summaryrefslogtreecommitdiff
path: root/src/pkg/math/log1p.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/math/log1p.go')
-rw-r--r--src/pkg/math/log1p.go200
1 files changed, 0 insertions, 200 deletions
diff --git a/src/pkg/math/log1p.go b/src/pkg/math/log1p.go
deleted file mode 100644
index 12b98684c..000000000
--- a/src/pkg/math/log1p.go
+++ /dev/null
@@ -1,200 +0,0 @@
-// Copyright 2010 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package math
-
-// The original C code, the long comment, and the constants
-// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c
-// and came with this notice. The go code is a simplified
-// version of the original C.
-//
-// ====================================================
-// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
-//
-// Developed at SunPro, a Sun Microsystems, Inc. business.
-// Permission to use, copy, modify, and distribute this
-// software is freely granted, provided that this notice
-// is preserved.
-// ====================================================
-//
-//
-// double log1p(double x)
-//
-// Method :
-// 1. Argument Reduction: find k and f such that
-// 1+x = 2**k * (1+f),
-// where sqrt(2)/2 < 1+f < sqrt(2) .
-//
-// Note. If k=0, then f=x is exact. However, if k!=0, then f
-// may not be representable exactly. In that case, a correction
-// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
-// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
-// and add back the correction term c/u.
-// (Note: when x > 2**53, one can simply return log(x))
-//
-// 2. Approximation of log1p(f).
-// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
-// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
-// = 2s + s*R
-// We use a special Reme algorithm on [0,0.1716] to generate
-// a polynomial of degree 14 to approximate R The maximum error
-// of this polynomial approximation is bounded by 2**-58.45. In
-// other words,
-// 2 4 6 8 10 12 14
-// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
-// (the values of Lp1 to Lp7 are listed in the program)
-// and
-// | 2 14 | -58.45
-// | Lp1*s +...+Lp7*s - R(z) | <= 2
-// | |
-// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
-// In order to guarantee error in log below 1ulp, we compute log
-// by
-// log1p(f) = f - (hfsq - s*(hfsq+R)).
-//
-// 3. Finally, log1p(x) = k*ln2 + log1p(f).
-// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
-// Here ln2 is split into two floating point number:
-// ln2_hi + ln2_lo,
-// where n*ln2_hi is always exact for |n| < 2000.
-//
-// Special cases:
-// log1p(x) is NaN with signal if x < -1 (including -INF) ;
-// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
-// log1p(NaN) is that NaN with no signal.
-//
-// Accuracy:
-// according to an error analysis, the error is always less than
-// 1 ulp (unit in the last place).
-//
-// Constants:
-// The hexadecimal values are the intended ones for the following
-// constants. The decimal values may be used, provided that the
-// compiler will convert from decimal to binary accurately enough
-// to produce the hexadecimal values shown.
-//
-// Note: Assuming log() return accurate answer, the following
-// algorithm can be used to compute log1p(x) to within a few ULP:
-//
-// u = 1+x;
-// if(u==1.0) return x ; else
-// return log(u)*(x/(u-1.0));
-//
-// See HP-15C Advanced Functions Handbook, p.193.
-
-// Log1p returns the natural logarithm of 1 plus its argument x.
-// It is more accurate than Log(1 + x) when x is near zero.
-//
-// Special cases are:
-// Log1p(+Inf) = +Inf
-// Log1p(±0) = ±0
-// Log1p(-1) = -Inf
-// Log1p(x < -1) = NaN
-// Log1p(NaN) = NaN
-func Log1p(x float64) float64
-
-func log1p(x float64) float64 {
- const (
- Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34
- Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
- Small = 1.0 / (1 << 29) // 2**-29 = 0x3e20000000000000
- Tiny = 1.0 / (1 << 54) // 2**-54
- Two53 = 1 << 53 // 2**53
- Ln2Hi = 6.93147180369123816490e-01 // 3fe62e42fee00000
- Ln2Lo = 1.90821492927058770002e-10 // 3dea39ef35793c76
- Lp1 = 6.666666666666735130e-01 // 3FE5555555555593
- Lp2 = 3.999999999940941908e-01 // 3FD999999997FA04
- Lp3 = 2.857142874366239149e-01 // 3FD2492494229359
- Lp4 = 2.222219843214978396e-01 // 3FCC71C51D8E78AF
- Lp5 = 1.818357216161805012e-01 // 3FC7466496CB03DE
- Lp6 = 1.531383769920937332e-01 // 3FC39A09D078C69F
- Lp7 = 1.479819860511658591e-01 // 3FC2F112DF3E5244
- )
-
- // special cases
- switch {
- case x < -1 || IsNaN(x): // includes -Inf
- return NaN()
- case x == -1:
- return Inf(-1)
- case IsInf(x, 1):
- return Inf(1)
- }
-
- absx := x
- if absx < 0 {
- absx = -absx
- }
-
- var f float64
- var iu uint64
- k := 1
- if absx < Sqrt2M1 { // |x| < Sqrt(2)-1
- if absx < Small { // |x| < 2**-29
- if absx < Tiny { // |x| < 2**-54
- return x
- }
- return x - x*x*0.5
- }
- if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x
- // (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
- k = 0
- f = x
- iu = 1
- }
- }
- var c float64
- if k != 0 {
- var u float64
- if absx < Two53 { // 1<<53
- u = 1.0 + x
- iu = Float64bits(u)
- k = int((iu >> 52) - 1023)
- if k > 0 {
- c = 1.0 - (u - x)
- } else {
- c = x - (u - 1.0) // correction term
- c /= u
- }
- } else {
- u = x
- iu = Float64bits(u)
- k = int((iu >> 52) - 1023)
- c = 0
- }
- iu &= 0x000fffffffffffff
- if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
- u = Float64frombits(iu | 0x3ff0000000000000) // normalize u
- } else {
- k += 1
- u = Float64frombits(iu | 0x3fe0000000000000) // normalize u/2
- iu = (0x0010000000000000 - iu) >> 2
- }
- f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2)
- }
- hfsq := 0.5 * f * f
- var s, R, z float64
- if iu == 0 { // |f| < 2**-20
- if f == 0 {
- if k == 0 {
- return 0
- } else {
- c += float64(k) * Ln2Lo
- return float64(k)*Ln2Hi + c
- }
- }
- R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division
- if k == 0 {
- return f - R
- }
- return float64(k)*Ln2Hi - ((R - (float64(k)*Ln2Lo + c)) - f)
- }
- s = f / (2.0 + f)
- z = s * s
- R = z * (Lp1 + z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))))
- if k == 0 {
- return f - (hfsq - s*(hfsq+R))
- }
- return float64(k)*Ln2Hi - ((hfsq - (s*(hfsq+R) + (float64(k)*Ln2Lo + c))) - f)
-}