1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
/*****************************************************************************
This is a decoder for RTCM-104 2.x, an obscure and complicated serial
protocol used for broadcasting pseudorange corrections from
differential-GPS reference stations. The applicable
standard is
RTCM RECOMMENDED STANDARDS FOR DIFFERENTIAL NAVSTAR GPS SERVICE,
RTCM PAPER 194-93/SC 104-STD
Ordering instructions are accessible from <http://www.rtcm.org/>
under "Publications". This describes version 2.1 of the RTCM specification.
RTCM-104 was later incrementally revised up to a 2.3 level before being
completely redesigned as level 3.0.
Also applicable is ITU-R M.823: "Technical characteristics of
differential transmissions for global navigation satellite systems
from maritime radio beacons in the frequency band 283.5 - 315 kHz in
region 1 and 285 - 325 kHz in regions 2 & 3."
The RTCM 2.x protocol uses as a transport layer the GPS satellite downlink
protocol described in IS-GPS-200, the Navstar GPS Interface
Specification. This code relies on the lower-level packet-assembly
code for that protocol in isgps.c.
The lower layer's job is done when it has assembled a message of up to
33 words of clean parity-checked data. At this point this upper layer
takes over. struct rtcm2_msg_t is overlaid on the buffer and the bitfields
are used to extract pieces of it. Those pieces are copied and (where
necessary) reassembled into a struct rtcm2_t.
This code and the contents of isgps.c are evolved from code by Wolfgang
Rupprecht. Wolfgang's decoder was loosely based on one written by
John Sager in 1999 (in particular the dump function emits a close
descendant of Sager's dump format). Here are John Sager's original
notes:
The RTCM decoder prints a legible representation of the input data.
The RTCM SC-104 specification is copyrighted, so I cannot
quote it - in fact, I have never read it! Most of the information
used to develop the decoder came from publication ITU-R M.823.
This is a specification of the data transmitted from LF DGPS
beacons in the 300kHz band. M.823 contains most of those parts of
RTCM SC-104 directly relevant to the air interface (there
are one or two annoying and vital omissions!). Information
about the serial interface format was gleaned from studying
the output of a beacon receiver test program made available on
Starlink's website.
This file is Copyright (c) 2010 by the GPSD project
BSD terms apply: see the file COPYING in the distribution root for details.
*****************************************************************************/
#include <stdio.h>
#include <string.h>
#include "gpsd.h"
#include "driver_rtcm2.h"
#ifdef RTCM104V2_ENABLE
#define PREAMBLE_PATTERN 0x66
static unsigned int tx_speed[] = { 25, 50, 100, 110, 150, 200, 250, 300 };
#define DIMENSION(a) (unsigned)(sizeof(a)/sizeof(a[0]))
void rtcm2_unpack( /*@out@*/ struct rtcm2_t *tp, char *buf)
/* break out the raw bits into the content fields */
{
int len;
unsigned int n, w;
struct rtcm2_msg_t *msg = (struct rtcm2_msg_t *)buf;
tp->type = msg->w1.msgtype;
tp->length = msg->w2.frmlen;
tp->zcount = msg->w2.zcnt * ZCOUNT_SCALE;
tp->refstaid = msg->w1.refstaid;
tp->seqnum = msg->w2.sqnum;
tp->stathlth = msg->w2.stathlth;
len = (int)tp->length;
n = 0;
switch (tp->type) {
case 1:
case 9:
{
struct b_correction_t *m = &msg->msg_type.type1.corrections[0];
while (len >= 0) {
if (len >= 2) {
tp->ranges.sat[n].ident = m->w3.satident1;
tp->ranges.sat[n].udre = m->w3.udre1;
tp->ranges.sat[n].issuedata = m->w4.issuedata1;
tp->ranges.sat[n].rangerr = m->w3.pc1 *
(m->w3.scale1 ? PCLARGE : PCSMALL);
tp->ranges.sat[n].rangerate = m->w4.rangerate1 *
(m->w3.scale1 ? RRLARGE : RRSMALL);
n++;
}
if (len >= 4) {
tp->ranges.sat[n].ident = m->w4.satident2;
tp->ranges.sat[n].udre = m->w4.udre2;
tp->ranges.sat[n].issuedata = m->w6.issuedata2;
tp->ranges.sat[n].rangerr = m->w5.pc2 *
(m->w4.scale2 ? PCLARGE : PCSMALL);
tp->ranges.sat[n].rangerate = m->w5.rangerate2 *
(m->w4.scale2 ? RRLARGE : RRSMALL);
n++;
}
if (len >= 5) {
tp->ranges.sat[n].ident = m->w6.satident3;
tp->ranges.sat[n].udre = m->w6.udre3;
tp->ranges.sat[n].issuedata = m->w7.issuedata3;
/*@ -shiftimplementation @*/
tp->ranges.sat[n].rangerr =
((m->w6.pc3_h << 8) | (m->w7.pc3_l)) *
(m->w6.scale3 ? PCLARGE : PCSMALL);
tp->ranges.sat[n].rangerate =
m->w7.rangerate3 * (m->w6.scale3 ? RRLARGE : RRSMALL);
/*@ +shiftimplementation @*/
n++;
}
len -= 5;
m++;
}
tp->ranges.nentries = n;
}
break;
case 3:
{
struct rtcm2_msg3 *m = &msg->msg_type.type3;
if ((tp->ecef.valid = len >= 4)) {
tp->ecef.x = ((m->w3.x_h << 8) | (m->w4.x_l)) * XYZ_SCALE;
tp->ecef.y = ((m->w4.y_h << 16) | (m->w5.y_l)) * XYZ_SCALE;
tp->ecef.z = ((m->w5.z_h << 24) | (m->w6.z_l)) * XYZ_SCALE;
}
}
break;
case 4:
if ((tp->reference.valid = len >= 2)) {
struct rtcm2_msg4 *m = &msg->msg_type.type4;
tp->reference.system =
(m->w3.dgnss == 0) ? NAVSYSTEM_GPS :
((m->w3.dgnss == 1) ? NAVSYSTEM_GLONASS : NAVSYSTEM_UNKNOWN);
tp->reference.sense =
(m->w3.dat != 0) ? SENSE_GLOBAL : SENSE_LOCAL;
if (m->w3.datum_alpha_char1) {
tp->reference.datum[n++] = (char)(m->w3.datum_alpha_char1);
}
if (m->w3.datum_alpha_char2) {
tp->reference.datum[n++] = (char)(m->w3.datum_alpha_char2);
}
if (m->w4.datum_sub_div_char1) {
tp->reference.datum[n++] = (char)(m->w4.datum_sub_div_char1);
}
if (m->w4.datum_sub_div_char2) {
tp->reference.datum[n++] = (char)(m->w4.datum_sub_div_char2);
}
if (m->w4.datum_sub_div_char3) {
tp->reference.datum[n++] = (char)(m->w4.datum_sub_div_char3);
}
tp->reference.datum[n++] = '\0';
if (len >= 4) {
tp->reference.dx = m->w5.dx * DXYZ_SCALE;
tp->reference.dy =
((m->w5.dy_h << 8) | m->w6.dy_l) * DXYZ_SCALE;
tp->reference.dz = m->w6.dz * DXYZ_SCALE;
} else
tp->reference.sense = SENSE_INVALID;
}
break;
case 5:
for (n = 0; n < (unsigned)len; n++) {
struct consat_t *csp = &tp->conhealth.sat[n];
struct b_health_t *m = &msg->msg_type.type5.health[n];
csp->ident = m->sat_id;
csp->iodl = m->issue_of_data_link != 0;
csp->health = m->data_health;
/*@+ignoresigns@*/
csp->snr = (int)(m->cn0 ? (m->cn0 + CNR_OFFSET) : SNR_BAD);
/*@-ignoresigns@*/
csp->health_en = m->health_enable != 0;
csp->new_data = m->new_nav_data != 0;
csp->los_warning = m->loss_warn != 0;
csp->tou = m->time_unhealthy * TU_SCALE;
}
tp->conhealth.nentries = n;
break;
case 7:
for (w = 0; w < (unsigned)len; w++) {
struct station_t *np = &tp->almanac.station[n];
struct b_station_t *mp = &msg->msg_type.type7.almanac[w];
np->latitude = mp->w3.lat * LA_SCALE;
/*@-shiftimplementation@*/
np->longitude = ((mp->w3.lon_h << 8) | mp->w4.lon_l) * LO_SCALE;
/*@+shiftimplementation@*/
np->range = mp->w4.range;
np->frequency =
(((mp->w4.freq_h << 6) | mp->w5.freq_l) * FREQ_SCALE) +
FREQ_OFFSET;
np->health = mp->w5.health;
np->station_id = mp->w5.station_id,
np->bitrate = tx_speed[mp->w5.bit_rate];
n++;
}
tp->almanac.nentries = (unsigned)(len / 3);
break;
case 16:
/*@ -boolops @*/
for (w = 0; w < (unsigned)len; w++) {
if (!msg->msg_type.type16.txt[w].byte1) {
break;
}
tp->message[n++] = (char)(msg->msg_type.type16.txt[w].byte1);
if (!msg->msg_type.type16.txt[w].byte2) {
break;
}
tp->message[n++] = (char)(msg->msg_type.type16.txt[w].byte2);
if (!msg->msg_type.type16.txt[w].byte3) {
break;
}
tp->message[n++] = (char)(msg->msg_type.type16.txt[w].byte3);
}
/*@ +boolops @*/
tp->message[n++] = '\0';
break;
default:
memcpy(tp->words, msg->msg_type.rtcm2_msgunk,
(RTCM2_WORDS_MAX - 2) * sizeof(isgps30bits_t));
break;
}
}
static bool preamble_match(isgps30bits_t * w)
{
return (((struct rtcm2_msghw1 *)w)->preamble == PREAMBLE_PATTERN);
}
static bool length_check(struct gps_packet_t *lexer)
{
return lexer->isgps.bufindex >= 2
&& lexer->isgps.bufindex >=
((struct rtcm2_msg_t *)lexer->isgps.buf)->w2.frmlen + 2u;
}
enum isgpsstat_t rtcm2_decode(struct gps_packet_t *lexer, unsigned int c)
{
return isgps_decode(lexer,
preamble_match, length_check, RTCM2_WORDS_MAX, c);
}
void rtcm2_sager_dump(const struct rtcm2_t *rtcm, /*@out@*/ char buf[],
size_t buflen)
/* dump the contents of a parsed RTCM104 message */
{
unsigned int n;
(void)snprintf(buf, buflen, "H\t%u\t%u\t%0.1f\t%u\t%u\t%u\n",
rtcm->type,
rtcm->refstaid,
rtcm->zcount, rtcm->seqnum, rtcm->length, rtcm->stathlth);
switch (rtcm->type) {
case 1:
case 9:
for (n = 0; n < rtcm->ranges.nentries; n++) {
const struct rangesat_t *rsp = &rtcm->ranges.sat[n];
(void)snprintf(buf + strlen(buf), buflen - strlen(buf),
"S\t%u\t%u\t%u\t%0.1f\t%0.3f\t%0.3f\n",
rsp->ident,
rsp->udre,
rsp->issuedata,
rtcm->zcount, rsp->rangerr, rsp->rangerate);
}
break;
case 3:
if (rtcm->ecef.valid)
(void)snprintf(buf + strlen(buf), buflen - strlen(buf),
"R\t%.2f\t%.2f\t%.2f\n",
rtcm->ecef.x, rtcm->ecef.y, rtcm->ecef.z);
break;
case 4:
if (rtcm->reference.valid)
(void)snprintf(buf + strlen(buf), buflen - strlen(buf),
"D\t%s\t%1d\t%s\t%.1f\t%.1f\t%.1f\n",
(rtcm->reference.system == NAVSYSTEM_GPS) ? "GPS"
: ((rtcm->reference.system ==
NAVSYSTEM_GLONASS) ? "GLONASS" : "UNKNOWN"),
rtcm->reference.sense, rtcm->reference.datum,
rtcm->reference.dx, rtcm->reference.dy,
rtcm->reference.dz);
break;
case 5:
for (n = 0; n < rtcm->conhealth.nentries; n++) {
const struct consat_t *csp = &rtcm->conhealth.sat[n];
(void)snprintf(buf + strlen(buf), buflen - strlen(buf),
"C\t%2u\t%1u\t%1u\t%2d\t%1u\t%1u\t%1u\t%2u\n",
csp->ident,
(unsigned)csp->iodl,
(unsigned)csp->health,
csp->snr,
(unsigned)csp->health_en,
(unsigned)csp->new_data,
(unsigned)csp->los_warning, csp->tou);
}
break;
case 6: /* NOP msg */
(void)strlcat(buf, "N\n", buflen);
break;
case 7:
for (n = 0; n < rtcm->almanac.nentries; n++) {
const struct station_t *ssp = &rtcm->almanac.station[n];
(void)snprintf(buf + strlen(buf), buflen - strlen(buf),
"A\t%.4f\t%.4f\t%u\t%.1f\t%u\t%u\t%u\n",
ssp->latitude,
ssp->longitude,
ssp->range,
ssp->frequency,
ssp->health, ssp->station_id, ssp->bitrate);
}
break;
case 16:
(void)snprintf(buf + strlen(buf), buflen - strlen(buf),
"T\t\"%s\"\n", rtcm->message);
break;
default:
for (n = 0; n < rtcm->length; n++)
(void)snprintf(buf + strlen(buf), buflen - strlen(buf),
"U\t0x%08x\n", rtcm->words[n]);
break;
}
(void)strlcat(buf, ".\n", buflen);
}
#endif /* RTCM104V2_ENABLE */
|