1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
// Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Sanjay Ghemawat
//
// Produce stack trace
#ifndef BASE_STACKTRACE_X86_INL_H_
#define BASE_STACKTRACE_X86_INL_H_
// Note: this file is included into stacktrace.cc more than once.
// Anything that should only be defined once should be here:
#include "config.h"
#include <stdlib.h> // for NULL
#include <assert.h>
#if defined(HAVE_SYS_UCONTEXT_H)
#include <sys/ucontext.h>
#elif defined(HAVE_UCONTEXT_H)
#include <ucontext.h> // for ucontext_t
#elif defined(HAVE_CYGWIN_SIGNAL_H)
// cygwin/signal.h has a buglet where it uses pthread_attr_t without
// #including <pthread.h> itself. So we have to do it.
# ifdef HAVE_PTHREAD
# include <pthread.h>
# endif
#include <cygwin/signal.h>
typedef ucontext ucontext_t;
#endif
#ifdef HAVE_STDINT_H
#include <stdint.h> // for uintptr_t
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_MMAP
#include <sys/mman.h> // for msync
#include "base/vdso_support.h"
#endif
#include "gperftools/stacktrace.h"
#if defined(__linux__) && defined(__i386__) && defined(__ELF__) && defined(HAVE_MMAP)
// Count "push %reg" instructions in VDSO __kernel_vsyscall(),
// preceding "syscall" or "sysenter".
// If __kernel_vsyscall uses frame pointer, answer 0.
//
// kMaxBytes tells how many instruction bytes of __kernel_vsyscall
// to analyze before giving up. Up to kMaxBytes+1 bytes of
// instructions could be accessed.
//
// Here are known __kernel_vsyscall instruction sequences:
//
// SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S).
// Used on Intel.
// 0xffffe400 <__kernel_vsyscall+0>: push %ecx
// 0xffffe401 <__kernel_vsyscall+1>: push %edx
// 0xffffe402 <__kernel_vsyscall+2>: push %ebp
// 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp
// 0xffffe405 <__kernel_vsyscall+5>: sysenter
//
// SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S).
// Used on AMD.
// 0xffffe400 <__kernel_vsyscall+0>: push %ebp
// 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp
// 0xffffe403 <__kernel_vsyscall+3>: syscall
//
// i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S)
// 0xffffe400 <__kernel_vsyscall+0>: int $0x80
// 0xffffe401 <__kernel_vsyscall+1>: ret
//
static const int kMaxBytes = 10;
// We use assert()s instead of DCHECK()s -- this is too low level
// for DCHECK().
static int CountPushInstructions(const unsigned char *const addr) {
int result = 0;
for (int i = 0; i < kMaxBytes; ++i) {
if (addr[i] == 0x89) {
// "mov reg,reg"
if (addr[i + 1] == 0xE5) {
// Found "mov %esp,%ebp".
return 0;
}
++i; // Skip register encoding byte.
} else if (addr[i] == 0x0F &&
(addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) {
// Found "sysenter" or "syscall".
return result;
} else if ((addr[i] & 0xF0) == 0x50) {
// Found "push %reg".
++result;
} else if (addr[i] == 0xCD && addr[i + 1] == 0x80) {
// Found "int $0x80"
assert(result == 0);
return 0;
} else {
// Unexpected instruction.
assert(0 == "unexpected instruction in __kernel_vsyscall");
return 0;
}
}
// Unexpected: didn't find SYSENTER or SYSCALL in
// [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval.
assert(0 == "did not find SYSENTER or SYSCALL in __kernel_vsyscall");
return 0;
}
#endif
// Given a pointer to a stack frame, locate and return the calling
// stackframe, or return NULL if no stackframe can be found. Perform sanity
// checks (the strictness of which is controlled by the boolean parameter
// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
template<bool STRICT_UNWINDING, bool WITH_CONTEXT>
static void **NextStackFrame(void **old_sp, const void *uc) {
void **new_sp = (void **) *old_sp;
#if defined(__linux__) && defined(__i386__) && defined(HAVE_VDSO_SUPPORT)
if (WITH_CONTEXT && uc != NULL) {
// How many "push %reg" instructions are there at __kernel_vsyscall?
// This is constant for a given kernel and processor, so compute
// it only once.
static int num_push_instructions = -1; // Sentinel: not computed yet.
// Initialize with sentinel value: __kernel_rt_sigreturn can not possibly
// be there.
static const unsigned char *kernel_rt_sigreturn_address = NULL;
static const unsigned char *kernel_vsyscall_address = NULL;
if (num_push_instructions == -1) {
base::VDSOSupport vdso;
if (vdso.IsPresent()) {
base::VDSOSupport::SymbolInfo rt_sigreturn_symbol_info;
base::VDSOSupport::SymbolInfo vsyscall_symbol_info;
if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5",
STT_FUNC, &rt_sigreturn_symbol_info) ||
!vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5",
STT_FUNC, &vsyscall_symbol_info) ||
rt_sigreturn_symbol_info.address == NULL ||
vsyscall_symbol_info.address == NULL) {
// Unexpected: 32-bit VDSO is present, yet one of the expected
// symbols is missing or NULL.
assert(0 == "VDSO is present, but doesn't have expected symbols");
num_push_instructions = 0;
} else {
kernel_rt_sigreturn_address =
reinterpret_cast<const unsigned char *>(
rt_sigreturn_symbol_info.address);
kernel_vsyscall_address =
reinterpret_cast<const unsigned char *>(
vsyscall_symbol_info.address);
num_push_instructions =
CountPushInstructions(kernel_vsyscall_address);
}
} else {
num_push_instructions = 0;
}
}
if (num_push_instructions != 0 && kernel_rt_sigreturn_address != NULL &&
old_sp[1] == kernel_rt_sigreturn_address) {
const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
// This kernel does not use frame pointer in its VDSO code,
// and so %ebp is not suitable for unwinding.
void **const reg_ebp =
reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);
const unsigned char *const reg_eip =
reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);
if (new_sp == reg_ebp &&
kernel_vsyscall_address <= reg_eip &&
reg_eip - kernel_vsyscall_address < kMaxBytes) {
// We "stepped up" to __kernel_vsyscall, but %ebp is not usable.
// Restore from 'ucv' instead.
void **const reg_esp =
reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);
// Check that alleged %esp is not NULL and is reasonably aligned.
if (reg_esp &&
((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {
// Check that alleged %esp is actually readable. This is to prevent
// "double fault" in case we hit the first fault due to e.g. stack
// corruption.
//
// page_size is linker-initalized to avoid async-unsafe locking
// that GCC would otherwise insert (__cxa_guard_acquire etc).
static int page_size;
if (page_size == 0) {
// First time through.
page_size = getpagesize();
}
void *const reg_esp_aligned =
reinterpret_cast<void *>(
(uintptr_t)(reg_esp + num_push_instructions - 1) &
~(page_size - 1));
if (msync(reg_esp_aligned, page_size, MS_ASYNC) == 0) {
// Alleged %esp is readable, use it for further unwinding.
new_sp = reinterpret_cast<void **>(
reg_esp[num_push_instructions - 1]);
}
}
}
}
}
#endif
// Check that the transition from frame pointer old_sp to frame
// pointer new_sp isn't clearly bogus
if (STRICT_UNWINDING) {
// With the stack growing downwards, older stack frame must be
// at a greater address that the current one.
if (new_sp <= old_sp) return NULL;
// Assume stack frames larger than 100,000 bytes are bogus.
if ((uintptr_t)new_sp - (uintptr_t)old_sp > 100000) return NULL;
} else {
// In the non-strict mode, allow discontiguous stack frames.
// (alternate-signal-stacks for example).
if (new_sp == old_sp) return NULL;
if (new_sp > old_sp) {
// And allow frames upto about 1MB.
const uintptr_t delta = (uintptr_t)new_sp - (uintptr_t)old_sp;
const uintptr_t acceptable_delta = 1000000;
if (delta > acceptable_delta) {
return NULL;
}
}
}
if ((uintptr_t)new_sp & (sizeof(void *) - 1)) return NULL;
#ifdef __i386__
// On 64-bit machines, the stack pointer can be very close to
// 0xffffffff, so we explicitly check for a pointer into the
// last two pages in the address space
if ((uintptr_t)new_sp >= 0xffffe000) return NULL;
#endif
#ifdef HAVE_MMAP
if (!STRICT_UNWINDING) {
// Lax sanity checks cause a crash on AMD-based machines with
// VDSO-enabled kernels.
// Make an extra sanity check to insure new_sp is readable.
// Note: NextStackFrame<false>() is only called while the program
// is already on its last leg, so it's ok to be slow here.
static int page_size = getpagesize();
void *new_sp_aligned = (void *)((uintptr_t)new_sp & ~(page_size - 1));
if (msync(new_sp_aligned, page_size, MS_ASYNC) == -1)
return NULL;
}
#endif
return new_sp;
}
#endif // BASE_STACKTRACE_X86_INL_H_
// Note: this part of the file is included several times.
// Do not put globals below.
// The following 4 functions are generated from the code below:
// GetStack{Trace,Frames}()
// GetStack{Trace,Frames}WithContext()
//
// These functions take the following args:
// void** result: the stack-trace, as an array
// int* sizes: the size of each stack frame, as an array
// (GetStackFrames* only)
// int max_depth: the size of the result (and sizes) array(s)
// int skip_count: how many stack pointers to skip before storing in result
// void* ucp: a ucontext_t* (GetStack{Trace,Frames}WithContext only)
static int GET_STACK_TRACE_OR_FRAMES {
void **sp;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2) || __llvm__
// __builtin_frame_address(0) can return the wrong address on gcc-4.1.0-k8.
// It's always correct on llvm, and the techniques below aren't (in
// particular, llvm-gcc will make a copy of pcs, so it's not in sp[2]),
// so we also prefer __builtin_frame_address when running under llvm.
sp = reinterpret_cast<void**>(__builtin_frame_address(0));
#elif defined(__i386__)
// Stack frame format:
// sp[0] pointer to previous frame
// sp[1] caller address
// sp[2] first argument
// ...
// NOTE: This will break under llvm, since result is a copy and not in sp[2]
sp = (void **)&result - 2;
#elif defined(__x86_64__)
unsigned long rbp;
// Move the value of the register %rbp into the local variable rbp.
// We need 'volatile' to prevent this instruction from getting moved
// around during optimization to before function prologue is done.
// An alternative way to achieve this
// would be (before this __asm__ instruction) to call Noop() defined as
// static void Noop() __attribute__ ((noinline)); // prevent inlining
// static void Noop() { asm(""); } // prevent optimizing-away
__asm__ volatile ("mov %%rbp, %0" : "=r" (rbp));
// Arguments are passed in registers on x86-64, so we can't just
// offset from &result
sp = (void **) rbp;
#else
# error Using stacktrace_x86-inl.h on a non x86 architecture!
#endif
skip_count++; // skip parent's frame due to indirection in stacktrace.cc
int n = 0;
while (sp && n < max_depth) {
if (*(sp+1) == reinterpret_cast<void *>(0)) {
// In 64-bit code, we often see a frame that
// points to itself and has a return address of 0.
break;
}
#if !IS_WITH_CONTEXT
const void *const ucp = NULL;
#endif
void **next_sp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(sp, ucp);
if (skip_count > 0) {
skip_count--;
} else {
result[n] = *(sp+1);
#if IS_STACK_FRAMES
if (next_sp > sp) {
sizes[n] = (uintptr_t)next_sp - (uintptr_t)sp;
} else {
// A frame-size of 0 is used to indicate unknown frame size.
sizes[n] = 0;
}
#endif
n++;
}
sp = next_sp;
}
return n;
}
|