summaryrefslogtreecommitdiff
path: root/src/runtime/os1_dragonfly.go
blob: 82bb45b9b7e5c4d685868c73ab0473052691337d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import "unsafe"

// From DragonFly's <sys/sysctl.h>
const (
	_CTL_HW  = 6
	_HW_NCPU = 3
)

var sigset_none = sigset{}
var sigset_all = sigset{[4]uint32{^uint32(0), ^uint32(0), ^uint32(0), ^uint32(0)}}

func getncpu() int32 {
	mib := [2]uint32{_CTL_HW, _HW_NCPU}
	out := uint32(0)
	nout := unsafe.Sizeof(out)
	ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0)
	if ret >= 0 {
		return int32(out)
	}
	return 1
}

//go:nosplit
func futexsleep(addr *uint32, val uint32, ns int64) {
	systemstack(func() {
		futexsleep1(addr, val, ns)
	})
}

func futexsleep1(addr *uint32, val uint32, ns int64) {
	var timeout int32
	if ns >= 0 {
		// The timeout is specified in microseconds - ensure that we
		// do not end up dividing to zero, which would put us to sleep
		// indefinitely...
		timeout = timediv(ns, 1000, nil)
		if timeout == 0 {
			timeout = 1
		}
	}

	// sys_umtx_sleep will return EWOULDBLOCK (EAGAIN) when the timeout
	// expires or EBUSY if the mutex value does not match.
	ret := sys_umtx_sleep(addr, int32(val), timeout)
	if ret >= 0 || ret == -_EINTR || ret == -_EAGAIN || ret == -_EBUSY {
		return
	}

	print("umtx_sleep addr=", addr, " val=", val, " ret=", ret, "\n")
	*(*int32)(unsafe.Pointer(uintptr(0x1005))) = 0x1005
}

//go:nosplit
func futexwakeup(addr *uint32, cnt uint32) {
	ret := sys_umtx_wakeup(addr, int32(cnt))
	if ret >= 0 {
		return
	}

	systemstack(func() {
		print("umtx_wake_addr=", addr, " ret=", ret, "\n")
		*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
	})
}

func lwp_start(uintptr)

func newosproc(mp *m, stk unsafe.Pointer) {
	if false {
		print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " lwp_start=", funcPC(lwp_start), " id=", mp.id, "/", mp.tls[0], " ostk=", &mp, "\n")
	}

	var oset sigset
	sigprocmask(&sigset_all, &oset)

	params := lwpparams{
		start_func: funcPC(lwp_start),
		arg:        unsafe.Pointer(mp),
		stack:      uintptr(stk),
		tid1:       unsafe.Pointer(&mp.procid),
		tid2:       nil,
	}

	mp.tls[0] = uintptr(mp.id) // so 386 asm can find it

	lwp_create(&params)
	sigprocmask(&oset, nil)
}

func osinit() {
	ncpu = getncpu()
}

var urandom_data [_HashRandomBytes]byte
var urandom_dev = []byte("/dev/urandom\x00")

//go:nosplit
func get_random_data(rnd *unsafe.Pointer, rnd_len *int32) {
	fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
	if read(fd, unsafe.Pointer(&urandom_data), _HashRandomBytes) == _HashRandomBytes {
		*rnd = unsafe.Pointer(&urandom_data[0])
		*rnd_len = _HashRandomBytes
	} else {
		*rnd = nil
		*rnd_len = 0
	}
	close(fd)
}

func goenvs() {
	goenvs_unix()
}

// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
func mpreinit(mp *m) {
	mp.gsignal = malg(32 * 1024)
	mp.gsignal.m = mp
}

// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
func minit() {
	_g_ := getg()

	// m.procid is a uint64, but lwp_start writes an int32. Fix it up.
	_g_.m.procid = uint64(*(*int32)(unsafe.Pointer(&_g_.m.procid)))

	// Initialize signal handling
	signalstack((*byte)(unsafe.Pointer(_g_.m.gsignal.stack.lo)), 32*1024)
	sigprocmask(&sigset_none, nil)
}

// Called from dropm to undo the effect of an minit.
func unminit() {
	signalstack(nil, 0)
}

func memlimit() uintptr {
	/*
		                TODO: Convert to Go when something actually uses the result.

				Rlimit rl;
				extern byte runtime·text[], runtime·end[];
				uintptr used;

				if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
					return 0;
				if(rl.rlim_cur >= 0x7fffffff)
					return 0;

				// Estimate our VM footprint excluding the heap.
				// Not an exact science: use size of binary plus
				// some room for thread stacks.
				used = runtime·end - runtime·text + (64<<20);
				if(used >= rl.rlim_cur)
					return 0;

				// If there's not at least 16 MB left, we're probably
				// not going to be able to do much.  Treat as no limit.
				rl.rlim_cur -= used;
				if(rl.rlim_cur < (16<<20))
					return 0;

				return rl.rlim_cur - used;
	*/
	return 0
}

func sigtramp()

type sigactiont struct {
	sa_sigaction uintptr
	sa_flags     int32
	sa_mask      sigset
}

func setsig(i int32, fn uintptr, restart bool) {
	var sa sigactiont
	sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK
	if restart {
		sa.sa_flags |= _SA_RESTART
	}
	sa.sa_mask = sigset_all
	if fn == funcPC(sighandler) {
		fn = funcPC(sigtramp)
	}
	sa.sa_sigaction = fn
	sigaction(i, &sa, nil)
}

func getsig(i int32) uintptr {
	var sa sigactiont
	sigaction(i, nil, &sa)
	if sa.sa_sigaction == funcPC(sigtramp) {
		return funcPC(sighandler)
	}
	return sa.sa_sigaction
}

func signalstack(p *byte, n int32) {
	var st sigaltstackt
	st.ss_sp = uintptr(unsafe.Pointer(p))
	st.ss_size = uintptr(n)
	st.ss_flags = 0
	if p == nil {
		st.ss_flags = _SS_DISABLE
	}
	sigaltstack(&st, nil)
}

func unblocksignals() {
	sigprocmask(&sigset_none, nil)
}