summaryrefslogtreecommitdiff
path: root/gps/misc.py
blob: a312c56383146ed914137bc37ef9a72bcd6670d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# misc.py - miscellaneous geodesy and time functions
"miscellaneous geodesy and time functions"
#
# This file is Copyright (c) 2010 by the GPSD project
# BSD terms apply: see the file COPYING in the distribution root for details.

# This code runs compatibly under Python 2 and 3.x for x >= 2.
# Preserve this property!
from __future__ import absolute_import, print_function, division

import calendar
import io
import math
import time

# Determine a single class for testing "stringness"
try:
    STR_CLASS = basestring  # Base class for 'str' and 'unicode' in Python 2
except NameError:
    STR_CLASS = str         # In Python 3, 'str' is the base class

# We need to be able to handle data which may be a mixture of text and binary
# data.  The text in this context is known to be limited to US-ASCII, so
# there aren't any issues regarding character sets, but we need to ensure
# that binary data is preserved.  In Python 2, this happens naturally with
# "strings" and the 'str' and 'bytes' types are synonyms.  But in Python 3,
# these are distinct types (with 'str' being based on Unicode), and conversions
# are encoding-sensitive.  The most straightforward encoding to use in this
# context is 'latin-1' (a.k.a.'iso-8859-1'), which directly maps all 256
# 8-bit character values to Unicode page 0.  Thus, if we can enforce the use
# of 'latin-1' encoding, we can preserve arbitrary binary data while correctly
# mapping any actual text to the proper characters.

BINARY_ENCODING = 'latin-1'

if bytes is str:  # In Python 2 these functions can be null transformations

    polystr = str
    polybytes = bytes

    def make_std_wrapper(stream):
        "Dummy stdio wrapper function."
        return stream

    def get_bytes_stream(stream):
        "Dummy stdio bytes buffer function."
        return stream

else:  # Otherwise we do something real

    def polystr(o):
        "Convert bytes or str to str with proper encoding."
        if isinstance(o, str):
            return o
        if isinstance(o, bytes):
            return str(o, encoding=BINARY_ENCODING)
        if isinstance(o, bytearray):
            return str(o, encoding=BINARY_ENCODING)
        raise ValueError

    def polybytes(o):
        "Convert bytes or str to bytes with proper encoding."
        if isinstance(o, bytes):
            return o
        if isinstance(o, str):
            return bytes(o, encoding=BINARY_ENCODING)
        raise ValueError

    def make_std_wrapper(stream):
        "Standard input/output wrapper factory function"
        # This ensures that the encoding of standard output and standard
        # error on Python 3 matches the binary encoding we use to turn
        # bytes to Unicode in polystr above.
        #
        # newline="\n" ensures that Python 3 won't mangle line breaks
        # line_buffering=True ensures that interactive command sessions
        # work as expected
        return io.TextIOWrapper(stream.buffer, encoding=BINARY_ENCODING,
                                newline="\n", line_buffering=True)

    def get_bytes_stream(stream):
        "Standard input/output bytes buffer function"
        return stream.buffer


# some multipliers for interpreting GPS output
# Note: A Texas Foot is ( meters * 3937/1200)
#       (Texas Natural Resources Code, Subchapter D, Sec 21.071 - 79)
#       not the same as an international fooot.
METERS_TO_FEET = 3.28083989501312         # Meters to U.S./British feet
METERS_TO_MILES = 0.000621371192237334    # Meters to miles
METERS_TO_FATHOMS = 0.546806649168854     # Meters to fathoms
KNOTS_TO_MPH = 1.15077944802354           # Knots to miles per hour
KNOTS_TO_KPH = 1.852                      # Knots to kilometers per hour
KNOTS_TO_MPS = 0.514444444444445          # Knots to meters per second
MPS_TO_KPH = 3.6                          # Meters per second to klicks/hr
MPS_TO_MPH = 2.2369362920544              # Meters/second to miles per hour
MPS_TO_KNOTS = 1.9438444924406            # Meters per second to knots


def Deg2Rad(x):
    "Degrees to radians."
    return x * (math.pi / 180)


def Rad2Deg(x):
    "Radians to degrees."
    return x * (180 / math.pi)


def CalcRad(lat):
    "Radius of curvature in meters at specified latitude WGS-84."
    # the radius of curvature of an ellipsoidal Earth in the plane of a
    # meridian of latitude is given by
    #
    # R' = a * (1 - e^2) / (1 - e^2 * (sin(lat))^2)^(3/2)
    #
    # where
    #   a   is the equatorial radius (surface to center distance),
    #   b   is the polar radius (surface to center distance),
    #   e   is the first  eccentricity of the ellipsoid
    #   e2  is e^2  = (a^2 - b^2) / a^2
    #   es  is the second eccentricity of the ellipsoid (UNUSED)
    #   es2 is es^2 = (a^2 - b^2) / b^2
    #
    # for WGS-84:
    # a   = 6378.137 km (3963 mi)
    # b   = 6356.752314245 km (3950 mi)
    # e2  = 0.00669437999014132
    # es2 = 0.00673949674227643
    a = 6378.137
    e2 = 0.00669437999014132
    sc = math.sin(math.radians(lat))
    x = a * (1.0 - e2)
    z = 1.0 - e2 * pow(sc, 2)
    y = pow(z, 1.5)
    r = x / y

    r = r * 1000.0      # Convert to meters
    return r


def EarthDistance(c1, c2):
    """
    Vincenty's formula (inverse method) to calculate the distance (in
    kilometers or miles) between two points on the surface of a spheroid
    WGS 84 accurate to 1mm!
    """

    (lat1, lon1) = c1
    (lat2, lon2) = c2

    # WGS 84
    a = 6378137  # meters
    f = 1 / 298.257223563
    b = 6356752.314245  # meters; b = (1 - f)a

    # MILES_PER_KILOMETER = 1000.0 / (.3048 * 5280.0)

    MAX_ITERATIONS = 200
    CONVERGENCE_THRESHOLD = 1e-12  # .000,000,000,001

    # short-circuit coincident points
    if lat1 == lat2 and lon1 == lon2:
        return 0.0

    U1 = math.atan((1 - f) * math.tan(math.radians(lat1)))
    U2 = math.atan((1 - f) * math.tan(math.radians(lat2)))
    L = math.radians(lon1 - lon2)
    Lambda = L

    sinU1 = math.sin(U1)
    cosU1 = math.cos(U1)
    sinU2 = math.sin(U2)
    cosU2 = math.cos(U2)

    for _ in range(MAX_ITERATIONS):
        sinLambda = math.sin(Lambda)
        cosLambda = math.cos(Lambda)
        sinSigma = math.sqrt((cosU2 * sinLambda) ** 2 +
                             (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) ** 2)
        if sinSigma == 0:
            return 0.0  # coincident points
        cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda
        sigma = math.atan2(sinSigma, cosSigma)
        sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma
        cosSqAlpha = 1 - sinAlpha ** 2
        try:
            cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha
        except ZeroDivisionError:
            cos2SigmaM = 0
        C = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha))
        LambdaPrev = Lambda
        Lambda = L + (1 - C) * f * sinAlpha * (sigma + C * sinSigma *
                                               (cos2SigmaM + C * cosSigma *
                                                (-1 + 2 * cos2SigmaM ** 2)))
        if abs(Lambda - LambdaPrev) < CONVERGENCE_THRESHOLD:
            break  # successful convergence
    else:
        # failure to converge
        # fall back top EarthDistanceSmall
        return EarthDistanceSmall(c1, c2)

    uSq = cosSqAlpha * (a ** 2 - b ** 2) / (b ** 2)
    A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq)))
    B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq)))
    deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (
        cosSigma * (-1 + 2 * cos2SigmaM ** 2) - B / 6 * cos2SigmaM *
        (-3 + 4 * sinSigma ** 2) * (-3 + 4 * cos2SigmaM ** 2)))
    s = b * A * (sigma - deltaSigma)

    # return meters to 6 decimal places
    return round(s, 6)


def EarthDistanceSmall(c1, c2):
    "Distance in meters between two close points specified in degrees."
    # This calculation is known as an Equirectangular Projection
    # fewer numeric issues for small angles that other methods
    # the main use here is for when Vincenty's fails to converge.
    (lat1, lon1) = c1
    (lat2, lon2) = c2
    avglat = (lat1 + lat2) / 2
    phi = math.radians(avglat)    # radians of avg latitude
    # meters per degree at this latitude, corrected for WGS84 ellipsoid
    # Note the wikipedia numbers are NOT ellipsoid corrected:
    # https://en.wikipedia.org/wiki/Decimal_degrees#Precision
    m_per_d = (111132.954 - 559.822 * math.cos(2 * phi) +
               1.175 * math.cos(4 * phi))
    dlat = (lat1 - lat2) * m_per_d
    dlon = (lon1 - lon2) * m_per_d * math.cos(phi)

    dist = math.sqrt(math.pow(dlat, 2) + math.pow(dlon, 2))
    return dist


def MeterOffset(c1, c2):
    "Return offset in meters of second arg from first."
    (lat1, lon1) = c1
    (lat2, lon2) = c2
    dx = EarthDistance((lat1, lon1), (lat1, lon2))
    dy = EarthDistance((lat1, lon1), (lat2, lon1))
    if lat1 < lat2:
        dy = -dy
    if lon1 < lon2:
        dx = -dx
    return (dx, dy)


def isotime(s):
    "Convert timestamps in ISO8661 format to and from Unix time."
    if isinstance(s, int):
        return time.strftime("%Y-%m-%dT%H:%M:%S", time.gmtime(s))
    elif isinstance(s, float):
        date = int(s)
        msec = s - date
        date = time.strftime("%Y-%m-%dT%H:%M:%S", time.gmtime(s))
        return date + "." + repr(msec)[3:]
    elif isinstance(s, STR_CLASS):
        if s[-1] == "Z":
            s = s[:-1]
        if "." in s:
            (date, msec) = s.split(".")
        else:
            date = s
            msec = "0"
        # Note: no leap-second correction!
        return calendar.timegm(
            time.strptime(date, "%Y-%m-%dT%H:%M:%S")) + float("0." + msec)
    else:
        raise TypeError

# End