summaryrefslogtreecommitdiff
path: root/src/pkg/crypto/x509/pem_decrypt.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/crypto/x509/pem_decrypt.go')
-rw-r--r--src/pkg/crypto/x509/pem_decrypt.go233
1 files changed, 0 insertions, 233 deletions
diff --git a/src/pkg/crypto/x509/pem_decrypt.go b/src/pkg/crypto/x509/pem_decrypt.go
deleted file mode 100644
index 194c81bf6..000000000
--- a/src/pkg/crypto/x509/pem_decrypt.go
+++ /dev/null
@@ -1,233 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package x509
-
-// RFC 1423 describes the encryption of PEM blocks. The algorithm used to
-// generate a key from the password was derived by looking at the OpenSSL
-// implementation.
-
-import (
- "crypto/aes"
- "crypto/cipher"
- "crypto/des"
- "crypto/md5"
- "encoding/hex"
- "encoding/pem"
- "errors"
- "io"
- "strings"
-)
-
-type PEMCipher int
-
-// Possible values for the EncryptPEMBlock encryption algorithm.
-const (
- _ PEMCipher = iota
- PEMCipherDES
- PEMCipher3DES
- PEMCipherAES128
- PEMCipherAES192
- PEMCipherAES256
-)
-
-// rfc1423Algo holds a method for enciphering a PEM block.
-type rfc1423Algo struct {
- cipher PEMCipher
- name string
- cipherFunc func(key []byte) (cipher.Block, error)
- keySize int
- blockSize int
-}
-
-// rfc1423Algos holds a slice of the possible ways to encrypt a PEM
-// block. The ivSize numbers were taken from the OpenSSL source.
-var rfc1423Algos = []rfc1423Algo{{
- cipher: PEMCipherDES,
- name: "DES-CBC",
- cipherFunc: des.NewCipher,
- keySize: 8,
- blockSize: des.BlockSize,
-}, {
- cipher: PEMCipher3DES,
- name: "DES-EDE3-CBC",
- cipherFunc: des.NewTripleDESCipher,
- keySize: 24,
- blockSize: des.BlockSize,
-}, {
- cipher: PEMCipherAES128,
- name: "AES-128-CBC",
- cipherFunc: aes.NewCipher,
- keySize: 16,
- blockSize: aes.BlockSize,
-}, {
- cipher: PEMCipherAES192,
- name: "AES-192-CBC",
- cipherFunc: aes.NewCipher,
- keySize: 24,
- blockSize: aes.BlockSize,
-}, {
- cipher: PEMCipherAES256,
- name: "AES-256-CBC",
- cipherFunc: aes.NewCipher,
- keySize: 32,
- blockSize: aes.BlockSize,
-},
-}
-
-// deriveKey uses a key derivation function to stretch the password into a key
-// with the number of bits our cipher requires. This algorithm was derived from
-// the OpenSSL source.
-func (c rfc1423Algo) deriveKey(password, salt []byte) []byte {
- hash := md5.New()
- out := make([]byte, c.keySize)
- var digest []byte
-
- for i := 0; i < len(out); i += len(digest) {
- hash.Reset()
- hash.Write(digest)
- hash.Write(password)
- hash.Write(salt)
- digest = hash.Sum(digest[:0])
- copy(out[i:], digest)
- }
- return out
-}
-
-// IsEncryptedPEMBlock returns if the PEM block is password encrypted.
-func IsEncryptedPEMBlock(b *pem.Block) bool {
- _, ok := b.Headers["DEK-Info"]
- return ok
-}
-
-// IncorrectPasswordError is returned when an incorrect password is detected.
-var IncorrectPasswordError = errors.New("x509: decryption password incorrect")
-
-// DecryptPEMBlock takes a password encrypted PEM block and the password used to
-// encrypt it and returns a slice of decrypted DER encoded bytes. It inspects
-// the DEK-Info header to determine the algorithm used for decryption. If no
-// DEK-Info header is present, an error is returned. If an incorrect password
-// is detected an IncorrectPasswordError is returned.
-func DecryptPEMBlock(b *pem.Block, password []byte) ([]byte, error) {
- dek, ok := b.Headers["DEK-Info"]
- if !ok {
- return nil, errors.New("x509: no DEK-Info header in block")
- }
-
- idx := strings.Index(dek, ",")
- if idx == -1 {
- return nil, errors.New("x509: malformed DEK-Info header")
- }
-
- mode, hexIV := dek[:idx], dek[idx+1:]
- ciph := cipherByName(mode)
- if ciph == nil {
- return nil, errors.New("x509: unknown encryption mode")
- }
- iv, err := hex.DecodeString(hexIV)
- if err != nil {
- return nil, err
- }
- if len(iv) != ciph.blockSize {
- return nil, errors.New("x509: incorrect IV size")
- }
-
- // Based on the OpenSSL implementation. The salt is the first 8 bytes
- // of the initialization vector.
- key := ciph.deriveKey(password, iv[:8])
- block, err := ciph.cipherFunc(key)
- if err != nil {
- return nil, err
- }
-
- data := make([]byte, len(b.Bytes))
- dec := cipher.NewCBCDecrypter(block, iv)
- dec.CryptBlocks(data, b.Bytes)
-
- // Blocks are padded using a scheme where the last n bytes of padding are all
- // equal to n. It can pad from 1 to blocksize bytes inclusive. See RFC 1423.
- // For example:
- // [x y z 2 2]
- // [x y 7 7 7 7 7 7 7]
- // If we detect a bad padding, we assume it is an invalid password.
- dlen := len(data)
- if dlen == 0 || dlen%ciph.blockSize != 0 {
- return nil, errors.New("x509: invalid padding")
- }
- last := int(data[dlen-1])
- if dlen < last {
- return nil, IncorrectPasswordError
- }
- if last == 0 || last > ciph.blockSize {
- return nil, IncorrectPasswordError
- }
- for _, val := range data[dlen-last:] {
- if int(val) != last {
- return nil, IncorrectPasswordError
- }
- }
- return data[:dlen-last], nil
-}
-
-// EncryptPEMBlock returns a PEM block of the specified type holding the
-// given DER-encoded data encrypted with the specified algorithm and
-// password.
-func EncryptPEMBlock(rand io.Reader, blockType string, data, password []byte, alg PEMCipher) (*pem.Block, error) {
- ciph := cipherByKey(alg)
- if ciph == nil {
- return nil, errors.New("x509: unknown encryption mode")
- }
- iv := make([]byte, ciph.blockSize)
- if _, err := io.ReadFull(rand, iv); err != nil {
- return nil, errors.New("x509: cannot generate IV: " + err.Error())
- }
- // The salt is the first 8 bytes of the initialization vector,
- // matching the key derivation in DecryptPEMBlock.
- key := ciph.deriveKey(password, iv[:8])
- block, err := ciph.cipherFunc(key)
- if err != nil {
- return nil, err
- }
- enc := cipher.NewCBCEncrypter(block, iv)
- pad := ciph.blockSize - len(data)%ciph.blockSize
- encrypted := make([]byte, len(data), len(data)+pad)
- // We could save this copy by encrypting all the whole blocks in
- // the data separately, but it doesn't seem worth the additional
- // code.
- copy(encrypted, data)
- // See RFC 1423, section 1.1
- for i := 0; i < pad; i++ {
- encrypted = append(encrypted, byte(pad))
- }
- enc.CryptBlocks(encrypted, encrypted)
-
- return &pem.Block{
- Type: blockType,
- Headers: map[string]string{
- "Proc-Type": "4,ENCRYPTED",
- "DEK-Info": ciph.name + "," + hex.EncodeToString(iv),
- },
- Bytes: encrypted,
- }, nil
-}
-
-func cipherByName(name string) *rfc1423Algo {
- for i := range rfc1423Algos {
- alg := &rfc1423Algos[i]
- if alg.name == name {
- return alg
- }
- }
- return nil
-}
-
-func cipherByKey(key PEMCipher) *rfc1423Algo {
- for i := range rfc1423Algos {
- alg := &rfc1423Algos[i]
- if alg.cipher == key {
- return alg
- }
- }
- return nil
-}