summaryrefslogtreecommitdiff
path: root/src/crypto/tls/conn.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/tls/conn.go')
-rw-r--r--src/crypto/tls/conn.go1030
1 files changed, 1030 insertions, 0 deletions
diff --git a/src/crypto/tls/conn.go b/src/crypto/tls/conn.go
new file mode 100644
index 000000000..ba8e4c22b
--- /dev/null
+++ b/src/crypto/tls/conn.go
@@ -0,0 +1,1030 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// TLS low level connection and record layer
+
+package tls
+
+import (
+ "bytes"
+ "crypto/cipher"
+ "crypto/subtle"
+ "crypto/x509"
+ "errors"
+ "fmt"
+ "io"
+ "net"
+ "sync"
+ "time"
+)
+
+// A Conn represents a secured connection.
+// It implements the net.Conn interface.
+type Conn struct {
+ // constant
+ conn net.Conn
+ isClient bool
+
+ // constant after handshake; protected by handshakeMutex
+ handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
+ handshakeErr error // error resulting from handshake
+ vers uint16 // TLS version
+ haveVers bool // version has been negotiated
+ config *Config // configuration passed to constructor
+ handshakeComplete bool
+ didResume bool // whether this connection was a session resumption
+ cipherSuite uint16
+ ocspResponse []byte // stapled OCSP response
+ peerCertificates []*x509.Certificate
+ // verifiedChains contains the certificate chains that we built, as
+ // opposed to the ones presented by the server.
+ verifiedChains [][]*x509.Certificate
+ // serverName contains the server name indicated by the client, if any.
+ serverName string
+ // firstFinished contains the first Finished hash sent during the
+ // handshake. This is the "tls-unique" channel binding value.
+ firstFinished [12]byte
+
+ clientProtocol string
+ clientProtocolFallback bool
+
+ // input/output
+ in, out halfConn // in.Mutex < out.Mutex
+ rawInput *block // raw input, right off the wire
+ input *block // application data waiting to be read
+ hand bytes.Buffer // handshake data waiting to be read
+
+ tmp [16]byte
+}
+
+// Access to net.Conn methods.
+// Cannot just embed net.Conn because that would
+// export the struct field too.
+
+// LocalAddr returns the local network address.
+func (c *Conn) LocalAddr() net.Addr {
+ return c.conn.LocalAddr()
+}
+
+// RemoteAddr returns the remote network address.
+func (c *Conn) RemoteAddr() net.Addr {
+ return c.conn.RemoteAddr()
+}
+
+// SetDeadline sets the read and write deadlines associated with the connection.
+// A zero value for t means Read and Write will not time out.
+// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
+func (c *Conn) SetDeadline(t time.Time) error {
+ return c.conn.SetDeadline(t)
+}
+
+// SetReadDeadline sets the read deadline on the underlying connection.
+// A zero value for t means Read will not time out.
+func (c *Conn) SetReadDeadline(t time.Time) error {
+ return c.conn.SetReadDeadline(t)
+}
+
+// SetWriteDeadline sets the write deadline on the underlying connection.
+// A zero value for t means Write will not time out.
+// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
+func (c *Conn) SetWriteDeadline(t time.Time) error {
+ return c.conn.SetWriteDeadline(t)
+}
+
+// A halfConn represents one direction of the record layer
+// connection, either sending or receiving.
+type halfConn struct {
+ sync.Mutex
+
+ err error // first permanent error
+ version uint16 // protocol version
+ cipher interface{} // cipher algorithm
+ mac macFunction
+ seq [8]byte // 64-bit sequence number
+ bfree *block // list of free blocks
+
+ nextCipher interface{} // next encryption state
+ nextMac macFunction // next MAC algorithm
+
+ // used to save allocating a new buffer for each MAC.
+ inDigestBuf, outDigestBuf []byte
+}
+
+func (hc *halfConn) setErrorLocked(err error) error {
+ hc.err = err
+ return err
+}
+
+func (hc *halfConn) error() error {
+ hc.Lock()
+ err := hc.err
+ hc.Unlock()
+ return err
+}
+
+// prepareCipherSpec sets the encryption and MAC states
+// that a subsequent changeCipherSpec will use.
+func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
+ hc.version = version
+ hc.nextCipher = cipher
+ hc.nextMac = mac
+}
+
+// changeCipherSpec changes the encryption and MAC states
+// to the ones previously passed to prepareCipherSpec.
+func (hc *halfConn) changeCipherSpec() error {
+ if hc.nextCipher == nil {
+ return alertInternalError
+ }
+ hc.cipher = hc.nextCipher
+ hc.mac = hc.nextMac
+ hc.nextCipher = nil
+ hc.nextMac = nil
+ for i := range hc.seq {
+ hc.seq[i] = 0
+ }
+ return nil
+}
+
+// incSeq increments the sequence number.
+func (hc *halfConn) incSeq() {
+ for i := 7; i >= 0; i-- {
+ hc.seq[i]++
+ if hc.seq[i] != 0 {
+ return
+ }
+ }
+
+ // Not allowed to let sequence number wrap.
+ // Instead, must renegotiate before it does.
+ // Not likely enough to bother.
+ panic("TLS: sequence number wraparound")
+}
+
+// resetSeq resets the sequence number to zero.
+func (hc *halfConn) resetSeq() {
+ for i := range hc.seq {
+ hc.seq[i] = 0
+ }
+}
+
+// removePadding returns an unpadded slice, in constant time, which is a prefix
+// of the input. It also returns a byte which is equal to 255 if the padding
+// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
+func removePadding(payload []byte) ([]byte, byte) {
+ if len(payload) < 1 {
+ return payload, 0
+ }
+
+ paddingLen := payload[len(payload)-1]
+ t := uint(len(payload)-1) - uint(paddingLen)
+ // if len(payload) >= (paddingLen - 1) then the MSB of t is zero
+ good := byte(int32(^t) >> 31)
+
+ toCheck := 255 // the maximum possible padding length
+ // The length of the padded data is public, so we can use an if here
+ if toCheck+1 > len(payload) {
+ toCheck = len(payload) - 1
+ }
+
+ for i := 0; i < toCheck; i++ {
+ t := uint(paddingLen) - uint(i)
+ // if i <= paddingLen then the MSB of t is zero
+ mask := byte(int32(^t) >> 31)
+ b := payload[len(payload)-1-i]
+ good &^= mask&paddingLen ^ mask&b
+ }
+
+ // We AND together the bits of good and replicate the result across
+ // all the bits.
+ good &= good << 4
+ good &= good << 2
+ good &= good << 1
+ good = uint8(int8(good) >> 7)
+
+ toRemove := good&paddingLen + 1
+ return payload[:len(payload)-int(toRemove)], good
+}
+
+// removePaddingSSL30 is a replacement for removePadding in the case that the
+// protocol version is SSLv3. In this version, the contents of the padding
+// are random and cannot be checked.
+func removePaddingSSL30(payload []byte) ([]byte, byte) {
+ if len(payload) < 1 {
+ return payload, 0
+ }
+
+ paddingLen := int(payload[len(payload)-1]) + 1
+ if paddingLen > len(payload) {
+ return payload, 0
+ }
+
+ return payload[:len(payload)-paddingLen], 255
+}
+
+func roundUp(a, b int) int {
+ return a + (b-a%b)%b
+}
+
+// cbcMode is an interface for block ciphers using cipher block chaining.
+type cbcMode interface {
+ cipher.BlockMode
+ SetIV([]byte)
+}
+
+// decrypt checks and strips the mac and decrypts the data in b. Returns a
+// success boolean, the number of bytes to skip from the start of the record in
+// order to get the application payload, and an optional alert value.
+func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
+ // pull out payload
+ payload := b.data[recordHeaderLen:]
+
+ macSize := 0
+ if hc.mac != nil {
+ macSize = hc.mac.Size()
+ }
+
+ paddingGood := byte(255)
+ explicitIVLen := 0
+
+ // decrypt
+ if hc.cipher != nil {
+ switch c := hc.cipher.(type) {
+ case cipher.Stream:
+ c.XORKeyStream(payload, payload)
+ case cipher.AEAD:
+ explicitIVLen = 8
+ if len(payload) < explicitIVLen {
+ return false, 0, alertBadRecordMAC
+ }
+ nonce := payload[:8]
+ payload = payload[8:]
+
+ var additionalData [13]byte
+ copy(additionalData[:], hc.seq[:])
+ copy(additionalData[8:], b.data[:3])
+ n := len(payload) - c.Overhead()
+ additionalData[11] = byte(n >> 8)
+ additionalData[12] = byte(n)
+ var err error
+ payload, err = c.Open(payload[:0], nonce, payload, additionalData[:])
+ if err != nil {
+ return false, 0, alertBadRecordMAC
+ }
+ b.resize(recordHeaderLen + explicitIVLen + len(payload))
+ case cbcMode:
+ blockSize := c.BlockSize()
+ if hc.version >= VersionTLS11 {
+ explicitIVLen = blockSize
+ }
+
+ if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
+ return false, 0, alertBadRecordMAC
+ }
+
+ if explicitIVLen > 0 {
+ c.SetIV(payload[:explicitIVLen])
+ payload = payload[explicitIVLen:]
+ }
+ c.CryptBlocks(payload, payload)
+ if hc.version == VersionSSL30 {
+ payload, paddingGood = removePaddingSSL30(payload)
+ } else {
+ payload, paddingGood = removePadding(payload)
+ }
+ b.resize(recordHeaderLen + explicitIVLen + len(payload))
+
+ // note that we still have a timing side-channel in the
+ // MAC check, below. An attacker can align the record
+ // so that a correct padding will cause one less hash
+ // block to be calculated. Then they can iteratively
+ // decrypt a record by breaking each byte. See
+ // "Password Interception in a SSL/TLS Channel", Brice
+ // Canvel et al.
+ //
+ // However, our behavior matches OpenSSL, so we leak
+ // only as much as they do.
+ default:
+ panic("unknown cipher type")
+ }
+ }
+
+ // check, strip mac
+ if hc.mac != nil {
+ if len(payload) < macSize {
+ return false, 0, alertBadRecordMAC
+ }
+
+ // strip mac off payload, b.data
+ n := len(payload) - macSize
+ b.data[3] = byte(n >> 8)
+ b.data[4] = byte(n)
+ b.resize(recordHeaderLen + explicitIVLen + n)
+ remoteMAC := payload[n:]
+ localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])
+
+ if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
+ return false, 0, alertBadRecordMAC
+ }
+ hc.inDigestBuf = localMAC
+ }
+ hc.incSeq()
+
+ return true, recordHeaderLen + explicitIVLen, 0
+}
+
+// padToBlockSize calculates the needed padding block, if any, for a payload.
+// On exit, prefix aliases payload and extends to the end of the last full
+// block of payload. finalBlock is a fresh slice which contains the contents of
+// any suffix of payload as well as the needed padding to make finalBlock a
+// full block.
+func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
+ overrun := len(payload) % blockSize
+ paddingLen := blockSize - overrun
+ prefix = payload[:len(payload)-overrun]
+ finalBlock = make([]byte, blockSize)
+ copy(finalBlock, payload[len(payload)-overrun:])
+ for i := overrun; i < blockSize; i++ {
+ finalBlock[i] = byte(paddingLen - 1)
+ }
+ return
+}
+
+// encrypt encrypts and macs the data in b.
+func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
+ // mac
+ if hc.mac != nil {
+ mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
+
+ n := len(b.data)
+ b.resize(n + len(mac))
+ copy(b.data[n:], mac)
+ hc.outDigestBuf = mac
+ }
+
+ payload := b.data[recordHeaderLen:]
+
+ // encrypt
+ if hc.cipher != nil {
+ switch c := hc.cipher.(type) {
+ case cipher.Stream:
+ c.XORKeyStream(payload, payload)
+ case cipher.AEAD:
+ payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
+ b.resize(len(b.data) + c.Overhead())
+ nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
+ payload := b.data[recordHeaderLen+explicitIVLen:]
+ payload = payload[:payloadLen]
+
+ var additionalData [13]byte
+ copy(additionalData[:], hc.seq[:])
+ copy(additionalData[8:], b.data[:3])
+ additionalData[11] = byte(payloadLen >> 8)
+ additionalData[12] = byte(payloadLen)
+
+ c.Seal(payload[:0], nonce, payload, additionalData[:])
+ case cbcMode:
+ blockSize := c.BlockSize()
+ if explicitIVLen > 0 {
+ c.SetIV(payload[:explicitIVLen])
+ payload = payload[explicitIVLen:]
+ }
+ prefix, finalBlock := padToBlockSize(payload, blockSize)
+ b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
+ c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
+ c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
+ default:
+ panic("unknown cipher type")
+ }
+ }
+
+ // update length to include MAC and any block padding needed.
+ n := len(b.data) - recordHeaderLen
+ b.data[3] = byte(n >> 8)
+ b.data[4] = byte(n)
+ hc.incSeq()
+
+ return true, 0
+}
+
+// A block is a simple data buffer.
+type block struct {
+ data []byte
+ off int // index for Read
+ link *block
+}
+
+// resize resizes block to be n bytes, growing if necessary.
+func (b *block) resize(n int) {
+ if n > cap(b.data) {
+ b.reserve(n)
+ }
+ b.data = b.data[0:n]
+}
+
+// reserve makes sure that block contains a capacity of at least n bytes.
+func (b *block) reserve(n int) {
+ if cap(b.data) >= n {
+ return
+ }
+ m := cap(b.data)
+ if m == 0 {
+ m = 1024
+ }
+ for m < n {
+ m *= 2
+ }
+ data := make([]byte, len(b.data), m)
+ copy(data, b.data)
+ b.data = data
+}
+
+// readFromUntil reads from r into b until b contains at least n bytes
+// or else returns an error.
+func (b *block) readFromUntil(r io.Reader, n int) error {
+ // quick case
+ if len(b.data) >= n {
+ return nil
+ }
+
+ // read until have enough.
+ b.reserve(n)
+ for {
+ m, err := r.Read(b.data[len(b.data):cap(b.data)])
+ b.data = b.data[0 : len(b.data)+m]
+ if len(b.data) >= n {
+ // TODO(bradfitz,agl): slightly suspicious
+ // that we're throwing away r.Read's err here.
+ break
+ }
+ if err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+func (b *block) Read(p []byte) (n int, err error) {
+ n = copy(p, b.data[b.off:])
+ b.off += n
+ return
+}
+
+// newBlock allocates a new block, from hc's free list if possible.
+func (hc *halfConn) newBlock() *block {
+ b := hc.bfree
+ if b == nil {
+ return new(block)
+ }
+ hc.bfree = b.link
+ b.link = nil
+ b.resize(0)
+ return b
+}
+
+// freeBlock returns a block to hc's free list.
+// The protocol is such that each side only has a block or two on
+// its free list at a time, so there's no need to worry about
+// trimming the list, etc.
+func (hc *halfConn) freeBlock(b *block) {
+ b.link = hc.bfree
+ hc.bfree = b
+}
+
+// splitBlock splits a block after the first n bytes,
+// returning a block with those n bytes and a
+// block with the remainder. the latter may be nil.
+func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
+ if len(b.data) <= n {
+ return b, nil
+ }
+ bb := hc.newBlock()
+ bb.resize(len(b.data) - n)
+ copy(bb.data, b.data[n:])
+ b.data = b.data[0:n]
+ return b, bb
+}
+
+// readRecord reads the next TLS record from the connection
+// and updates the record layer state.
+// c.in.Mutex <= L; c.input == nil.
+func (c *Conn) readRecord(want recordType) error {
+ // Caller must be in sync with connection:
+ // handshake data if handshake not yet completed,
+ // else application data. (We don't support renegotiation.)
+ switch want {
+ default:
+ c.sendAlert(alertInternalError)
+ return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
+ case recordTypeHandshake, recordTypeChangeCipherSpec:
+ if c.handshakeComplete {
+ c.sendAlert(alertInternalError)
+ return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
+ }
+ case recordTypeApplicationData:
+ if !c.handshakeComplete {
+ c.sendAlert(alertInternalError)
+ return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
+ }
+ }
+
+Again:
+ if c.rawInput == nil {
+ c.rawInput = c.in.newBlock()
+ }
+ b := c.rawInput
+
+ // Read header, payload.
+ if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
+ // RFC suggests that EOF without an alertCloseNotify is
+ // an error, but popular web sites seem to do this,
+ // so we can't make it an error.
+ // if err == io.EOF {
+ // err = io.ErrUnexpectedEOF
+ // }
+ if e, ok := err.(net.Error); !ok || !e.Temporary() {
+ c.in.setErrorLocked(err)
+ }
+ return err
+ }
+ typ := recordType(b.data[0])
+
+ // No valid TLS record has a type of 0x80, however SSLv2 handshakes
+ // start with a uint16 length where the MSB is set and the first record
+ // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
+ // an SSLv2 client.
+ if want == recordTypeHandshake && typ == 0x80 {
+ c.sendAlert(alertProtocolVersion)
+ return c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received"))
+ }
+
+ vers := uint16(b.data[1])<<8 | uint16(b.data[2])
+ n := int(b.data[3])<<8 | int(b.data[4])
+ if c.haveVers && vers != c.vers {
+ c.sendAlert(alertProtocolVersion)
+ return c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, c.vers))
+ }
+ if n > maxCiphertext {
+ c.sendAlert(alertRecordOverflow)
+ return c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n))
+ }
+ if !c.haveVers {
+ // First message, be extra suspicious:
+ // this might not be a TLS client.
+ // Bail out before reading a full 'body', if possible.
+ // The current max version is 3.1.
+ // If the version is >= 16.0, it's probably not real.
+ // Similarly, a clientHello message encodes in
+ // well under a kilobyte. If the length is >= 12 kB,
+ // it's probably not real.
+ if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 {
+ c.sendAlert(alertUnexpectedMessage)
+ return c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake"))
+ }
+ }
+ if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
+ if err == io.EOF {
+ err = io.ErrUnexpectedEOF
+ }
+ if e, ok := err.(net.Error); !ok || !e.Temporary() {
+ c.in.setErrorLocked(err)
+ }
+ return err
+ }
+
+ // Process message.
+ b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
+ ok, off, err := c.in.decrypt(b)
+ if !ok {
+ c.in.setErrorLocked(c.sendAlert(err))
+ }
+ b.off = off
+ data := b.data[b.off:]
+ if len(data) > maxPlaintext {
+ err := c.sendAlert(alertRecordOverflow)
+ c.in.freeBlock(b)
+ return c.in.setErrorLocked(err)
+ }
+
+ switch typ {
+ default:
+ c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+
+ case recordTypeAlert:
+ if len(data) != 2 {
+ c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ break
+ }
+ if alert(data[1]) == alertCloseNotify {
+ c.in.setErrorLocked(io.EOF)
+ break
+ }
+ switch data[0] {
+ case alertLevelWarning:
+ // drop on the floor
+ c.in.freeBlock(b)
+ goto Again
+ case alertLevelError:
+ c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
+ default:
+ c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+
+ case recordTypeChangeCipherSpec:
+ if typ != want || len(data) != 1 || data[0] != 1 {
+ c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ break
+ }
+ err := c.in.changeCipherSpec()
+ if err != nil {
+ c.in.setErrorLocked(c.sendAlert(err.(alert)))
+ }
+
+ case recordTypeApplicationData:
+ if typ != want {
+ c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ break
+ }
+ c.input = b
+ b = nil
+
+ case recordTypeHandshake:
+ // TODO(rsc): Should at least pick off connection close.
+ if typ != want {
+ return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
+ }
+ c.hand.Write(data)
+ }
+
+ if b != nil {
+ c.in.freeBlock(b)
+ }
+ return c.in.err
+}
+
+// sendAlert sends a TLS alert message.
+// c.out.Mutex <= L.
+func (c *Conn) sendAlertLocked(err alert) error {
+ switch err {
+ case alertNoRenegotiation, alertCloseNotify:
+ c.tmp[0] = alertLevelWarning
+ default:
+ c.tmp[0] = alertLevelError
+ }
+ c.tmp[1] = byte(err)
+ c.writeRecord(recordTypeAlert, c.tmp[0:2])
+ // closeNotify is a special case in that it isn't an error:
+ if err != alertCloseNotify {
+ return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
+ }
+ return nil
+}
+
+// sendAlert sends a TLS alert message.
+// L < c.out.Mutex.
+func (c *Conn) sendAlert(err alert) error {
+ c.out.Lock()
+ defer c.out.Unlock()
+ return c.sendAlertLocked(err)
+}
+
+// writeRecord writes a TLS record with the given type and payload
+// to the connection and updates the record layer state.
+// c.out.Mutex <= L.
+func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
+ b := c.out.newBlock()
+ for len(data) > 0 {
+ m := len(data)
+ if m > maxPlaintext {
+ m = maxPlaintext
+ }
+ explicitIVLen := 0
+ explicitIVIsSeq := false
+
+ var cbc cbcMode
+ if c.out.version >= VersionTLS11 {
+ var ok bool
+ if cbc, ok = c.out.cipher.(cbcMode); ok {
+ explicitIVLen = cbc.BlockSize()
+ }
+ }
+ if explicitIVLen == 0 {
+ if _, ok := c.out.cipher.(cipher.AEAD); ok {
+ explicitIVLen = 8
+ // The AES-GCM construction in TLS has an
+ // explicit nonce so that the nonce can be
+ // random. However, the nonce is only 8 bytes
+ // which is too small for a secure, random
+ // nonce. Therefore we use the sequence number
+ // as the nonce.
+ explicitIVIsSeq = true
+ }
+ }
+ b.resize(recordHeaderLen + explicitIVLen + m)
+ b.data[0] = byte(typ)
+ vers := c.vers
+ if vers == 0 {
+ // Some TLS servers fail if the record version is
+ // greater than TLS 1.0 for the initial ClientHello.
+ vers = VersionTLS10
+ }
+ b.data[1] = byte(vers >> 8)
+ b.data[2] = byte(vers)
+ b.data[3] = byte(m >> 8)
+ b.data[4] = byte(m)
+ if explicitIVLen > 0 {
+ explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
+ if explicitIVIsSeq {
+ copy(explicitIV, c.out.seq[:])
+ } else {
+ if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
+ break
+ }
+ }
+ }
+ copy(b.data[recordHeaderLen+explicitIVLen:], data)
+ c.out.encrypt(b, explicitIVLen)
+ _, err = c.conn.Write(b.data)
+ if err != nil {
+ break
+ }
+ n += m
+ data = data[m:]
+ }
+ c.out.freeBlock(b)
+
+ if typ == recordTypeChangeCipherSpec {
+ err = c.out.changeCipherSpec()
+ if err != nil {
+ // Cannot call sendAlert directly,
+ // because we already hold c.out.Mutex.
+ c.tmp[0] = alertLevelError
+ c.tmp[1] = byte(err.(alert))
+ c.writeRecord(recordTypeAlert, c.tmp[0:2])
+ return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
+ }
+ }
+ return
+}
+
+// readHandshake reads the next handshake message from
+// the record layer.
+// c.in.Mutex < L; c.out.Mutex < L.
+func (c *Conn) readHandshake() (interface{}, error) {
+ for c.hand.Len() < 4 {
+ if err := c.in.err; err != nil {
+ return nil, err
+ }
+ if err := c.readRecord(recordTypeHandshake); err != nil {
+ return nil, err
+ }
+ }
+
+ data := c.hand.Bytes()
+ n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
+ if n > maxHandshake {
+ return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
+ }
+ for c.hand.Len() < 4+n {
+ if err := c.in.err; err != nil {
+ return nil, err
+ }
+ if err := c.readRecord(recordTypeHandshake); err != nil {
+ return nil, err
+ }
+ }
+ data = c.hand.Next(4 + n)
+ var m handshakeMessage
+ switch data[0] {
+ case typeClientHello:
+ m = new(clientHelloMsg)
+ case typeServerHello:
+ m = new(serverHelloMsg)
+ case typeNewSessionTicket:
+ m = new(newSessionTicketMsg)
+ case typeCertificate:
+ m = new(certificateMsg)
+ case typeCertificateRequest:
+ m = &certificateRequestMsg{
+ hasSignatureAndHash: c.vers >= VersionTLS12,
+ }
+ case typeCertificateStatus:
+ m = new(certificateStatusMsg)
+ case typeServerKeyExchange:
+ m = new(serverKeyExchangeMsg)
+ case typeServerHelloDone:
+ m = new(serverHelloDoneMsg)
+ case typeClientKeyExchange:
+ m = new(clientKeyExchangeMsg)
+ case typeCertificateVerify:
+ m = &certificateVerifyMsg{
+ hasSignatureAndHash: c.vers >= VersionTLS12,
+ }
+ case typeNextProtocol:
+ m = new(nextProtoMsg)
+ case typeFinished:
+ m = new(finishedMsg)
+ default:
+ return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+
+ // The handshake message unmarshallers
+ // expect to be able to keep references to data,
+ // so pass in a fresh copy that won't be overwritten.
+ data = append([]byte(nil), data...)
+
+ if !m.unmarshal(data) {
+ return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+ return m, nil
+}
+
+// Write writes data to the connection.
+func (c *Conn) Write(b []byte) (int, error) {
+ if err := c.Handshake(); err != nil {
+ return 0, err
+ }
+
+ c.out.Lock()
+ defer c.out.Unlock()
+
+ if err := c.out.err; err != nil {
+ return 0, err
+ }
+
+ if !c.handshakeComplete {
+ return 0, alertInternalError
+ }
+
+ // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
+ // attack when using block mode ciphers due to predictable IVs.
+ // This can be prevented by splitting each Application Data
+ // record into two records, effectively randomizing the IV.
+ //
+ // http://www.openssl.org/~bodo/tls-cbc.txt
+ // https://bugzilla.mozilla.org/show_bug.cgi?id=665814
+ // http://www.imperialviolet.org/2012/01/15/beastfollowup.html
+
+ var m int
+ if len(b) > 1 && c.vers <= VersionTLS10 {
+ if _, ok := c.out.cipher.(cipher.BlockMode); ok {
+ n, err := c.writeRecord(recordTypeApplicationData, b[:1])
+ if err != nil {
+ return n, c.out.setErrorLocked(err)
+ }
+ m, b = 1, b[1:]
+ }
+ }
+
+ n, err := c.writeRecord(recordTypeApplicationData, b)
+ return n + m, c.out.setErrorLocked(err)
+}
+
+// Read can be made to time out and return a net.Error with Timeout() == true
+// after a fixed time limit; see SetDeadline and SetReadDeadline.
+func (c *Conn) Read(b []byte) (n int, err error) {
+ if err = c.Handshake(); err != nil {
+ return
+ }
+ if len(b) == 0 {
+ // Put this after Handshake, in case people were calling
+ // Read(nil) for the side effect of the Handshake.
+ return
+ }
+
+ c.in.Lock()
+ defer c.in.Unlock()
+
+ // Some OpenSSL servers send empty records in order to randomize the
+ // CBC IV. So this loop ignores a limited number of empty records.
+ const maxConsecutiveEmptyRecords = 100
+ for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
+ for c.input == nil && c.in.err == nil {
+ if err := c.readRecord(recordTypeApplicationData); err != nil {
+ // Soft error, like EAGAIN
+ return 0, err
+ }
+ }
+ if err := c.in.err; err != nil {
+ return 0, err
+ }
+
+ n, err = c.input.Read(b)
+ if c.input.off >= len(c.input.data) {
+ c.in.freeBlock(c.input)
+ c.input = nil
+ }
+
+ // If a close-notify alert is waiting, read it so that
+ // we can return (n, EOF) instead of (n, nil), to signal
+ // to the HTTP response reading goroutine that the
+ // connection is now closed. This eliminates a race
+ // where the HTTP response reading goroutine would
+ // otherwise not observe the EOF until its next read,
+ // by which time a client goroutine might have already
+ // tried to reuse the HTTP connection for a new
+ // request.
+ // See https://codereview.appspot.com/76400046
+ // and http://golang.org/issue/3514
+ if ri := c.rawInput; ri != nil &&
+ n != 0 && err == nil &&
+ c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
+ if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
+ err = recErr // will be io.EOF on closeNotify
+ }
+ }
+
+ if n != 0 || err != nil {
+ return n, err
+ }
+ }
+
+ return 0, io.ErrNoProgress
+}
+
+// Close closes the connection.
+func (c *Conn) Close() error {
+ var alertErr error
+
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+ if c.handshakeComplete {
+ alertErr = c.sendAlert(alertCloseNotify)
+ }
+
+ if err := c.conn.Close(); err != nil {
+ return err
+ }
+ return alertErr
+}
+
+// Handshake runs the client or server handshake
+// protocol if it has not yet been run.
+// Most uses of this package need not call Handshake
+// explicitly: the first Read or Write will call it automatically.
+func (c *Conn) Handshake() error {
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+ if err := c.handshakeErr; err != nil {
+ return err
+ }
+ if c.handshakeComplete {
+ return nil
+ }
+
+ if c.isClient {
+ c.handshakeErr = c.clientHandshake()
+ } else {
+ c.handshakeErr = c.serverHandshake()
+ }
+ return c.handshakeErr
+}
+
+// ConnectionState returns basic TLS details about the connection.
+func (c *Conn) ConnectionState() ConnectionState {
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+
+ var state ConnectionState
+ state.HandshakeComplete = c.handshakeComplete
+ if c.handshakeComplete {
+ state.Version = c.vers
+ state.NegotiatedProtocol = c.clientProtocol
+ state.DidResume = c.didResume
+ state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
+ state.CipherSuite = c.cipherSuite
+ state.PeerCertificates = c.peerCertificates
+ state.VerifiedChains = c.verifiedChains
+ state.ServerName = c.serverName
+ if !c.didResume {
+ state.TLSUnique = c.firstFinished[:]
+ }
+ }
+
+ return state
+}
+
+// OCSPResponse returns the stapled OCSP response from the TLS server, if
+// any. (Only valid for client connections.)
+func (c *Conn) OCSPResponse() []byte {
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+
+ return c.ocspResponse
+}
+
+// VerifyHostname checks that the peer certificate chain is valid for
+// connecting to host. If so, it returns nil; if not, it returns an error
+// describing the problem.
+func (c *Conn) VerifyHostname(host string) error {
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+ if !c.isClient {
+ return errors.New("tls: VerifyHostname called on TLS server connection")
+ }
+ if !c.handshakeComplete {
+ return errors.New("tls: handshake has not yet been performed")
+ }
+ return c.peerCertificates[0].VerifyHostname(host)
+}