diff options
Diffstat (limited to 'src/crypto/tls/conn.go')
-rw-r--r-- | src/crypto/tls/conn.go | 1030 |
1 files changed, 1030 insertions, 0 deletions
diff --git a/src/crypto/tls/conn.go b/src/crypto/tls/conn.go new file mode 100644 index 000000000..ba8e4c22b --- /dev/null +++ b/src/crypto/tls/conn.go @@ -0,0 +1,1030 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// TLS low level connection and record layer + +package tls + +import ( + "bytes" + "crypto/cipher" + "crypto/subtle" + "crypto/x509" + "errors" + "fmt" + "io" + "net" + "sync" + "time" +) + +// A Conn represents a secured connection. +// It implements the net.Conn interface. +type Conn struct { + // constant + conn net.Conn + isClient bool + + // constant after handshake; protected by handshakeMutex + handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex + handshakeErr error // error resulting from handshake + vers uint16 // TLS version + haveVers bool // version has been negotiated + config *Config // configuration passed to constructor + handshakeComplete bool + didResume bool // whether this connection was a session resumption + cipherSuite uint16 + ocspResponse []byte // stapled OCSP response + peerCertificates []*x509.Certificate + // verifiedChains contains the certificate chains that we built, as + // opposed to the ones presented by the server. + verifiedChains [][]*x509.Certificate + // serverName contains the server name indicated by the client, if any. + serverName string + // firstFinished contains the first Finished hash sent during the + // handshake. This is the "tls-unique" channel binding value. + firstFinished [12]byte + + clientProtocol string + clientProtocolFallback bool + + // input/output + in, out halfConn // in.Mutex < out.Mutex + rawInput *block // raw input, right off the wire + input *block // application data waiting to be read + hand bytes.Buffer // handshake data waiting to be read + + tmp [16]byte +} + +// Access to net.Conn methods. +// Cannot just embed net.Conn because that would +// export the struct field too. + +// LocalAddr returns the local network address. +func (c *Conn) LocalAddr() net.Addr { + return c.conn.LocalAddr() +} + +// RemoteAddr returns the remote network address. +func (c *Conn) RemoteAddr() net.Addr { + return c.conn.RemoteAddr() +} + +// SetDeadline sets the read and write deadlines associated with the connection. +// A zero value for t means Read and Write will not time out. +// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. +func (c *Conn) SetDeadline(t time.Time) error { + return c.conn.SetDeadline(t) +} + +// SetReadDeadline sets the read deadline on the underlying connection. +// A zero value for t means Read will not time out. +func (c *Conn) SetReadDeadline(t time.Time) error { + return c.conn.SetReadDeadline(t) +} + +// SetWriteDeadline sets the write deadline on the underlying connection. +// A zero value for t means Write will not time out. +// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. +func (c *Conn) SetWriteDeadline(t time.Time) error { + return c.conn.SetWriteDeadline(t) +} + +// A halfConn represents one direction of the record layer +// connection, either sending or receiving. +type halfConn struct { + sync.Mutex + + err error // first permanent error + version uint16 // protocol version + cipher interface{} // cipher algorithm + mac macFunction + seq [8]byte // 64-bit sequence number + bfree *block // list of free blocks + + nextCipher interface{} // next encryption state + nextMac macFunction // next MAC algorithm + + // used to save allocating a new buffer for each MAC. + inDigestBuf, outDigestBuf []byte +} + +func (hc *halfConn) setErrorLocked(err error) error { + hc.err = err + return err +} + +func (hc *halfConn) error() error { + hc.Lock() + err := hc.err + hc.Unlock() + return err +} + +// prepareCipherSpec sets the encryption and MAC states +// that a subsequent changeCipherSpec will use. +func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) { + hc.version = version + hc.nextCipher = cipher + hc.nextMac = mac +} + +// changeCipherSpec changes the encryption and MAC states +// to the ones previously passed to prepareCipherSpec. +func (hc *halfConn) changeCipherSpec() error { + if hc.nextCipher == nil { + return alertInternalError + } + hc.cipher = hc.nextCipher + hc.mac = hc.nextMac + hc.nextCipher = nil + hc.nextMac = nil + for i := range hc.seq { + hc.seq[i] = 0 + } + return nil +} + +// incSeq increments the sequence number. +func (hc *halfConn) incSeq() { + for i := 7; i >= 0; i-- { + hc.seq[i]++ + if hc.seq[i] != 0 { + return + } + } + + // Not allowed to let sequence number wrap. + // Instead, must renegotiate before it does. + // Not likely enough to bother. + panic("TLS: sequence number wraparound") +} + +// resetSeq resets the sequence number to zero. +func (hc *halfConn) resetSeq() { + for i := range hc.seq { + hc.seq[i] = 0 + } +} + +// removePadding returns an unpadded slice, in constant time, which is a prefix +// of the input. It also returns a byte which is equal to 255 if the padding +// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2 +func removePadding(payload []byte) ([]byte, byte) { + if len(payload) < 1 { + return payload, 0 + } + + paddingLen := payload[len(payload)-1] + t := uint(len(payload)-1) - uint(paddingLen) + // if len(payload) >= (paddingLen - 1) then the MSB of t is zero + good := byte(int32(^t) >> 31) + + toCheck := 255 // the maximum possible padding length + // The length of the padded data is public, so we can use an if here + if toCheck+1 > len(payload) { + toCheck = len(payload) - 1 + } + + for i := 0; i < toCheck; i++ { + t := uint(paddingLen) - uint(i) + // if i <= paddingLen then the MSB of t is zero + mask := byte(int32(^t) >> 31) + b := payload[len(payload)-1-i] + good &^= mask&paddingLen ^ mask&b + } + + // We AND together the bits of good and replicate the result across + // all the bits. + good &= good << 4 + good &= good << 2 + good &= good << 1 + good = uint8(int8(good) >> 7) + + toRemove := good&paddingLen + 1 + return payload[:len(payload)-int(toRemove)], good +} + +// removePaddingSSL30 is a replacement for removePadding in the case that the +// protocol version is SSLv3. In this version, the contents of the padding +// are random and cannot be checked. +func removePaddingSSL30(payload []byte) ([]byte, byte) { + if len(payload) < 1 { + return payload, 0 + } + + paddingLen := int(payload[len(payload)-1]) + 1 + if paddingLen > len(payload) { + return payload, 0 + } + + return payload[:len(payload)-paddingLen], 255 +} + +func roundUp(a, b int) int { + return a + (b-a%b)%b +} + +// cbcMode is an interface for block ciphers using cipher block chaining. +type cbcMode interface { + cipher.BlockMode + SetIV([]byte) +} + +// decrypt checks and strips the mac and decrypts the data in b. Returns a +// success boolean, the number of bytes to skip from the start of the record in +// order to get the application payload, and an optional alert value. +func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) { + // pull out payload + payload := b.data[recordHeaderLen:] + + macSize := 0 + if hc.mac != nil { + macSize = hc.mac.Size() + } + + paddingGood := byte(255) + explicitIVLen := 0 + + // decrypt + if hc.cipher != nil { + switch c := hc.cipher.(type) { + case cipher.Stream: + c.XORKeyStream(payload, payload) + case cipher.AEAD: + explicitIVLen = 8 + if len(payload) < explicitIVLen { + return false, 0, alertBadRecordMAC + } + nonce := payload[:8] + payload = payload[8:] + + var additionalData [13]byte + copy(additionalData[:], hc.seq[:]) + copy(additionalData[8:], b.data[:3]) + n := len(payload) - c.Overhead() + additionalData[11] = byte(n >> 8) + additionalData[12] = byte(n) + var err error + payload, err = c.Open(payload[:0], nonce, payload, additionalData[:]) + if err != nil { + return false, 0, alertBadRecordMAC + } + b.resize(recordHeaderLen + explicitIVLen + len(payload)) + case cbcMode: + blockSize := c.BlockSize() + if hc.version >= VersionTLS11 { + explicitIVLen = blockSize + } + + if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) { + return false, 0, alertBadRecordMAC + } + + if explicitIVLen > 0 { + c.SetIV(payload[:explicitIVLen]) + payload = payload[explicitIVLen:] + } + c.CryptBlocks(payload, payload) + if hc.version == VersionSSL30 { + payload, paddingGood = removePaddingSSL30(payload) + } else { + payload, paddingGood = removePadding(payload) + } + b.resize(recordHeaderLen + explicitIVLen + len(payload)) + + // note that we still have a timing side-channel in the + // MAC check, below. An attacker can align the record + // so that a correct padding will cause one less hash + // block to be calculated. Then they can iteratively + // decrypt a record by breaking each byte. See + // "Password Interception in a SSL/TLS Channel", Brice + // Canvel et al. + // + // However, our behavior matches OpenSSL, so we leak + // only as much as they do. + default: + panic("unknown cipher type") + } + } + + // check, strip mac + if hc.mac != nil { + if len(payload) < macSize { + return false, 0, alertBadRecordMAC + } + + // strip mac off payload, b.data + n := len(payload) - macSize + b.data[3] = byte(n >> 8) + b.data[4] = byte(n) + b.resize(recordHeaderLen + explicitIVLen + n) + remoteMAC := payload[n:] + localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n]) + + if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 { + return false, 0, alertBadRecordMAC + } + hc.inDigestBuf = localMAC + } + hc.incSeq() + + return true, recordHeaderLen + explicitIVLen, 0 +} + +// padToBlockSize calculates the needed padding block, if any, for a payload. +// On exit, prefix aliases payload and extends to the end of the last full +// block of payload. finalBlock is a fresh slice which contains the contents of +// any suffix of payload as well as the needed padding to make finalBlock a +// full block. +func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) { + overrun := len(payload) % blockSize + paddingLen := blockSize - overrun + prefix = payload[:len(payload)-overrun] + finalBlock = make([]byte, blockSize) + copy(finalBlock, payload[len(payload)-overrun:]) + for i := overrun; i < blockSize; i++ { + finalBlock[i] = byte(paddingLen - 1) + } + return +} + +// encrypt encrypts and macs the data in b. +func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) { + // mac + if hc.mac != nil { + mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:]) + + n := len(b.data) + b.resize(n + len(mac)) + copy(b.data[n:], mac) + hc.outDigestBuf = mac + } + + payload := b.data[recordHeaderLen:] + + // encrypt + if hc.cipher != nil { + switch c := hc.cipher.(type) { + case cipher.Stream: + c.XORKeyStream(payload, payload) + case cipher.AEAD: + payloadLen := len(b.data) - recordHeaderLen - explicitIVLen + b.resize(len(b.data) + c.Overhead()) + nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] + payload := b.data[recordHeaderLen+explicitIVLen:] + payload = payload[:payloadLen] + + var additionalData [13]byte + copy(additionalData[:], hc.seq[:]) + copy(additionalData[8:], b.data[:3]) + additionalData[11] = byte(payloadLen >> 8) + additionalData[12] = byte(payloadLen) + + c.Seal(payload[:0], nonce, payload, additionalData[:]) + case cbcMode: + blockSize := c.BlockSize() + if explicitIVLen > 0 { + c.SetIV(payload[:explicitIVLen]) + payload = payload[explicitIVLen:] + } + prefix, finalBlock := padToBlockSize(payload, blockSize) + b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock)) + c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix) + c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock) + default: + panic("unknown cipher type") + } + } + + // update length to include MAC and any block padding needed. + n := len(b.data) - recordHeaderLen + b.data[3] = byte(n >> 8) + b.data[4] = byte(n) + hc.incSeq() + + return true, 0 +} + +// A block is a simple data buffer. +type block struct { + data []byte + off int // index for Read + link *block +} + +// resize resizes block to be n bytes, growing if necessary. +func (b *block) resize(n int) { + if n > cap(b.data) { + b.reserve(n) + } + b.data = b.data[0:n] +} + +// reserve makes sure that block contains a capacity of at least n bytes. +func (b *block) reserve(n int) { + if cap(b.data) >= n { + return + } + m := cap(b.data) + if m == 0 { + m = 1024 + } + for m < n { + m *= 2 + } + data := make([]byte, len(b.data), m) + copy(data, b.data) + b.data = data +} + +// readFromUntil reads from r into b until b contains at least n bytes +// or else returns an error. +func (b *block) readFromUntil(r io.Reader, n int) error { + // quick case + if len(b.data) >= n { + return nil + } + + // read until have enough. + b.reserve(n) + for { + m, err := r.Read(b.data[len(b.data):cap(b.data)]) + b.data = b.data[0 : len(b.data)+m] + if len(b.data) >= n { + // TODO(bradfitz,agl): slightly suspicious + // that we're throwing away r.Read's err here. + break + } + if err != nil { + return err + } + } + return nil +} + +func (b *block) Read(p []byte) (n int, err error) { + n = copy(p, b.data[b.off:]) + b.off += n + return +} + +// newBlock allocates a new block, from hc's free list if possible. +func (hc *halfConn) newBlock() *block { + b := hc.bfree + if b == nil { + return new(block) + } + hc.bfree = b.link + b.link = nil + b.resize(0) + return b +} + +// freeBlock returns a block to hc's free list. +// The protocol is such that each side only has a block or two on +// its free list at a time, so there's no need to worry about +// trimming the list, etc. +func (hc *halfConn) freeBlock(b *block) { + b.link = hc.bfree + hc.bfree = b +} + +// splitBlock splits a block after the first n bytes, +// returning a block with those n bytes and a +// block with the remainder. the latter may be nil. +func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) { + if len(b.data) <= n { + return b, nil + } + bb := hc.newBlock() + bb.resize(len(b.data) - n) + copy(bb.data, b.data[n:]) + b.data = b.data[0:n] + return b, bb +} + +// readRecord reads the next TLS record from the connection +// and updates the record layer state. +// c.in.Mutex <= L; c.input == nil. +func (c *Conn) readRecord(want recordType) error { + // Caller must be in sync with connection: + // handshake data if handshake not yet completed, + // else application data. (We don't support renegotiation.) + switch want { + default: + c.sendAlert(alertInternalError) + return c.in.setErrorLocked(errors.New("tls: unknown record type requested")) + case recordTypeHandshake, recordTypeChangeCipherSpec: + if c.handshakeComplete { + c.sendAlert(alertInternalError) + return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete")) + } + case recordTypeApplicationData: + if !c.handshakeComplete { + c.sendAlert(alertInternalError) + return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete")) + } + } + +Again: + if c.rawInput == nil { + c.rawInput = c.in.newBlock() + } + b := c.rawInput + + // Read header, payload. + if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil { + // RFC suggests that EOF without an alertCloseNotify is + // an error, but popular web sites seem to do this, + // so we can't make it an error. + // if err == io.EOF { + // err = io.ErrUnexpectedEOF + // } + if e, ok := err.(net.Error); !ok || !e.Temporary() { + c.in.setErrorLocked(err) + } + return err + } + typ := recordType(b.data[0]) + + // No valid TLS record has a type of 0x80, however SSLv2 handshakes + // start with a uint16 length where the MSB is set and the first record + // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests + // an SSLv2 client. + if want == recordTypeHandshake && typ == 0x80 { + c.sendAlert(alertProtocolVersion) + return c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received")) + } + + vers := uint16(b.data[1])<<8 | uint16(b.data[2]) + n := int(b.data[3])<<8 | int(b.data[4]) + if c.haveVers && vers != c.vers { + c.sendAlert(alertProtocolVersion) + return c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, c.vers)) + } + if n > maxCiphertext { + c.sendAlert(alertRecordOverflow) + return c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n)) + } + if !c.haveVers { + // First message, be extra suspicious: + // this might not be a TLS client. + // Bail out before reading a full 'body', if possible. + // The current max version is 3.1. + // If the version is >= 16.0, it's probably not real. + // Similarly, a clientHello message encodes in + // well under a kilobyte. If the length is >= 12 kB, + // it's probably not real. + if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 { + c.sendAlert(alertUnexpectedMessage) + return c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake")) + } + } + if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil { + if err == io.EOF { + err = io.ErrUnexpectedEOF + } + if e, ok := err.(net.Error); !ok || !e.Temporary() { + c.in.setErrorLocked(err) + } + return err + } + + // Process message. + b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n) + ok, off, err := c.in.decrypt(b) + if !ok { + c.in.setErrorLocked(c.sendAlert(err)) + } + b.off = off + data := b.data[b.off:] + if len(data) > maxPlaintext { + err := c.sendAlert(alertRecordOverflow) + c.in.freeBlock(b) + return c.in.setErrorLocked(err) + } + + switch typ { + default: + c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + + case recordTypeAlert: + if len(data) != 2 { + c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + break + } + if alert(data[1]) == alertCloseNotify { + c.in.setErrorLocked(io.EOF) + break + } + switch data[0] { + case alertLevelWarning: + // drop on the floor + c.in.freeBlock(b) + goto Again + case alertLevelError: + c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) + default: + c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + + case recordTypeChangeCipherSpec: + if typ != want || len(data) != 1 || data[0] != 1 { + c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + break + } + err := c.in.changeCipherSpec() + if err != nil { + c.in.setErrorLocked(c.sendAlert(err.(alert))) + } + + case recordTypeApplicationData: + if typ != want { + c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + break + } + c.input = b + b = nil + + case recordTypeHandshake: + // TODO(rsc): Should at least pick off connection close. + if typ != want { + return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation)) + } + c.hand.Write(data) + } + + if b != nil { + c.in.freeBlock(b) + } + return c.in.err +} + +// sendAlert sends a TLS alert message. +// c.out.Mutex <= L. +func (c *Conn) sendAlertLocked(err alert) error { + switch err { + case alertNoRenegotiation, alertCloseNotify: + c.tmp[0] = alertLevelWarning + default: + c.tmp[0] = alertLevelError + } + c.tmp[1] = byte(err) + c.writeRecord(recordTypeAlert, c.tmp[0:2]) + // closeNotify is a special case in that it isn't an error: + if err != alertCloseNotify { + return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) + } + return nil +} + +// sendAlert sends a TLS alert message. +// L < c.out.Mutex. +func (c *Conn) sendAlert(err alert) error { + c.out.Lock() + defer c.out.Unlock() + return c.sendAlertLocked(err) +} + +// writeRecord writes a TLS record with the given type and payload +// to the connection and updates the record layer state. +// c.out.Mutex <= L. +func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) { + b := c.out.newBlock() + for len(data) > 0 { + m := len(data) + if m > maxPlaintext { + m = maxPlaintext + } + explicitIVLen := 0 + explicitIVIsSeq := false + + var cbc cbcMode + if c.out.version >= VersionTLS11 { + var ok bool + if cbc, ok = c.out.cipher.(cbcMode); ok { + explicitIVLen = cbc.BlockSize() + } + } + if explicitIVLen == 0 { + if _, ok := c.out.cipher.(cipher.AEAD); ok { + explicitIVLen = 8 + // The AES-GCM construction in TLS has an + // explicit nonce so that the nonce can be + // random. However, the nonce is only 8 bytes + // which is too small for a secure, random + // nonce. Therefore we use the sequence number + // as the nonce. + explicitIVIsSeq = true + } + } + b.resize(recordHeaderLen + explicitIVLen + m) + b.data[0] = byte(typ) + vers := c.vers + if vers == 0 { + // Some TLS servers fail if the record version is + // greater than TLS 1.0 for the initial ClientHello. + vers = VersionTLS10 + } + b.data[1] = byte(vers >> 8) + b.data[2] = byte(vers) + b.data[3] = byte(m >> 8) + b.data[4] = byte(m) + if explicitIVLen > 0 { + explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] + if explicitIVIsSeq { + copy(explicitIV, c.out.seq[:]) + } else { + if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil { + break + } + } + } + copy(b.data[recordHeaderLen+explicitIVLen:], data) + c.out.encrypt(b, explicitIVLen) + _, err = c.conn.Write(b.data) + if err != nil { + break + } + n += m + data = data[m:] + } + c.out.freeBlock(b) + + if typ == recordTypeChangeCipherSpec { + err = c.out.changeCipherSpec() + if err != nil { + // Cannot call sendAlert directly, + // because we already hold c.out.Mutex. + c.tmp[0] = alertLevelError + c.tmp[1] = byte(err.(alert)) + c.writeRecord(recordTypeAlert, c.tmp[0:2]) + return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) + } + } + return +} + +// readHandshake reads the next handshake message from +// the record layer. +// c.in.Mutex < L; c.out.Mutex < L. +func (c *Conn) readHandshake() (interface{}, error) { + for c.hand.Len() < 4 { + if err := c.in.err; err != nil { + return nil, err + } + if err := c.readRecord(recordTypeHandshake); err != nil { + return nil, err + } + } + + data := c.hand.Bytes() + n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) + if n > maxHandshake { + return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError)) + } + for c.hand.Len() < 4+n { + if err := c.in.err; err != nil { + return nil, err + } + if err := c.readRecord(recordTypeHandshake); err != nil { + return nil, err + } + } + data = c.hand.Next(4 + n) + var m handshakeMessage + switch data[0] { + case typeClientHello: + m = new(clientHelloMsg) + case typeServerHello: + m = new(serverHelloMsg) + case typeNewSessionTicket: + m = new(newSessionTicketMsg) + case typeCertificate: + m = new(certificateMsg) + case typeCertificateRequest: + m = &certificateRequestMsg{ + hasSignatureAndHash: c.vers >= VersionTLS12, + } + case typeCertificateStatus: + m = new(certificateStatusMsg) + case typeServerKeyExchange: + m = new(serverKeyExchangeMsg) + case typeServerHelloDone: + m = new(serverHelloDoneMsg) + case typeClientKeyExchange: + m = new(clientKeyExchangeMsg) + case typeCertificateVerify: + m = &certificateVerifyMsg{ + hasSignatureAndHash: c.vers >= VersionTLS12, + } + case typeNextProtocol: + m = new(nextProtoMsg) + case typeFinished: + m = new(finishedMsg) + default: + return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + + // The handshake message unmarshallers + // expect to be able to keep references to data, + // so pass in a fresh copy that won't be overwritten. + data = append([]byte(nil), data...) + + if !m.unmarshal(data) { + return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + return m, nil +} + +// Write writes data to the connection. +func (c *Conn) Write(b []byte) (int, error) { + if err := c.Handshake(); err != nil { + return 0, err + } + + c.out.Lock() + defer c.out.Unlock() + + if err := c.out.err; err != nil { + return 0, err + } + + if !c.handshakeComplete { + return 0, alertInternalError + } + + // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext + // attack when using block mode ciphers due to predictable IVs. + // This can be prevented by splitting each Application Data + // record into two records, effectively randomizing the IV. + // + // http://www.openssl.org/~bodo/tls-cbc.txt + // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 + // http://www.imperialviolet.org/2012/01/15/beastfollowup.html + + var m int + if len(b) > 1 && c.vers <= VersionTLS10 { + if _, ok := c.out.cipher.(cipher.BlockMode); ok { + n, err := c.writeRecord(recordTypeApplicationData, b[:1]) + if err != nil { + return n, c.out.setErrorLocked(err) + } + m, b = 1, b[1:] + } + } + + n, err := c.writeRecord(recordTypeApplicationData, b) + return n + m, c.out.setErrorLocked(err) +} + +// Read can be made to time out and return a net.Error with Timeout() == true +// after a fixed time limit; see SetDeadline and SetReadDeadline. +func (c *Conn) Read(b []byte) (n int, err error) { + if err = c.Handshake(); err != nil { + return + } + if len(b) == 0 { + // Put this after Handshake, in case people were calling + // Read(nil) for the side effect of the Handshake. + return + } + + c.in.Lock() + defer c.in.Unlock() + + // Some OpenSSL servers send empty records in order to randomize the + // CBC IV. So this loop ignores a limited number of empty records. + const maxConsecutiveEmptyRecords = 100 + for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ { + for c.input == nil && c.in.err == nil { + if err := c.readRecord(recordTypeApplicationData); err != nil { + // Soft error, like EAGAIN + return 0, err + } + } + if err := c.in.err; err != nil { + return 0, err + } + + n, err = c.input.Read(b) + if c.input.off >= len(c.input.data) { + c.in.freeBlock(c.input) + c.input = nil + } + + // If a close-notify alert is waiting, read it so that + // we can return (n, EOF) instead of (n, nil), to signal + // to the HTTP response reading goroutine that the + // connection is now closed. This eliminates a race + // where the HTTP response reading goroutine would + // otherwise not observe the EOF until its next read, + // by which time a client goroutine might have already + // tried to reuse the HTTP connection for a new + // request. + // See https://codereview.appspot.com/76400046 + // and http://golang.org/issue/3514 + if ri := c.rawInput; ri != nil && + n != 0 && err == nil && + c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert { + if recErr := c.readRecord(recordTypeApplicationData); recErr != nil { + err = recErr // will be io.EOF on closeNotify + } + } + + if n != 0 || err != nil { + return n, err + } + } + + return 0, io.ErrNoProgress +} + +// Close closes the connection. +func (c *Conn) Close() error { + var alertErr error + + c.handshakeMutex.Lock() + defer c.handshakeMutex.Unlock() + if c.handshakeComplete { + alertErr = c.sendAlert(alertCloseNotify) + } + + if err := c.conn.Close(); err != nil { + return err + } + return alertErr +} + +// Handshake runs the client or server handshake +// protocol if it has not yet been run. +// Most uses of this package need not call Handshake +// explicitly: the first Read or Write will call it automatically. +func (c *Conn) Handshake() error { + c.handshakeMutex.Lock() + defer c.handshakeMutex.Unlock() + if err := c.handshakeErr; err != nil { + return err + } + if c.handshakeComplete { + return nil + } + + if c.isClient { + c.handshakeErr = c.clientHandshake() + } else { + c.handshakeErr = c.serverHandshake() + } + return c.handshakeErr +} + +// ConnectionState returns basic TLS details about the connection. +func (c *Conn) ConnectionState() ConnectionState { + c.handshakeMutex.Lock() + defer c.handshakeMutex.Unlock() + + var state ConnectionState + state.HandshakeComplete = c.handshakeComplete + if c.handshakeComplete { + state.Version = c.vers + state.NegotiatedProtocol = c.clientProtocol + state.DidResume = c.didResume + state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback + state.CipherSuite = c.cipherSuite + state.PeerCertificates = c.peerCertificates + state.VerifiedChains = c.verifiedChains + state.ServerName = c.serverName + if !c.didResume { + state.TLSUnique = c.firstFinished[:] + } + } + + return state +} + +// OCSPResponse returns the stapled OCSP response from the TLS server, if +// any. (Only valid for client connections.) +func (c *Conn) OCSPResponse() []byte { + c.handshakeMutex.Lock() + defer c.handshakeMutex.Unlock() + + return c.ocspResponse +} + +// VerifyHostname checks that the peer certificate chain is valid for +// connecting to host. If so, it returns nil; if not, it returns an error +// describing the problem. +func (c *Conn) VerifyHostname(host string) error { + c.handshakeMutex.Lock() + defer c.handshakeMutex.Unlock() + if !c.isClient { + return errors.New("tls: VerifyHostname called on TLS server connection") + } + if !c.handshakeComplete { + return errors.New("tls: handshake has not yet been performed") + } + return c.peerCertificates[0].VerifyHostname(host) +} |