summaryrefslogtreecommitdiff
path: root/src/pkg/time/time.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/time/time.go')
-rw-r--r--src/pkg/time/time.go1198
1 files changed, 0 insertions, 1198 deletions
diff --git a/src/pkg/time/time.go b/src/pkg/time/time.go
deleted file mode 100644
index 4f76d79ee..000000000
--- a/src/pkg/time/time.go
+++ /dev/null
@@ -1,1198 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package time provides functionality for measuring and displaying time.
-//
-// The calendrical calculations always assume a Gregorian calendar.
-package time
-
-import "errors"
-
-// A Time represents an instant in time with nanosecond precision.
-//
-// Programs using times should typically store and pass them as values,
-// not pointers. That is, time variables and struct fields should be of
-// type time.Time, not *time.Time. A Time value can be used by
-// multiple goroutines simultaneously.
-//
-// Time instants can be compared using the Before, After, and Equal methods.
-// The Sub method subtracts two instants, producing a Duration.
-// The Add method adds a Time and a Duration, producing a Time.
-//
-// The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
-// As this time is unlikely to come up in practice, the IsZero method gives
-// a simple way of detecting a time that has not been initialized explicitly.
-//
-// Each Time has associated with it a Location, consulted when computing the
-// presentation form of the time, such as in the Format, Hour, and Year methods.
-// The methods Local, UTC, and In return a Time with a specific location.
-// Changing the location in this way changes only the presentation; it does not
-// change the instant in time being denoted and therefore does not affect the
-// computations described in earlier paragraphs.
-//
-type Time struct {
- // sec gives the number of seconds elapsed since
- // January 1, year 1 00:00:00 UTC.
- sec int64
-
- // nsec specifies a non-negative nanosecond
- // offset within the second named by Seconds.
- // It must be in the range [0, 999999999].
- nsec int32
-
- // loc specifies the Location that should be used to
- // determine the minute, hour, month, day, and year
- // that correspond to this Time.
- // Only the zero Time has a nil Location.
- // In that case it is interpreted to mean UTC.
- loc *Location
-}
-
-// After reports whether the time instant t is after u.
-func (t Time) After(u Time) bool {
- return t.sec > u.sec || t.sec == u.sec && t.nsec > u.nsec
-}
-
-// Before reports whether the time instant t is before u.
-func (t Time) Before(u Time) bool {
- return t.sec < u.sec || t.sec == u.sec && t.nsec < u.nsec
-}
-
-// Equal reports whether t and u represent the same time instant.
-// Two times can be equal even if they are in different locations.
-// For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
-// This comparison is different from using t == u, which also compares
-// the locations.
-func (t Time) Equal(u Time) bool {
- return t.sec == u.sec && t.nsec == u.nsec
-}
-
-// A Month specifies a month of the year (January = 1, ...).
-type Month int
-
-const (
- January Month = 1 + iota
- February
- March
- April
- May
- June
- July
- August
- September
- October
- November
- December
-)
-
-var months = [...]string{
- "January",
- "February",
- "March",
- "April",
- "May",
- "June",
- "July",
- "August",
- "September",
- "October",
- "November",
- "December",
-}
-
-// String returns the English name of the month ("January", "February", ...).
-func (m Month) String() string { return months[m-1] }
-
-// A Weekday specifies a day of the week (Sunday = 0, ...).
-type Weekday int
-
-const (
- Sunday Weekday = iota
- Monday
- Tuesday
- Wednesday
- Thursday
- Friday
- Saturday
-)
-
-var days = [...]string{
- "Sunday",
- "Monday",
- "Tuesday",
- "Wednesday",
- "Thursday",
- "Friday",
- "Saturday",
-}
-
-// String returns the English name of the day ("Sunday", "Monday", ...).
-func (d Weekday) String() string { return days[d] }
-
-// Computations on time.
-//
-// The zero value for a Time is defined to be
-// January 1, year 1, 00:00:00.000000000 UTC
-// which (1) looks like a zero, or as close as you can get in a date
-// (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
-// be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
-// non-negative year even in time zones west of UTC, unlike 1-1-0
-// 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
-//
-// The zero Time value does not force a specific epoch for the time
-// representation. For example, to use the Unix epoch internally, we
-// could define that to distinguish a zero value from Jan 1 1970, that
-// time would be represented by sec=-1, nsec=1e9. However, it does
-// suggest a representation, namely using 1-1-1 00:00:00 UTC as the
-// epoch, and that's what we do.
-//
-// The Add and Sub computations are oblivious to the choice of epoch.
-//
-// The presentation computations - year, month, minute, and so on - all
-// rely heavily on division and modulus by positive constants. For
-// calendrical calculations we want these divisions to round down, even
-// for negative values, so that the remainder is always positive, but
-// Go's division (like most hardware division instructions) rounds to
-// zero. We can still do those computations and then adjust the result
-// for a negative numerator, but it's annoying to write the adjustment
-// over and over. Instead, we can change to a different epoch so long
-// ago that all the times we care about will be positive, and then round
-// to zero and round down coincide. These presentation routines already
-// have to add the zone offset, so adding the translation to the
-// alternate epoch is cheap. For example, having a non-negative time t
-// means that we can write
-//
-// sec = t % 60
-//
-// instead of
-//
-// sec = t % 60
-// if sec < 0 {
-// sec += 60
-// }
-//
-// everywhere.
-//
-// The calendar runs on an exact 400 year cycle: a 400-year calendar
-// printed for 1970-2469 will apply as well to 2470-2869. Even the days
-// of the week match up. It simplifies the computations to choose the
-// cycle boundaries so that the exceptional years are always delayed as
-// long as possible. That means choosing a year equal to 1 mod 400, so
-// that the first leap year is the 4th year, the first missed leap year
-// is the 100th year, and the missed missed leap year is the 400th year.
-// So we'd prefer instead to print a calendar for 2001-2400 and reuse it
-// for 2401-2800.
-//
-// Finally, it's convenient if the delta between the Unix epoch and
-// long-ago epoch is representable by an int64 constant.
-//
-// These three considerations—choose an epoch as early as possible, that
-// uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
-// earlier than 1970—bring us to the year -292277022399. We refer to
-// this year as the absolute zero year, and to times measured as a uint64
-// seconds since this year as absolute times.
-//
-// Times measured as an int64 seconds since the year 1—the representation
-// used for Time's sec field—are called internal times.
-//
-// Times measured as an int64 seconds since the year 1970 are called Unix
-// times.
-//
-// It is tempting to just use the year 1 as the absolute epoch, defining
-// that the routines are only valid for years >= 1. However, the
-// routines would then be invalid when displaying the epoch in time zones
-// west of UTC, since it is year 0. It doesn't seem tenable to say that
-// printing the zero time correctly isn't supported in half the time
-// zones. By comparison, it's reasonable to mishandle some times in
-// the year -292277022399.
-//
-// All this is opaque to clients of the API and can be changed if a
-// better implementation presents itself.
-
-const (
- // The unsigned zero year for internal calculations.
- // Must be 1 mod 400, and times before it will not compute correctly,
- // but otherwise can be changed at will.
- absoluteZeroYear = -292277022399
-
- // The year of the zero Time.
- // Assumed by the unixToInternal computation below.
- internalYear = 1
-
- // The year of the zero Unix time.
- unixYear = 1970
-
- // Offsets to convert between internal and absolute or Unix times.
- absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
- internalToAbsolute = -absoluteToInternal
-
- unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
- internalToUnix int64 = -unixToInternal
-)
-
-// IsZero reports whether t represents the zero time instant,
-// January 1, year 1, 00:00:00 UTC.
-func (t Time) IsZero() bool {
- return t.sec == 0 && t.nsec == 0
-}
-
-// abs returns the time t as an absolute time, adjusted by the zone offset.
-// It is called when computing a presentation property like Month or Hour.
-func (t Time) abs() uint64 {
- l := t.loc
- // Avoid function calls when possible.
- if l == nil || l == &localLoc {
- l = l.get()
- }
- sec := t.sec + internalToUnix
- if l != &utcLoc {
- if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
- sec += int64(l.cacheZone.offset)
- } else {
- _, offset, _, _, _ := l.lookup(sec)
- sec += int64(offset)
- }
- }
- return uint64(sec + (unixToInternal + internalToAbsolute))
-}
-
-// locabs is a combination of the Zone and abs methods,
-// extracting both return values from a single zone lookup.
-func (t Time) locabs() (name string, offset int, abs uint64) {
- l := t.loc
- if l == nil || l == &localLoc {
- l = l.get()
- }
- // Avoid function call if we hit the local time cache.
- sec := t.sec + internalToUnix
- if l != &utcLoc {
- if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
- name = l.cacheZone.name
- offset = l.cacheZone.offset
- } else {
- name, offset, _, _, _ = l.lookup(sec)
- }
- sec += int64(offset)
- } else {
- name = "UTC"
- }
- abs = uint64(sec + (unixToInternal + internalToAbsolute))
- return
-}
-
-// Date returns the year, month, and day in which t occurs.
-func (t Time) Date() (year int, month Month, day int) {
- year, month, day, _ = t.date(true)
- return
-}
-
-// Year returns the year in which t occurs.
-func (t Time) Year() int {
- year, _, _, _ := t.date(false)
- return year
-}
-
-// Month returns the month of the year specified by t.
-func (t Time) Month() Month {
- _, month, _, _ := t.date(true)
- return month
-}
-
-// Day returns the day of the month specified by t.
-func (t Time) Day() int {
- _, _, day, _ := t.date(true)
- return day
-}
-
-// Weekday returns the day of the week specified by t.
-func (t Time) Weekday() Weekday {
- return absWeekday(t.abs())
-}
-
-// absWeekday is like Weekday but operates on an absolute time.
-func absWeekday(abs uint64) Weekday {
- // January 1 of the absolute year, like January 1 of 2001, was a Monday.
- sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
- return Weekday(int(sec) / secondsPerDay)
-}
-
-// ISOWeek returns the ISO 8601 year and week number in which t occurs.
-// Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
-// week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
-// of year n+1.
-func (t Time) ISOWeek() (year, week int) {
- year, month, day, yday := t.date(true)
- wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
- const (
- Mon int = iota
- Tue
- Wed
- Thu
- Fri
- Sat
- Sun
- )
-
- // Calculate week as number of Mondays in year up to
- // and including today, plus 1 because the first week is week 0.
- // Putting the + 1 inside the numerator as a + 7 keeps the
- // numerator from being negative, which would cause it to
- // round incorrectly.
- week = (yday - wday + 7) / 7
-
- // The week number is now correct under the assumption
- // that the first Monday of the year is in week 1.
- // If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
- // is actually in week 2.
- jan1wday := (wday - yday + 7*53) % 7
- if Tue <= jan1wday && jan1wday <= Thu {
- week++
- }
-
- // If the week number is still 0, we're in early January but in
- // the last week of last year.
- if week == 0 {
- year--
- week = 52
- // A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
- // meaning Jan 1 of the next year is a Friday
- // or it was a leap year and Jan 1 of the next year is a Saturday.
- if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
- week++
- }
- }
-
- // December 29 to 31 are in week 1 of next year if
- // they are after the last Thursday of the year and
- // December 31 is a Monday, Tuesday, or Wednesday.
- if month == December && day >= 29 && wday < Thu {
- if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
- year++
- week = 1
- }
- }
-
- return
-}
-
-// Clock returns the hour, minute, and second within the day specified by t.
-func (t Time) Clock() (hour, min, sec int) {
- return absClock(t.abs())
-}
-
-// absClock is like clock but operates on an absolute time.
-func absClock(abs uint64) (hour, min, sec int) {
- sec = int(abs % secondsPerDay)
- hour = sec / secondsPerHour
- sec -= hour * secondsPerHour
- min = sec / secondsPerMinute
- sec -= min * secondsPerMinute
- return
-}
-
-// Hour returns the hour within the day specified by t, in the range [0, 23].
-func (t Time) Hour() int {
- return int(t.abs()%secondsPerDay) / secondsPerHour
-}
-
-// Minute returns the minute offset within the hour specified by t, in the range [0, 59].
-func (t Time) Minute() int {
- return int(t.abs()%secondsPerHour) / secondsPerMinute
-}
-
-// Second returns the second offset within the minute specified by t, in the range [0, 59].
-func (t Time) Second() int {
- return int(t.abs() % secondsPerMinute)
-}
-
-// Nanosecond returns the nanosecond offset within the second specified by t,
-// in the range [0, 999999999].
-func (t Time) Nanosecond() int {
- return int(t.nsec)
-}
-
-// YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
-// and [1,366] in leap years.
-func (t Time) YearDay() int {
- _, _, _, yday := t.date(false)
- return yday + 1
-}
-
-// A Duration represents the elapsed time between two instants
-// as an int64 nanosecond count. The representation limits the
-// largest representable duration to approximately 290 years.
-type Duration int64
-
-const (
- minDuration Duration = -1 << 63
- maxDuration Duration = 1<<63 - 1
-)
-
-// Common durations. There is no definition for units of Day or larger
-// to avoid confusion across daylight savings time zone transitions.
-//
-// To count the number of units in a Duration, divide:
-// second := time.Second
-// fmt.Print(int64(second/time.Millisecond)) // prints 1000
-//
-// To convert an integer number of units to a Duration, multiply:
-// seconds := 10
-// fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
-//
-const (
- Nanosecond Duration = 1
- Microsecond = 1000 * Nanosecond
- Millisecond = 1000 * Microsecond
- Second = 1000 * Millisecond
- Minute = 60 * Second
- Hour = 60 * Minute
-)
-
-// String returns a string representing the duration in the form "72h3m0.5s".
-// Leading zero units are omitted. As a special case, durations less than one
-// second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
-// that the leading digit is non-zero. The zero duration formats as 0,
-// with no unit.
-func (d Duration) String() string {
- // Largest time is 2540400h10m10.000000000s
- var buf [32]byte
- w := len(buf)
-
- u := uint64(d)
- neg := d < 0
- if neg {
- u = -u
- }
-
- if u < uint64(Second) {
- // Special case: if duration is smaller than a second,
- // use smaller units, like 1.2ms
- var prec int
- w--
- buf[w] = 's'
- w--
- switch {
- case u == 0:
- return "0"
- case u < uint64(Microsecond):
- // print nanoseconds
- prec = 0
- buf[w] = 'n'
- case u < uint64(Millisecond):
- // print microseconds
- prec = 3
- // U+00B5 'µ' micro sign == 0xC2 0xB5
- w-- // Need room for two bytes.
- copy(buf[w:], "µ")
- default:
- // print milliseconds
- prec = 6
- buf[w] = 'm'
- }
- w, u = fmtFrac(buf[:w], u, prec)
- w = fmtInt(buf[:w], u)
- } else {
- w--
- buf[w] = 's'
-
- w, u = fmtFrac(buf[:w], u, 9)
-
- // u is now integer seconds
- w = fmtInt(buf[:w], u%60)
- u /= 60
-
- // u is now integer minutes
- if u > 0 {
- w--
- buf[w] = 'm'
- w = fmtInt(buf[:w], u%60)
- u /= 60
-
- // u is now integer hours
- // Stop at hours because days can be different lengths.
- if u > 0 {
- w--
- buf[w] = 'h'
- w = fmtInt(buf[:w], u)
- }
- }
- }
-
- if neg {
- w--
- buf[w] = '-'
- }
-
- return string(buf[w:])
-}
-
-// fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
-// tail of buf, omitting trailing zeros. it omits the decimal
-// point too when the fraction is 0. It returns the index where the
-// output bytes begin and the value v/10**prec.
-func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
- // Omit trailing zeros up to and including decimal point.
- w := len(buf)
- print := false
- for i := 0; i < prec; i++ {
- digit := v % 10
- print = print || digit != 0
- if print {
- w--
- buf[w] = byte(digit) + '0'
- }
- v /= 10
- }
- if print {
- w--
- buf[w] = '.'
- }
- return w, v
-}
-
-// fmtInt formats v into the tail of buf.
-// It returns the index where the output begins.
-func fmtInt(buf []byte, v uint64) int {
- w := len(buf)
- if v == 0 {
- w--
- buf[w] = '0'
- } else {
- for v > 0 {
- w--
- buf[w] = byte(v%10) + '0'
- v /= 10
- }
- }
- return w
-}
-
-// Nanoseconds returns the duration as an integer nanosecond count.
-func (d Duration) Nanoseconds() int64 { return int64(d) }
-
-// These methods return float64 because the dominant
-// use case is for printing a floating point number like 1.5s, and
-// a truncation to integer would make them not useful in those cases.
-// Splitting the integer and fraction ourselves guarantees that
-// converting the returned float64 to an integer rounds the same
-// way that a pure integer conversion would have, even in cases
-// where, say, float64(d.Nanoseconds())/1e9 would have rounded
-// differently.
-
-// Seconds returns the duration as a floating point number of seconds.
-func (d Duration) Seconds() float64 {
- sec := d / Second
- nsec := d % Second
- return float64(sec) + float64(nsec)*1e-9
-}
-
-// Minutes returns the duration as a floating point number of minutes.
-func (d Duration) Minutes() float64 {
- min := d / Minute
- nsec := d % Minute
- return float64(min) + float64(nsec)*(1e-9/60)
-}
-
-// Hours returns the duration as a floating point number of hours.
-func (d Duration) Hours() float64 {
- hour := d / Hour
- nsec := d % Hour
- return float64(hour) + float64(nsec)*(1e-9/60/60)
-}
-
-// Add returns the time t+d.
-func (t Time) Add(d Duration) Time {
- t.sec += int64(d / 1e9)
- nsec := int32(t.nsec) + int32(d%1e9)
- if nsec >= 1e9 {
- t.sec++
- nsec -= 1e9
- } else if nsec < 0 {
- t.sec--
- nsec += 1e9
- }
- t.nsec = nsec
- return t
-}
-
-// Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
-// value that can be stored in a Duration, the maximum (or minimum) duration
-// will be returned.
-// To compute t-d for a duration d, use t.Add(-d).
-func (t Time) Sub(u Time) Duration {
- d := Duration(t.sec-u.sec)*Second + Duration(int32(t.nsec)-int32(u.nsec))
- // Check for overflow or underflow.
- switch {
- case u.Add(d).Equal(t):
- return d // d is correct
- case t.Before(u):
- return minDuration // t - u is negative out of range
- default:
- return maxDuration // t - u is positive out of range
- }
-}
-
-// Since returns the time elapsed since t.
-// It is shorthand for time.Now().Sub(t).
-func Since(t Time) Duration {
- return Now().Sub(t)
-}
-
-// AddDate returns the time corresponding to adding the
-// given number of years, months, and days to t.
-// For example, AddDate(-1, 2, 3) applied to January 1, 2011
-// returns March 4, 2010.
-//
-// AddDate normalizes its result in the same way that Date does,
-// so, for example, adding one month to October 31 yields
-// December 1, the normalized form for November 31.
-func (t Time) AddDate(years int, months int, days int) Time {
- year, month, day := t.Date()
- hour, min, sec := t.Clock()
- return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec), t.loc)
-}
-
-const (
- secondsPerMinute = 60
- secondsPerHour = 60 * 60
- secondsPerDay = 24 * secondsPerHour
- secondsPerWeek = 7 * secondsPerDay
- daysPer400Years = 365*400 + 97
- daysPer100Years = 365*100 + 24
- daysPer4Years = 365*4 + 1
-)
-
-// date computes the year, day of year, and when full=true,
-// the month and day in which t occurs.
-func (t Time) date(full bool) (year int, month Month, day int, yday int) {
- return absDate(t.abs(), full)
-}
-
-// absDate is like date but operates on an absolute time.
-func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
- // Split into time and day.
- d := abs / secondsPerDay
-
- // Account for 400 year cycles.
- n := d / daysPer400Years
- y := 400 * n
- d -= daysPer400Years * n
-
- // Cut off 100-year cycles.
- // The last cycle has one extra leap year, so on the last day
- // of that year, day / daysPer100Years will be 4 instead of 3.
- // Cut it back down to 3 by subtracting n>>2.
- n = d / daysPer100Years
- n -= n >> 2
- y += 100 * n
- d -= daysPer100Years * n
-
- // Cut off 4-year cycles.
- // The last cycle has a missing leap year, which does not
- // affect the computation.
- n = d / daysPer4Years
- y += 4 * n
- d -= daysPer4Years * n
-
- // Cut off years within a 4-year cycle.
- // The last year is a leap year, so on the last day of that year,
- // day / 365 will be 4 instead of 3. Cut it back down to 3
- // by subtracting n>>2.
- n = d / 365
- n -= n >> 2
- y += n
- d -= 365 * n
-
- year = int(int64(y) + absoluteZeroYear)
- yday = int(d)
-
- if !full {
- return
- }
-
- day = yday
- if isLeap(year) {
- // Leap year
- switch {
- case day > 31+29-1:
- // After leap day; pretend it wasn't there.
- day--
- case day == 31+29-1:
- // Leap day.
- month = February
- day = 29
- return
- }
- }
-
- // Estimate month on assumption that every month has 31 days.
- // The estimate may be too low by at most one month, so adjust.
- month = Month(day / 31)
- end := int(daysBefore[month+1])
- var begin int
- if day >= end {
- month++
- begin = end
- } else {
- begin = int(daysBefore[month])
- }
-
- month++ // because January is 1
- day = day - begin + 1
- return
-}
-
-// daysBefore[m] counts the number of days in a non-leap year
-// before month m begins. There is an entry for m=12, counting
-// the number of days before January of next year (365).
-var daysBefore = [...]int32{
- 0,
- 31,
- 31 + 28,
- 31 + 28 + 31,
- 31 + 28 + 31 + 30,
- 31 + 28 + 31 + 30 + 31,
- 31 + 28 + 31 + 30 + 31 + 30,
- 31 + 28 + 31 + 30 + 31 + 30 + 31,
- 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
- 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
- 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
- 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
- 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
-}
-
-func daysIn(m Month, year int) int {
- if m == February && isLeap(year) {
- return 29
- }
- return int(daysBefore[m] - daysBefore[m-1])
-}
-
-// Provided by package runtime.
-func now() (sec int64, nsec int32)
-
-// Now returns the current local time.
-func Now() Time {
- sec, nsec := now()
- return Time{sec + unixToInternal, nsec, Local}
-}
-
-// UTC returns t with the location set to UTC.
-func (t Time) UTC() Time {
- t.loc = UTC
- return t
-}
-
-// Local returns t with the location set to local time.
-func (t Time) Local() Time {
- t.loc = Local
- return t
-}
-
-// In returns t with the location information set to loc.
-//
-// In panics if loc is nil.
-func (t Time) In(loc *Location) Time {
- if loc == nil {
- panic("time: missing Location in call to Time.In")
- }
- t.loc = loc
- return t
-}
-
-// Location returns the time zone information associated with t.
-func (t Time) Location() *Location {
- l := t.loc
- if l == nil {
- l = UTC
- }
- return l
-}
-
-// Zone computes the time zone in effect at time t, returning the abbreviated
-// name of the zone (such as "CET") and its offset in seconds east of UTC.
-func (t Time) Zone() (name string, offset int) {
- name, offset, _, _, _ = t.loc.lookup(t.sec + internalToUnix)
- return
-}
-
-// Unix returns t as a Unix time, the number of seconds elapsed
-// since January 1, 1970 UTC.
-func (t Time) Unix() int64 {
- return t.sec + internalToUnix
-}
-
-// UnixNano returns t as a Unix time, the number of nanoseconds elapsed
-// since January 1, 1970 UTC. The result is undefined if the Unix time
-// in nanoseconds cannot be represented by an int64. Note that this
-// means the result of calling UnixNano on the zero Time is undefined.
-func (t Time) UnixNano() int64 {
- return (t.sec+internalToUnix)*1e9 + int64(t.nsec)
-}
-
-const timeBinaryVersion byte = 1
-
-// MarshalBinary implements the encoding.BinaryMarshaler interface.
-func (t Time) MarshalBinary() ([]byte, error) {
- var offsetMin int16 // minutes east of UTC. -1 is UTC.
-
- if t.Location() == &utcLoc {
- offsetMin = -1
- } else {
- _, offset := t.Zone()
- if offset%60 != 0 {
- return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
- }
- offset /= 60
- if offset < -32768 || offset == -1 || offset > 32767 {
- return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
- }
- offsetMin = int16(offset)
- }
-
- enc := []byte{
- timeBinaryVersion, // byte 0 : version
- byte(t.sec >> 56), // bytes 1-8: seconds
- byte(t.sec >> 48),
- byte(t.sec >> 40),
- byte(t.sec >> 32),
- byte(t.sec >> 24),
- byte(t.sec >> 16),
- byte(t.sec >> 8),
- byte(t.sec),
- byte(t.nsec >> 24), // bytes 9-12: nanoseconds
- byte(t.nsec >> 16),
- byte(t.nsec >> 8),
- byte(t.nsec),
- byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
- byte(offsetMin),
- }
-
- return enc, nil
-}
-
-// UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
-func (t *Time) UnmarshalBinary(data []byte) error {
- buf := data
- if len(buf) == 0 {
- return errors.New("Time.UnmarshalBinary: no data")
- }
-
- if buf[0] != timeBinaryVersion {
- return errors.New("Time.UnmarshalBinary: unsupported version")
- }
-
- if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
- return errors.New("Time.UnmarshalBinary: invalid length")
- }
-
- buf = buf[1:]
- t.sec = int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
- int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
-
- buf = buf[8:]
- t.nsec = int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
-
- buf = buf[4:]
- offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
-
- if offset == -1*60 {
- t.loc = &utcLoc
- } else if _, localoff, _, _, _ := Local.lookup(t.sec + internalToUnix); offset == localoff {
- t.loc = Local
- } else {
- t.loc = FixedZone("", offset)
- }
-
- return nil
-}
-
-// TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
-// The same semantics will be provided by the generic MarshalBinary, MarshalText,
-// UnmarshalBinary, UnmarshalText.
-
-// GobEncode implements the gob.GobEncoder interface.
-func (t Time) GobEncode() ([]byte, error) {
- return t.MarshalBinary()
-}
-
-// GobDecode implements the gob.GobDecoder interface.
-func (t *Time) GobDecode(data []byte) error {
- return t.UnmarshalBinary(data)
-}
-
-// MarshalJSON implements the json.Marshaler interface.
-// The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
-func (t Time) MarshalJSON() ([]byte, error) {
- if y := t.Year(); y < 0 || y >= 10000 {
- // RFC 3339 is clear that years are 4 digits exactly.
- // See golang.org/issue/4556#c15 for more discussion.
- return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
- }
- return []byte(t.Format(`"` + RFC3339Nano + `"`)), nil
-}
-
-// UnmarshalJSON implements the json.Unmarshaler interface.
-// The time is expected to be a quoted string in RFC 3339 format.
-func (t *Time) UnmarshalJSON(data []byte) (err error) {
- // Fractional seconds are handled implicitly by Parse.
- *t, err = Parse(`"`+RFC3339+`"`, string(data))
- return
-}
-
-// MarshalText implements the encoding.TextMarshaler interface.
-// The time is formatted in RFC 3339 format, with sub-second precision added if present.
-func (t Time) MarshalText() ([]byte, error) {
- if y := t.Year(); y < 0 || y >= 10000 {
- return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
- }
- return []byte(t.Format(RFC3339Nano)), nil
-}
-
-// UnmarshalText implements the encoding.TextUnmarshaler interface.
-// The time is expected to be in RFC 3339 format.
-func (t *Time) UnmarshalText(data []byte) (err error) {
- // Fractional seconds are handled implicitly by Parse.
- *t, err = Parse(RFC3339, string(data))
- return
-}
-
-// Unix returns the local Time corresponding to the given Unix time,
-// sec seconds and nsec nanoseconds since January 1, 1970 UTC.
-// It is valid to pass nsec outside the range [0, 999999999].
-func Unix(sec int64, nsec int64) Time {
- if nsec < 0 || nsec >= 1e9 {
- n := nsec / 1e9
- sec += n
- nsec -= n * 1e9
- if nsec < 0 {
- nsec += 1e9
- sec--
- }
- }
- return Time{sec + unixToInternal, int32(nsec), Local}
-}
-
-func isLeap(year int) bool {
- return year%4 == 0 && (year%100 != 0 || year%400 == 0)
-}
-
-// norm returns nhi, nlo such that
-// hi * base + lo == nhi * base + nlo
-// 0 <= nlo < base
-func norm(hi, lo, base int) (nhi, nlo int) {
- if lo < 0 {
- n := (-lo-1)/base + 1
- hi -= n
- lo += n * base
- }
- if lo >= base {
- n := lo / base
- hi += n
- lo -= n * base
- }
- return hi, lo
-}
-
-// Date returns the Time corresponding to
-// yyyy-mm-dd hh:mm:ss + nsec nanoseconds
-// in the appropriate zone for that time in the given location.
-//
-// The month, day, hour, min, sec, and nsec values may be outside
-// their usual ranges and will be normalized during the conversion.
-// For example, October 32 converts to November 1.
-//
-// A daylight savings time transition skips or repeats times.
-// For example, in the United States, March 13, 2011 2:15am never occurred,
-// while November 6, 2011 1:15am occurred twice. In such cases, the
-// choice of time zone, and therefore the time, is not well-defined.
-// Date returns a time that is correct in one of the two zones involved
-// in the transition, but it does not guarantee which.
-//
-// Date panics if loc is nil.
-func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
- if loc == nil {
- panic("time: missing Location in call to Date")
- }
-
- // Normalize month, overflowing into year.
- m := int(month) - 1
- year, m = norm(year, m, 12)
- month = Month(m) + 1
-
- // Normalize nsec, sec, min, hour, overflowing into day.
- sec, nsec = norm(sec, nsec, 1e9)
- min, sec = norm(min, sec, 60)
- hour, min = norm(hour, min, 60)
- day, hour = norm(day, hour, 24)
-
- y := uint64(int64(year) - absoluteZeroYear)
-
- // Compute days since the absolute epoch.
-
- // Add in days from 400-year cycles.
- n := y / 400
- y -= 400 * n
- d := daysPer400Years * n
-
- // Add in 100-year cycles.
- n = y / 100
- y -= 100 * n
- d += daysPer100Years * n
-
- // Add in 4-year cycles.
- n = y / 4
- y -= 4 * n
- d += daysPer4Years * n
-
- // Add in non-leap years.
- n = y
- d += 365 * n
-
- // Add in days before this month.
- d += uint64(daysBefore[month-1])
- if isLeap(year) && month >= March {
- d++ // February 29
- }
-
- // Add in days before today.
- d += uint64(day - 1)
-
- // Add in time elapsed today.
- abs := d * secondsPerDay
- abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
-
- unix := int64(abs) + (absoluteToInternal + internalToUnix)
-
- // Look for zone offset for t, so we can adjust to UTC.
- // The lookup function expects UTC, so we pass t in the
- // hope that it will not be too close to a zone transition,
- // and then adjust if it is.
- _, offset, _, start, end := loc.lookup(unix)
- if offset != 0 {
- switch utc := unix - int64(offset); {
- case utc < start:
- _, offset, _, _, _ = loc.lookup(start - 1)
- case utc >= end:
- _, offset, _, _, _ = loc.lookup(end)
- }
- unix -= int64(offset)
- }
-
- return Time{unix + unixToInternal, int32(nsec), loc}
-}
-
-// Truncate returns the result of rounding t down to a multiple of d (since the zero time).
-// If d <= 0, Truncate returns t unchanged.
-func (t Time) Truncate(d Duration) Time {
- if d <= 0 {
- return t
- }
- _, r := div(t, d)
- return t.Add(-r)
-}
-
-// Round returns the result of rounding t to the nearest multiple of d (since the zero time).
-// The rounding behavior for halfway values is to round up.
-// If d <= 0, Round returns t unchanged.
-func (t Time) Round(d Duration) Time {
- if d <= 0 {
- return t
- }
- _, r := div(t, d)
- if r+r < d {
- return t.Add(-r)
- }
- return t.Add(d - r)
-}
-
-// div divides t by d and returns the quotient parity and remainder.
-// We don't use the quotient parity anymore (round half up instead of round to even)
-// but it's still here in case we change our minds.
-func div(t Time, d Duration) (qmod2 int, r Duration) {
- neg := false
- nsec := int32(t.nsec)
- if t.sec < 0 {
- // Operate on absolute value.
- neg = true
- t.sec = -t.sec
- nsec = -nsec
- if nsec < 0 {
- nsec += 1e9
- t.sec-- // t.sec >= 1 before the -- so safe
- }
- }
-
- switch {
- // Special case: 2d divides 1 second.
- case d < Second && Second%(d+d) == 0:
- qmod2 = int(nsec/int32(d)) & 1
- r = Duration(nsec % int32(d))
-
- // Special case: d is a multiple of 1 second.
- case d%Second == 0:
- d1 := int64(d / Second)
- qmod2 = int(t.sec/d1) & 1
- r = Duration(t.sec%d1)*Second + Duration(nsec)
-
- // General case.
- // This could be faster if more cleverness were applied,
- // but it's really only here to avoid special case restrictions in the API.
- // No one will care about these cases.
- default:
- // Compute nanoseconds as 128-bit number.
- sec := uint64(t.sec)
- tmp := (sec >> 32) * 1e9
- u1 := tmp >> 32
- u0 := tmp << 32
- tmp = uint64(sec&0xFFFFFFFF) * 1e9
- u0x, u0 := u0, u0+tmp
- if u0 < u0x {
- u1++
- }
- u0x, u0 = u0, u0+uint64(nsec)
- if u0 < u0x {
- u1++
- }
-
- // Compute remainder by subtracting r<<k for decreasing k.
- // Quotient parity is whether we subtract on last round.
- d1 := uint64(d)
- for d1>>63 != 1 {
- d1 <<= 1
- }
- d0 := uint64(0)
- for {
- qmod2 = 0
- if u1 > d1 || u1 == d1 && u0 >= d0 {
- // subtract
- qmod2 = 1
- u0x, u0 = u0, u0-d0
- if u0 > u0x {
- u1--
- }
- u1 -= d1
- }
- if d1 == 0 && d0 == uint64(d) {
- break
- }
- d0 >>= 1
- d0 |= (d1 & 1) << 63
- d1 >>= 1
- }
- r = Duration(u0)
- }
-
- if neg && r != 0 {
- // If input was negative and not an exact multiple of d, we computed q, r such that
- // q*d + r = -t
- // But the right answers are given by -(q-1), d-r:
- // q*d + r = -t
- // -q*d - r = t
- // -(q-1)*d + (d - r) = t
- qmod2 ^= 1
- r = d - r
- }
- return
-}