summaryrefslogtreecommitdiff
path: root/src/runtime/proc1.go
diff options
context:
space:
mode:
authorRuss Cox <rsc@golang.org>2014-11-15 08:00:38 -0500
committerRuss Cox <rsc@golang.org>2014-11-15 08:00:38 -0500
commit8b46a22b652d6e7a4a69b9523d57aff12f9dc945 (patch)
tree8f1c3f2d7e06daa3a9ad5721658a31b63519d748 /src/runtime/proc1.go
parent66fbfa707147ff58e13beed2d4a957a06bede869 (diff)
parent0b7f128e76956367ddb4f9ddbee4477d3b462e96 (diff)
downloadgo-8b46a22b652d6e7a4a69b9523d57aff12f9dc945.tar.gz
[dev.garbage] all: merge dev.cc into dev.garbage
The garbage collector is now written in Go. There is plenty to clean up (just like on dev.cc). all.bash passes on darwin/amd64, darwin/386, linux/amd64, linux/386. TBR=rlh R=austin, rlh, bradfitz CC=golang-codereviews https://codereview.appspot.com/173250043
Diffstat (limited to 'src/runtime/proc1.go')
-rw-r--r--src/runtime/proc1.go3186
1 files changed, 3186 insertions, 0 deletions
diff --git a/src/runtime/proc1.go b/src/runtime/proc1.go
new file mode 100644
index 000000000..8c941dd35
--- /dev/null
+++ b/src/runtime/proc1.go
@@ -0,0 +1,3186 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package runtime
+
+import "unsafe"
+
+var (
+ m0 m
+ g0 g
+)
+
+// Goroutine scheduler
+// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
+//
+// The main concepts are:
+// G - goroutine.
+// M - worker thread, or machine.
+// P - processor, a resource that is required to execute Go code.
+// M must have an associated P to execute Go code, however it can be
+// blocked or in a syscall w/o an associated P.
+//
+// Design doc at http://golang.org/s/go11sched.
+
+const (
+ // Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
+ // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
+ _GoidCacheBatch = 16
+)
+
+/*
+SchedT sched;
+int32 gomaxprocs;
+uint32 needextram;
+bool iscgo;
+M m0;
+G g0; // idle goroutine for m0
+G* lastg;
+M* allm;
+M* extram;
+P* allp[MaxGomaxprocs+1];
+int8* goos;
+int32 ncpu;
+int32 newprocs;
+
+Mutex allglock; // the following vars are protected by this lock or by stoptheworld
+G** allg;
+Slice allgs;
+uintptr allglen;
+ForceGCState forcegc;
+
+void mstart(void);
+static void runqput(P*, G*);
+static G* runqget(P*);
+static bool runqputslow(P*, G*, uint32, uint32);
+static G* runqsteal(P*, P*);
+static void mput(M*);
+static M* mget(void);
+static void mcommoninit(M*);
+static void schedule(void);
+static void procresize(int32);
+static void acquirep(P*);
+static P* releasep(void);
+static void newm(void(*)(void), P*);
+static void stopm(void);
+static void startm(P*, bool);
+static void handoffp(P*);
+static void wakep(void);
+static void stoplockedm(void);
+static void startlockedm(G*);
+static void sysmon(void);
+static uint32 retake(int64);
+static void incidlelocked(int32);
+static void checkdead(void);
+static void exitsyscall0(G*);
+void park_m(G*);
+static void goexit0(G*);
+static void gfput(P*, G*);
+static G* gfget(P*);
+static void gfpurge(P*);
+static void globrunqput(G*);
+static void globrunqputbatch(G*, G*, int32);
+static G* globrunqget(P*, int32);
+static P* pidleget(void);
+static void pidleput(P*);
+static void injectglist(G*);
+static bool preemptall(void);
+static bool preemptone(P*);
+static bool exitsyscallfast(void);
+static bool haveexperiment(int8*);
+void allgadd(G*);
+static void dropg(void);
+
+extern String buildVersion;
+*/
+
+// The bootstrap sequence is:
+//
+// call osinit
+// call schedinit
+// make & queue new G
+// call runtime·mstart
+//
+// The new G calls runtime·main.
+func schedinit() {
+ // raceinit must be the first call to race detector.
+ // In particular, it must be done before mallocinit below calls racemapshadow.
+ _g_ := getg()
+ if raceenabled {
+ _g_.racectx = raceinit()
+ }
+
+ sched.maxmcount = 10000
+
+ tracebackinit()
+ symtabinit()
+ stackinit()
+ mallocinit()
+ mcommoninit(_g_.m)
+
+ goargs()
+ goenvs()
+ parsedebugvars()
+ gcinit()
+
+ sched.lastpoll = uint64(nanotime())
+ procs := 1
+ if n := goatoi(gogetenv("GOMAXPROCS")); n > 0 {
+ if n > _MaxGomaxprocs {
+ n = _MaxGomaxprocs
+ }
+ procs = n
+ }
+ procresize(int32(procs))
+
+ if buildVersion == "" {
+ // Condition should never trigger. This code just serves
+ // to ensure runtime·buildVersion is kept in the resulting binary.
+ buildVersion = "unknown"
+ }
+}
+
+func newsysmon() {
+ _newm(sysmon, nil)
+}
+
+func dumpgstatus(gp *g) {
+ _g_ := getg()
+ print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
+ print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n")
+}
+
+func checkmcount() {
+ // sched lock is held
+ if sched.mcount > sched.maxmcount {
+ print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
+ gothrow("thread exhaustion")
+ }
+}
+
+func mcommoninit(mp *m) {
+ _g_ := getg()
+
+ // g0 stack won't make sense for user (and is not necessary unwindable).
+ if _g_ != _g_.m.g0 {
+ callers(1, &mp.createstack[0], len(mp.createstack))
+ }
+
+ mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks())
+ if mp.fastrand == 0 {
+ mp.fastrand = 0x49f6428a
+ }
+
+ lock(&sched.lock)
+ mp.id = sched.mcount
+ sched.mcount++
+ checkmcount()
+ mpreinit(mp)
+ if mp.gsignal != nil {
+ mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
+ }
+
+ // Add to allm so garbage collector doesn't free g->m
+ // when it is just in a register or thread-local storage.
+ mp.alllink = allm
+
+ // NumCgoCall() iterates over allm w/o schedlock,
+ // so we need to publish it safely.
+ atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
+ unlock(&sched.lock)
+}
+
+// Mark gp ready to run.
+func ready(gp *g) {
+ status := readgstatus(gp)
+
+ // Mark runnable.
+ _g_ := getg()
+ _g_.m.locks++ // disable preemption because it can be holding p in a local var
+ if status&^_Gscan != _Gwaiting {
+ dumpgstatus(gp)
+ gothrow("bad g->status in ready")
+ }
+
+ // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ runqput(_g_.m.p, gp)
+ if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 { // TODO: fast atomic
+ wakep()
+ }
+ _g_.m.locks--
+ if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
+ _g_.stackguard0 = stackPreempt
+ }
+}
+
+func gcprocs() int32 {
+ // Figure out how many CPUs to use during GC.
+ // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
+ lock(&sched.lock)
+ n := gomaxprocs
+ if n > ncpu {
+ n = ncpu
+ }
+ if n > _MaxGcproc {
+ n = _MaxGcproc
+ }
+ if n > sched.nmidle+1 { // one M is currently running
+ n = sched.nmidle + 1
+ }
+ unlock(&sched.lock)
+ return n
+}
+
+func needaddgcproc() bool {
+ lock(&sched.lock)
+ n := gomaxprocs
+ if n > ncpu {
+ n = ncpu
+ }
+ if n > _MaxGcproc {
+ n = _MaxGcproc
+ }
+ n -= sched.nmidle + 1 // one M is currently running
+ unlock(&sched.lock)
+ return n > 0
+}
+
+func helpgc(nproc int32) {
+ _g_ := getg()
+ lock(&sched.lock)
+ pos := 0
+ for n := int32(1); n < nproc; n++ { // one M is currently running
+ if allp[pos].mcache == _g_.m.mcache {
+ pos++
+ }
+ mp := mget()
+ if mp == nil {
+ gothrow("gcprocs inconsistency")
+ }
+ mp.helpgc = n
+ mp.mcache = allp[pos].mcache
+ pos++
+ notewakeup(&mp.park)
+ }
+ unlock(&sched.lock)
+}
+
+// Similar to stoptheworld but best-effort and can be called several times.
+// There is no reverse operation, used during crashing.
+// This function must not lock any mutexes.
+func freezetheworld() {
+ if gomaxprocs == 1 {
+ return
+ }
+ // stopwait and preemption requests can be lost
+ // due to races with concurrently executing threads,
+ // so try several times
+ for i := 0; i < 5; i++ {
+ // this should tell the scheduler to not start any new goroutines
+ sched.stopwait = 0x7fffffff
+ atomicstore(&sched.gcwaiting, 1)
+ // this should stop running goroutines
+ if !preemptall() {
+ break // no running goroutines
+ }
+ usleep(1000)
+ }
+ // to be sure
+ usleep(1000)
+ preemptall()
+ usleep(1000)
+}
+
+func isscanstatus(status uint32) bool {
+ if status == _Gscan {
+ gothrow("isscanstatus: Bad status Gscan")
+ }
+ return status&_Gscan == _Gscan
+}
+
+// All reads and writes of g's status go through readgstatus, casgstatus
+// castogscanstatus, casfrom_Gscanstatus.
+//go:nosplit
+func readgstatus(gp *g) uint32 {
+ return atomicload(&gp.atomicstatus)
+}
+
+// The Gscanstatuses are acting like locks and this releases them.
+// If it proves to be a performance hit we should be able to make these
+// simple atomic stores but for now we are going to throw if
+// we see an inconsistent state.
+func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
+ success := false
+
+ // Check that transition is valid.
+ switch oldval {
+ case _Gscanrunnable,
+ _Gscanwaiting,
+ _Gscanrunning,
+ _Gscansyscall:
+ if newval == oldval&^_Gscan {
+ success = cas(&gp.atomicstatus, oldval, newval)
+ }
+ case _Gscanenqueue:
+ if newval == _Gwaiting {
+ success = cas(&gp.atomicstatus, oldval, newval)
+ }
+ }
+ if !success {
+ print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
+ dumpgstatus(gp)
+ gothrow("casfrom_Gscanstatus: gp->status is not in scan state")
+ }
+}
+
+// This will return false if the gp is not in the expected status and the cas fails.
+// This acts like a lock acquire while the casfromgstatus acts like a lock release.
+func castogscanstatus(gp *g, oldval, newval uint32) bool {
+ switch oldval {
+ case _Grunnable,
+ _Gwaiting,
+ _Gsyscall:
+ if newval == oldval|_Gscan {
+ return cas(&gp.atomicstatus, oldval, newval)
+ }
+ case _Grunning:
+ if newval == _Gscanrunning || newval == _Gscanenqueue {
+ return cas(&gp.atomicstatus, oldval, newval)
+ }
+ }
+ print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
+ gothrow("castogscanstatus")
+ panic("not reached")
+}
+
+// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
+// and casfrom_Gscanstatus instead.
+// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
+// put it in the Gscan state is finished.
+//go:nosplit
+func casgstatus(gp *g, oldval, newval uint32) {
+ if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
+ systemstack(func() {
+ print("casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
+ gothrow("casgstatus: bad incoming values")
+ })
+ }
+
+ // loop if gp->atomicstatus is in a scan state giving
+ // GC time to finish and change the state to oldval.
+ for !cas(&gp.atomicstatus, oldval, newval) {
+ }
+}
+
+// stopg ensures that gp is stopped at a GC safe point where its stack can be scanned
+// or in the context of a moving collector the pointers can be flipped from pointing
+// to old object to pointing to new objects.
+// If stopg returns true, the caller knows gp is at a GC safe point and will remain there until
+// the caller calls restartg.
+// If stopg returns false, the caller is not responsible for calling restartg. This can happen
+// if another thread, either the gp itself or another GC thread is taking the responsibility
+// to do the GC work related to this thread.
+func stopg(gp *g) bool {
+ for {
+ if gp.gcworkdone {
+ return false
+ }
+
+ switch s := readgstatus(gp); s {
+ default:
+ dumpgstatus(gp)
+ gothrow("stopg: gp->atomicstatus is not valid")
+
+ case _Gdead:
+ return false
+
+ case _Gcopystack:
+ // Loop until a new stack is in place.
+
+ case _Grunnable,
+ _Gsyscall,
+ _Gwaiting:
+ // Claim goroutine by setting scan bit.
+ if !castogscanstatus(gp, s, s|_Gscan) {
+ break
+ }
+ // In scan state, do work.
+ gcphasework(gp)
+ return true
+
+ case _Gscanrunnable,
+ _Gscanwaiting,
+ _Gscansyscall:
+ // Goroutine already claimed by another GC helper.
+ return false
+
+ case _Grunning:
+ if gcphase == _GCscan {
+ // Running routines not scanned during
+ // GCscan phase, we only scan non-running routines.
+ gp.gcworkdone = true
+ return false
+ }
+
+ // Claim goroutine, so we aren't racing with a status
+ // transition away from Grunning.
+ if !castogscanstatus(gp, _Grunning, _Gscanrunning) {
+ break
+ }
+
+ // Mark gp for preemption.
+ if !gp.gcworkdone {
+ gp.preemptscan = true
+ gp.preempt = true
+ gp.stackguard0 = stackPreempt
+ }
+
+ // Unclaim.
+ casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
+ return false
+ }
+ }
+}
+
+// The GC requests that this routine be moved from a scanmumble state to a mumble state.
+func restartg(gp *g) {
+ s := readgstatus(gp)
+ switch s {
+ default:
+ dumpgstatus(gp)
+ gothrow("restartg: unexpected status")
+
+ case _Gdead:
+ // ok
+
+ case _Gscanrunnable,
+ _Gscanwaiting,
+ _Gscansyscall:
+ casfrom_Gscanstatus(gp, s, s&^_Gscan)
+
+ // Scan is now completed.
+ // Goroutine now needs to be made runnable.
+ // We put it on the global run queue; ready blocks on the global scheduler lock.
+ case _Gscanenqueue:
+ casfrom_Gscanstatus(gp, _Gscanenqueue, _Gwaiting)
+ if gp != getg().m.curg {
+ gothrow("processing Gscanenqueue on wrong m")
+ }
+ dropg()
+ ready(gp)
+ }
+}
+
+func stopscanstart(gp *g) {
+ _g_ := getg()
+ if _g_ == gp {
+ gothrow("GC not moved to G0")
+ }
+ if stopg(gp) {
+ if !isscanstatus(readgstatus(gp)) {
+ dumpgstatus(gp)
+ gothrow("GC not in scan state")
+ }
+ restartg(gp)
+ }
+}
+
+// Runs on g0 and does the actual work after putting the g back on the run queue.
+func mquiesce(gpmaster *g) {
+ // enqueue the calling goroutine.
+ restartg(gpmaster)
+
+ activeglen := len(allgs)
+ for i := 0; i < activeglen; i++ {
+ gp := allgs[i]
+ if readgstatus(gp) == _Gdead {
+ gp.gcworkdone = true // noop scan.
+ } else {
+ gp.gcworkdone = false
+ }
+ stopscanstart(gp)
+ }
+
+ // Check that the G's gcwork (such as scanning) has been done. If not do it now.
+ // You can end up doing work here if the page trap on a Grunning Goroutine has
+ // not been sprung or in some race situations. For example a runnable goes dead
+ // and is started up again with a gp->gcworkdone set to false.
+ for i := 0; i < activeglen; i++ {
+ gp := allgs[i]
+ for !gp.gcworkdone {
+ status := readgstatus(gp)
+ if status == _Gdead {
+ //do nothing, scan not needed.
+ gp.gcworkdone = true // scan is a noop
+ break
+ }
+ if status == _Grunning && gp.stackguard0 == uintptr(stackPreempt) && notetsleep(&sched.stopnote, 100*1000) { // nanosecond arg
+ noteclear(&sched.stopnote)
+ } else {
+ stopscanstart(gp)
+ }
+ }
+ }
+
+ for i := 0; i < activeglen; i++ {
+ gp := allgs[i]
+ status := readgstatus(gp)
+ if isscanstatus(status) {
+ print("mstopandscang:bottom: post scan bad status gp=", gp, " has status ", hex(status), "\n")
+ dumpgstatus(gp)
+ }
+ if !gp.gcworkdone && status != _Gdead {
+ print("mstopandscang:bottom: post scan gp=", gp, "->gcworkdone still false\n")
+ dumpgstatus(gp)
+ }
+ }
+
+ schedule() // Never returns.
+}
+
+// quiesce moves all the goroutines to a GC safepoint which for now is a at preemption point.
+// If the global gcphase is GCmark quiesce will ensure that all of the goroutine's stacks
+// have been scanned before it returns.
+func quiesce(mastergp *g) {
+ castogscanstatus(mastergp, _Grunning, _Gscanenqueue)
+ // Now move this to the g0 (aka m) stack.
+ // g0 will potentially scan this thread and put mastergp on the runqueue
+ mcall(mquiesce)
+}
+
+// This is used by the GC as well as the routines that do stack dumps. In the case
+// of GC all the routines can be reliably stopped. This is not always the case
+// when the system is in panic or being exited.
+func stoptheworld() {
+ _g_ := getg()
+
+ // If we hold a lock, then we won't be able to stop another M
+ // that is blocked trying to acquire the lock.
+ if _g_.m.locks > 0 {
+ gothrow("stoptheworld: holding locks")
+ }
+
+ lock(&sched.lock)
+ sched.stopwait = gomaxprocs
+ atomicstore(&sched.gcwaiting, 1)
+ preemptall()
+ // stop current P
+ _g_.m.p.status = _Pgcstop // Pgcstop is only diagnostic.
+ sched.stopwait--
+ // try to retake all P's in Psyscall status
+ for i := 0; i < int(gomaxprocs); i++ {
+ p := allp[i]
+ s := p.status
+ if s == _Psyscall && cas(&p.status, s, _Pgcstop) {
+ sched.stopwait--
+ }
+ }
+ // stop idle P's
+ for {
+ p := pidleget()
+ if p == nil {
+ break
+ }
+ p.status = _Pgcstop
+ sched.stopwait--
+ }
+ wait := sched.stopwait > 0
+ unlock(&sched.lock)
+
+ // wait for remaining P's to stop voluntarily
+ if wait {
+ for {
+ // wait for 100us, then try to re-preempt in case of any races
+ if notetsleep(&sched.stopnote, 100*1000) {
+ noteclear(&sched.stopnote)
+ break
+ }
+ preemptall()
+ }
+ }
+ if sched.stopwait != 0 {
+ gothrow("stoptheworld: not stopped")
+ }
+ for i := 0; i < int(gomaxprocs); i++ {
+ p := allp[i]
+ if p.status != _Pgcstop {
+ gothrow("stoptheworld: not stopped")
+ }
+ }
+}
+
+func mhelpgc() {
+ _g_ := getg()
+ _g_.m.helpgc = -1
+}
+
+func starttheworld() {
+ _g_ := getg()
+
+ _g_.m.locks++ // disable preemption because it can be holding p in a local var
+ gp := netpoll(false) // non-blocking
+ injectglist(gp)
+ add := needaddgcproc()
+ lock(&sched.lock)
+ if newprocs != 0 {
+ procresize(newprocs)
+ newprocs = 0
+ } else {
+ procresize(gomaxprocs)
+ }
+ sched.gcwaiting = 0
+
+ var p1 *p
+ for {
+ p := pidleget()
+ if p == nil {
+ break
+ }
+ // procresize() puts p's with work at the beginning of the list.
+ // Once we reach a p without a run queue, the rest don't have one either.
+ if p.runqhead == p.runqtail {
+ pidleput(p)
+ break
+ }
+ p.m = mget()
+ p.link = p1
+ p1 = p
+ }
+ if sched.sysmonwait != 0 {
+ sched.sysmonwait = 0
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+
+ for p1 != nil {
+ p := p1
+ p1 = p1.link
+ if p.m != nil {
+ mp := p.m
+ p.m = nil
+ if mp.nextp != nil {
+ gothrow("starttheworld: inconsistent mp->nextp")
+ }
+ mp.nextp = p
+ notewakeup(&mp.park)
+ } else {
+ // Start M to run P. Do not start another M below.
+ _newm(nil, p)
+ add = false
+ }
+ }
+
+ if add {
+ // If GC could have used another helper proc, start one now,
+ // in the hope that it will be available next time.
+ // It would have been even better to start it before the collection,
+ // but doing so requires allocating memory, so it's tricky to
+ // coordinate. This lazy approach works out in practice:
+ // we don't mind if the first couple gc rounds don't have quite
+ // the maximum number of procs.
+ _newm(mhelpgc, nil)
+ }
+ _g_.m.locks--
+ if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
+ _g_.stackguard0 = stackPreempt
+ }
+}
+
+// Called to start an M.
+//go:nosplit
+func mstart() {
+ _g_ := getg()
+
+ if _g_.stack.lo == 0 {
+ // Initialize stack bounds from system stack.
+ // Cgo may have left stack size in stack.hi.
+ size := _g_.stack.hi
+ if size == 0 {
+ size = 8192
+ }
+ _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
+ _g_.stack.lo = _g_.stack.hi - size + 1024
+ }
+ // Initialize stack guards so that we can start calling
+ // both Go and C functions with stack growth prologues.
+ _g_.stackguard0 = _g_.stack.lo + _StackGuard
+ _g_.stackguard1 = _g_.stackguard0
+ mstart1()
+}
+
+func mstart1() {
+ _g_ := getg()
+
+ if _g_ != _g_.m.g0 {
+ gothrow("bad runtime·mstart")
+ }
+
+ // Record top of stack for use by mcall.
+ // Once we call schedule we're never coming back,
+ // so other calls can reuse this stack space.
+ gosave(&_g_.m.g0.sched)
+ _g_.m.g0.sched.pc = ^uintptr(0) // make sure it is never used
+ asminit()
+ minit()
+
+ // Install signal handlers; after minit so that minit can
+ // prepare the thread to be able to handle the signals.
+ if _g_.m == &m0 {
+ initsig()
+ }
+
+ if _g_.m.mstartfn != nil {
+ fn := *(*func())(unsafe.Pointer(&_g_.m.mstartfn))
+ fn()
+ }
+
+ if _g_.m.helpgc != 0 {
+ _g_.m.helpgc = 0
+ stopm()
+ } else if _g_.m != &m0 {
+ acquirep(_g_.m.nextp)
+ _g_.m.nextp = nil
+ }
+ schedule()
+
+ // TODO(brainman): This point is never reached, because scheduler
+ // does not release os threads at the moment. But once this path
+ // is enabled, we must remove our seh here.
+}
+
+// When running with cgo, we call _cgo_thread_start
+// to start threads for us so that we can play nicely with
+// foreign code.
+var cgoThreadStart unsafe.Pointer
+
+type cgothreadstart struct {
+ g *g
+ tls *uint64
+ fn unsafe.Pointer
+}
+
+// Allocate a new m unassociated with any thread.
+// Can use p for allocation context if needed.
+func allocm(_p_ *p) *m {
+ _g_ := getg()
+ _g_.m.locks++ // disable GC because it can be called from sysmon
+ if _g_.m.p == nil {
+ acquirep(_p_) // temporarily borrow p for mallocs in this function
+ }
+ mp := newM()
+ mcommoninit(mp)
+
+ // In case of cgo or Solaris, pthread_create will make us a stack.
+ // Windows and Plan 9 will layout sched stack on OS stack.
+ if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" {
+ mp.g0 = malg(-1)
+ } else {
+ mp.g0 = malg(8192)
+ }
+ mp.g0.m = mp
+
+ if _p_ == _g_.m.p {
+ releasep()
+ }
+ _g_.m.locks--
+ if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
+ _g_.stackguard0 = stackPreempt
+ }
+
+ return mp
+}
+
+func allocg() *g {
+ return newG()
+}
+
+// needm is called when a cgo callback happens on a
+// thread without an m (a thread not created by Go).
+// In this case, needm is expected to find an m to use
+// and return with m, g initialized correctly.
+// Since m and g are not set now (likely nil, but see below)
+// needm is limited in what routines it can call. In particular
+// it can only call nosplit functions (textflag 7) and cannot
+// do any scheduling that requires an m.
+//
+// In order to avoid needing heavy lifting here, we adopt
+// the following strategy: there is a stack of available m's
+// that can be stolen. Using compare-and-swap
+// to pop from the stack has ABA races, so we simulate
+// a lock by doing an exchange (via casp) to steal the stack
+// head and replace the top pointer with MLOCKED (1).
+// This serves as a simple spin lock that we can use even
+// without an m. The thread that locks the stack in this way
+// unlocks the stack by storing a valid stack head pointer.
+//
+// In order to make sure that there is always an m structure
+// available to be stolen, we maintain the invariant that there
+// is always one more than needed. At the beginning of the
+// program (if cgo is in use) the list is seeded with a single m.
+// If needm finds that it has taken the last m off the list, its job
+// is - once it has installed its own m so that it can do things like
+// allocate memory - to create a spare m and put it on the list.
+//
+// Each of these extra m's also has a g0 and a curg that are
+// pressed into service as the scheduling stack and current
+// goroutine for the duration of the cgo callback.
+//
+// When the callback is done with the m, it calls dropm to
+// put the m back on the list.
+//go:nosplit
+func needm(x byte) {
+ if needextram != 0 {
+ // Can happen if C/C++ code calls Go from a global ctor.
+ // Can not throw, because scheduler is not initialized yet.
+ // XXX
+ // write(2, unsafe.Pointer("fatal error: cgo callback before cgo call\n"), sizeof("fatal error: cgo callback before cgo call\n") - 1)
+ exit(1)
+ }
+
+ // Lock extra list, take head, unlock popped list.
+ // nilokay=false is safe here because of the invariant above,
+ // that the extra list always contains or will soon contain
+ // at least one m.
+ mp := lockextra(false)
+
+ // Set needextram when we've just emptied the list,
+ // so that the eventual call into cgocallbackg will
+ // allocate a new m for the extra list. We delay the
+ // allocation until then so that it can be done
+ // after exitsyscall makes sure it is okay to be
+ // running at all (that is, there's no garbage collection
+ // running right now).
+ mp.needextram = mp.schedlink == nil
+ unlockextra(mp.schedlink)
+
+ // Install g (= m->g0) and set the stack bounds
+ // to match the current stack. We don't actually know
+ // how big the stack is, like we don't know how big any
+ // scheduling stack is, but we assume there's at least 32 kB,
+ // which is more than enough for us.
+ setg(mp.g0)
+ _g_ := getg()
+ _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024
+ _g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024
+ _g_.stackguard0 = _g_.stack.lo + _StackGuard
+
+ // Initialize this thread to use the m.
+ asminit()
+ minit()
+}
+
+// newextram allocates an m and puts it on the extra list.
+// It is called with a working local m, so that it can do things
+// like call schedlock and allocate.
+func newextram() {
+ // Create extra goroutine locked to extra m.
+ // The goroutine is the context in which the cgo callback will run.
+ // The sched.pc will never be returned to, but setting it to
+ // goexit makes clear to the traceback routines where
+ // the goroutine stack ends.
+ mp := allocm(nil)
+ gp := malg(4096)
+ gp.sched.pc = funcPC(goexit) + _PCQuantum
+ gp.sched.sp = gp.stack.hi
+ gp.sched.sp -= 4 * regSize // extra space in case of reads slightly beyond frame
+ gp.sched.lr = 0
+ gp.sched.g = gp
+ gp.syscallpc = gp.sched.pc
+ gp.syscallsp = gp.sched.sp
+ // malg returns status as Gidle, change to Gsyscall before adding to allg
+ // where GC will see it.
+ casgstatus(gp, _Gidle, _Gsyscall)
+ gp.m = mp
+ mp.curg = gp
+ mp.locked = _LockInternal
+ mp.lockedg = gp
+ gp.lockedm = mp
+ gp.goid = int64(xadd64(&sched.goidgen, 1))
+ if raceenabled {
+ gp.racectx = racegostart(funcPC(newextram))
+ }
+ // put on allg for garbage collector
+ allgadd(gp)
+
+ // Add m to the extra list.
+ mnext := lockextra(true)
+ mp.schedlink = mnext
+ unlockextra(mp)
+}
+
+// dropm is called when a cgo callback has called needm but is now
+// done with the callback and returning back into the non-Go thread.
+// It puts the current m back onto the extra list.
+//
+// The main expense here is the call to signalstack to release the
+// m's signal stack, and then the call to needm on the next callback
+// from this thread. It is tempting to try to save the m for next time,
+// which would eliminate both these costs, but there might not be
+// a next time: the current thread (which Go does not control) might exit.
+// If we saved the m for that thread, there would be an m leak each time
+// such a thread exited. Instead, we acquire and release an m on each
+// call. These should typically not be scheduling operations, just a few
+// atomics, so the cost should be small.
+//
+// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
+// variable using pthread_key_create. Unlike the pthread keys we already use
+// on OS X, this dummy key would never be read by Go code. It would exist
+// only so that we could register at thread-exit-time destructor.
+// That destructor would put the m back onto the extra list.
+// This is purely a performance optimization. The current version,
+// in which dropm happens on each cgo call, is still correct too.
+// We may have to keep the current version on systems with cgo
+// but without pthreads, like Windows.
+func dropm() {
+ // Undo whatever initialization minit did during needm.
+ unminit()
+
+ // Clear m and g, and return m to the extra list.
+ // After the call to setmg we can only call nosplit functions.
+ mp := getg().m
+ setg(nil)
+
+ mnext := lockextra(true)
+ mp.schedlink = mnext
+ unlockextra(mp)
+}
+
+var extram uintptr
+
+// lockextra locks the extra list and returns the list head.
+// The caller must unlock the list by storing a new list head
+// to extram. If nilokay is true, then lockextra will
+// return a nil list head if that's what it finds. If nilokay is false,
+// lockextra will keep waiting until the list head is no longer nil.
+//go:nosplit
+func lockextra(nilokay bool) *m {
+ const locked = 1
+
+ for {
+ old := atomicloaduintptr(&extram)
+ if old == locked {
+ yield := osyield
+ yield()
+ continue
+ }
+ if old == 0 && !nilokay {
+ usleep(1)
+ continue
+ }
+ if casuintptr(&extram, old, locked) {
+ return (*m)(unsafe.Pointer(old))
+ }
+ yield := osyield
+ yield()
+ continue
+ }
+}
+
+//go:nosplit
+func unlockextra(mp *m) {
+ atomicstoreuintptr(&extram, uintptr(unsafe.Pointer(mp)))
+}
+
+// Create a new m. It will start off with a call to fn, or else the scheduler.
+func _newm(fn func(), _p_ *p) {
+ mp := allocm(_p_)
+ mp.nextp = _p_
+ mp.mstartfn = *(*unsafe.Pointer)(unsafe.Pointer(&fn))
+
+ if iscgo {
+ var ts cgothreadstart
+ if _cgo_thread_start == nil {
+ gothrow("_cgo_thread_start missing")
+ }
+ ts.g = mp.g0
+ ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
+ ts.fn = unsafe.Pointer(funcPC(mstart))
+ asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
+ return
+ }
+ newosproc(mp, unsafe.Pointer(mp.g0.stack.hi))
+}
+
+// Stops execution of the current m until new work is available.
+// Returns with acquired P.
+func stopm() {
+ _g_ := getg()
+
+ if _g_.m.locks != 0 {
+ gothrow("stopm holding locks")
+ }
+ if _g_.m.p != nil {
+ gothrow("stopm holding p")
+ }
+ if _g_.m.spinning {
+ _g_.m.spinning = false
+ xadd(&sched.nmspinning, -1)
+ }
+
+retry:
+ lock(&sched.lock)
+ mput(_g_.m)
+ unlock(&sched.lock)
+ notesleep(&_g_.m.park)
+ noteclear(&_g_.m.park)
+ if _g_.m.helpgc != 0 {
+ gchelper()
+ _g_.m.helpgc = 0
+ _g_.m.mcache = nil
+ goto retry
+ }
+ acquirep(_g_.m.nextp)
+ _g_.m.nextp = nil
+}
+
+func mspinning() {
+ getg().m.spinning = true
+}
+
+// Schedules some M to run the p (creates an M if necessary).
+// If p==nil, tries to get an idle P, if no idle P's does nothing.
+func startm(_p_ *p, spinning bool) {
+ lock(&sched.lock)
+ if _p_ == nil {
+ _p_ = pidleget()
+ if _p_ == nil {
+ unlock(&sched.lock)
+ if spinning {
+ xadd(&sched.nmspinning, -1)
+ }
+ return
+ }
+ }
+ mp := mget()
+ unlock(&sched.lock)
+ if mp == nil {
+ var fn func()
+ if spinning {
+ fn = mspinning
+ }
+ _newm(fn, _p_)
+ return
+ }
+ if mp.spinning {
+ gothrow("startm: m is spinning")
+ }
+ if mp.nextp != nil {
+ gothrow("startm: m has p")
+ }
+ mp.spinning = spinning
+ mp.nextp = _p_
+ notewakeup(&mp.park)
+}
+
+// Hands off P from syscall or locked M.
+func handoffp(_p_ *p) {
+ // if it has local work, start it straight away
+ if _p_.runqhead != _p_.runqtail || sched.runqsize != 0 {
+ startm(_p_, false)
+ return
+ }
+ // no local work, check that there are no spinning/idle M's,
+ // otherwise our help is not required
+ if atomicload(&sched.nmspinning)+atomicload(&sched.npidle) == 0 && cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
+ startm(_p_, true)
+ return
+ }
+ lock(&sched.lock)
+ if sched.gcwaiting != 0 {
+ _p_.status = _Pgcstop
+ sched.stopwait--
+ if sched.stopwait == 0 {
+ notewakeup(&sched.stopnote)
+ }
+ unlock(&sched.lock)
+ return
+ }
+ if sched.runqsize != 0 {
+ unlock(&sched.lock)
+ startm(_p_, false)
+ return
+ }
+ // If this is the last running P and nobody is polling network,
+ // need to wakeup another M to poll network.
+ if sched.npidle == uint32(gomaxprocs-1) && atomicload64(&sched.lastpoll) != 0 {
+ unlock(&sched.lock)
+ startm(_p_, false)
+ return
+ }
+ pidleput(_p_)
+ unlock(&sched.lock)
+}
+
+// Tries to add one more P to execute G's.
+// Called when a G is made runnable (newproc, ready).
+func wakep() {
+ // be conservative about spinning threads
+ if !cas(&sched.nmspinning, 0, 1) {
+ return
+ }
+ startm(nil, true)
+}
+
+// Stops execution of the current m that is locked to a g until the g is runnable again.
+// Returns with acquired P.
+func stoplockedm() {
+ _g_ := getg()
+
+ if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m {
+ gothrow("stoplockedm: inconsistent locking")
+ }
+ if _g_.m.p != nil {
+ // Schedule another M to run this p.
+ _p_ := releasep()
+ handoffp(_p_)
+ }
+ incidlelocked(1)
+ // Wait until another thread schedules lockedg again.
+ notesleep(&_g_.m.park)
+ noteclear(&_g_.m.park)
+ status := readgstatus(_g_.m.lockedg)
+ if status&^_Gscan != _Grunnable {
+ print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
+ dumpgstatus(_g_)
+ gothrow("stoplockedm: not runnable")
+ }
+ acquirep(_g_.m.nextp)
+ _g_.m.nextp = nil
+}
+
+// Schedules the locked m to run the locked gp.
+func startlockedm(gp *g) {
+ _g_ := getg()
+
+ mp := gp.lockedm
+ if mp == _g_.m {
+ gothrow("startlockedm: locked to me")
+ }
+ if mp.nextp != nil {
+ gothrow("startlockedm: m has p")
+ }
+ // directly handoff current P to the locked m
+ incidlelocked(-1)
+ _p_ := releasep()
+ mp.nextp = _p_
+ notewakeup(&mp.park)
+ stopm()
+}
+
+// Stops the current m for stoptheworld.
+// Returns when the world is restarted.
+func gcstopm() {
+ _g_ := getg()
+
+ if sched.gcwaiting == 0 {
+ gothrow("gcstopm: not waiting for gc")
+ }
+ if _g_.m.spinning {
+ _g_.m.spinning = false
+ xadd(&sched.nmspinning, -1)
+ }
+ _p_ := releasep()
+ lock(&sched.lock)
+ _p_.status = _Pgcstop
+ sched.stopwait--
+ if sched.stopwait == 0 {
+ notewakeup(&sched.stopnote)
+ }
+ unlock(&sched.lock)
+ stopm()
+}
+
+// Schedules gp to run on the current M.
+// Never returns.
+func execute(gp *g) {
+ _g_ := getg()
+
+ casgstatus(gp, _Grunnable, _Grunning)
+ gp.waitsince = 0
+ gp.preempt = false
+ gp.stackguard0 = gp.stack.lo + _StackGuard
+ _g_.m.p.schedtick++
+ _g_.m.curg = gp
+ gp.m = _g_.m
+
+ // Check whether the profiler needs to be turned on or off.
+ hz := sched.profilehz
+ if _g_.m.profilehz != hz {
+ resetcpuprofiler(hz)
+ }
+
+ gogo(&gp.sched)
+}
+
+// Finds a runnable goroutine to execute.
+// Tries to steal from other P's, get g from global queue, poll network.
+func findrunnable() *g {
+ _g_ := getg()
+
+top:
+ if sched.gcwaiting != 0 {
+ gcstopm()
+ goto top
+ }
+ if fingwait && fingwake {
+ if gp := wakefing(); gp != nil {
+ ready(gp)
+ }
+ }
+
+ // local runq
+ if gp := runqget(_g_.m.p); gp != nil {
+ return gp
+ }
+
+ // global runq
+ if sched.runqsize != 0 {
+ lock(&sched.lock)
+ gp := globrunqget(_g_.m.p, 0)
+ unlock(&sched.lock)
+ if gp != nil {
+ return gp
+ }
+ }
+
+ // poll network - returns list of goroutines
+ if gp := netpoll(false); gp != nil { // non-blocking
+ injectglist(gp.schedlink)
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ return gp
+ }
+
+ // If number of spinning M's >= number of busy P's, block.
+ // This is necessary to prevent excessive CPU consumption
+ // when GOMAXPROCS>>1 but the program parallelism is low.
+ if !_g_.m.spinning && 2*atomicload(&sched.nmspinning) >= uint32(gomaxprocs)-atomicload(&sched.npidle) { // TODO: fast atomic
+ goto stop
+ }
+ if !_g_.m.spinning {
+ _g_.m.spinning = true
+ xadd(&sched.nmspinning, 1)
+ }
+ // random steal from other P's
+ for i := 0; i < int(2*gomaxprocs); i++ {
+ if sched.gcwaiting != 0 {
+ goto top
+ }
+ _p_ := allp[fastrand1()%uint32(gomaxprocs)]
+ var gp *g
+ if _p_ == _g_.m.p {
+ gp = runqget(_p_)
+ } else {
+ gp = runqsteal(_g_.m.p, _p_)
+ }
+ if gp != nil {
+ return gp
+ }
+ }
+stop:
+
+ // return P and block
+ lock(&sched.lock)
+ if sched.gcwaiting != 0 {
+ unlock(&sched.lock)
+ goto top
+ }
+ if sched.runqsize != 0 {
+ gp := globrunqget(_g_.m.p, 0)
+ unlock(&sched.lock)
+ return gp
+ }
+ _p_ := releasep()
+ pidleput(_p_)
+ unlock(&sched.lock)
+ if _g_.m.spinning {
+ _g_.m.spinning = false
+ xadd(&sched.nmspinning, -1)
+ }
+
+ // check all runqueues once again
+ for i := 0; i < int(gomaxprocs); i++ {
+ _p_ := allp[i]
+ if _p_ != nil && _p_.runqhead != _p_.runqtail {
+ lock(&sched.lock)
+ _p_ = pidleget()
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ goto top
+ }
+ break
+ }
+ }
+
+ // poll network
+ if xchg64(&sched.lastpoll, 0) != 0 {
+ if _g_.m.p != nil {
+ gothrow("findrunnable: netpoll with p")
+ }
+ if _g_.m.spinning {
+ gothrow("findrunnable: netpoll with spinning")
+ }
+ gp := netpoll(true) // block until new work is available
+ atomicstore64(&sched.lastpoll, uint64(nanotime()))
+ if gp != nil {
+ lock(&sched.lock)
+ _p_ = pidleget()
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ injectglist(gp.schedlink)
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ return gp
+ }
+ injectglist(gp)
+ }
+ }
+ stopm()
+ goto top
+}
+
+func resetspinning() {
+ _g_ := getg()
+
+ var nmspinning uint32
+ if _g_.m.spinning {
+ _g_.m.spinning = false
+ nmspinning = xadd(&sched.nmspinning, -1)
+ if nmspinning < 0 {
+ gothrow("findrunnable: negative nmspinning")
+ }
+ } else {
+ nmspinning = atomicload(&sched.nmspinning)
+ }
+
+ // M wakeup policy is deliberately somewhat conservative (see nmspinning handling),
+ // so see if we need to wakeup another P here.
+ if nmspinning == 0 && atomicload(&sched.npidle) > 0 {
+ wakep()
+ }
+}
+
+// Injects the list of runnable G's into the scheduler.
+// Can run concurrently with GC.
+func injectglist(glist *g) {
+ if glist == nil {
+ return
+ }
+ lock(&sched.lock)
+ var n int
+ for n = 0; glist != nil; n++ {
+ gp := glist
+ glist = gp.schedlink
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ globrunqput(gp)
+ }
+ unlock(&sched.lock)
+ for ; n != 0 && sched.npidle != 0; n-- {
+ startm(nil, false)
+ }
+}
+
+// One round of scheduler: find a runnable goroutine and execute it.
+// Never returns.
+func schedule() {
+ _g_ := getg()
+
+ if _g_.m.locks != 0 {
+ gothrow("schedule: holding locks")
+ }
+
+ if _g_.m.lockedg != nil {
+ stoplockedm()
+ execute(_g_.m.lockedg) // Never returns.
+ }
+
+top:
+ if sched.gcwaiting != 0 {
+ gcstopm()
+ goto top
+ }
+
+ var gp *g
+ // Check the global runnable queue once in a while to ensure fairness.
+ // Otherwise two goroutines can completely occupy the local runqueue
+ // by constantly respawning each other.
+ tick := _g_.m.p.schedtick
+ // This is a fancy way to say tick%61==0,
+ // it uses 2 MUL instructions instead of a single DIV and so is faster on modern processors.
+ if uint64(tick)-((uint64(tick)*0x4325c53f)>>36)*61 == 0 && sched.runqsize > 0 {
+ lock(&sched.lock)
+ gp = globrunqget(_g_.m.p, 1)
+ unlock(&sched.lock)
+ if gp != nil {
+ resetspinning()
+ }
+ }
+ if gp == nil {
+ gp = runqget(_g_.m.p)
+ if gp != nil && _g_.m.spinning {
+ gothrow("schedule: spinning with local work")
+ }
+ }
+ if gp == nil {
+ gp = findrunnable() // blocks until work is available
+ resetspinning()
+ }
+
+ if gp.lockedm != nil {
+ // Hands off own p to the locked m,
+ // then blocks waiting for a new p.
+ startlockedm(gp)
+ goto top
+ }
+
+ execute(gp)
+}
+
+// dropg removes the association between m and the current goroutine m->curg (gp for short).
+// Typically a caller sets gp's status away from Grunning and then
+// immediately calls dropg to finish the job. The caller is also responsible
+// for arranging that gp will be restarted using ready at an
+// appropriate time. After calling dropg and arranging for gp to be
+// readied later, the caller can do other work but eventually should
+// call schedule to restart the scheduling of goroutines on this m.
+func dropg() {
+ _g_ := getg()
+
+ if _g_.m.lockedg == nil {
+ _g_.m.curg.m = nil
+ _g_.m.curg = nil
+ }
+}
+
+// Puts the current goroutine into a waiting state and calls unlockf.
+// If unlockf returns false, the goroutine is resumed.
+func park(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason string) {
+ _g_ := getg()
+
+ _g_.m.waitlock = lock
+ _g_.m.waitunlockf = *(*unsafe.Pointer)(unsafe.Pointer(&unlockf))
+ _g_.waitreason = reason
+ mcall(park_m)
+}
+
+func parkunlock_c(gp *g, lock unsafe.Pointer) bool {
+ unlock((*mutex)(lock))
+ return true
+}
+
+// Puts the current goroutine into a waiting state and unlocks the lock.
+// The goroutine can be made runnable again by calling ready(gp).
+func parkunlock(lock *mutex, reason string) {
+ park(parkunlock_c, unsafe.Pointer(lock), reason)
+}
+
+// park continuation on g0.
+func park_m(gp *g) {
+ _g_ := getg()
+
+ casgstatus(gp, _Grunning, _Gwaiting)
+ dropg()
+
+ if _g_.m.waitunlockf != nil {
+ fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf))
+ ok := fn(gp, _g_.m.waitlock)
+ _g_.m.waitunlockf = nil
+ _g_.m.waitlock = nil
+ if !ok {
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ execute(gp) // Schedule it back, never returns.
+ }
+ }
+ schedule()
+}
+
+// Gosched continuation on g0.
+func gosched_m(gp *g) {
+ status := readgstatus(gp)
+ if status&^_Gscan != _Grunning {
+ dumpgstatus(gp)
+ gothrow("bad g status")
+ }
+ casgstatus(gp, _Grunning, _Grunnable)
+ dropg()
+ lock(&sched.lock)
+ globrunqput(gp)
+ unlock(&sched.lock)
+
+ schedule()
+}
+
+// Finishes execution of the current goroutine.
+// Must be NOSPLIT because it is called from Go. (TODO - probably not anymore)
+//go:nosplit
+func goexit1() {
+ if raceenabled {
+ racegoend()
+ }
+ mcall(goexit0)
+}
+
+// goexit continuation on g0.
+func goexit0(gp *g) {
+ _g_ := getg()
+
+ casgstatus(gp, _Grunning, _Gdead)
+ gp.m = nil
+ gp.lockedm = nil
+ _g_.m.lockedg = nil
+ gp.paniconfault = false
+ gp._defer = nil // should be true already but just in case.
+ gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
+ gp.writebuf = nil
+ gp.waitreason = ""
+ gp.param = nil
+
+ dropg()
+
+ if _g_.m.locked&^_LockExternal != 0 {
+ print("invalid m->locked = ", _g_.m.locked, "\n")
+ gothrow("internal lockOSThread error")
+ }
+ _g_.m.locked = 0
+ gfput(_g_.m.p, gp)
+ schedule()
+}
+
+//go:nosplit
+func save(pc, sp uintptr) {
+ _g_ := getg()
+
+ _g_.sched.pc = pc
+ _g_.sched.sp = sp
+ _g_.sched.lr = 0
+ _g_.sched.ret = 0
+ _g_.sched.ctxt = nil
+ // write as uintptr to avoid write barrier, which will smash _g_.sched.
+ *(*uintptr)(unsafe.Pointer(&_g_.sched.g)) = uintptr(unsafe.Pointer(_g_))
+}
+
+// The goroutine g is about to enter a system call.
+// Record that it's not using the cpu anymore.
+// This is called only from the go syscall library and cgocall,
+// not from the low-level system calls used by the
+//
+// Entersyscall cannot split the stack: the gosave must
+// make g->sched refer to the caller's stack segment, because
+// entersyscall is going to return immediately after.
+//
+// Nothing entersyscall calls can split the stack either.
+// We cannot safely move the stack during an active call to syscall,
+// because we do not know which of the uintptr arguments are
+// really pointers (back into the stack).
+// In practice, this means that we make the fast path run through
+// entersyscall doing no-split things, and the slow path has to use systemstack
+// to run bigger things on the system stack.
+//
+// reentersyscall is the entry point used by cgo callbacks, where explicitly
+// saved SP and PC are restored. This is needed when exitsyscall will be called
+// from a function further up in the call stack than the parent, as g->syscallsp
+// must always point to a valid stack frame. entersyscall below is the normal
+// entry point for syscalls, which obtains the SP and PC from the caller.
+//go:nosplit
+func reentersyscall(pc, sp uintptr) {
+ _g_ := getg()
+
+ // Disable preemption because during this function g is in Gsyscall status,
+ // but can have inconsistent g->sched, do not let GC observe it.
+ _g_.m.locks++
+
+ // Entersyscall must not call any function that might split/grow the stack.
+ // (See details in comment above.)
+ // Catch calls that might, by replacing the stack guard with something that
+ // will trip any stack check and leaving a flag to tell newstack to die.
+ _g_.stackguard0 = stackPreempt
+ _g_.throwsplit = true
+
+ // Leave SP around for GC and traceback.
+ save(pc, sp)
+ _g_.syscallsp = sp
+ _g_.syscallpc = pc
+ casgstatus(_g_, _Grunning, _Gsyscall)
+ if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
+ systemstack(func() {
+ print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
+ gothrow("entersyscall")
+ })
+ }
+
+ if atomicload(&sched.sysmonwait) != 0 { // TODO: fast atomic
+ systemstack(entersyscall_sysmon)
+ save(pc, sp)
+ }
+
+ _g_.m.mcache = nil
+ _g_.m.p.m = nil
+ atomicstore(&_g_.m.p.status, _Psyscall)
+ if sched.gcwaiting != 0 {
+ systemstack(entersyscall_gcwait)
+ save(pc, sp)
+ }
+
+ // Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched).
+ // We set _StackGuard to StackPreempt so that first split stack check calls morestack.
+ // Morestack detects this case and throws.
+ _g_.stackguard0 = stackPreempt
+ _g_.m.locks--
+}
+
+// Standard syscall entry used by the go syscall library and normal cgo calls.
+//go:nosplit
+func entersyscall(dummy int32) {
+ reentersyscall(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
+}
+
+func entersyscall_sysmon() {
+ lock(&sched.lock)
+ if atomicload(&sched.sysmonwait) != 0 {
+ atomicstore(&sched.sysmonwait, 0)
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+}
+
+func entersyscall_gcwait() {
+ _g_ := getg()
+
+ lock(&sched.lock)
+ if sched.stopwait > 0 && cas(&_g_.m.p.status, _Psyscall, _Pgcstop) {
+ if sched.stopwait--; sched.stopwait == 0 {
+ notewakeup(&sched.stopnote)
+ }
+ }
+ unlock(&sched.lock)
+}
+
+// The same as entersyscall(), but with a hint that the syscall is blocking.
+//go:nosplit
+func entersyscallblock(dummy int32) {
+ _g_ := getg()
+
+ _g_.m.locks++ // see comment in entersyscall
+ _g_.throwsplit = true
+ _g_.stackguard0 = stackPreempt // see comment in entersyscall
+
+ // Leave SP around for GC and traceback.
+ pc := getcallerpc(unsafe.Pointer(&dummy))
+ sp := getcallersp(unsafe.Pointer(&dummy))
+ save(pc, sp)
+ _g_.syscallsp = _g_.sched.sp
+ _g_.syscallpc = _g_.sched.pc
+ if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
+ sp1 := sp
+ sp2 := _g_.sched.sp
+ sp3 := _g_.syscallsp
+ systemstack(func() {
+ print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
+ gothrow("entersyscallblock")
+ })
+ }
+ casgstatus(_g_, _Grunning, _Gsyscall)
+ if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
+ systemstack(func() {
+ print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
+ gothrow("entersyscallblock")
+ })
+ }
+
+ systemstack(entersyscallblock_handoff)
+
+ // Resave for traceback during blocked call.
+ save(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
+
+ _g_.m.locks--
+}
+
+func entersyscallblock_handoff() {
+ handoffp(releasep())
+}
+
+// The goroutine g exited its system call.
+// Arrange for it to run on a cpu again.
+// This is called only from the go syscall library, not
+// from the low-level system calls used by the
+//go:nosplit
+func exitsyscall(dummy int32) {
+ _g_ := getg()
+
+ _g_.m.locks++ // see comment in entersyscall
+ if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp {
+ gothrow("exitsyscall: syscall frame is no longer valid")
+ }
+
+ _g_.waitsince = 0
+ if exitsyscallfast() {
+ if _g_.m.mcache == nil {
+ gothrow("lost mcache")
+ }
+ // There's a cpu for us, so we can run.
+ _g_.m.p.syscalltick++
+ // We need to cas the status and scan before resuming...
+ casgstatus(_g_, _Gsyscall, _Grunning)
+
+ // Garbage collector isn't running (since we are),
+ // so okay to clear syscallsp.
+ _g_.syscallsp = 0
+ _g_.m.locks--
+ if _g_.preempt {
+ // restore the preemption request in case we've cleared it in newstack
+ _g_.stackguard0 = stackPreempt
+ } else {
+ // otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock
+ _g_.stackguard0 = _g_.stack.lo + _StackGuard
+ }
+ _g_.throwsplit = false
+ return
+ }
+
+ _g_.m.locks--
+
+ // Call the scheduler.
+ mcall(exitsyscall0)
+
+ if _g_.m.mcache == nil {
+ gothrow("lost mcache")
+ }
+
+ // Scheduler returned, so we're allowed to run now.
+ // Delete the syscallsp information that we left for
+ // the garbage collector during the system call.
+ // Must wait until now because until gosched returns
+ // we don't know for sure that the garbage collector
+ // is not running.
+ _g_.syscallsp = 0
+ _g_.m.p.syscalltick++
+ _g_.throwsplit = false
+}
+
+//go:nosplit
+func exitsyscallfast() bool {
+ _g_ := getg()
+
+ // Freezetheworld sets stopwait but does not retake P's.
+ if sched.stopwait != 0 {
+ _g_.m.mcache = nil
+ _g_.m.p = nil
+ return false
+ }
+
+ // Try to re-acquire the last P.
+ if _g_.m.p != nil && _g_.m.p.status == _Psyscall && cas(&_g_.m.p.status, _Psyscall, _Prunning) {
+ // There's a cpu for us, so we can run.
+ _g_.m.mcache = _g_.m.p.mcache
+ _g_.m.p.m = _g_.m
+ return true
+ }
+
+ // Try to get any other idle P.
+ _g_.m.mcache = nil
+ _g_.m.p = nil
+ if sched.pidle != nil {
+ var ok bool
+ systemstack(func() {
+ ok = exitsyscallfast_pidle()
+ })
+ if ok {
+ return true
+ }
+ }
+ return false
+}
+
+func exitsyscallfast_pidle() bool {
+ lock(&sched.lock)
+ _p_ := pidleget()
+ if _p_ != nil && atomicload(&sched.sysmonwait) != 0 {
+ atomicstore(&sched.sysmonwait, 0)
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ return true
+ }
+ return false
+}
+
+// exitsyscall slow path on g0.
+// Failed to acquire P, enqueue gp as runnable.
+func exitsyscall0(gp *g) {
+ _g_ := getg()
+
+ casgstatus(gp, _Gsyscall, _Grunnable)
+ dropg()
+ lock(&sched.lock)
+ _p_ := pidleget()
+ if _p_ == nil {
+ globrunqput(gp)
+ } else if atomicload(&sched.sysmonwait) != 0 {
+ atomicstore(&sched.sysmonwait, 0)
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ execute(gp) // Never returns.
+ }
+ if _g_.m.lockedg != nil {
+ // Wait until another thread schedules gp and so m again.
+ stoplockedm()
+ execute(gp) // Never returns.
+ }
+ stopm()
+ schedule() // Never returns.
+}
+
+func beforefork() {
+ gp := getg().m.curg
+
+ // Fork can hang if preempted with signals frequently enough (see issue 5517).
+ // Ensure that we stay on the same M where we disable profiling.
+ gp.m.locks++
+ if gp.m.profilehz != 0 {
+ resetcpuprofiler(0)
+ }
+
+ // This function is called before fork in syscall package.
+ // Code between fork and exec must not allocate memory nor even try to grow stack.
+ // Here we spoil g->_StackGuard to reliably detect any attempts to grow stack.
+ // runtime_AfterFork will undo this in parent process, but not in child.
+ gp.stackguard0 = stackFork
+}
+
+// Called from syscall package before fork.
+//go:nosplit
+func syscall_BeforeFork() {
+ systemstack(beforefork)
+}
+
+func afterfork() {
+ gp := getg().m.curg
+
+ // See the comment in beforefork.
+ gp.stackguard0 = gp.stack.lo + _StackGuard
+
+ hz := sched.profilehz
+ if hz != 0 {
+ resetcpuprofiler(hz)
+ }
+ gp.m.locks--
+}
+
+// Called from syscall package after fork in parent.
+//go:nosplit
+func syscall_AfterFork() {
+ systemstack(afterfork)
+}
+
+// Allocate a new g, with a stack big enough for stacksize bytes.
+func malg(stacksize int32) *g {
+ newg := allocg()
+ if stacksize >= 0 {
+ stacksize = round2(_StackSystem + stacksize)
+ systemstack(func() {
+ newg.stack = stackalloc(uint32(stacksize))
+ })
+ newg.stackguard0 = newg.stack.lo + _StackGuard
+ newg.stackguard1 = ^uintptr(0)
+ }
+ return newg
+}
+
+// Create a new g running fn with siz bytes of arguments.
+// Put it on the queue of g's waiting to run.
+// The compiler turns a go statement into a call to this.
+// Cannot split the stack because it assumes that the arguments
+// are available sequentially after &fn; they would not be
+// copied if a stack split occurred.
+//go:nosplit
+func newproc(siz int32, fn *funcval) {
+ argp := add(unsafe.Pointer(&fn), ptrSize)
+ if hasLinkRegister {
+ argp = add(argp, ptrSize) // skip caller's saved LR
+ }
+
+ pc := getcallerpc(unsafe.Pointer(&siz))
+ systemstack(func() {
+ newproc1(fn, (*uint8)(argp), siz, 0, pc)
+ })
+}
+
+// Create a new g running fn with narg bytes of arguments starting
+// at argp and returning nret bytes of results. callerpc is the
+// address of the go statement that created this. The new g is put
+// on the queue of g's waiting to run.
+func newproc1(fn *funcval, argp *uint8, narg int32, nret int32, callerpc uintptr) *g {
+ _g_ := getg()
+
+ if fn == nil {
+ _g_.m.throwing = -1 // do not dump full stacks
+ gothrow("go of nil func value")
+ }
+ _g_.m.locks++ // disable preemption because it can be holding p in a local var
+ siz := narg + nret
+ siz = (siz + 7) &^ 7
+
+ // We could allocate a larger initial stack if necessary.
+ // Not worth it: this is almost always an error.
+ // 4*sizeof(uintreg): extra space added below
+ // sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
+ if siz >= _StackMin-4*regSize-regSize {
+ gothrow("newproc: function arguments too large for new goroutine")
+ }
+
+ _p_ := _g_.m.p
+ newg := gfget(_p_)
+ if newg == nil {
+ newg = malg(_StackMin)
+ casgstatus(newg, _Gidle, _Gdead)
+ allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
+ }
+ if newg.stack.hi == 0 {
+ gothrow("newproc1: newg missing stack")
+ }
+
+ if readgstatus(newg) != _Gdead {
+ gothrow("newproc1: new g is not Gdead")
+ }
+
+ sp := newg.stack.hi
+ sp -= 4 * regSize // extra space in case of reads slightly beyond frame
+ sp -= uintptr(siz)
+ memmove(unsafe.Pointer(sp), unsafe.Pointer(argp), uintptr(narg))
+ if hasLinkRegister {
+ // caller's LR
+ sp -= ptrSize
+ *(*unsafe.Pointer)(unsafe.Pointer(sp)) = nil
+ }
+
+ memclr(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
+ newg.sched.sp = sp
+ newg.sched.pc = funcPC(goexit) + _PCQuantum // +PCQuantum so that previous instruction is in same function
+ newg.sched.g = newg
+ gostartcallfn(&newg.sched, fn)
+ newg.gopc = callerpc
+ casgstatus(newg, _Gdead, _Grunnable)
+
+ if _p_.goidcache == _p_.goidcacheend {
+ // Sched.goidgen is the last allocated id,
+ // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
+ // At startup sched.goidgen=0, so main goroutine receives goid=1.
+ _p_.goidcache = xadd64(&sched.goidgen, _GoidCacheBatch)
+ _p_.goidcache -= _GoidCacheBatch - 1
+ _p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
+ }
+ newg.goid = int64(_p_.goidcache)
+ _p_.goidcache++
+ if raceenabled {
+ newg.racectx = racegostart(callerpc)
+ }
+ runqput(_p_, newg)
+
+ if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 && unsafe.Pointer(fn.fn) != unsafe.Pointer(funcPC(main)) { // TODO: fast atomic
+ wakep()
+ }
+ _g_.m.locks--
+ if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
+ _g_.stackguard0 = stackPreempt
+ }
+ return newg
+}
+
+// Put on gfree list.
+// If local list is too long, transfer a batch to the global list.
+func gfput(_p_ *p, gp *g) {
+ if readgstatus(gp) != _Gdead {
+ gothrow("gfput: bad status (not Gdead)")
+ }
+
+ stksize := gp.stack.hi - gp.stack.lo
+
+ if stksize != _FixedStack {
+ // non-standard stack size - free it.
+ stackfree(gp.stack)
+ gp.stack.lo = 0
+ gp.stack.hi = 0
+ gp.stackguard0 = 0
+ }
+
+ gp.schedlink = _p_.gfree
+ _p_.gfree = gp
+ _p_.gfreecnt++
+ if _p_.gfreecnt >= 64 {
+ lock(&sched.gflock)
+ for _p_.gfreecnt >= 32 {
+ _p_.gfreecnt--
+ gp = _p_.gfree
+ _p_.gfree = gp.schedlink
+ gp.schedlink = sched.gfree
+ sched.gfree = gp
+ sched.ngfree++
+ }
+ unlock(&sched.gflock)
+ }
+}
+
+// Get from gfree list.
+// If local list is empty, grab a batch from global list.
+func gfget(_p_ *p) *g {
+retry:
+ gp := _p_.gfree
+ if gp == nil && sched.gfree != nil {
+ lock(&sched.gflock)
+ for _p_.gfreecnt < 32 && sched.gfree != nil {
+ _p_.gfreecnt++
+ gp = sched.gfree
+ sched.gfree = gp.schedlink
+ sched.ngfree--
+ gp.schedlink = _p_.gfree
+ _p_.gfree = gp
+ }
+ unlock(&sched.gflock)
+ goto retry
+ }
+ if gp != nil {
+ _p_.gfree = gp.schedlink
+ _p_.gfreecnt--
+ if gp.stack.lo == 0 {
+ // Stack was deallocated in gfput. Allocate a new one.
+ systemstack(func() {
+ gp.stack = stackalloc(_FixedStack)
+ })
+ gp.stackguard0 = gp.stack.lo + _StackGuard
+ } else {
+ if raceenabled {
+ racemalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo)
+ }
+ }
+ }
+ return gp
+}
+
+// Purge all cached G's from gfree list to the global list.
+func gfpurge(_p_ *p) {
+ lock(&sched.gflock)
+ for _p_.gfreecnt != 0 {
+ _p_.gfreecnt--
+ gp := _p_.gfree
+ _p_.gfree = gp.schedlink
+ gp.schedlink = sched.gfree
+ sched.gfree = gp
+ sched.ngfree++
+ }
+ unlock(&sched.gflock)
+}
+
+// Breakpoint executes a breakpoint trap.
+func Breakpoint() {
+ breakpoint()
+}
+
+// dolockOSThread is called by LockOSThread and lockOSThread below
+// after they modify m.locked. Do not allow preemption during this call,
+// or else the m might be different in this function than in the caller.
+//go:nosplit
+func dolockOSThread() {
+ _g_ := getg()
+ _g_.m.lockedg = _g_
+ _g_.lockedm = _g_.m
+}
+
+//go:nosplit
+
+// LockOSThread wires the calling goroutine to its current operating system thread.
+// Until the calling goroutine exits or calls UnlockOSThread, it will always
+// execute in that thread, and no other goroutine can.
+func LockOSThread() {
+ getg().m.locked |= _LockExternal
+ dolockOSThread()
+}
+
+//go:nosplit
+func lockOSThread() {
+ getg().m.locked += _LockInternal
+ dolockOSThread()
+}
+
+// dounlockOSThread is called by UnlockOSThread and unlockOSThread below
+// after they update m->locked. Do not allow preemption during this call,
+// or else the m might be in different in this function than in the caller.
+//go:nosplit
+func dounlockOSThread() {
+ _g_ := getg()
+ if _g_.m.locked != 0 {
+ return
+ }
+ _g_.m.lockedg = nil
+ _g_.lockedm = nil
+}
+
+//go:nosplit
+
+// UnlockOSThread unwires the calling goroutine from its fixed operating system thread.
+// If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op.
+func UnlockOSThread() {
+ getg().m.locked &^= _LockExternal
+ dounlockOSThread()
+}
+
+//go:nosplit
+func unlockOSThread() {
+ _g_ := getg()
+ if _g_.m.locked < _LockInternal {
+ systemstack(badunlockosthread)
+ }
+ _g_.m.locked -= _LockInternal
+ dounlockOSThread()
+}
+
+func badunlockosthread() {
+ gothrow("runtime: internal error: misuse of lockOSThread/unlockOSThread")
+}
+
+func gcount() int32 {
+ n := int32(allglen) - sched.ngfree
+ for i := 0; ; i++ {
+ _p_ := allp[i]
+ if _p_ == nil {
+ break
+ }
+ n -= _p_.gfreecnt
+ }
+
+ // All these variables can be changed concurrently, so the result can be inconsistent.
+ // But at least the current goroutine is running.
+ if n < 1 {
+ n = 1
+ }
+ return n
+}
+
+func mcount() int32 {
+ return sched.mcount
+}
+
+var prof struct {
+ lock uint32
+ hz int32
+}
+
+func _System() { _System() }
+func _ExternalCode() { _ExternalCode() }
+func _GC() { _GC() }
+
+var etext struct{}
+
+// Called if we receive a SIGPROF signal.
+func sigprof(pc *uint8, sp *uint8, lr *uint8, gp *g, mp *m) {
+ var n int32
+ var traceback bool
+ var stk [100]uintptr
+
+ if prof.hz == 0 {
+ return
+ }
+
+ // Profiling runs concurrently with GC, so it must not allocate.
+ mp.mallocing++
+
+ // Define that a "user g" is a user-created goroutine, and a "system g"
+ // is one that is m->g0 or m->gsignal. We've only made sure that we
+ // can unwind user g's, so exclude the system g's.
+ //
+ // It is not quite as easy as testing gp == m->curg (the current user g)
+ // because we might be interrupted for profiling halfway through a
+ // goroutine switch. The switch involves updating three (or four) values:
+ // g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
+ // because once it gets updated the new g is running.
+ //
+ // When switching from a user g to a system g, LR is not considered live,
+ // so the update only affects g, SP, and PC. Since PC must be last, there
+ // the possible partial transitions in ordinary execution are (1) g alone is updated,
+ // (2) both g and SP are updated, and (3) SP alone is updated.
+ // If g is updated, we'll see a system g and not look closer.
+ // If SP alone is updated, we can detect the partial transition by checking
+ // whether the SP is within g's stack bounds. (We could also require that SP
+ // be changed only after g, but the stack bounds check is needed by other
+ // cases, so there is no need to impose an additional requirement.)
+ //
+ // There is one exceptional transition to a system g, not in ordinary execution.
+ // When a signal arrives, the operating system starts the signal handler running
+ // with an updated PC and SP. The g is updated last, at the beginning of the
+ // handler. There are two reasons this is okay. First, until g is updated the
+ // g and SP do not match, so the stack bounds check detects the partial transition.
+ // Second, signal handlers currently run with signals disabled, so a profiling
+ // signal cannot arrive during the handler.
+ //
+ // When switching from a system g to a user g, there are three possibilities.
+ //
+ // First, it may be that the g switch has no PC update, because the SP
+ // either corresponds to a user g throughout (as in asmcgocall)
+ // or because it has been arranged to look like a user g frame
+ // (as in cgocallback_gofunc). In this case, since the entire
+ // transition is a g+SP update, a partial transition updating just one of
+ // those will be detected by the stack bounds check.
+ //
+ // Second, when returning from a signal handler, the PC and SP updates
+ // are performed by the operating system in an atomic update, so the g
+ // update must be done before them. The stack bounds check detects
+ // the partial transition here, and (again) signal handlers run with signals
+ // disabled, so a profiling signal cannot arrive then anyway.
+ //
+ // Third, the common case: it may be that the switch updates g, SP, and PC
+ // separately, as in gogo.
+ //
+ // Because gogo is the only instance, we check whether the PC lies
+ // within that function, and if so, not ask for a traceback. This approach
+ // requires knowing the size of the gogo function, which we
+ // record in arch_*.h and check in runtime_test.go.
+ //
+ // There is another apparently viable approach, recorded here in case
+ // the "PC within gogo" check turns out not to be usable.
+ // It would be possible to delay the update of either g or SP until immediately
+ // before the PC update instruction. Then, because of the stack bounds check,
+ // the only problematic interrupt point is just before that PC update instruction,
+ // and the sigprof handler can detect that instruction and simulate stepping past
+ // it in order to reach a consistent state. On ARM, the update of g must be made
+ // in two places (in R10 and also in a TLS slot), so the delayed update would
+ // need to be the SP update. The sigprof handler must read the instruction at
+ // the current PC and if it was the known instruction (for example, JMP BX or
+ // MOV R2, PC), use that other register in place of the PC value.
+ // The biggest drawback to this solution is that it requires that we can tell
+ // whether it's safe to read from the memory pointed at by PC.
+ // In a correct program, we can test PC == nil and otherwise read,
+ // but if a profiling signal happens at the instant that a program executes
+ // a bad jump (before the program manages to handle the resulting fault)
+ // the profiling handler could fault trying to read nonexistent memory.
+ //
+ // To recap, there are no constraints on the assembly being used for the
+ // transition. We simply require that g and SP match and that the PC is not
+ // in gogo.
+ traceback = true
+ usp := uintptr(unsafe.Pointer(sp))
+ gogo := funcPC(gogo)
+ if gp == nil || gp != mp.curg ||
+ usp < gp.stack.lo || gp.stack.hi < usp ||
+ (gogo <= uintptr(unsafe.Pointer(pc)) && uintptr(unsafe.Pointer(pc)) < gogo+_RuntimeGogoBytes) {
+ traceback = false
+ }
+
+ n = 0
+ if traceback {
+ n = int32(gentraceback(uintptr(unsafe.Pointer(pc)), uintptr(unsafe.Pointer(sp)), uintptr(unsafe.Pointer(lr)), gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap))
+ }
+ if !traceback || n <= 0 {
+ // Normal traceback is impossible or has failed.
+ // See if it falls into several common cases.
+ n = 0
+ if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 {
+ // Cgo, we can't unwind and symbolize arbitrary C code,
+ // so instead collect Go stack that leads to the cgo call.
+ // This is especially important on windows, since all syscalls are cgo calls.
+ n = int32(gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[0], len(stk), nil, nil, 0))
+ }
+ if GOOS == "windows" && n == 0 && mp.libcallg != nil && mp.libcallpc != 0 && mp.libcallsp != 0 {
+ // Libcall, i.e. runtime syscall on windows.
+ // Collect Go stack that leads to the call.
+ n = int32(gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg, 0, &stk[0], len(stk), nil, nil, 0))
+ }
+ if n == 0 {
+ // If all of the above has failed, account it against abstract "System" or "GC".
+ n = 2
+ // "ExternalCode" is better than "etext".
+ if uintptr(unsafe.Pointer(pc)) > uintptr(unsafe.Pointer(&etext)) {
+ pc = (*uint8)(unsafe.Pointer(uintptr(funcPC(_ExternalCode) + _PCQuantum)))
+ }
+ stk[0] = uintptr(unsafe.Pointer(pc))
+ if mp.gcing != 0 || mp.helpgc != 0 {
+ stk[1] = funcPC(_GC) + _PCQuantum
+ } else {
+ stk[1] = funcPC(_System) + _PCQuantum
+ }
+ }
+ }
+
+ if prof.hz != 0 {
+ // Simple cas-lock to coordinate with setcpuprofilerate.
+ for !cas(&prof.lock, 0, 1) {
+ osyield()
+ }
+ if prof.hz != 0 {
+ cpuproftick(&stk[0], n)
+ }
+ atomicstore(&prof.lock, 0)
+ }
+ mp.mallocing--
+}
+
+// Arrange to call fn with a traceback hz times a second.
+func setcpuprofilerate_m(hz int32) {
+ // Force sane arguments.
+ if hz < 0 {
+ hz = 0
+ }
+
+ // Disable preemption, otherwise we can be rescheduled to another thread
+ // that has profiling enabled.
+ _g_ := getg()
+ _g_.m.locks++
+
+ // Stop profiler on this thread so that it is safe to lock prof.
+ // if a profiling signal came in while we had prof locked,
+ // it would deadlock.
+ resetcpuprofiler(0)
+
+ for !cas(&prof.lock, 0, 1) {
+ osyield()
+ }
+ prof.hz = hz
+ atomicstore(&prof.lock, 0)
+
+ lock(&sched.lock)
+ sched.profilehz = hz
+ unlock(&sched.lock)
+
+ if hz != 0 {
+ resetcpuprofiler(hz)
+ }
+
+ _g_.m.locks--
+}
+
+// Change number of processors. The world is stopped, sched is locked.
+// gcworkbufs are not being modified by either the GC or
+// the write barrier code.
+func procresize(new int32) {
+ old := gomaxprocs
+ if old < 0 || old > _MaxGomaxprocs || new <= 0 || new > _MaxGomaxprocs {
+ gothrow("procresize: invalid arg")
+ }
+
+ // initialize new P's
+ for i := int32(0); i < new; i++ {
+ p := allp[i]
+ if p == nil {
+ p = newP()
+ p.id = i
+ p.status = _Pgcstop
+ atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(p))
+ }
+ if p.mcache == nil {
+ if old == 0 && i == 0 {
+ if getg().m.mcache == nil {
+ gothrow("missing mcache?")
+ }
+ p.mcache = getg().m.mcache // bootstrap
+ } else {
+ p.mcache = allocmcache()
+ }
+ }
+ }
+
+ // redistribute runnable G's evenly
+ // collect all runnable goroutines in global queue preserving FIFO order
+ // FIFO order is required to ensure fairness even during frequent GCs
+ // see http://golang.org/issue/7126
+ empty := false
+ for !empty {
+ empty = true
+ for i := int32(0); i < old; i++ {
+ p := allp[i]
+ if p.runqhead == p.runqtail {
+ continue
+ }
+ empty = false
+ // pop from tail of local queue
+ p.runqtail--
+ gp := p.runq[p.runqtail%uint32(len(p.runq))]
+ // push onto head of global queue
+ gp.schedlink = sched.runqhead
+ sched.runqhead = gp
+ if sched.runqtail == nil {
+ sched.runqtail = gp
+ }
+ sched.runqsize++
+ }
+ }
+
+ // fill local queues with at most len(p.runq)/2 goroutines
+ // start at 1 because current M already executes some G and will acquire allp[0] below,
+ // so if we have a spare G we want to put it into allp[1].
+ var _p_ p
+ for i := int32(1); i < new*int32(len(_p_.runq))/2 && sched.runqsize > 0; i++ {
+ gp := sched.runqhead
+ sched.runqhead = gp.schedlink
+ if sched.runqhead == nil {
+ sched.runqtail = nil
+ }
+ sched.runqsize--
+ runqput(allp[i%new], gp)
+ }
+
+ // free unused P's
+ for i := new; i < old; i++ {
+ p := allp[i]
+ freemcache(p.mcache)
+ p.mcache = nil
+ gfpurge(p)
+ p.status = _Pdead
+ // can't free P itself because it can be referenced by an M in syscall
+ }
+
+ _g_ := getg()
+ if _g_.m.p != nil {
+ _g_.m.p.m = nil
+ }
+ _g_.m.p = nil
+ _g_.m.mcache = nil
+ p := allp[0]
+ p.m = nil
+ p.status = _Pidle
+ acquirep(p)
+ for i := new - 1; i > 0; i-- {
+ p := allp[i]
+ p.status = _Pidle
+ pidleput(p)
+ }
+ var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
+ atomicstore((*uint32)(unsafe.Pointer(int32p)), uint32(new))
+}
+
+// Associate p and the current m.
+func acquirep(_p_ *p) {
+ _g_ := getg()
+
+ if _g_.m.p != nil || _g_.m.mcache != nil {
+ gothrow("acquirep: already in go")
+ }
+ if _p_.m != nil || _p_.status != _Pidle {
+ id := int32(0)
+ if _p_.m != nil {
+ id = _p_.m.id
+ }
+ print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
+ gothrow("acquirep: invalid p state")
+ }
+ _g_.m.mcache = _p_.mcache
+ _g_.m.p = _p_
+ _p_.m = _g_.m
+ _p_.status = _Prunning
+}
+
+// Disassociate p and the current m.
+func releasep() *p {
+ _g_ := getg()
+
+ if _g_.m.p == nil || _g_.m.mcache == nil {
+ gothrow("releasep: invalid arg")
+ }
+ _p_ := _g_.m.p
+ if _p_.m != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning {
+ print("releasep: m=", _g_.m, " m->p=", _g_.m.p, " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n")
+ gothrow("releasep: invalid p state")
+ }
+ _g_.m.p = nil
+ _g_.m.mcache = nil
+ _p_.m = nil
+ _p_.status = _Pidle
+ return _p_
+}
+
+func incidlelocked(v int32) {
+ lock(&sched.lock)
+ sched.nmidlelocked += v
+ if v > 0 {
+ checkdead()
+ }
+ unlock(&sched.lock)
+}
+
+// Check for deadlock situation.
+// The check is based on number of running M's, if 0 -> deadlock.
+func checkdead() {
+ // If we are dying because of a signal caught on an already idle thread,
+ // freezetheworld will cause all running threads to block.
+ // And runtime will essentially enter into deadlock state,
+ // except that there is a thread that will call exit soon.
+ if panicking > 0 {
+ return
+ }
+
+ // -1 for sysmon
+ run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1
+ if run > 0 {
+ return
+ }
+ if run < 0 {
+ print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n")
+ gothrow("checkdead: inconsistent counts")
+ }
+
+ grunning := 0
+ lock(&allglock)
+ for i := 0; i < len(allgs); i++ {
+ gp := allgs[i]
+ if gp.issystem {
+ continue
+ }
+ s := readgstatus(gp)
+ switch s &^ _Gscan {
+ case _Gwaiting:
+ grunning++
+ case _Grunnable,
+ _Grunning,
+ _Gsyscall:
+ unlock(&allglock)
+ print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
+ gothrow("checkdead: runnable g")
+ }
+ }
+ unlock(&allglock)
+ if grunning == 0 { // possible if main goroutine calls runtime·Goexit()
+ gothrow("no goroutines (main called runtime.Goexit) - deadlock!")
+ }
+
+ // Maybe jump time forward for playground.
+ gp := timejump()
+ if gp != nil {
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ globrunqput(gp)
+ _p_ := pidleget()
+ if _p_ == nil {
+ gothrow("checkdead: no p for timer")
+ }
+ mp := mget()
+ if mp == nil {
+ _newm(nil, _p_)
+ } else {
+ mp.nextp = _p_
+ notewakeup(&mp.park)
+ }
+ return
+ }
+
+ getg().m.throwing = -1 // do not dump full stacks
+ gothrow("all goroutines are asleep - deadlock!")
+}
+
+func sysmon() {
+ // If we go two minutes without a garbage collection, force one to run.
+ forcegcperiod := int64(2 * 60 * 1e9)
+
+ // If a heap span goes unused for 5 minutes after a garbage collection,
+ // we hand it back to the operating system.
+ scavengelimit := int64(5 * 60 * 1e9)
+
+ if debug.scavenge > 0 {
+ // Scavenge-a-lot for testing.
+ forcegcperiod = 10 * 1e6
+ scavengelimit = 20 * 1e6
+ }
+
+ lastscavenge := nanotime()
+ nscavenge := 0
+
+ // Make wake-up period small enough for the sampling to be correct.
+ maxsleep := forcegcperiod / 2
+ if scavengelimit < forcegcperiod {
+ maxsleep = scavengelimit / 2
+ }
+
+ lasttrace := int64(0)
+ idle := 0 // how many cycles in succession we had not wokeup somebody
+ delay := uint32(0)
+ for {
+ if idle == 0 { // start with 20us sleep...
+ delay = 20
+ } else if idle > 50 { // start doubling the sleep after 1ms...
+ delay *= 2
+ }
+ if delay > 10*1000 { // up to 10ms
+ delay = 10 * 1000
+ }
+ usleep(delay)
+ if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs)) { // TODO: fast atomic
+ lock(&sched.lock)
+ if atomicload(&sched.gcwaiting) != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs) {
+ atomicstore(&sched.sysmonwait, 1)
+ unlock(&sched.lock)
+ notetsleep(&sched.sysmonnote, maxsleep)
+ lock(&sched.lock)
+ atomicstore(&sched.sysmonwait, 0)
+ noteclear(&sched.sysmonnote)
+ idle = 0
+ delay = 20
+ }
+ unlock(&sched.lock)
+ }
+ // poll network if not polled for more than 10ms
+ lastpoll := int64(atomicload64(&sched.lastpoll))
+ now := nanotime()
+ unixnow := unixnanotime()
+ if lastpoll != 0 && lastpoll+10*1000*1000 < now {
+ cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
+ gp := netpoll(false) // non-blocking - returns list of goroutines
+ if gp != nil {
+ // Need to decrement number of idle locked M's
+ // (pretending that one more is running) before injectglist.
+ // Otherwise it can lead to the following situation:
+ // injectglist grabs all P's but before it starts M's to run the P's,
+ // another M returns from syscall, finishes running its G,
+ // observes that there is no work to do and no other running M's
+ // and reports deadlock.
+ incidlelocked(-1)
+ injectglist(gp)
+ incidlelocked(1)
+ }
+ }
+ // retake P's blocked in syscalls
+ // and preempt long running G's
+ if retake(now) != 0 {
+ idle = 0
+ } else {
+ idle++
+ }
+ // check if we need to force a GC
+ lastgc := int64(atomicload64(&memstats.last_gc))
+ if lastgc != 0 && unixnow-lastgc > forcegcperiod && atomicload(&forcegc.idle) != 0 {
+ lock(&forcegc.lock)
+ forcegc.idle = 0
+ forcegc.g.schedlink = nil
+ injectglist(forcegc.g)
+ unlock(&forcegc.lock)
+ }
+ // scavenge heap once in a while
+ if lastscavenge+scavengelimit/2 < now {
+ mHeap_Scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
+ lastscavenge = now
+ nscavenge++
+ }
+ if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace*1000000) <= now {
+ lasttrace = now
+ schedtrace(debug.scheddetail > 0)
+ }
+ }
+}
+
+var pdesc [_MaxGomaxprocs]struct {
+ schedtick uint32
+ schedwhen int64
+ syscalltick uint32
+ syscallwhen int64
+}
+
+func retake(now int64) uint32 {
+ n := 0
+ for i := int32(0); i < gomaxprocs; i++ {
+ _p_ := allp[i]
+ if _p_ == nil {
+ continue
+ }
+ pd := &pdesc[i]
+ s := _p_.status
+ if s == _Psyscall {
+ // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
+ t := int64(_p_.syscalltick)
+ if int64(pd.syscalltick) != t {
+ pd.syscalltick = uint32(t)
+ pd.syscallwhen = now
+ continue
+ }
+ // On the one hand we don't want to retake Ps if there is no other work to do,
+ // but on the other hand we want to retake them eventually
+ // because they can prevent the sysmon thread from deep sleep.
+ if _p_.runqhead == _p_.runqtail && atomicload(&sched.nmspinning)+atomicload(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
+ continue
+ }
+ // Need to decrement number of idle locked M's
+ // (pretending that one more is running) before the CAS.
+ // Otherwise the M from which we retake can exit the syscall,
+ // increment nmidle and report deadlock.
+ incidlelocked(-1)
+ if cas(&_p_.status, s, _Pidle) {
+ n++
+ handoffp(_p_)
+ }
+ incidlelocked(1)
+ } else if s == _Prunning {
+ // Preempt G if it's running for more than 10ms.
+ t := int64(_p_.schedtick)
+ if int64(pd.schedtick) != t {
+ pd.schedtick = uint32(t)
+ pd.schedwhen = now
+ continue
+ }
+ if pd.schedwhen+10*1000*1000 > now {
+ continue
+ }
+ preemptone(_p_)
+ }
+ }
+ return uint32(n)
+}
+
+// Tell all goroutines that they have been preempted and they should stop.
+// This function is purely best-effort. It can fail to inform a goroutine if a
+// processor just started running it.
+// No locks need to be held.
+// Returns true if preemption request was issued to at least one goroutine.
+func preemptall() bool {
+ res := false
+ for i := int32(0); i < gomaxprocs; i++ {
+ _p_ := allp[i]
+ if _p_ == nil || _p_.status != _Prunning {
+ continue
+ }
+ if preemptone(_p_) {
+ res = true
+ }
+ }
+ return res
+}
+
+// Tell the goroutine running on processor P to stop.
+// This function is purely best-effort. It can incorrectly fail to inform the
+// goroutine. It can send inform the wrong goroutine. Even if it informs the
+// correct goroutine, that goroutine might ignore the request if it is
+// simultaneously executing newstack.
+// No lock needs to be held.
+// Returns true if preemption request was issued.
+// The actual preemption will happen at some point in the future
+// and will be indicated by the gp->status no longer being
+// Grunning
+func preemptone(_p_ *p) bool {
+ mp := _p_.m
+ if mp == nil || mp == getg().m {
+ return false
+ }
+ gp := mp.curg
+ if gp == nil || gp == mp.g0 {
+ return false
+ }
+
+ gp.preempt = true
+
+ // Every call in a go routine checks for stack overflow by
+ // comparing the current stack pointer to gp->stackguard0.
+ // Setting gp->stackguard0 to StackPreempt folds
+ // preemption into the normal stack overflow check.
+ gp.stackguard0 = stackPreempt
+ return true
+}
+
+var starttime int64
+
+func schedtrace(detailed bool) {
+ now := nanotime()
+ if starttime == 0 {
+ starttime = now
+ }
+
+ lock(&sched.lock)
+ print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
+ if detailed {
+ print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
+ }
+ // We must be careful while reading data from P's, M's and G's.
+ // Even if we hold schedlock, most data can be changed concurrently.
+ // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
+ for i := int32(0); i < gomaxprocs; i++ {
+ _p_ := allp[i]
+ if _p_ == nil {
+ continue
+ }
+ mp := _p_.m
+ h := atomicload(&_p_.runqhead)
+ t := atomicload(&_p_.runqtail)
+ if detailed {
+ id := int32(-1)
+ if mp != nil {
+ id = mp.id
+ }
+ print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n")
+ } else {
+ // In non-detailed mode format lengths of per-P run queues as:
+ // [len1 len2 len3 len4]
+ print(" ")
+ if i == 0 {
+ print("[")
+ }
+ print(t - h)
+ if i == gomaxprocs-1 {
+ print("]\n")
+ }
+ }
+ }
+
+ if !detailed {
+ unlock(&sched.lock)
+ return
+ }
+
+ for mp := allm; mp != nil; mp = mp.alllink {
+ _p_ := mp.p
+ gp := mp.curg
+ lockedg := mp.lockedg
+ id1 := int32(-1)
+ if _p_ != nil {
+ id1 = _p_.id
+ }
+ id2 := int64(-1)
+ if gp != nil {
+ id2 = gp.goid
+ }
+ id3 := int64(-1)
+ if lockedg != nil {
+ id3 = lockedg.goid
+ }
+ print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " gcing=", mp.gcing, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", getg().m.blocked, " lockedg=", id3, "\n")
+ }
+
+ lock(&allglock)
+ for gi := 0; gi < len(allgs); gi++ {
+ gp := allgs[gi]
+ mp := gp.m
+ lockedm := gp.lockedm
+ id1 := int32(-1)
+ if mp != nil {
+ id1 = mp.id
+ }
+ id2 := int32(-1)
+ if lockedm != nil {
+ id2 = lockedm.id
+ }
+ print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n")
+ }
+ unlock(&allglock)
+ unlock(&sched.lock)
+}
+
+// Put mp on midle list.
+// Sched must be locked.
+func mput(mp *m) {
+ mp.schedlink = sched.midle
+ sched.midle = mp
+ sched.nmidle++
+ checkdead()
+}
+
+// Try to get an m from midle list.
+// Sched must be locked.
+func mget() *m {
+ mp := sched.midle
+ if mp != nil {
+ sched.midle = mp.schedlink
+ sched.nmidle--
+ }
+ return mp
+}
+
+// Put gp on the global runnable queue.
+// Sched must be locked.
+func globrunqput(gp *g) {
+ gp.schedlink = nil
+ if sched.runqtail != nil {
+ sched.runqtail.schedlink = gp
+ } else {
+ sched.runqhead = gp
+ }
+ sched.runqtail = gp
+ sched.runqsize++
+}
+
+// Put a batch of runnable goroutines on the global runnable queue.
+// Sched must be locked.
+func globrunqputbatch(ghead *g, gtail *g, n int32) {
+ gtail.schedlink = nil
+ if sched.runqtail != nil {
+ sched.runqtail.schedlink = ghead
+ } else {
+ sched.runqhead = ghead
+ }
+ sched.runqtail = gtail
+ sched.runqsize += n
+}
+
+// Try get a batch of G's from the global runnable queue.
+// Sched must be locked.
+func globrunqget(_p_ *p, max int32) *g {
+ if sched.runqsize == 0 {
+ return nil
+ }
+
+ n := sched.runqsize/gomaxprocs + 1
+ if n > sched.runqsize {
+ n = sched.runqsize
+ }
+ if max > 0 && n > max {
+ n = max
+ }
+ if n > int32(len(_p_.runq))/2 {
+ n = int32(len(_p_.runq)) / 2
+ }
+
+ sched.runqsize -= n
+ if sched.runqsize == 0 {
+ sched.runqtail = nil
+ }
+
+ gp := sched.runqhead
+ sched.runqhead = gp.schedlink
+ n--
+ for ; n > 0; n-- {
+ gp1 := sched.runqhead
+ sched.runqhead = gp1.schedlink
+ runqput(_p_, gp1)
+ }
+ return gp
+}
+
+// Put p to on _Pidle list.
+// Sched must be locked.
+func pidleput(_p_ *p) {
+ _p_.link = sched.pidle
+ sched.pidle = _p_
+ xadd(&sched.npidle, 1) // TODO: fast atomic
+}
+
+// Try get a p from _Pidle list.
+// Sched must be locked.
+func pidleget() *p {
+ _p_ := sched.pidle
+ if _p_ != nil {
+ sched.pidle = _p_.link
+ xadd(&sched.npidle, -1) // TODO: fast atomic
+ }
+ return _p_
+}
+
+// Try to put g on local runnable queue.
+// If it's full, put onto global queue.
+// Executed only by the owner P.
+func runqput(_p_ *p, gp *g) {
+retry:
+ h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers
+ t := _p_.runqtail
+ if t-h < uint32(len(_p_.runq)) {
+ _p_.runq[t%uint32(len(_p_.runq))] = gp
+ atomicstore(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
+ return
+ }
+ if runqputslow(_p_, gp, h, t) {
+ return
+ }
+ // the queue is not full, now the put above must suceed
+ goto retry
+}
+
+// Put g and a batch of work from local runnable queue on global queue.
+// Executed only by the owner P.
+func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
+ var batch [len(_p_.runq)/2 + 1]*g
+
+ // First, grab a batch from local queue.
+ n := t - h
+ n = n / 2
+ if n != uint32(len(_p_.runq)/2) {
+ gothrow("runqputslow: queue is not full")
+ }
+ for i := uint32(0); i < n; i++ {
+ batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))]
+ }
+ if !cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
+ return false
+ }
+ batch[n] = gp
+
+ // Link the goroutines.
+ for i := uint32(0); i < n; i++ {
+ batch[i].schedlink = batch[i+1]
+ }
+
+ // Now put the batch on global queue.
+ lock(&sched.lock)
+ globrunqputbatch(batch[0], batch[n], int32(n+1))
+ unlock(&sched.lock)
+ return true
+}
+
+// Get g from local runnable queue.
+// Executed only by the owner P.
+func runqget(_p_ *p) *g {
+ for {
+ h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers
+ t := _p_.runqtail
+ if t == h {
+ return nil
+ }
+ gp := _p_.runq[h%uint32(len(_p_.runq))]
+ if cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume
+ return gp
+ }
+ }
+}
+
+// Grabs a batch of goroutines from local runnable queue.
+// batch array must be of size len(p->runq)/2. Returns number of grabbed goroutines.
+// Can be executed by any P.
+func runqgrab(_p_ *p, batch []*g) uint32 {
+ for {
+ h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers
+ t := atomicload(&_p_.runqtail) // load-acquire, synchronize with the producer
+ n := t - h
+ n = n - n/2
+ if n == 0 {
+ return 0
+ }
+ if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
+ continue
+ }
+ for i := uint32(0); i < n; i++ {
+ batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))]
+ }
+ if cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
+ return n
+ }
+ }
+}
+
+// Steal half of elements from local runnable queue of p2
+// and put onto local runnable queue of p.
+// Returns one of the stolen elements (or nil if failed).
+func runqsteal(_p_, p2 *p) *g {
+ var batch [len(_p_.runq) / 2]*g
+
+ n := runqgrab(p2, batch[:])
+ if n == 0 {
+ return nil
+ }
+ n--
+ gp := batch[n]
+ if n == 0 {
+ return gp
+ }
+ h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers
+ t := _p_.runqtail
+ if t-h+n >= uint32(len(_p_.runq)) {
+ gothrow("runqsteal: runq overflow")
+ }
+ for i := uint32(0); i < n; i++ {
+ _p_.runq[(t+i)%uint32(len(_p_.runq))] = batch[i]
+ }
+ atomicstore(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
+ return gp
+}
+
+func testSchedLocalQueue() {
+ _p_ := new(p)
+ gs := make([]g, len(_p_.runq))
+ for i := 0; i < len(_p_.runq); i++ {
+ if runqget(_p_) != nil {
+ gothrow("runq is not empty initially")
+ }
+ for j := 0; j < i; j++ {
+ runqput(_p_, &gs[i])
+ }
+ for j := 0; j < i; j++ {
+ if runqget(_p_) != &gs[i] {
+ print("bad element at iter ", i, "/", j, "\n")
+ gothrow("bad element")
+ }
+ }
+ if runqget(_p_) != nil {
+ gothrow("runq is not empty afterwards")
+ }
+ }
+}
+
+func testSchedLocalQueueSteal() {
+ p1 := new(p)
+ p2 := new(p)
+ gs := make([]g, len(p1.runq))
+ for i := 0; i < len(p1.runq); i++ {
+ for j := 0; j < i; j++ {
+ gs[j].sig = 0
+ runqput(p1, &gs[j])
+ }
+ gp := runqsteal(p2, p1)
+ s := 0
+ if gp != nil {
+ s++
+ gp.sig++
+ }
+ for {
+ gp = runqget(p2)
+ if gp == nil {
+ break
+ }
+ s++
+ gp.sig++
+ }
+ for {
+ gp = runqget(p1)
+ if gp == nil {
+ break
+ }
+ gp.sig++
+ }
+ for j := 0; j < i; j++ {
+ if gs[j].sig != 1 {
+ print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
+ gothrow("bad element")
+ }
+ }
+ if s != i/2 && s != i/2+1 {
+ print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
+ gothrow("bad steal")
+ }
+ }
+}
+
+func setMaxThreads(in int) (out int) {
+ lock(&sched.lock)
+ out = int(sched.maxmcount)
+ sched.maxmcount = int32(in)
+ checkmcount()
+ unlock(&sched.lock)
+ return
+}
+
+var goexperiment string = "GOEXPERIMENT" // TODO: defined in zaexperiment.h
+
+func haveexperiment(name string) bool {
+ x := goexperiment
+ for x != "" {
+ xname := ""
+ i := index(x, ",")
+ if i < 0 {
+ xname, x = x, ""
+ } else {
+ xname, x = x[:i], x[i+1:]
+ }
+ if xname == name {
+ return true
+ }
+ }
+ return false
+}
+
+//go:nosplit
+func sync_procPin() int {
+ _g_ := getg()
+ mp := _g_.m
+
+ mp.locks++
+ return int(mp.p.id)
+}
+
+//go:nosplit
+func sync_procUnpin() {
+ _g_ := getg()
+ _g_.m.locks--
+}