2 = uint32(0x38000000) | 12<<21 | 12<<16 // addi r12,r12,targetaddr lo

		t := ldr.SymValue(target)
		if t == 0 || r2Valid(ctxt) || ctxt.IsExternal() {
			// Target address is unknown, generate relocations
			r, _ := tramp.AddRel(objabi.R_ADDRPOWER)
			if r2Valid(ctxt) {
				// Use a TOC relative address if R2 holds the TOC pointer
				o1 |= uint32(2 << 16) // Transform lis r31,ha into addis r31,r2,ha
				r.SetType(objabi.R_ADDRPOWER_TOCREL)
			}
			r.SetOff(0)
			r.SetSiz(8) // generates 2 relocations: HA + LO
			r.SetSym(target)
			r.SetAdd(offset)
		} else {
			// The target address is known, resolve it
			t += offset
			o1 |= (uint32(t) + 0x8000) >> 16 // HA
			o2 |= uint32(t) & 0xFFFF         // LO
		}
	}

	o3 := uint32(0x7c0903a6) | 12<<21 // mtctr r12
	o4 := uint32(0x4e800420)          // bctr
	ctxt.Arch.ByteOrder.PutUint32(P, o1)
	ctxt.Arch.ByteOrder.PutUint32(P[4:], o2)
	ctxt.Arch.ByteOrder.PutUint32(P[8:], o3)
	ctxt.Arch.ByteOrder.PutUint32(P[12:], o4)
	tramp.SetData(P)
}

// Unpack a pair of 32 bit instruction words from
// a 64 bit relocation into instN and instN+1 in endian order.
func unpackInstPair(target *ld.Target, r int64) (uint32, uint32) {
	if target.IsBigEndian() {
		return uint32(r >> 32), uint32(r)
	}
	return uint32(r), uint32(r >> 32)
}

// Pack a pair of 32 bit instruction words o1, o2 into 64 bit relocation
// in endian order.
func packInstPair(target *ld.Target, o1, o2 uint32) int64 {
	if target.IsBigEndian() {
		return (int64(o1) << 32) | int64(o2)
	}
	return int64(o1) | (int64(o2) << 32)
}

// Compute the high-adjusted value (always a signed 32b value) per the ELF ABI.
// The returned value is always 0 <= x <= 0xFFFF.
func computeHA(val int32) uint32 {
	return uint32(uint16((val + 0x8000) >> 16))
}

// Compute the low value (the lower 16 bits of any 32b value) per the ELF ABI.
// The returned value is always 0 <= x <= 0xFFFF.
func computeLO(val int32) uint32 {
	return uint32(uint16(val))
}

// Compute the high 18 bits of a signed 34b constant. Used to pack the high 18 bits
// of a prefix34 relocation field. This assumes the input is already restricted to
// 34 bits.
func computePrefix34HI(val int64) uint32 {
	return uint32((val >> 16) & 0x3FFFF)
}

func computeTLSLEReloc(target *ld.Target, ldr *loader.Loader, rs, s loader.Sym) int64 {
	// The thread pointer points 0x7000 bytes after the start of the
	// thread local storage area as documented in section "3.7.2 TLS
	// Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI
	// Specification".
	v := ldr.SymValue(rs) - 0x7000
	if target.IsAIX() {
		// On AIX, the thread pointer points 0x7800 bytes after
		// the TLS.
		v -= 0x800
	}

	if int64(int32(v)) != v {
		ldr.Errorf(s, "TLS offset out of range %d", v)
	}
	return v
}

func archreloc(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) (relocatedOffset int64, nExtReloc int, ok bool) {
	rs := r.Sym()
	if target.IsExternal() {
		// On AIX, relocations (except TLS ones) must be also done to the
		// value with the current addresses.
		switch rt := r.Type(); rt {
		default:
			if !target.IsAIX() {
				return val, nExtReloc, false
			}
		case objabi.R_POWER_TLS, objabi.R_POWER_TLS_IE_PCREL34, objabi.R_POWER_TLS_LE_TPREL34, objabi.R_ADDRPOWER_GOT_PCREL34:
			nExtReloc = 1
			return val, nExtReloc, true
		case objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE:
			if target.IsAIX() && rt == objabi.R_POWER_TLS_LE {
				// Fixup val, an addis/addi pair of instructions, which generate a 32b displacement
				// from the threadpointer (R13), into a 16b relocation. XCOFF only supports 16b
				// TLS LE relocations. Likewise, verify this is an addis/addi sequence.
				const expectedOpcodes = 0x3C00000038000000
				const expectedOpmasks = 0xFC000000FC000000
				if uint64(val)&expectedOpmasks != expectedOpcodes {
					ldr.Errorf(s, "relocation for %s+%d is not an addis/addi pair: %16x", ldr.SymName(rs), r.Off(), uint64(val))
				}
				nval := (int64(uint32(0x380d0000)) | val&0x03e00000) << 32 // addi rX, r13, $0
				nval |= int64(0x60000000)                                  // nop
				val = nval
				nExtReloc = 1
			} else {
				nExtReloc = 2
			}
			return val, nExtReloc, true
		case objabi.R_ADDRPOWER,
			objabi.R_ADDRPOWER_DS,
			objabi.R_ADDRPOWER_TOCREL,
			objabi.R_ADDRPOWER_TOCREL_DS,
			objabi.R_ADDRPOWER_GOT,
			objabi.R_ADDRPOWER_PCREL:
			nExtReloc = 2 // need two ELF relocations, see elfreloc1
			if !target.IsAIX() {
				return val, nExtReloc, true
			}
		case objabi.R_CALLPOWER, objabi.R_ADDRPOWER_D34, objabi.R_ADDRPOWER_PCREL34:
			nExtReloc = 1
			if !target.IsAIX() {
				return val, nExtReloc, true
			}
		}
	}

	switch r.Type() {
	case objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS:
		return archreloctoc(ldr, target, syms, r, s, val), nExtReloc, true
	case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS, objabi.R_ADDRPOWER_D34, objabi.R_ADDRPOWER_PCREL34:
		return archrelocaddr(ldr, target, syms, r, s, val), nExtReloc, true
	case objabi.R_CALLPOWER:
		// Bits 6 through 29 = (S + A - P) >> 2

		t := ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))

		tgtName := ldr.SymName(rs)

		// If we are linking PIE or shared code, all golang generated object files have an extra 2 instruction prologue
		// to regenerate the TOC pointer from R12.  The exception are two special case functions tested below.  Note,
		// local call offsets for externally generated objects are accounted for when converting into golang relocs.
		if !ldr.AttrExternal(rs) && ldr.AttrShared(rs) && tgtName != "runtime.duffzero" && tgtName != "runtime.duffcopy" {
			// Furthermore, only apply the offset if the target looks like the start of a function call.
			if r.Add() == 0 && ldr.SymType(rs) == sym.STEXT {
				t += 8
			}
		}

		if t&3 != 0 {
			ldr.Errorf(s, "relocation for %s+%d is not aligned: %d", ldr.SymName(rs), r.Off(), t)
		}
		// If branch offset is too far then create a trampoline.

		if int64(int32(t<<6)>>6) != t {
			ldr.Errorf(s, "direct call too far: %s %x", ldr.SymName(rs), t)
		}
		return val | int64(uint32(t)&^0xfc000003), nExtReloc, true
	case objabi.R_POWER_TOC: // S + A - .TOC.
		return ldr.SymValue(rs) + r.Add() - symtoc(ldr, syms, s), nExtReloc, true

	case objabi.R_ADDRPOWER_PCREL: // S + A - P
		t := ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))
		ha, l := unpackInstPair(target, val)
		l |= computeLO(int32(t))
		ha |= computeHA(int32(t))
		return packInstPair(target, ha, l), nExtReloc, true

	case objabi.R_POWER_TLS:
		const OP_ADD = 31<<26 | 266<<1
		const MASK_OP_ADD = 0x3F<<26 | 0x1FF<<1
		if val&MASK_OP_ADD != OP_ADD {
			ldr.Errorf(s, "R_POWER_TLS reloc only supports XO form ADD, not %08X", val)
		}
		// Verify RB is R13 in ADD RA,RB,RT.
		if (val>>11)&0x1F != 13 {
			// If external linking is made to support this, it may expect the linker to rewrite RB.
			ldr.Errorf(s, "R_POWER_TLS reloc requires R13 in RB (%08X).", uint32(val))
		}
		return val, nExtReloc, true

	case objabi.R_POWER_TLS_IE:
		// Convert TLS_IE relocation to TLS_LE if supported.
		if !(target.IsPIE() && target.IsElf()) {
			log.Fatalf("cannot handle R_POWER_TLS_IE (sym %s) when linking non-PIE, non-ELF binaries internally", ldr.SymName(s))
		}

		// We are an ELF binary, we can safely convert to TLS_LE from:
		// addis to, r2, x@got@tprel@ha
		// ld to, to, x@got@tprel@l(to)
		//
		// to TLS_LE by converting to:
		// addis to, r0, x@tprel@ha
		// addi to, to, x@tprel@l(to)

		const OP_ADDI = 14 << 26
		const OP_MASK = 0x3F << 26
		const OP_RA_MASK = 0x1F << 16
		// convert r2 to r0, and ld to addi
		mask := packInstPair(target, OP_RA_MASK, OP_MASK)
		addi_op := packInstPair(target, 0, OP_ADDI)
		val &^= mask
		val |= addi_op
		fallthrough

	case objabi.R_POWER_TLS_LE:
		v := computeTLSLEReloc(target, ldr, rs, s)
		o1, o2 := unpackInstPair(target, val)
		o1 |= computeHA(int32(v))
		o2 |= computeLO(int32(v))
		return packInstPair(target, o1, o2), nExtReloc, true

	case objabi.R_POWER_TLS_IE_PCREL34:
		// Convert TLS_IE relocation to TLS_LE if supported.
		if !(target.IsPIE() && target.IsElf()) {
			log.Fatalf("cannot handle R_POWER_TLS_IE (sym %s) when linking non-PIE, non-ELF binaries internally", ldr.SymName(s))
		}

		// We are an ELF binary, we can safely convert to TLS_LE_TPREL34 from:
		// pld rX, x@got@tprel@pcrel
		//
		// to TLS_LE_TPREL32 by converting to:
		// pla rX, x@tprel

		const OP_MASK_PFX = 0xFFFFFFFF        // Discard prefix word
		const OP_MASK = (0x3F << 26) | 0xFFFF // Preserve RT, RA
		const OP_PFX = 1<<26 | 2<<24
		const OP_PLA = 14 << 26
		mask := packInstPair(target, OP_MASK_PFX, OP_MASK)
		pla_op := packInstPair(target, OP_PFX, OP_PLA)
		val &^= mask
		val |= pla_op
		fallthrough

	case objabi.R_POWER_TLS_LE_TPREL34:
		v := computeTLSLEReloc(target, ldr, rs, s)
		o1, o2 := unpackInstPair(target, val)
		o1 |= computePrefix34HI(v)
		o2 |= computeLO(int32(v))
		return packInstPair(target, o1, o2), nExtReloc, true
	}

	return val, nExtReloc, false
}

func archrelocvariant(target *ld.Target, ldr *loader.Loader, r loader.Reloc, rv sym.RelocVariant, s loader.Sym, t int64, p []byte) (relocatedOffset int64) {
	rs := r.Sym()
	switch rv & sym.RV_TYPE_MASK {
	default:
		ldr.Errorf(s, "unexpected relocation variant %d", rv)
		fallthrough

	case sym.RV_NONE:
		return t

	case sym.RV_POWER_LO:
		if rv&sym.RV_CHECK_OVERFLOW != 0 {
			// Whether to check for signed or unsigned
			// overflow depends on the instruction
			var o1 uint32
			if target.IsBigEndian() {
				o1 = binary.BigEndian.Uint32(p[r.Off()-2:])

			} else {
				o1 = binary.LittleEndian.Uint32(p[r.Off():])
			}
			switch o1 >> 26 {
			case 24, // ori
				26, // xori
				28: // andi
				if t>>16 != 0 {
					goto overflow
				}

			default:
				if int64(int16(t)) != t {
					goto overflow
				}
			}
		}

		return int64(int16(t))

	case sym.RV_POWER_HA:
		t += 0x8000
		fallthrough

		// Fallthrough
	case sym.RV_POWER_HI:
		t >>= 16

		if rv&sym.RV_CHECK_OVERFLOW != 0 {
			// Whether to check for signed or unsigned
			// overflow depends on the instruction
			var o1 uint32
			if target.IsBigEndian() {
				o1 = binary.BigEndian.Uint32(p[r.Off()-2:])
			} else {
				o1 = binary.LittleEndian.Uint32(p[r.Off():])
			}
			switch o1 >> 26 {
			case 25, // oris
				27, // xoris
				29: // andis
				if t>>16 != 0 {
					goto overflow
				}

			default:
				if int64(int16(t)) != t {
					goto overflow
				}
			}
		}

		return int64(int16(t))

	case sym.RV_POWER_DS:
		var o1 uint32
		if target.IsBigEndian() {
			o1 = uint32(binary.BigEndian.Uint16(p[r.Off():]))
		} else {
			o1 = uint32(binary.LittleEndian.Uint16(p[r.Off():]))
		}
		if t&3 != 0 {
			ldr.Errorf(s, "relocation for %s+%d is not aligned: %d", ldr.SymName(rs), r.Off(), t)
		}
		if (rv&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t {
			goto overflow
		}
		return int64(o1)&0x3 | int64(int16(t))
	}

overflow:
	ldr.Errorf(s, "relocation for %s+%d is too big: %d", ldr.SymName(rs), r.Off(), t)
	return t
}

func extreloc(target *ld.Target, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (loader.ExtReloc, bool) {
	switch r.Type() {
	case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE, objabi.R_POWER_TLS_IE_PCREL34, objabi.R_POWER_TLS_LE_TPREL34, objabi.R_CALLPOWER:
		return ld.ExtrelocSimple(ldr, r), true
	case objabi.R_ADDRPOWER,
		objabi.R_ADDRPOWER_DS,
		objabi.R_ADDRPOWER_TOCREL,
		objabi.R_ADDRPOWER_TOCREL_DS,
		objabi.R_ADDRPOWER_GOT,
		objabi.R_ADDRPOWER_GOT_PCREL34,
		objabi.R_ADDRPOWER_PCREL,
		objabi.R_ADDRPOWER_D34,
		objabi.R_ADDRPOWER_PCREL34:
		return ld.ExtrelocViaOuterSym(ldr, r, s), true
	}
	return loader.ExtReloc{}, false
}

func addpltsym(ctxt *ld.Link, ldr *loader.Loader, s loader.Sym) {
	if ldr.SymPlt(s) >= 0 {
		return
	}

	ld.Adddynsym(ldr, &ctxt.Target, &ctxt.ArchSyms, s)

	if ctxt.IsELF {
		plt := ldr.MakeSymbolUpdater(ctxt.PLT)
		rela := ldr.MakeSymbolUpdater(ctxt.RelaPLT)
		if plt.Size() == 0 {
			panic("plt is not set up")
		}

		// Create the glink resolver if necessary
		glink := ensureglinkresolver(ctxt, ldr)

		// Write symbol resolver stub (just a branch to the
		// glink resolver stub)
		rel, _ := glink.AddRel(objabi.R_CALLPOWER)
		rel.SetOff(int32(glink.Size()))
		rel.SetSiz(4)
		rel.SetSym(glink.Sym())
		glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink

		// In the ppc64 ABI, the dynamic linker is responsible
		// for writing the entire PLT.  We just need to
		// reserve 8 bytes for each PLT entry and generate a
		// JMP_SLOT dynamic relocation for it.
		//
		// TODO(austin): ABI v1 is different
		ldr.SetPlt(s, int32(plt.Size()))

		plt.Grow(plt.Size() + 8)
		plt.SetSize(plt.Size() + 8)

		rela.AddAddrPlus(ctxt.Arch, plt.Sym(), int64(ldr.SymPlt(s)))
		rela.AddUint64(ctxt.Arch, elf.R_INFO(uint32(ldr.SymDynid(s)), uint32(elf.R_PPC64_JMP_SLOT)))
		rela.AddUint64(ctxt.Arch, 0)
	} else {
		ctxt.Errorf(s, "addpltsym: unsupported binary format")
	}
}

// Generate the glink resolver stub if necessary and return the .glink section.
func ensureglinkresolver(ctxt *ld.Link, ldr *loader.Loader) *loader.SymbolBuilder {
	glink := ldr.CreateSymForUpdate(".glink", 0)
	if glink.Size() != 0 {
		return glink
	}

	// This is essentially the resolver from the ppc64 ELFv2 ABI.
	// At entry, r12 holds the address of the symbol resolver stub
	// for the target routine and the argument registers hold the
	// arguments for the target routine.
	//
	// PC-rel offsets are computed once the final codesize of the
	// resolver is known.
	//
	// This stub is PIC, so first get the PC of label 1 into r11.
	glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0
	glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f
	glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11
	glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlr r0

	// Compute the .plt array index from the entry point address
	// into r0. This is computed relative to label 1 above.
	glink.AddUint32(ctxt.Arch, 0x38000000) // li r0,-(res_0-1b)
	glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12
	glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11
	glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2

	// Load the PC-rel offset of ".plt - 1b", and add it to 1b.
	// This is stored after this stub and before the resolvers.
	glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,res_0-1b-8(r11)
	glink.AddUint32(ctxt.Arch, 0x7d6b6214) // add r11,r11,r12

	// Load r12 = dynamic resolver address and r11 = DSO
	// identifier from the first two doublewords of the PLT.
	glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11)
	glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11)

	// Jump to the dynamic resolver
	glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
	glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr

	// Store the PC-rel offset to the PLT
	r, _ := glink.AddRel(objabi.R_PCREL)
	r.SetSym(ctxt.PLT)
	r.SetSiz(8)
	r.SetOff(int32(glink.Size()))
	r.SetAdd(glink.Size())        // Adjust the offset to be relative to label 1 above.
	glink.AddUint64(ctxt.Arch, 0) // The offset to the PLT.

	// Resolve PC-rel offsets above now the final size of the stub is known.
	res0m1b := glink.Size() - 8 // res_0 - 1b
	glink.SetUint32(ctxt.Arch, 16, 0x38000000|uint32(uint16(-res0m1b)))
	glink.SetUint32(ctxt.Arch, 32, 0xe98b0000|uint32(uint16(res0m1b-8)))

	// The symbol resolvers must immediately follow.
	//   res_0:

	// Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes
	// before the first symbol resolver stub.
	du := ldr.MakeSymbolUpdater(ctxt.Dynamic)
	ld.Elfwritedynentsymplus(ctxt, du, elf.DT_PPC64_GLINK, glink.Sym(), glink.Size()-32)

	return glink
}