summaryrefslogtreecommitdiff
path: root/gtk/gtkkineticscrolling.c
blob: 1f02fe79931ec10c9dc7ebbdd66836f99043fef3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/* GTK - The GIMP Toolkit
 * Copyright (C) 2014 Lieven van der Heide
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library. If not, see <http://www.gnu.org/licenses/>.
 */

#include "config.h"
#include "gtkkineticscrollingprivate.h"

#include <math.h>
#include <stdio.h>

/*
 * All our curves are second degree linear differential equations, and
 * so they can always be written as linear combinations of 2 base
 * solutions. c1 and c2 are the coefficients to these two base solutions,
 * and are computed from the initial position and velocity.
 *
 * In the case of simple deceleration, the differential equation is
 *
 *   y'' = -my'
 *
 * With m the resistance factor. For this we use the following 2
 * base solutions:
 *
 *   f1(x) = 1
 *   f2(x) = exp(-mx)
 *
 * In the case of overshoot, the differential equation is
 *
 *   y'' = -my' - ky
 *
 * With m the resistance, and k the spring stiffness constant. We let
 * k = m^2 / 4, so that the system is critically damped (ie, returns to its
 * equilibrium position as quickly as possible, without oscillating), and offset
 * the whole thing, such that the equilibrium position is at 0. This gives the
 * base solutions
 *
 *   f1(x) = exp(-mx / 2)
 *   f2(x) = t exp(-mx / 2)
*/

typedef enum {
  GTK_KINETIC_SCROLLING_PHASE_DECELERATING,
  GTK_KINETIC_SCROLLING_PHASE_OVERSHOOTING,
  GTK_KINETIC_SCROLLING_PHASE_FINISHED,
} GtkKineticScrollingPhase;

struct _GtkKineticScrolling
{
  GtkKineticScrollingPhase phase;
  double lower;
  double upper;
  double overshoot_width;
  double decel_friction;
  double overshoot_friction;

  double c1;
  double c2;
  double equilibrium_position;

  double t;
  double position;
  double velocity;
};

static void gtk_kinetic_scrolling_init_overshoot (GtkKineticScrolling *data,
                                                  double               equilibrium_position,
                                                  double               initial_position,
                                                  double               initial_velocity);

GtkKineticScrolling *
gtk_kinetic_scrolling_new (double lower,
                           double upper,
                           double overshoot_width,
                           double decel_friction,
                           double overshoot_friction,
                           double initial_position,
                           double initial_velocity)
{
  GtkKineticScrolling *data;

  data = g_slice_new0 (GtkKineticScrolling);
  data->lower = lower;
  data->upper = upper;
  data->decel_friction = decel_friction;
  data->overshoot_friction = overshoot_friction;
  if(initial_position < lower)
    {
      gtk_kinetic_scrolling_init_overshoot (data,
                                            lower,
                                            initial_position,
                                            initial_velocity);
    }
  else if(initial_position > upper)
    {
      gtk_kinetic_scrolling_init_overshoot (data,
                                            upper,
                                            initial_position,
                                            initial_velocity);
    }
  else
    {
      data->phase = GTK_KINETIC_SCROLLING_PHASE_DECELERATING;
      data->c1 = initial_velocity / decel_friction + initial_position;
      data->c2 = -initial_velocity / decel_friction;
      data->t = 0;
      data->position = initial_position;
      data->velocity = initial_velocity;
    }

  return data;
}

GtkKineticScrollingChange
gtk_kinetic_scrolling_update_size (GtkKineticScrolling *data,
                                   double               lower,
                                   double               upper)
{
  GtkKineticScrollingChange change = GTK_KINETIC_SCROLLING_CHANGE_NONE;

  if (lower != data->lower)
    {
      if (data->position <= lower)
        change |= GTK_KINETIC_SCROLLING_CHANGE_LOWER;

      data->lower = lower;
    }

  if (upper != data->upper)
    {
      if (data->position >= data->upper)
        change |= GTK_KINETIC_SCROLLING_CHANGE_UPPER;

      data->upper = upper;
    }

  if (data->phase == GTK_KINETIC_SCROLLING_PHASE_OVERSHOOTING)
    change |= GTK_KINETIC_SCROLLING_CHANGE_IN_OVERSHOOT;

  return change;
}

void
gtk_kinetic_scrolling_free (GtkKineticScrolling *kinetic)
{
  g_slice_free (GtkKineticScrolling, kinetic);
}

static void
gtk_kinetic_scrolling_init_overshoot (GtkKineticScrolling *data,
                                      double               equilibrium_position,
                                      double               initial_position,
                                      double               initial_velocity)
{
  data->phase = GTK_KINETIC_SCROLLING_PHASE_OVERSHOOTING;
  data->equilibrium_position = equilibrium_position;
  data->c1 = initial_position - equilibrium_position;
  data->c2 = initial_velocity + data->overshoot_friction / 2 * data->c1;
  data->t = 0;
}

gboolean
gtk_kinetic_scrolling_tick (GtkKineticScrolling *data,
                            double               time_delta,
                            double              *position,
                            double              *velocity)
{
  switch(data->phase)
    {
    case GTK_KINETIC_SCROLLING_PHASE_DECELERATING:
      {
        double exp_part;

        data->t += time_delta;

        exp_part = exp (-data->decel_friction * data->t);
        data->position = data->c1 + data->c2 * exp_part;
        data->velocity = -data->decel_friction * data->c2 * exp_part;

        if(data->position < data->lower)
          {
            gtk_kinetic_scrolling_init_overshoot(data,data->lower,data->position,data->velocity);
          }
        else if (data->position > data->upper)
          {
            gtk_kinetic_scrolling_init_overshoot(data, data->upper, data->position, data->velocity);
          }
        else if (fabs(data->velocity) < 0.1)
          {
            gtk_kinetic_scrolling_stop (data);
          }
        break;
      }

    case GTK_KINETIC_SCROLLING_PHASE_OVERSHOOTING:
      {
        double exp_part, pos;

        data->t += time_delta;
        exp_part = exp(-data->overshoot_friction / 2 * data->t);
        pos = exp_part * (data->c1 + data->c2 * data->t);

        if (pos < data->lower - 50 || pos > data->upper + 50)
          {
            pos = CLAMP (pos, data->lower - 50, data->upper + 50);
            gtk_kinetic_scrolling_init_overshoot (data, data->equilibrium_position, pos, 0);
          }
        else
          data->velocity = data->c2 * exp_part - data->overshoot_friction / 2 * pos;

        data->position = pos + data->equilibrium_position;

        if(fabs (pos) < 0.1)
          {
            data->phase = GTK_KINETIC_SCROLLING_PHASE_FINISHED;
            data->position = data->equilibrium_position;
            data->velocity = 0;
          }
        break;
      }

    case GTK_KINETIC_SCROLLING_PHASE_FINISHED:
    default:
      break;
    }

  if (position)
    *position = data->position;
  if (velocity)
    *velocity = data->velocity;

  return data->phase != GTK_KINETIC_SCROLLING_PHASE_FINISHED;
}

void
gtk_kinetic_scrolling_stop (GtkKineticScrolling *data)
{
  if (data->phase == GTK_KINETIC_SCROLLING_PHASE_DECELERATING)
    {
      data->phase = GTK_KINETIC_SCROLLING_PHASE_FINISHED;
      data->position = round (data->position);
    }
}