summaryrefslogtreecommitdiff
path: root/src/runtime/malloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/malloc.c')
-rw-r--r--src/runtime/malloc.c396
1 files changed, 0 insertions, 396 deletions
diff --git a/src/runtime/malloc.c b/src/runtime/malloc.c
deleted file mode 100644
index b79c30b72..000000000
--- a/src/runtime/malloc.c
+++ /dev/null
@@ -1,396 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// See malloc.h for overview.
-//
-// TODO(rsc): double-check stats.
-
-#include "runtime.h"
-#include "arch_GOARCH.h"
-#include "malloc.h"
-#include "type.h"
-#include "typekind.h"
-#include "race.h"
-#include "stack.h"
-#include "textflag.h"
-
-// Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K.
-#pragma dataflag NOPTR
-MHeap runtime·mheap;
-#pragma dataflag NOPTR
-MStats runtime·memstats;
-
-int32
-runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
-{
- uintptr n, i;
- byte *p;
- MSpan *s;
-
- g->m->mcache->local_nlookup++;
- if (sizeof(void*) == 4 && g->m->mcache->local_nlookup >= (1<<30)) {
- // purge cache stats to prevent overflow
- runtime·lock(&runtime·mheap.lock);
- runtime·purgecachedstats(g->m->mcache);
- runtime·unlock(&runtime·mheap.lock);
- }
-
- s = runtime·MHeap_LookupMaybe(&runtime·mheap, v);
- if(sp)
- *sp = s;
- if(s == nil) {
- if(base)
- *base = nil;
- if(size)
- *size = 0;
- return 0;
- }
-
- p = (byte*)((uintptr)s->start<<PageShift);
- if(s->sizeclass == 0) {
- // Large object.
- if(base)
- *base = p;
- if(size)
- *size = s->npages<<PageShift;
- return 1;
- }
-
- n = s->elemsize;
- if(base) {
- i = ((byte*)v - p)/n;
- *base = p + i*n;
- }
- if(size)
- *size = n;
-
- return 1;
-}
-
-#pragma textflag NOSPLIT
-void
-runtime·purgecachedstats(MCache *c)
-{
- MHeap *h;
- int32 i;
-
- // Protected by either heap or GC lock.
- h = &runtime·mheap;
- mstats.heap_alloc += c->local_cachealloc;
- c->local_cachealloc = 0;
- mstats.tinyallocs += c->local_tinyallocs;
- c->local_tinyallocs = 0;
- mstats.nlookup += c->local_nlookup;
- c->local_nlookup = 0;
- h->largefree += c->local_largefree;
- c->local_largefree = 0;
- h->nlargefree += c->local_nlargefree;
- c->local_nlargefree = 0;
- for(i=0; i<nelem(c->local_nsmallfree); i++) {
- h->nsmallfree[i] += c->local_nsmallfree[i];
- c->local_nsmallfree[i] = 0;
- }
-}
-
-// Size of the trailing by_size array differs between Go and C,
-// and all data after by_size is local to C, not exported to Go.
-// NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
-// sizeof_C_MStats is what C thinks about size of Go struct.
-uintptr runtime·sizeof_C_MStats = offsetof(MStats, by_size[61]);
-
-#define MaxArena32 (2U<<30)
-
-// For use by Go. If it were a C enum it would be made available automatically,
-// but the value of MaxMem is too large for enum.
-uintptr runtime·maxmem = MaxMem;
-
-void
-runtime·mallocinit(void)
-{
- byte *p, *p1;
- uintptr arena_size, bitmap_size, spans_size, p_size;
- extern byte runtime·end[];
- uintptr limit;
- uint64 i;
- bool reserved;
-
- p = nil;
- p_size = 0;
- arena_size = 0;
- bitmap_size = 0;
- spans_size = 0;
- reserved = false;
-
- // for 64-bit build
- USED(p);
- USED(p_size);
- USED(arena_size);
- USED(bitmap_size);
- USED(spans_size);
-
- runtime·InitSizes();
-
- if(runtime·class_to_size[TinySizeClass] != TinySize)
- runtime·throw("bad TinySizeClass");
-
- // limit = runtime·memlimit();
- // See https://code.google.com/p/go/issues/detail?id=5049
- // TODO(rsc): Fix after 1.1.
- limit = 0;
-
- // Set up the allocation arena, a contiguous area of memory where
- // allocated data will be found. The arena begins with a bitmap large
- // enough to hold 4 bits per allocated word.
- if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) {
- // On a 64-bit machine, allocate from a single contiguous reservation.
- // 128 GB (MaxMem) should be big enough for now.
- //
- // The code will work with the reservation at any address, but ask
- // SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
- // Allocating a 128 GB region takes away 37 bits, and the amd64
- // doesn't let us choose the top 17 bits, so that leaves the 11 bits
- // in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
- // that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
- // In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
- // UTF-8 sequences, and they are otherwise as far away from
- // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
- // addresses. An earlier attempt to use 0x11f8 caused out of memory errors
- // on OS X during thread allocations. 0x00c0 causes conflicts with
- // AddressSanitizer which reserves all memory up to 0x0100.
- // These choices are both for debuggability and to reduce the
- // odds of the conservative garbage collector not collecting memory
- // because some non-pointer block of memory had a bit pattern
- // that matched a memory address.
- //
- // Actually we reserve 136 GB (because the bitmap ends up being 8 GB)
- // but it hardly matters: e0 00 is not valid UTF-8 either.
- //
- // If this fails we fall back to the 32 bit memory mechanism
- arena_size = MaxMem;
- bitmap_size = arena_size / (sizeof(void*)*8/4);
- spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]);
- spans_size = ROUND(spans_size, PageSize);
- for(i = 0; i <= 0x7f; i++) {
- p = (void*)(i<<40 | 0x00c0ULL<<32);
- p_size = bitmap_size + spans_size + arena_size + PageSize;
- p = runtime·SysReserve(p, p_size, &reserved);
- if(p != nil)
- break;
- }
- }
- if (p == nil) {
- // On a 32-bit machine, we can't typically get away
- // with a giant virtual address space reservation.
- // Instead we map the memory information bitmap
- // immediately after the data segment, large enough
- // to handle another 2GB of mappings (256 MB),
- // along with a reservation for another 512 MB of memory.
- // When that gets used up, we'll start asking the kernel
- // for any memory anywhere and hope it's in the 2GB
- // following the bitmap (presumably the executable begins
- // near the bottom of memory, so we'll have to use up
- // most of memory before the kernel resorts to giving out
- // memory before the beginning of the text segment).
- //
- // Alternatively we could reserve 512 MB bitmap, enough
- // for 4GB of mappings, and then accept any memory the
- // kernel threw at us, but normally that's a waste of 512 MB
- // of address space, which is probably too much in a 32-bit world.
- bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
- arena_size = 512<<20;
- spans_size = MaxArena32 / PageSize * sizeof(runtime·mheap.spans[0]);
- if(limit > 0 && arena_size+bitmap_size+spans_size > limit) {
- bitmap_size = (limit / 9) & ~((1<<PageShift) - 1);
- arena_size = bitmap_size * 8;
- spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]);
- }
- spans_size = ROUND(spans_size, PageSize);
-
- // SysReserve treats the address we ask for, end, as a hint,
- // not as an absolute requirement. If we ask for the end
- // of the data segment but the operating system requires
- // a little more space before we can start allocating, it will
- // give out a slightly higher pointer. Except QEMU, which
- // is buggy, as usual: it won't adjust the pointer upward.
- // So adjust it upward a little bit ourselves: 1/4 MB to get
- // away from the running binary image and then round up
- // to a MB boundary.
- p = (byte*)ROUND((uintptr)runtime·end + (1<<18), 1<<20);
- p_size = bitmap_size + spans_size + arena_size + PageSize;
- p = runtime·SysReserve(p, p_size, &reserved);
- if(p == nil)
- runtime·throw("runtime: cannot reserve arena virtual address space");
- }
-
- // PageSize can be larger than OS definition of page size,
- // so SysReserve can give us a PageSize-unaligned pointer.
- // To overcome this we ask for PageSize more and round up the pointer.
- p1 = (byte*)ROUND((uintptr)p, PageSize);
-
- runtime·mheap.spans = (MSpan**)p1;
- runtime·mheap.bitmap = p1 + spans_size;
- runtime·mheap.arena_start = p1 + spans_size + bitmap_size;
- runtime·mheap.arena_used = runtime·mheap.arena_start;
- runtime·mheap.arena_end = p + p_size;
- runtime·mheap.arena_reserved = reserved;
-
- if(((uintptr)runtime·mheap.arena_start & (PageSize-1)) != 0)
- runtime·throw("misrounded allocation in mallocinit");
-
- // Initialize the rest of the allocator.
- runtime·MHeap_Init(&runtime·mheap);
- g->m->mcache = runtime·allocmcache();
-}
-
-void*
-runtime·MHeap_SysAlloc(MHeap *h, uintptr n)
-{
- byte *p, *p_end;
- uintptr p_size;
- bool reserved;
-
- if(n > h->arena_end - h->arena_used) {
- // We are in 32-bit mode, maybe we didn't use all possible address space yet.
- // Reserve some more space.
- byte *new_end;
-
- p_size = ROUND(n + PageSize, 256<<20);
- new_end = h->arena_end + p_size;
- if(new_end <= h->arena_start + MaxArena32) {
- // TODO: It would be bad if part of the arena
- // is reserved and part is not.
- p = runtime·SysReserve(h->arena_end, p_size, &reserved);
- if(p == h->arena_end) {
- h->arena_end = new_end;
- h->arena_reserved = reserved;
- }
- else if(p+p_size <= h->arena_start + MaxArena32) {
- // Keep everything page-aligned.
- // Our pages are bigger than hardware pages.
- h->arena_end = p+p_size;
- h->arena_used = p + (-(uintptr)p&(PageSize-1));
- h->arena_reserved = reserved;
- } else {
- uint64 stat;
- stat = 0;
- runtime·SysFree(p, p_size, &stat);
- }
- }
- }
- if(n <= h->arena_end - h->arena_used) {
- // Keep taking from our reservation.
- p = h->arena_used;
- runtime·SysMap(p, n, h->arena_reserved, &mstats.heap_sys);
- h->arena_used += n;
- runtime·MHeap_MapBits(h);
- runtime·MHeap_MapSpans(h);
- if(raceenabled)
- runtime·racemapshadow(p, n);
-
- if(((uintptr)p & (PageSize-1)) != 0)
- runtime·throw("misrounded allocation in MHeap_SysAlloc");
- return p;
- }
-
- // If using 64-bit, our reservation is all we have.
- if(h->arena_end - h->arena_start >= MaxArena32)
- return nil;
-
- // On 32-bit, once the reservation is gone we can
- // try to get memory at a location chosen by the OS
- // and hope that it is in the range we allocated bitmap for.
- p_size = ROUND(n, PageSize) + PageSize;
- p = runtime·sysAlloc(p_size, &mstats.heap_sys);
- if(p == nil)
- return nil;
-
- if(p < h->arena_start || p+p_size - h->arena_start >= MaxArena32) {
- runtime·printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n",
- p, h->arena_start, h->arena_start+MaxArena32);
- runtime·SysFree(p, p_size, &mstats.heap_sys);
- return nil;
- }
-
- p_end = p + p_size;
- p += -(uintptr)p & (PageSize-1);
- if(p+n > h->arena_used) {
- h->arena_used = p+n;
- if(p_end > h->arena_end)
- h->arena_end = p_end;
- runtime·MHeap_MapBits(h);
- runtime·MHeap_MapSpans(h);
- if(raceenabled)
- runtime·racemapshadow(p, n);
- }
-
- if(((uintptr)p & (PageSize-1)) != 0)
- runtime·throw("misrounded allocation in MHeap_SysAlloc");
- return p;
-}
-
-void
-runtime·setFinalizer_m(void)
-{
- FuncVal *fn;
- void *arg;
- uintptr nret;
- Type *fint;
- PtrType *ot;
-
- fn = g->m->ptrarg[0];
- arg = g->m->ptrarg[1];
- nret = g->m->scalararg[0];
- fint = g->m->ptrarg[2];
- ot = g->m->ptrarg[3];
- g->m->ptrarg[0] = nil;
- g->m->ptrarg[1] = nil;
- g->m->ptrarg[2] = nil;
- g->m->ptrarg[3] = nil;
-
- g->m->scalararg[0] = runtime·addfinalizer(arg, fn, nret, fint, ot);
-}
-
-void
-runtime·removeFinalizer_m(void)
-{
- void *p;
-
- p = g->m->ptrarg[0];
- g->m->ptrarg[0] = nil;
- runtime·removefinalizer(p);
-}
-
-// mcallable cache refill
-void
-runtime·mcacheRefill_m(void)
-{
- runtime·MCache_Refill(g->m->mcache, (int32)g->m->scalararg[0]);
-}
-
-void
-runtime·largeAlloc_m(void)
-{
- uintptr npages, size;
- MSpan *s;
- void *v;
- int32 flag;
-
- //runtime·printf("largeAlloc size=%D\n", g->m->scalararg[0]);
- // Allocate directly from heap.
- size = g->m->scalararg[0];
- flag = (int32)g->m->scalararg[1];
- if(size + PageSize < size)
- runtime·throw("out of memory");
- npages = size >> PageShift;
- if((size & PageMask) != 0)
- npages++;
- s = runtime·MHeap_Alloc(&runtime·mheap, npages, 0, 1, !(flag & FlagNoZero));
- if(s == nil)
- runtime·throw("out of memory");
- s->limit = (byte*)(s->start<<PageShift) + size;
- v = (void*)(s->start << PageShift);
- // setup for mark sweep
- runtime·markspan(v, 0, 0, true);
- g->m->ptrarg[0] = s;
-}