summaryrefslogtreecommitdiff
path: root/src/pkg/runtime/panic.c
blob: 152c9a3d5589952b2c566ef45e15e8a5ea047f64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "runtime.h"
#include "arch_GOARCH.h"
#include "stack.h"
#include "malloc.h"
#include "textflag.h"

// Code related to defer, panic and recover.

// TODO: remove once code is moved to Go
extern Defer* runtime·newdefer(int32 siz);
extern runtime·freedefer(Defer *d);

uint32 runtime·panicking;
static Mutex paniclk;

void
runtime·deferproc_m(void) {
	int32 siz;
	FuncVal *fn;
	uintptr argp;
	uintptr callerpc;
	Defer *d;

	siz = g->m->scalararg[0];
	fn = g->m->ptrarg[0];
	argp = g->m->scalararg[1];
	callerpc = g->m->scalararg[2];
	g->m->ptrarg[0] = nil;

	d = runtime·newdefer(siz);
	d->fn = fn;
	d->pc = callerpc;
	d->argp = argp;
	runtime·memmove(d->args, (void*)argp, siz);
}

// Print all currently active panics.  Used when crashing.
static void
printpanics(Panic *p)
{
	if(p->link) {
		printpanics(p->link);
		runtime·printf("\t");
	}
	runtime·printf("panic: ");
	runtime·printany(p->arg);
	if(p->recovered)
		runtime·printf(" [recovered]");
	runtime·printf("\n");
}

static void recovery(G*);
static void abortpanic(Panic*);
static FuncVal abortpanicV = { (void(*)(void))abortpanic };

// The implementation of the predeclared function panic.
void
runtime·panic(Eface e)
{
	Defer *d, dabort;
	Panic p;
	uintptr pc, argp;
	void (*fn)(G*);

	runtime·memclr((byte*)&p, sizeof p);
	p.arg = e;
	p.link = g->panic;
	p.stackbase = g->stackbase;
	g->panic = &p;

	dabort.fn = &abortpanicV;
	dabort.siz = sizeof(&p);
	dabort.args[0] = &p;
	dabort.argp = NoArgs;
	dabort.special = true;

	for(;;) {
		d = g->defer;
		if(d == nil)
			break;
		// take defer off list in case of recursive panic
		g->defer = d->link;
		g->ispanic = true;	// rock for runtime·newstack, where runtime·newstackcall ends up
		argp = d->argp;
		pc = d->pc;

		// The deferred function may cause another panic,
		// so newstackcall may not return. Set up a defer
		// to mark this panic aborted if that happens.
		dabort.link = g->defer;
		g->defer = &dabort;
		p.defer = d;

		runtime·newstackcall(d->fn, (byte*)d->args, d->siz);

		// Newstackcall did not panic. Remove dabort.
		if(g->defer != &dabort)
			runtime·throw("bad defer entry in panic");
		g->defer = dabort.link;

		runtime·freedefer(d);
		if(p.recovered) {
			g->panic = p.link;
			// Aborted panics are marked but remain on the g->panic list.
			// Recovery will unwind the stack frames containing their Panic structs.
			// Remove them from the list and free the associated defers.
			while(g->panic && g->panic->aborted) {
				runtime·freedefer(g->panic->defer);
				g->panic = g->panic->link;
			}
			if(g->panic == nil)	// must be done with signal
				g->sig = 0;
			// Pass information about recovering frame to recovery.
			g->sigcode0 = (uintptr)argp;
			g->sigcode1 = (uintptr)pc;
			fn = recovery;
			runtime·mcall(&fn);
			runtime·throw("recovery failed"); // mcall should not return
		}
	}

	// ran out of deferred calls - old-school panic now
	runtime·startpanic();
	printpanics(g->panic);
	runtime·dopanic(0);	// should not return
	runtime·exit(1);	// not reached
}

static void
abortpanic(Panic *p)
{
	p->aborted = true;
}

// Unwind the stack after a deferred function calls recover
// after a panic.  Then arrange to continue running as though
// the caller of the deferred function returned normally.
static void
recovery(G *gp)
{
	void *argp;
	uintptr pc;
	
	// Info about defer passed in G struct.
	argp = (void*)gp->sigcode0;
	pc = (uintptr)gp->sigcode1;

	// Unwind to the stack frame with d's arguments in it.
	runtime·unwindstack(gp, argp);

	// Make the deferproc for this d return again,
	// this time returning 1.  The calling function will
	// jump to the standard return epilogue.
	// The -2*sizeof(uintptr) makes up for the
	// two extra words that are on the stack at
	// each call to deferproc.
	// (The pc we're returning to does pop pop
	// before it tests the return value.)
	// On the arm there are 2 saved LRs mixed in too.
	if(thechar == '5')
		gp->sched.sp = (uintptr)argp - 4*sizeof(uintptr);
	else
		gp->sched.sp = (uintptr)argp - 2*sizeof(uintptr);
	gp->sched.pc = pc;
	gp->sched.lr = 0;
	gp->sched.ret = 1;
	runtime·gogo(&gp->sched);
}

// Free stack frames until we hit the last one
// or until we find the one that contains the sp.
void
runtime·unwindstack(G *gp, byte *sp)
{
	Stktop *top;
	byte *stk;

	// Must be called from a different goroutine, usually m->g0.
	if(g == gp)
		runtime·throw("unwindstack on self");

	while((top = (Stktop*)gp->stackbase) != 0 && top->stackbase != 0) {
		stk = (byte*)gp->stackguard - StackGuard;
		if(stk <= sp && sp < (byte*)gp->stackbase)
			break;
		gp->stackbase = top->stackbase;
		gp->stackguard = top->stackguard;
		gp->stackguard0 = gp->stackguard;
		runtime·stackfree(gp, stk, top);
	}

	if(sp != nil && (sp < (byte*)gp->stackguard - StackGuard || (byte*)gp->stackbase < sp)) {
		runtime·printf("recover: %p not in [%p, %p]\n", sp, gp->stackguard - StackGuard, gp->stackbase);
		runtime·throw("bad unwindstack");
	}
}

// The implementation of the predeclared function recover.
// Cannot split the stack because it needs to reliably
// find the stack segment of its caller.
#pragma textflag NOSPLIT
void
runtime·recover(byte *argp, GoOutput retbase, ...)
{
	Panic *p;
	Stktop *top;
	Eface *ret;

	// Must be an unrecovered panic in progress.
	// Must be on a stack segment created for a deferred call during a panic.
	// Must be at the top of that segment, meaning the deferred call itself
	// and not something it called. The top frame in the segment will have
	// argument pointer argp == top - top->argsize.
	// The subtraction of g->panicwrap allows wrapper functions that
	// do not count as official calls to adjust what we consider the top frame
	// while they are active on the stack. The linker emits adjustments of
	// g->panicwrap in the prologue and epilogue of functions marked as wrappers.
	ret = (Eface*)&retbase;
	top = (Stktop*)g->stackbase;
	p = g->panic;
	if(p != nil && !p->recovered && top->panic && argp == (byte*)top - top->argsize - g->panicwrap) {
		p->recovered = 1;
		*ret = p->arg;
	} else {
		ret->type = nil;
		ret->data = nil;
	}
}

void
runtime·startpanic(void)
{
	if(runtime·mheap.cachealloc.size == 0) { // very early
		runtime·printf("runtime: panic before malloc heap initialized\n");
		g->m->mallocing = 1; // tell rest of panic not to try to malloc
	} else if(g->m->mcache == nil) // can happen if called from signal handler or throw
		g->m->mcache = runtime·allocmcache();
	switch(g->m->dying) {
	case 0:
		g->m->dying = 1;
		if(g != nil) {
			g->writebuf.array = nil;
			g->writebuf.len = 0;
			g->writebuf.cap = 0;
		}
		runtime·xadd(&runtime·panicking, 1);
		runtime·lock(&paniclk);
		if(runtime·debug.schedtrace > 0 || runtime·debug.scheddetail > 0)
			runtime·schedtrace(true);
		runtime·freezetheworld();
		return;
	case 1:
		// Something failed while panicing, probably the print of the
		// argument to panic().  Just print a stack trace and exit.
		g->m->dying = 2;
		runtime·printf("panic during panic\n");
		runtime·dopanic(0);
		runtime·exit(3);
	case 2:
		// This is a genuine bug in the runtime, we couldn't even
		// print the stack trace successfully.
		g->m->dying = 3;
		runtime·printf("stack trace unavailable\n");
		runtime·exit(4);
	default:
		// Can't even print!  Just exit.
		runtime·exit(5);
	}
}

void
runtime·dopanic(int32 unused)
{
	static bool didothers;
	bool crash;
	int32 t;

	if(g->sig != 0)
		runtime·printf("[signal %x code=%p addr=%p pc=%p]\n",
			g->sig, g->sigcode0, g->sigcode1, g->sigpc);

	if((t = runtime·gotraceback(&crash)) > 0){
		if(g != g->m->g0) {
			runtime·printf("\n");
			runtime·goroutineheader(g);
			runtime·traceback((uintptr)runtime·getcallerpc(&unused), (uintptr)runtime·getcallersp(&unused), 0, g);
		} else if(t >= 2 || g->m->throwing > 0) {
			runtime·printf("\nruntime stack:\n");
			runtime·traceback((uintptr)runtime·getcallerpc(&unused), (uintptr)runtime·getcallersp(&unused), 0, g);
		}
		if(!didothers) {
			didothers = true;
			runtime·tracebackothers(g);
		}
	}
	runtime·unlock(&paniclk);
	if(runtime·xadd(&runtime·panicking, -1) != 0) {
		// Some other m is panicking too.
		// Let it print what it needs to print.
		// Wait forever without chewing up cpu.
		// It will exit when it's done.
		static Mutex deadlock;
		runtime·lock(&deadlock);
		runtime·lock(&deadlock);
	}
	
	if(crash)
		runtime·crash();

	runtime·exit(2);
}

bool
runtime·canpanic(G *gp)
{
	M *m;
	uint32 status;

	// Note that g is m->gsignal, different from gp.
	// Note also that g->m can change at preemption, so m can go stale
	// if this function ever makes a function call.
	m = g->m;

	// Is it okay for gp to panic instead of crashing the program?
	// Yes, as long as it is running Go code, not runtime code,
	// and not stuck in a system call.
	if(gp == nil || gp != m->curg)
		return false;
	if(m->locks-m->softfloat != 0 || m->mallocing != 0 || m->throwing != 0 || m->gcing != 0 || m->dying != 0)
		return false;
	status = runtime·readgstatus(gp);
	if((status&~Gscan) != Grunning || gp->syscallsp != 0)
		return false;
#ifdef GOOS_windows
	if(m->libcallsp != 0)
		return false;
#endif
	return true;
}

void
runtime·throw(int8 *s)
{
	if(g->m->throwing == 0)
		g->m->throwing = 1;
	runtime·startpanic();
	runtime·printf("fatal error: %s\n", s);
	runtime·dopanic(0);
	*(int32*)0 = 0;	// not reached
	runtime·exit(1);	// even more not reached
}

void
runtime·gothrow(String s)
{
	if(g->m->throwing == 0)
		g->m->throwing = 1;
	runtime·startpanic();
	runtime·printf("fatal error: %S\n", s);
	runtime·dopanic(0);
	*(int32*)0 = 0;	// not reached
	runtime·exit(1);	// even more not reached
}

void
runtime·panicstring(int8 *s)
{
	Eface err;

	// m->softfloat is set during software floating point,
	// which might cause a fault during a memory load.
	// It increments m->locks to avoid preemption.
	// If we're panicking, the software floating point frames
	// will be unwound, so decrement m->locks as they would.
	if(g->m->softfloat) {
		g->m->locks--;
		g->m->softfloat = 0;
	}

	if(g->m->mallocing) {
		runtime·printf("panic: %s\n", s);
		runtime·throw("panic during malloc");
	}
	if(g->m->gcing) {
		runtime·printf("panic: %s\n", s);
		runtime·throw("panic during gc");
	}
	if(g->m->locks) {
		runtime·printf("panic: %s\n", s);
		runtime·throw("panic holding locks");
	}
	runtime·newErrorCString(s, &err);
	runtime·panic(err);
}