summaryrefslogtreecommitdiff
path: root/src/pkg/crypto/rsa/pss.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/crypto/rsa/pss.go')
-rw-r--r--src/pkg/crypto/rsa/pss.go297
1 files changed, 0 insertions, 297 deletions
diff --git a/src/pkg/crypto/rsa/pss.go b/src/pkg/crypto/rsa/pss.go
deleted file mode 100644
index e9f290825..000000000
--- a/src/pkg/crypto/rsa/pss.go
+++ /dev/null
@@ -1,297 +0,0 @@
-// Copyright 2013 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package rsa
-
-// This file implements the PSS signature scheme [1].
-//
-// [1] http://www.rsa.com/rsalabs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf
-
-import (
- "bytes"
- "crypto"
- "errors"
- "hash"
- "io"
- "math/big"
-)
-
-func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) {
- // See [1], section 9.1.1
- hLen := hash.Size()
- sLen := len(salt)
- emLen := (emBits + 7) / 8
-
- // 1. If the length of M is greater than the input limitation for the
- // hash function (2^61 - 1 octets for SHA-1), output "message too
- // long" and stop.
- //
- // 2. Let mHash = Hash(M), an octet string of length hLen.
-
- if len(mHash) != hLen {
- return nil, errors.New("crypto/rsa: input must be hashed message")
- }
-
- // 3. If emLen < hLen + sLen + 2, output "encoding error" and stop.
-
- if emLen < hLen+sLen+2 {
- return nil, errors.New("crypto/rsa: encoding error")
- }
-
- em := make([]byte, emLen)
- db := em[:emLen-sLen-hLen-2+1+sLen]
- h := em[emLen-sLen-hLen-2+1+sLen : emLen-1]
-
- // 4. Generate a random octet string salt of length sLen; if sLen = 0,
- // then salt is the empty string.
- //
- // 5. Let
- // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt;
- //
- // M' is an octet string of length 8 + hLen + sLen with eight
- // initial zero octets.
- //
- // 6. Let H = Hash(M'), an octet string of length hLen.
-
- var prefix [8]byte
-
- hash.Write(prefix[:])
- hash.Write(mHash)
- hash.Write(salt)
-
- h = hash.Sum(h[:0])
- hash.Reset()
-
- // 7. Generate an octet string PS consisting of emLen - sLen - hLen - 2
- // zero octets. The length of PS may be 0.
- //
- // 8. Let DB = PS || 0x01 || salt; DB is an octet string of length
- // emLen - hLen - 1.
-
- db[emLen-sLen-hLen-2] = 0x01
- copy(db[emLen-sLen-hLen-1:], salt)
-
- // 9. Let dbMask = MGF(H, emLen - hLen - 1).
- //
- // 10. Let maskedDB = DB \xor dbMask.
-
- mgf1XOR(db, hash, h)
-
- // 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in
- // maskedDB to zero.
-
- db[0] &= (0xFF >> uint(8*emLen-emBits))
-
- // 12. Let EM = maskedDB || H || 0xbc.
- em[emLen-1] = 0xBC
-
- // 13. Output EM.
- return em, nil
-}
-
-func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error {
- // 1. If the length of M is greater than the input limitation for the
- // hash function (2^61 - 1 octets for SHA-1), output "inconsistent"
- // and stop.
- //
- // 2. Let mHash = Hash(M), an octet string of length hLen.
- hLen := hash.Size()
- if hLen != len(mHash) {
- return ErrVerification
- }
-
- // 3. If emLen < hLen + sLen + 2, output "inconsistent" and stop.
- emLen := (emBits + 7) / 8
- if emLen < hLen+sLen+2 {
- return ErrVerification
- }
-
- // 4. If the rightmost octet of EM does not have hexadecimal value
- // 0xbc, output "inconsistent" and stop.
- if em[len(em)-1] != 0xBC {
- return ErrVerification
- }
-
- // 5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and
- // let H be the next hLen octets.
- db := em[:emLen-hLen-1]
- h := em[emLen-hLen-1 : len(em)-1]
-
- // 6. If the leftmost 8 * emLen - emBits bits of the leftmost octet in
- // maskedDB are not all equal to zero, output "inconsistent" and
- // stop.
- if em[0]&(0xFF<<uint(8-(8*emLen-emBits))) != 0 {
- return ErrVerification
- }
-
- // 7. Let dbMask = MGF(H, emLen - hLen - 1).
- //
- // 8. Let DB = maskedDB \xor dbMask.
- mgf1XOR(db, hash, h)
-
- // 9. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB
- // to zero.
- db[0] &= (0xFF >> uint(8*emLen-emBits))
-
- if sLen == PSSSaltLengthAuto {
- FindSaltLength:
- for sLen = emLen - (hLen + 2); sLen >= 0; sLen-- {
- switch db[emLen-hLen-sLen-2] {
- case 1:
- break FindSaltLength
- case 0:
- continue
- default:
- return ErrVerification
- }
- }
- if sLen < 0 {
- return ErrVerification
- }
- } else {
- // 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero
- // or if the octet at position emLen - hLen - sLen - 1 (the leftmost
- // position is "position 1") does not have hexadecimal value 0x01,
- // output "inconsistent" and stop.
- for _, e := range db[:emLen-hLen-sLen-2] {
- if e != 0x00 {
- return ErrVerification
- }
- }
- if db[emLen-hLen-sLen-2] != 0x01 {
- return ErrVerification
- }
- }
-
- // 11. Let salt be the last sLen octets of DB.
- salt := db[len(db)-sLen:]
-
- // 12. Let
- // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;
- // M' is an octet string of length 8 + hLen + sLen with eight
- // initial zero octets.
- //
- // 13. Let H' = Hash(M'), an octet string of length hLen.
- var prefix [8]byte
- hash.Write(prefix[:])
- hash.Write(mHash)
- hash.Write(salt)
-
- h0 := hash.Sum(nil)
-
- // 14. If H = H', output "consistent." Otherwise, output "inconsistent."
- if !bytes.Equal(h0, h) {
- return ErrVerification
- }
- return nil
-}
-
-// signPSSWithSalt calculates the signature of hashed using PSS [1] with specified salt.
-// Note that hashed must be the result of hashing the input message using the
-// given hash function. salt is a random sequence of bytes whose length will be
-// later used to verify the signature.
-func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) (s []byte, err error) {
- nBits := priv.N.BitLen()
- em, err := emsaPSSEncode(hashed, nBits-1, salt, hash.New())
- if err != nil {
- return
- }
- m := new(big.Int).SetBytes(em)
- c, err := decrypt(rand, priv, m)
- if err != nil {
- return
- }
- s = make([]byte, (nBits+7)/8)
- copyWithLeftPad(s, c.Bytes())
- return
-}
-
-const (
- // PSSSaltLengthAuto causes the salt in a PSS signature to be as large
- // as possible when signing, and to be auto-detected when verifying.
- PSSSaltLengthAuto = 0
- // PSSSaltLengthEqualsHash causes the salt length to equal the length
- // of the hash used in the signature.
- PSSSaltLengthEqualsHash = -1
-)
-
-// PSSOptions contains options for creating and verifying PSS signatures.
-type PSSOptions struct {
- // SaltLength controls the length of the salt used in the PSS
- // signature. It can either be a number of bytes, or one of the special
- // PSSSaltLength constants.
- SaltLength int
-
- // Hash, if not zero, overrides the hash function passed to SignPSS.
- // This is the only way to specify the hash function when using the
- // crypto.Signer interface.
- Hash crypto.Hash
-}
-
-// HashFunc returns pssOpts.Hash so that PSSOptions implements
-// crypto.SignerOpts.
-func (pssOpts *PSSOptions) HashFunc() crypto.Hash {
- return pssOpts.Hash
-}
-
-func (opts *PSSOptions) saltLength() int {
- if opts == nil {
- return PSSSaltLengthAuto
- }
- return opts.SaltLength
-}
-
-// SignPSS calculates the signature of hashed using RSASSA-PSS [1].
-// Note that hashed must be the result of hashing the input message using the
-// given hash function. The opts argument may be nil, in which case sensible
-// defaults are used.
-func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte, opts *PSSOptions) (s []byte, err error) {
- saltLength := opts.saltLength()
- switch saltLength {
- case PSSSaltLengthAuto:
- saltLength = (priv.N.BitLen()+7)/8 - 2 - hash.Size()
- case PSSSaltLengthEqualsHash:
- saltLength = hash.Size()
- }
-
- if opts.Hash != 0 {
- hash = opts.Hash
- }
-
- salt := make([]byte, saltLength)
- if _, err = io.ReadFull(rand, salt); err != nil {
- return
- }
- return signPSSWithSalt(rand, priv, hash, hashed, salt)
-}
-
-// VerifyPSS verifies a PSS signature.
-// hashed is the result of hashing the input message using the given hash
-// function and sig is the signature. A valid signature is indicated by
-// returning a nil error. The opts argument may be nil, in which case sensible
-// defaults are used.
-func VerifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, opts *PSSOptions) error {
- return verifyPSS(pub, hash, hashed, sig, opts.saltLength())
-}
-
-// verifyPSS verifies a PSS signature with the given salt length.
-func verifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, saltLen int) error {
- nBits := pub.N.BitLen()
- if len(sig) != (nBits+7)/8 {
- return ErrVerification
- }
- s := new(big.Int).SetBytes(sig)
- m := encrypt(new(big.Int), pub, s)
- emBits := nBits - 1
- emLen := (emBits + 7) / 8
- if emLen < len(m.Bytes()) {
- return ErrVerification
- }
- em := make([]byte, emLen)
- copyWithLeftPad(em, m.Bytes())
- if saltLen == PSSSaltLengthEqualsHash {
- saltLen = hash.Size()
- }
- return emsaPSSVerify(hashed, em, emBits, saltLen, hash.New())
-}