summaryrefslogtreecommitdiff
path: root/src/pkg/compress/flate/inflate.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/compress/flate/inflate.go')
-rw-r--r--src/pkg/compress/flate/inflate.go710
1 files changed, 0 insertions, 710 deletions
diff --git a/src/pkg/compress/flate/inflate.go b/src/pkg/compress/flate/inflate.go
deleted file mode 100644
index 769ef4299..000000000
--- a/src/pkg/compress/flate/inflate.go
+++ /dev/null
@@ -1,710 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-//go:generate go run gen.go -output fixedhuff.go
-
-// Package flate implements the DEFLATE compressed data format, described in
-// RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file
-// formats.
-package flate
-
-import (
- "bufio"
- "io"
- "strconv"
-)
-
-const (
- maxCodeLen = 16 // max length of Huffman code
- maxHist = 32768 // max history required
- // The next three numbers come from the RFC, section 3.2.7.
- maxLit = 286
- maxDist = 32
- numCodes = 19 // number of codes in Huffman meta-code
-)
-
-// A CorruptInputError reports the presence of corrupt input at a given offset.
-type CorruptInputError int64
-
-func (e CorruptInputError) Error() string {
- return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
-}
-
-// An InternalError reports an error in the flate code itself.
-type InternalError string
-
-func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
-
-// A ReadError reports an error encountered while reading input.
-type ReadError struct {
- Offset int64 // byte offset where error occurred
- Err error // error returned by underlying Read
-}
-
-func (e *ReadError) Error() string {
- return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
-}
-
-// A WriteError reports an error encountered while writing output.
-type WriteError struct {
- Offset int64 // byte offset where error occurred
- Err error // error returned by underlying Write
-}
-
-func (e *WriteError) Error() string {
- return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
-}
-
-// Note that much of the implementation of huffmanDecoder is also copied
-// into gen.go (in package main) for the purpose of precomputing the
-// fixed huffman tables so they can be included statically.
-
-// The data structure for decoding Huffman tables is based on that of
-// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
-// For codes smaller than the table width, there are multiple entries
-// (each combination of trailing bits has the same value). For codes
-// larger than the table width, the table contains a link to an overflow
-// table. The width of each entry in the link table is the maximum code
-// size minus the chunk width.
-
-// Note that you can do a lookup in the table even without all bits
-// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
-// have the property that shorter codes come before longer ones, the
-// bit length estimate in the result is a lower bound on the actual
-// number of bits.
-
-// chunk & 15 is number of bits
-// chunk >> 4 is value, including table link
-
-const (
- huffmanChunkBits = 9
- huffmanNumChunks = 1 << huffmanChunkBits
- huffmanCountMask = 15
- huffmanValueShift = 4
-)
-
-type huffmanDecoder struct {
- min int // the minimum code length
- chunks [huffmanNumChunks]uint32 // chunks as described above
- links [][]uint32 // overflow links
- linkMask uint32 // mask the width of the link table
-}
-
-// Initialize Huffman decoding tables from array of code lengths.
-func (h *huffmanDecoder) init(bits []int) bool {
- if h.min != 0 {
- *h = huffmanDecoder{}
- }
-
- // Count number of codes of each length,
- // compute min and max length.
- var count [maxCodeLen]int
- var min, max int
- for _, n := range bits {
- if n == 0 {
- continue
- }
- if min == 0 || n < min {
- min = n
- }
- if n > max {
- max = n
- }
- count[n]++
- }
- if max == 0 {
- return false
- }
-
- h.min = min
- var linkBits uint
- var numLinks int
- if max > huffmanChunkBits {
- linkBits = uint(max) - huffmanChunkBits
- numLinks = 1 << linkBits
- h.linkMask = uint32(numLinks - 1)
- }
- code := 0
- var nextcode [maxCodeLen]int
- for i := min; i <= max; i++ {
- if i == huffmanChunkBits+1 {
- // create link tables
- link := code >> 1
- if huffmanNumChunks < link {
- return false
- }
- h.links = make([][]uint32, huffmanNumChunks-link)
- for j := uint(link); j < huffmanNumChunks; j++ {
- reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
- reverse >>= uint(16 - huffmanChunkBits)
- off := j - uint(link)
- h.chunks[reverse] = uint32(off<<huffmanValueShift + uint(i))
- h.links[off] = make([]uint32, 1<<linkBits)
- }
- }
- n := count[i]
- nextcode[i] = code
- code += n
- code <<= 1
- }
-
- for i, n := range bits {
- if n == 0 {
- continue
- }
- code := nextcode[n]
- nextcode[n]++
- chunk := uint32(i<<huffmanValueShift | n)
- reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
- reverse >>= uint(16 - n)
- if n <= huffmanChunkBits {
- for off := reverse; off < huffmanNumChunks; off += 1 << uint(n) {
- h.chunks[off] = chunk
- }
- } else {
- value := h.chunks[reverse&(huffmanNumChunks-1)] >> huffmanValueShift
- if value >= uint32(len(h.links)) {
- return false
- }
- linktab := h.links[value]
- reverse >>= huffmanChunkBits
- for off := reverse; off < numLinks; off += 1 << uint(n-huffmanChunkBits) {
- linktab[off] = chunk
- }
- }
- }
- return true
-}
-
-// The actual read interface needed by NewReader.
-// If the passed in io.Reader does not also have ReadByte,
-// the NewReader will introduce its own buffering.
-type Reader interface {
- io.Reader
- io.ByteReader
-}
-
-// Decompress state.
-type decompressor struct {
- // Input source.
- r Reader
- roffset int64
- woffset int64
-
- // Input bits, in top of b.
- b uint32
- nb uint
-
- // Huffman decoders for literal/length, distance.
- h1, h2 huffmanDecoder
-
- // Length arrays used to define Huffman codes.
- bits *[maxLit + maxDist]int
- codebits *[numCodes]int
-
- // Output history, buffer.
- hist *[maxHist]byte
- hp int // current output position in buffer
- hw int // have written hist[0:hw] already
- hfull bool // buffer has filled at least once
-
- // Temporary buffer (avoids repeated allocation).
- buf [4]byte
-
- // Next step in the decompression,
- // and decompression state.
- step func(*decompressor)
- final bool
- err error
- toRead []byte
- hl, hd *huffmanDecoder
- copyLen int
- copyDist int
-}
-
-func (f *decompressor) nextBlock() {
- if f.final {
- if f.hw != f.hp {
- f.flush((*decompressor).nextBlock)
- return
- }
- f.err = io.EOF
- return
- }
- for f.nb < 1+2 {
- if f.err = f.moreBits(); f.err != nil {
- return
- }
- }
- f.final = f.b&1 == 1
- f.b >>= 1
- typ := f.b & 3
- f.b >>= 2
- f.nb -= 1 + 2
- switch typ {
- case 0:
- f.dataBlock()
- case 1:
- // compressed, fixed Huffman tables
- f.hl = &fixedHuffmanDecoder
- f.hd = nil
- f.huffmanBlock()
- case 2:
- // compressed, dynamic Huffman tables
- if f.err = f.readHuffman(); f.err != nil {
- break
- }
- f.hl = &f.h1
- f.hd = &f.h2
- f.huffmanBlock()
- default:
- // 3 is reserved.
- f.err = CorruptInputError(f.roffset)
- }
-}
-
-func (f *decompressor) Read(b []byte) (int, error) {
- for {
- if len(f.toRead) > 0 {
- n := copy(b, f.toRead)
- f.toRead = f.toRead[n:]
- return n, nil
- }
- if f.err != nil {
- return 0, f.err
- }
- f.step(f)
- }
-}
-
-func (f *decompressor) Close() error {
- if f.err == io.EOF {
- return nil
- }
- return f.err
-}
-
-// RFC 1951 section 3.2.7.
-// Compression with dynamic Huffman codes
-
-var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
-
-func (f *decompressor) readHuffman() error {
- // HLIT[5], HDIST[5], HCLEN[4].
- for f.nb < 5+5+4 {
- if err := f.moreBits(); err != nil {
- return err
- }
- }
- nlit := int(f.b&0x1F) + 257
- if nlit > maxLit {
- return CorruptInputError(f.roffset)
- }
- f.b >>= 5
- ndist := int(f.b&0x1F) + 1
- // maxDist is 32, so ndist is always valid.
- f.b >>= 5
- nclen := int(f.b&0xF) + 4
- // numCodes is 19, so nclen is always valid.
- f.b >>= 4
- f.nb -= 5 + 5 + 4
-
- // (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
- for i := 0; i < nclen; i++ {
- for f.nb < 3 {
- if err := f.moreBits(); err != nil {
- return err
- }
- }
- f.codebits[codeOrder[i]] = int(f.b & 0x7)
- f.b >>= 3
- f.nb -= 3
- }
- for i := nclen; i < len(codeOrder); i++ {
- f.codebits[codeOrder[i]] = 0
- }
- if !f.h1.init(f.codebits[0:]) {
- return CorruptInputError(f.roffset)
- }
-
- // HLIT + 257 code lengths, HDIST + 1 code lengths,
- // using the code length Huffman code.
- for i, n := 0, nlit+ndist; i < n; {
- x, err := f.huffSym(&f.h1)
- if err != nil {
- return err
- }
- if x < 16 {
- // Actual length.
- f.bits[i] = x
- i++
- continue
- }
- // Repeat previous length or zero.
- var rep int
- var nb uint
- var b int
- switch x {
- default:
- return InternalError("unexpected length code")
- case 16:
- rep = 3
- nb = 2
- if i == 0 {
- return CorruptInputError(f.roffset)
- }
- b = f.bits[i-1]
- case 17:
- rep = 3
- nb = 3
- b = 0
- case 18:
- rep = 11
- nb = 7
- b = 0
- }
- for f.nb < nb {
- if err := f.moreBits(); err != nil {
- return err
- }
- }
- rep += int(f.b & uint32(1<<nb-1))
- f.b >>= nb
- f.nb -= nb
- if i+rep > n {
- return CorruptInputError(f.roffset)
- }
- for j := 0; j < rep; j++ {
- f.bits[i] = b
- i++
- }
- }
-
- if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
- return CorruptInputError(f.roffset)
- }
-
- return nil
-}
-
-// Decode a single Huffman block from f.
-// hl and hd are the Huffman states for the lit/length values
-// and the distance values, respectively. If hd == nil, using the
-// fixed distance encoding associated with fixed Huffman blocks.
-func (f *decompressor) huffmanBlock() {
- for {
- v, err := f.huffSym(f.hl)
- if err != nil {
- f.err = err
- return
- }
- var n uint // number of bits extra
- var length int
- switch {
- case v < 256:
- f.hist[f.hp] = byte(v)
- f.hp++
- if f.hp == len(f.hist) {
- // After the flush, continue this loop.
- f.flush((*decompressor).huffmanBlock)
- return
- }
- continue
- case v == 256:
- // Done with huffman block; read next block.
- f.step = (*decompressor).nextBlock
- return
- // otherwise, reference to older data
- case v < 265:
- length = v - (257 - 3)
- n = 0
- case v < 269:
- length = v*2 - (265*2 - 11)
- n = 1
- case v < 273:
- length = v*4 - (269*4 - 19)
- n = 2
- case v < 277:
- length = v*8 - (273*8 - 35)
- n = 3
- case v < 281:
- length = v*16 - (277*16 - 67)
- n = 4
- case v < 285:
- length = v*32 - (281*32 - 131)
- n = 5
- default:
- length = 258
- n = 0
- }
- if n > 0 {
- for f.nb < n {
- if err = f.moreBits(); err != nil {
- f.err = err
- return
- }
- }
- length += int(f.b & uint32(1<<n-1))
- f.b >>= n
- f.nb -= n
- }
-
- var dist int
- if f.hd == nil {
- for f.nb < 5 {
- if err = f.moreBits(); err != nil {
- f.err = err
- return
- }
- }
- dist = int(reverseByte[(f.b&0x1F)<<3])
- f.b >>= 5
- f.nb -= 5
- } else {
- if dist, err = f.huffSym(f.hd); err != nil {
- f.err = err
- return
- }
- }
-
- switch {
- case dist < 4:
- dist++
- case dist >= 30:
- f.err = CorruptInputError(f.roffset)
- return
- default:
- nb := uint(dist-2) >> 1
- // have 1 bit in bottom of dist, need nb more.
- extra := (dist & 1) << nb
- for f.nb < nb {
- if err = f.moreBits(); err != nil {
- f.err = err
- return
- }
- }
- extra |= int(f.b & uint32(1<<nb-1))
- f.b >>= nb
- f.nb -= nb
- dist = 1<<(nb+1) + 1 + extra
- }
-
- // Copy history[-dist:-dist+length] into output.
- if dist > len(f.hist) {
- f.err = InternalError("bad history distance")
- return
- }
-
- // No check on length; encoding can be prescient.
- if !f.hfull && dist > f.hp {
- f.err = CorruptInputError(f.roffset)
- return
- }
-
- f.copyLen, f.copyDist = length, dist
- if f.copyHist() {
- return
- }
- }
-}
-
-// copyHist copies f.copyLen bytes from f.hist (f.copyDist bytes ago) to itself.
-// It reports whether the f.hist buffer is full.
-func (f *decompressor) copyHist() bool {
- p := f.hp - f.copyDist
- if p < 0 {
- p += len(f.hist)
- }
- for f.copyLen > 0 {
- n := f.copyLen
- if x := len(f.hist) - f.hp; n > x {
- n = x
- }
- if x := len(f.hist) - p; n > x {
- n = x
- }
- forwardCopy(f.hist[:], f.hp, p, n)
- p += n
- f.hp += n
- f.copyLen -= n
- if f.hp == len(f.hist) {
- // After flush continue copying out of history.
- f.flush((*decompressor).copyHuff)
- return true
- }
- if p == len(f.hist) {
- p = 0
- }
- }
- return false
-}
-
-func (f *decompressor) copyHuff() {
- if f.copyHist() {
- return
- }
- f.huffmanBlock()
-}
-
-// Copy a single uncompressed data block from input to output.
-func (f *decompressor) dataBlock() {
- // Uncompressed.
- // Discard current half-byte.
- f.nb = 0
- f.b = 0
-
- // Length then ones-complement of length.
- nr, err := io.ReadFull(f.r, f.buf[0:4])
- f.roffset += int64(nr)
- if err != nil {
- f.err = &ReadError{f.roffset, err}
- return
- }
- n := int(f.buf[0]) | int(f.buf[1])<<8
- nn := int(f.buf[2]) | int(f.buf[3])<<8
- if uint16(nn) != uint16(^n) {
- f.err = CorruptInputError(f.roffset)
- return
- }
-
- if n == 0 {
- // 0-length block means sync
- f.flush((*decompressor).nextBlock)
- return
- }
-
- f.copyLen = n
- f.copyData()
-}
-
-// copyData copies f.copyLen bytes from the underlying reader into f.hist.
-// It pauses for reads when f.hist is full.
-func (f *decompressor) copyData() {
- n := f.copyLen
- for n > 0 {
- m := len(f.hist) - f.hp
- if m > n {
- m = n
- }
- m, err := io.ReadFull(f.r, f.hist[f.hp:f.hp+m])
- f.roffset += int64(m)
- if err != nil {
- f.err = &ReadError{f.roffset, err}
- return
- }
- n -= m
- f.hp += m
- if f.hp == len(f.hist) {
- f.copyLen = n
- f.flush((*decompressor).copyData)
- return
- }
- }
- f.step = (*decompressor).nextBlock
-}
-
-func (f *decompressor) setDict(dict []byte) {
- if len(dict) > len(f.hist) {
- // Will only remember the tail.
- dict = dict[len(dict)-len(f.hist):]
- }
-
- f.hp = copy(f.hist[:], dict)
- if f.hp == len(f.hist) {
- f.hp = 0
- f.hfull = true
- }
- f.hw = f.hp
-}
-
-func (f *decompressor) moreBits() error {
- c, err := f.r.ReadByte()
- if err != nil {
- if err == io.EOF {
- err = io.ErrUnexpectedEOF
- }
- return err
- }
- f.roffset++
- f.b |= uint32(c) << f.nb
- f.nb += 8
- return nil
-}
-
-// Read the next Huffman-encoded symbol from f according to h.
-func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
- n := uint(h.min)
- for {
- for f.nb < n {
- if err := f.moreBits(); err != nil {
- return 0, err
- }
- }
- chunk := h.chunks[f.b&(huffmanNumChunks-1)]
- n = uint(chunk & huffmanCountMask)
- if n > huffmanChunkBits {
- chunk = h.links[chunk>>huffmanValueShift][(f.b>>huffmanChunkBits)&h.linkMask]
- n = uint(chunk & huffmanCountMask)
- if n == 0 {
- f.err = CorruptInputError(f.roffset)
- return 0, f.err
- }
- }
- if n <= f.nb {
- f.b >>= n
- f.nb -= n
- return int(chunk >> huffmanValueShift), nil
- }
- }
-}
-
-// Flush any buffered output to the underlying writer.
-func (f *decompressor) flush(step func(*decompressor)) {
- f.toRead = f.hist[f.hw:f.hp]
- f.woffset += int64(f.hp - f.hw)
- f.hw = f.hp
- if f.hp == len(f.hist) {
- f.hp = 0
- f.hw = 0
- f.hfull = true
- }
- f.step = step
-}
-
-func makeReader(r io.Reader) Reader {
- if rr, ok := r.(Reader); ok {
- return rr
- }
- return bufio.NewReader(r)
-}
-
-// NewReader returns a new ReadCloser that can be used
-// to read the uncompressed version of r. It is the caller's
-// responsibility to call Close on the ReadCloser when
-// finished reading.
-func NewReader(r io.Reader) io.ReadCloser {
- var f decompressor
- f.bits = new([maxLit + maxDist]int)
- f.codebits = new([numCodes]int)
- f.r = makeReader(r)
- f.hist = new([maxHist]byte)
- f.step = (*decompressor).nextBlock
- return &f
-}
-
-// NewReaderDict is like NewReader but initializes the reader
-// with a preset dictionary. The returned Reader behaves as if
-// the uncompressed data stream started with the given dictionary,
-// which has already been read. NewReaderDict is typically used
-// to read data compressed by NewWriterDict.
-func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
- var f decompressor
- f.r = makeReader(r)
- f.hist = new([maxHist]byte)
- f.bits = new([maxLit + maxDist]int)
- f.codebits = new([numCodes]int)
- f.step = (*decompressor).nextBlock
- f.setDict(dict)
- return &f
-}