1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
|
@c -*-texinfo-*-
@c This is part of the GNU Guile Reference Manual.
@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004
@c Free Software Foundation, Inc.
@c See the file guile.texi for copying conditions.
@page
@node Simple Data Types
@section Simple Generic Data Types
This chapter describes those of Guile's simple data types which are
primarily used for their role as items of generic data. By
@dfn{simple} we mean data types that are not primarily used as
containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
For the documentation of such @dfn{compound} data types, see
@ref{Compound Data Types}.
@c One of the great strengths of Scheme is that there is no straightforward
@c distinction between ``data'' and ``functionality''. For example,
@c Guile's support for dynamic linking could be described:
@c @itemize @bullet
@c @item
@c either in a ``data-centric'' way, as the behaviour and properties of the
@c ``dynamically linked object'' data type, and the operations that may be
@c applied to instances of this type
@c @item
@c or in a ``functionality-centric'' way, as the set of procedures that
@c constitute Guile's support for dynamic linking, in the context of the
@c module system.
@c @end itemize
@c The contents of this chapter are, therefore, a matter of judgment. By
@c @dfn{generic}, we mean to select those data types whose typical use as
@c @emph{data} in a wide variety of programming contexts is more important
@c than their use in the implementation of a particular piece of
@c @emph{functionality}. The last section of this chapter provides
@c references for all the data types that are documented not here but in a
@c ``functionality-centric'' way elsewhere in the manual.
@menu
* Booleans:: True/false values.
* Numbers:: Numerical data types.
* Characters:: New character names.
* Strings:: Special things about strings.
* Regular Expressions:: Pattern matching and substitution.
* Symbols:: Symbols.
* Keywords:: Self-quoting, customizable display keywords.
* Other Types:: "Functionality-centric" data types.
@end menu
@node Booleans
@subsection Booleans
@tpindex Booleans
The two boolean values are @code{#t} for true and @code{#f} for false.
Boolean values are returned by predicate procedures, such as the general
equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
(@pxref{Equality}) and numerical and string comparison operators like
@code{string=?} (@pxref{String Comparison}) and @code{<=}
(@pxref{Comparison}).
@lisp
(<= 3 8)
@result{} #t
(<= 3 -3)
@result{} #f
(equal? "house" "houses")
@result{} #f
(eq? #f #f)
@result{}
#t
@end lisp
In test condition contexts like @code{if} and @code{cond} (@pxref{if
cond case}), where a group of subexpressions will be evaluated only if a
@var{condition} expression evaluates to ``true'', ``true'' means any
value at all except @code{#f}.
@lisp
(if #t "yes" "no")
@result{} "yes"
(if 0 "yes" "no")
@result{} "yes"
(if #f "yes" "no")
@result{} "no"
@end lisp
A result of this asymmetry is that typical Scheme source code more often
uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
represent an @code{if} or @code{cond} false value, whereas @code{#t} is
not necessary to represent an @code{if} or @code{cond} true value.
It is important to note that @code{#f} is @strong{not} equivalent to any
other Scheme value. In particular, @code{#f} is not the same as the
number 0 (like in C and C++), and not the same as the ``empty list''
(like in some Lisp dialects).
In C, the two Scheme boolean values are available as the two constants
@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
Care must be taken with the false value @code{SCM_BOOL_F}: it is not
false when used in C conditionals. In order to test for it, use
@code{scm_is_false} or @code{scm_is_true}.
@rnindex not
@deffn {Scheme Procedure} not x
@deffnx {C Function} scm_not (x)
Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
@end deffn
@rnindex boolean?
@deffn {Scheme Procedure} boolean? obj
@deffnx {C Function} scm_boolean_p (obj)
Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
return @code{#f}.
@end deffn
@deftypevr {C Macro} SCM SCM_BOOL_T
The @code{SCM} representation of the Scheme object @code{#t}.
@end deftypevr
@deftypevr {C Macro} SCM SCM_BOOL_F
The @code{SCM} representation of the Scheme object @code{#f}.
@end deftypevr
@deftypefn {C Function} int scm_is_true (SCM obj)
Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
@end deftypefn
@deftypefn {C Function} int scm_is_false (SCM obj)
Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
@end deftypefn
@deftypefn {C Function} int scm_is_bool (SCM obj)
Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
return @code{0}.
@end deftypefn
@deftypefn {C Function} SCM scm_from_bool (int val)
Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
@end deftypefn
@deftypefn {C Function} int scm_to_bool (SCM val)
Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
You should probably use @code{scm_is_true} instead of this function
when you just want to test a @code{SCM} value for trueness.
@end deftypefn
@node Numbers
@subsection Numerical data types
@tpindex Numbers
Guile supports a rich ``tower'' of numerical types --- integer,
rational, real and complex --- and provides an extensive set of
mathematical and scientific functions for operating on numerical
data. This section of the manual documents those types and functions.
You may also find it illuminating to read R5RS's presentation of numbers
in Scheme, which is particularly clear and accessible: see
@ref{Numbers,,,r5rs,R5RS}.
@menu
* Numerical Tower:: Scheme's numerical "tower".
* Integers:: Whole numbers.
* Reals and Rationals:: Real and rational numbers.
* Complex Numbers:: Complex numbers.
* Exactness:: Exactness and inexactness.
* Number Syntax:: Read syntax for numerical data.
* Integer Operations:: Operations on integer values.
* Comparison:: Comparison predicates.
* Conversion:: Converting numbers to and from strings.
* Complex:: Complex number operations.
* Arithmetic:: Arithmetic functions.
* Scientific:: Scientific functions.
* Primitive Numerics:: Primitive numeric functions.
* Bitwise Operations:: Logical AND, OR, NOT, and so on.
* Random:: Random number generation.
@end menu
@node Numerical Tower
@subsubsection Scheme's Numerical ``Tower''
@rnindex number?
Scheme's numerical ``tower'' consists of the following categories of
numbers:
@table @dfn
@item integers
Whole numbers, positive or negative; e.g.@: --5, 0, 18.
@item rationals
The set of numbers that can be expressed as @math{@var{p}/@var{q}}
where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
pi (an irrational number) doesn't. These include integers
(@math{@var{n}/1}).
@item real numbers
The set of numbers that describes all possible positions along a
one-dimensional line. This includes rationals as well as irrational
numbers.
@item complex numbers
The set of numbers that describes all possible positions in a two
dimensional space. This includes real as well as imaginary numbers
(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
@minus{}1.)
@end table
It is called a tower because each category ``sits on'' the one that
follows it, in the sense that every integer is also a rational, every
rational is also real, and every real number is also a complex number
(but with zero imaginary part).
In addition to the classification into integers, rationals, reals and
complex numbers, Scheme also distinguishes between whether a number is
represented exactly or not. For example, the result of
@m{2\sin(\pi/4),sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)} but Guile
can neither represent @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
Instead, it stores an inexact approximation, using the C type
@code{double}.
Guile can represent exact rationals of any magnitude, inexact
rationals that fit into a C @code{double}, and inexact complex numbers
with @code{double} real and imaginary parts.
The @code{number?} predicate may be applied to any Scheme value to
discover whether the value is any of the supported numerical types.
@deffn {Scheme Procedure} number? obj
@deffnx {C Function} scm_number_p (obj)
Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
@end deffn
For example:
@lisp
(number? 3)
@result{} #t
(number? "hello there!")
@result{} #f
(define pi 3.141592654)
(number? pi)
@result{} #t
@end lisp
The next few subsections document each of Guile's numerical data types
in detail.
@node Integers
@subsubsection Integers
@tpindex Integer numbers
@rnindex integer?
Integers are whole numbers, that is numbers with no fractional part,
such as 2, 83, and @minus{}3789.
Integers in Guile can be arbitrarily big, as shown by the following
example.
@lisp
(define (factorial n)
(let loop ((n n) (product 1))
(if (= n 0)
product
(loop (- n 1) (* product n)))))
(factorial 3)
@result{} 6
(factorial 20)
@result{} 2432902008176640000
(- (factorial 45))
@result{} -119622220865480194561963161495657715064383733760000000000
@end lisp
Readers whose background is in programming languages where integers are
limited by the need to fit into just 4 or 8 bytes of memory may find
this surprising, or suspect that Guile's representation of integers is
inefficient. In fact, Guile achieves a near optimal balance of
convenience and efficiency by using the host computer's native
representation of integers where possible, and a more general
representation where the required number does not fit in the native
form. Conversion between these two representations is automatic and
completely invisible to the Scheme level programmer.
The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
inexact integers. They are explained in detail in the next section,
together with reals and rationals.
C has a host of different integer types, and Guile offers a host of
functions to convert between them and the @code{SCM} representation.
For example, a C @code{int} can be handled with @code{scm_to_int} and
@code{scm_from_int}. Guile also defines a few C integer types of its
own, to help with differences between systems.
C integer types that are not covered can be handled with the generic
@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
signed types, or with @code{scm_to_unsigned_integer} and
@code{scm_from_unsigned_integer} for unsigned types.
Scheme integers can be exact and inexact. For example, a number
written as @code{3.0} with an explicit decimal-point is inexact, but
it is also an integer. The functions @code{integer?} and
@code{scm_is_integer} report true for such a number, but the functions
@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
allow exact integers and thus report false. Likewise, the conversion
functions like @code{scm_to_signed_integer} only accept exact
integers.
The motivation for this behavior is that the inexactness of a number
should not be lost silently. If you want to allow inexact integers,
you can explicitely insert a call to @code{inexact->exact} or to its C
equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
be converted by this call into exact integers; inexact non-integers
will become exact fractions.)
@deffn {Scheme Procedure} integer? x
@deffnx {C Function} scm_integer_p (x)
Return @code{#t} if @var{x} is an exactor inexact integer number, else
@code{#f}.
@lisp
(integer? 487)
@result{} #t
(integer? 3.0)
@result{} #t
(integer? -3.4)
@result{} #f
(integer? +inf.0)
@result{} #t
@end lisp
@end deffn
@deftypefn {C Function} int scm_is_integer (SCM x)
This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
@end deftypefn
@defvr {C Type} scm_t_int8
@defvrx {C Type} scm_t_uint8
@defvrx {C Type} scm_t_int16
@defvrx {C Type} scm_t_uint16
@defvrx {C Type} scm_t_int32
@defvrx {C Type} scm_t_uint32
@defvrx {C Type} scm_t_int64
@defvrx {C Type} scm_t_uint64
@defvrx {C Type} scm_t_intmax
@defvrx {C Type} scm_t_uintmax
The C types are equivalent to the corresponding ISO C types but are
defined on all platforms, with the exception of @code{scm_t_int64} and
@code{scm_t_uint64}, which are only defined when a 64-bit type is
available. For example, @code{scm_t_int8} is equivalent to
@code{int8_t}.
You can regard these definitions as a stop-gap measure until all
platforms provide these types. If you know that all the platforms
that you are interested in already provide these types, it is better
to use them directly instead of the types provided by Guile.
@end defvr
@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
Return @code{1} when @var{x} represents an exact integer that is
between @var{min} and @var{max}, inclusive.
These functions can be used to check whether a @code{SCM} value will
fit into a given range, such as the range of a given C integer type.
If you just want to convert a @code{SCM} value to a given C integer
type, use one of the conversion functions directly.
@end deftypefn
@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
When @var{x} represents an exact integer that is between @var{min} and
@var{max} inclusive, return that integer. Else signal an error,
either a `wrong-type' error when @var{x} is not an exact integer, or
an `out-of-range' error when it doesn't fit the given range.
@end deftypefn
@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
Return the @code{SCM} value that represents the integer @var{x}. This
function will always succeed and will always return an exact number.
@end deftypefn
@deftypefn {C Function} char scm_to_char (SCM x)
@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
@deftypefnx {C Function} short scm_to_short (SCM x)
@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
@deftypefnx {C Function} int scm_to_int (SCM x)
@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
@deftypefnx {C Function} long scm_to_long (SCM x)
@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
When @var{x} represents an exact integer that fits into the indicated
C type, return that integer. Else signal an error, either a
`wrong-type' error when @var{x} is not an exact integer, or an
`out-of-range' error when it doesn't fit the given range.
The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
the corresponding types are.
@end deftypefn
@deftypefn {C Function} SCM scm_from_char (char x)
@deftypefnx {C Function} SCM scm_from_schar (signed char x)
@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
@deftypefnx {C Function} SCM scm_from_short (short x)
@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
@deftypefnx {C Function} SCM scm_from_int (int x)
@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
@deftypefnx {C Function} SCM scm_from_long (long x)
@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
@deftypefnx {C Function} SCM scm_from_long_long (long long x)
@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
Return the @code{SCM} value that represents the integer @var{x}.
These functions will always succeed and will always return an exact
number.
@end deftypefn
@node Reals and Rationals
@subsubsection Real and Rational Numbers
@tpindex Real numbers
@tpindex Rational numbers
@rnindex real?
@rnindex rational?
Mathematically, the real numbers are the set of numbers that describe
all possible points along a continuous, infinite, one-dimensional line.
The rational numbers are the set of all numbers that can be written as
fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
All rational numbers are also real, but there are real numbers that
are not rational, for example the square root of 2, and pi.
Guile can represent both exact and inexact rational numbers, but it
can not represent irrational numbers. Exact rationals are represented
by storing the numerator and denominator as two exact integers.
Inexact rationals are stored as floating point numbers using the C
type @code{double}.
Exact rationals are written as a fraction of integers. There must be
no whitespace around the slash:
@lisp
1/2
-22/7
@end lisp
Even though the actual encoding of inexact rationals is in binary, it
may be helpful to think of it as a decimal number with a limited
number of significant figures and a decimal point somewhere, since
this corresponds to the standard notation for non-whole numbers. For
example:
@lisp
0.34
-0.00000142857931198
-5648394822220000000000.0
4.0
@end lisp
The limited precision of Guile's encoding means that any ``real'' number
in Guile can be written in a rational form, by multiplying and then dividing
by sufficient powers of 10 (or in fact, 2). For example,
@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
100000000000000000. In Guile's current incarnation, therefore, the
@code{rational?} and @code{real?} predicates are equivalent.
Dividing by an exact zero leads to a error message, as one might
expect. However, dividing by an inexact zero does not produce an
error. Instead, the result of the division is either plus or minus
infinity, depending on the sign of the divided number.
The infinities are written @samp{+inf.0} and @samp{-inf.0},
respectivly. This syntax is also recognized by @code{read} as an
extension to the usual Scheme syntax.
Dividing zero by zero yields something that is not a number at all:
@samp{+nan.0}. This is the special `not a number' value.
On platforms that follow @acronym{IEEE} 754 for their floating point
arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
are implemented using the corresponding @acronym{IEEE} 754 values.
They behave in arithmetic operations like @acronym{IEEE} 754 describes
it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
The infinities are inexact integers and are considered to be both even
and odd. While @samp{+nan.0} is not @code{=} to itself, it is
@code{eqv?} to itself.
To test for the special values, use the functions @code{inf?} and
@code{nan?}.
@deffn {Scheme Procedure} real? obj
@deffnx {C Function} scm_real_p (obj)
Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
that the sets of integer and rational values form subsets of the set
of real numbers, so the predicate will also be fulfilled if @var{obj}
is an integer number or a rational number.
@end deffn
@deffn {Scheme Procedure} rational? x
@deffnx {C Function} scm_rational_p (x)
Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
Note that the set of integer values forms a subset of the set of
rational numbers, i. e. the predicate will also be fulfilled if
@var{x} is an integer number.
Since Guile can not represent irrational numbers, every number
satisfying @code{real?} also satisfies @code{rational?} in Guile.
@end deffn
@deffn {Scheme Procedure} rationalize x eps
@deffnx {C Function} scm_rationalize (x, eps)
Returns the @emph{simplest} rational number differing
from @var{x} by no more than @var{eps}.
As required by @acronym{R5RS}, @code{rationalize} only returns an
exact result when both its arguments are exact. Thus, you might need
to use @code{inexact->exact} on the arguments.
@lisp
(rationalize (inexact->exact 1.2) 1/100)
@result{} 6/5
@end lisp
@end deffn
@deffn {Scheme Procedure} inf? x
Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
@code{#f} otherwise.
@end deffn
@deffn {Scheme Procedure} nan? x
Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
@end deffn
@node Complex Numbers
@subsubsection Complex Numbers
@tpindex Complex numbers
@rnindex complex?
Complex numbers are the set of numbers that describe all possible points
in a two-dimensional space. The two coordinates of a particular point
in this space are known as the @dfn{real} and @dfn{imaginary} parts of
the complex number that describes that point.
In Guile, complex numbers are written in rectangular form as the sum of
their real and imaginary parts, using the symbol @code{i} to indicate
the imaginary part.
@lisp
3+4i
@result{}
3.0+4.0i
(* 3-8i 2.3+0.3i)
@result{}
9.3-17.5i
@end lisp
Guile represents a complex number with a non-zero imaginary part as a
pair of inexact rationals, so the real and imaginary parts of a
complex number have the same properties of inexactness and limited
precision as single inexact rational numbers. Guile can not represent
exact complex numbers with non-zero imaginary parts.
@deffn {Scheme Procedure} complex? x
@deffnx {C Function} scm_number_p (x)
Return @code{#t} if @var{x} is a complex number, @code{#f}
otherwise. Note that the sets of real, rational and integer
values form subsets of the set of complex numbers, i. e. the
predicate will also be fulfilled if @var{x} is a real,
rational or integer number.
@end deffn
@node Exactness
@subsubsection Exact and Inexact Numbers
@tpindex Exact numbers
@tpindex Inexact numbers
@rnindex exact?
@rnindex inexact?
@rnindex exact->inexact
@rnindex inexact->exact
R5RS requires that a calculation involving inexact numbers always
produces an inexact result. To meet this requirement, Guile
distinguishes between an exact integer value such as @samp{5} and the
corresponding inexact real value which, to the limited precision
available, has no fractional part, and is printed as @samp{5.0}. Guile
will only convert the latter value to the former when forced to do so by
an invocation of the @code{inexact->exact} procedure.
@deffn {Scheme Procedure} exact? z
@deffnx {C Function} scm_exact_p (z)
Return @code{#t} if the number @var{z} is exact, @code{#f}
otherwise.
@lisp
(exact? 2)
@result{} #t
(exact? 0.5)
@result{} #f
(exact? (/ 2))
@result{} #t
@end lisp
@end deffn
@deffn {Scheme Procedure} inexact? z
@deffnx {C Function} scm_inexact_p (z)
Return @code{#t} if the number @var{z} is inexact, @code{#f}
else.
@end deffn
@deffn {Scheme Procedure} inexact->exact z
@deffnx {C Function} scm_inexact_to_exact (z)
Return an exact number that is numerically closest to @var{z}, when
there is one. For inexact rationals, Guile returns the exact rational
that is numerically equal to the inexact rational. Inexact complex
numbers with a non-zero imaginary part can not be made exact.
@lisp
(inexact->exact 0.5)
@result{} 1/2
@end lisp
The following happens because 12/10 is not exactly representable as a
@code{double} (on most platforms). However, when reading a decimal
number that has been marked exact with the ``#e'' prefix, Guile is
able to represent it correctly.
@lisp
(inexact->exact 1.2)
@result{} 5404319552844595/4503599627370496
#e1.2
@result{} 6/5
@end lisp
@end deffn
@c begin (texi-doc-string "guile" "exact->inexact")
@deffn {Scheme Procedure} exact->inexact z
@deffnx {C Function} scm_exact_to_inexact (z)
Convert the number @var{z} to its inexact representation.
@end deffn
@node Number Syntax
@subsubsection Read Syntax for Numerical Data
The read syntax for integers is a string of digits, optionally
preceded by a minus or plus character, a code indicating the
base in which the integer is encoded, and a code indicating whether
the number is exact or inexact. The supported base codes are:
@table @code
@item #b
@itemx #B
the integer is written in binary (base 2)
@item #o
@itemx #O
the integer is written in octal (base 8)
@item #d
@itemx #D
the integer is written in decimal (base 10)
@item #x
@itemx #X
the integer is written in hexadecimal (base 16)
@end table
If the base code is omitted, the integer is assumed to be decimal. The
following examples show how these base codes are used.
@lisp
-13
@result{} -13
#d-13
@result{} -13
#x-13
@result{} -19
#b+1101
@result{} 13
#o377
@result{} 255
@end lisp
The codes for indicating exactness (which can, incidentally, be applied
to all numerical values) are:
@table @code
@item #e
@itemx #E
the number is exact
@item #i
@itemx #I
the number is inexact.
@end table
If the exactness indicator is omitted, the number is exact unless it
contains a radix point. Since Guile can not represent exact complex
numbers, an error is signalled when asking for them.
@lisp
(exact? 1.2)
@result{} #f
(exact? #e1.2)
@result{} #t
(exact? #e+1i)
ERROR: Wrong type argument
@end lisp
Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
plus and minus infinity, respectively. The value must be written
exactly as shown, that is, they always must have a sign and exactly
one zero digit after the decimal point. It also understands
@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
The sign is ignored for `not-a-number' and the value is always printed
as @samp{+nan.0}.
@node Integer Operations
@subsubsection Operations on Integer Values
@rnindex odd?
@rnindex even?
@rnindex quotient
@rnindex remainder
@rnindex modulo
@rnindex gcd
@rnindex lcm
@deffn {Scheme Procedure} odd? n
@deffnx {C Function} scm_odd_p (n)
Return @code{#t} if @var{n} is an odd number, @code{#f}
otherwise.
@end deffn
@deffn {Scheme Procedure} even? n
@deffnx {C Function} scm_even_p (n)
Return @code{#t} if @var{n} is an even number, @code{#f}
otherwise.
@end deffn
@c begin (texi-doc-string "guile" "quotient")
@c begin (texi-doc-string "guile" "remainder")
@deffn {Scheme Procedure} quotient n d
@deffnx {Scheme Procedure} remainder n d
@deffnx {C Function} scm_quotient (n, d)
@deffnx {C Function} scm_remainder (n, d)
Return the quotient or remainder from @var{n} divided by @var{d}. The
quotient is rounded towards zero, and the remainder will have the same
sign as @var{n}. In all cases quotient and remainder satisfy
@math{@var{n} = @var{q}*@var{d} + @var{r}}.
@lisp
(remainder 13 4) @result{} 1
(remainder -13 4) @result{} -1
@end lisp
@end deffn
@c begin (texi-doc-string "guile" "modulo")
@deffn {Scheme Procedure} modulo n d
@deffnx {C Function} scm_modulo (n, d)
Return the remainder from @var{n} divided by @var{d}, with the same
sign as @var{d}.
@lisp
(modulo 13 4) @result{} 1
(modulo -13 4) @result{} 3
(modulo 13 -4) @result{} -3
(modulo -13 -4) @result{} -1
@end lisp
@end deffn
@c begin (texi-doc-string "guile" "gcd")
@deffn {Scheme Procedure} gcd
@deffnx {C Function} scm_gcd (x, y)
Return the greatest common divisor of all arguments.
If called without arguments, 0 is returned.
The C function @code{scm_gcd} always takes two arguments, while the
Scheme function can take an arbitrary number.
@end deffn
@c begin (texi-doc-string "guile" "lcm")
@deffn {Scheme Procedure} lcm
@deffnx {C Function} scm_lcm (x, y)
Return the least common multiple of the arguments.
If called without arguments, 1 is returned.
The C function @code{scm_lcm} always takes two arguments, while the
Scheme function can take an arbitrary number.
@end deffn
@node Comparison
@subsubsection Comparison Predicates
@rnindex zero?
@rnindex positive?
@rnindex negative?
The C comparison functions below always takes two arguments, while the
Scheme functions can take an arbitrary number. Also keep in mind that
the C functions return one of the Scheme boolean values
@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
y))} when testing the two Scheme numbers @code{x} and @code{y} for
equality, for example.
@c begin (texi-doc-string "guile" "=")
@deffn {Scheme Procedure} =
@deffnx {C Function} scm_num_eq_p (x, y)
Return @code{#t} if all parameters are numerically equal.
@end deffn
@c begin (texi-doc-string "guile" "<")
@deffn {Scheme Procedure} <
@deffnx {C Function} scm_less_p (x, y)
Return @code{#t} if the list of parameters is monotonically
increasing.
@end deffn
@c begin (texi-doc-string "guile" ">")
@deffn {Scheme Procedure} >
@deffnx {C Function} scm_gr_p (x, y)
Return @code{#t} if the list of parameters is monotonically
decreasing.
@end deffn
@c begin (texi-doc-string "guile" "<=")
@deffn {Scheme Procedure} <=
@deffnx {C Function} scm_leq_p (x, y)
Return @code{#t} if the list of parameters is monotonically
non-decreasing.
@end deffn
@c begin (texi-doc-string "guile" ">=")
@deffn {Scheme Procedure} >=
@deffnx {C Function} scm_geq_p (x, y)
Return @code{#t} if the list of parameters is monotonically
non-increasing.
@end deffn
@c begin (texi-doc-string "guile" "zero?")
@deffn {Scheme Procedure} zero? z
@deffnx {C Function} scm_zero_p (z)
Return @code{#t} if @var{z} is an exact or inexact number equal to
zero.
@end deffn
@c begin (texi-doc-string "guile" "positive?")
@deffn {Scheme Procedure} positive? x
@deffnx {C Function} scm_positive_p (x)
Return @code{#t} if @var{x} is an exact or inexact number greater than
zero.
@end deffn
@c begin (texi-doc-string "guile" "negative?")
@deffn {Scheme Procedure} negative? x
@deffnx {C Function} scm_negative_p (x)
Return @code{#t} if @var{x} is an exact or inexact number less than
zero.
@end deffn
@node Conversion
@subsubsection Converting Numbers To and From Strings
@rnindex number->string
@rnindex string->number
@deffn {Scheme Procedure} number->string n [radix]
@deffnx {C Function} scm_number_to_string (n, radix)
Return a string holding the external representation of the
number @var{n} in the given @var{radix}. If @var{n} is
inexact, a radix of 10 will be used.
@end deffn
@deffn {Scheme Procedure} string->number string [radix]
@deffnx {C Function} scm_string_to_number (string, radix)
Return a number of the maximally precise representation
expressed by the given @var{string}. @var{radix} must be an
exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
is a default radix that may be overridden by an explicit radix
prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
supplied, then the default radix is 10. If string is not a
syntactically valid notation for a number, then
@code{string->number} returns @code{#f}.
@end deffn
@node Complex
@subsubsection Complex Number Operations
@rnindex make-rectangular
@rnindex make-polar
@rnindex real-part
@rnindex imag-part
@rnindex magnitude
@rnindex angle
@deffn {Scheme Procedure} make-rectangular real imaginary
@deffnx {C Function} scm_make_rectangular (real, imaginary)
Return a complex number constructed of the given @var{real} and
@var{imaginary} parts.
@end deffn
@deffn {Scheme Procedure} make-polar x y
@deffnx {C Function} scm_make_polar (x, y)
Return the complex number @var{x} * e^(i * @var{y}).
@end deffn
@c begin (texi-doc-string "guile" "real-part")
@deffn {Scheme Procedure} real-part z
@deffnx {C Function} scm_real_part (z)
Return the real part of the number @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "imag-part")
@deffn {Scheme Procedure} imag-part z
@deffnx {C Function} scm_imag_part (z)
Return the imaginary part of the number @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "magnitude")
@deffn {Scheme Procedure} magnitude z
@deffnx {C Function} scm_magnitude (z)
Return the magnitude of the number @var{z}. This is the same as
@code{abs} for real arguments, but also allows complex numbers.
@end deffn
@c begin (texi-doc-string "guile" "angle")
@deffn {Scheme Procedure} angle z
@deffnx {C Function} scm_angle (z)
Return the angle of the complex number @var{z}.
@end deffn
@node Arithmetic
@subsubsection Arithmetic Functions
@rnindex max
@rnindex min
@rnindex +
@rnindex *
@rnindex -
@rnindex /
@rnindex abs
@rnindex floor
@rnindex ceiling
@rnindex truncate
@rnindex round
The C arithmetic functions below always takes two arguments, while the
Scheme functions can take an arbitrary number. When you need to
invoke them with just one argument, for example to compute the
equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
one: @code{scm_difference (x, SCM_UNDEFINED)}.
@c begin (texi-doc-string "guile" "+")
@deffn {Scheme Procedure} + z1 @dots{}
@deffnx {C Function} scm_sum (z1, z2)
Return the sum of all parameter values. Return 0 if called without any
parameters.
@end deffn
@c begin (texi-doc-string "guile" "-")
@deffn {Scheme Procedure} - z1 z2 @dots{}
@deffnx {C Function} scm_difference (z1, z2)
If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
the sum of all but the first argument are subtracted from the first
argument.
@end deffn
@c begin (texi-doc-string "guile" "*")
@deffn {Scheme Procedure} * z1 @dots{}
@deffnx {C Function} scm_product (z1, z2)
Return the product of all arguments. If called without arguments, 1 is
returned.
@end deffn
@c begin (texi-doc-string "guile" "/")
@deffn {Scheme Procedure} / z1 z2 @dots{}
@deffnx {C Function} scm_divide (z1, z2)
Divide the first argument by the product of the remaining arguments. If
called with one argument @var{z1}, 1/@var{z1} is returned.
@end deffn
@c begin (texi-doc-string "guile" "abs")
@deffn {Scheme Procedure} abs x
@deffnx {C Function} scm_abs (x)
Return the absolute value of @var{x}.
@var{x} must be a number with zero imaginary part. To calculate the
magnitude of a complex number, use @code{magnitude} instead.
@end deffn
@c begin (texi-doc-string "guile" "max")
@deffn {Scheme Procedure} max x1 x2 @dots{}
@deffnx {C Function} scm_max (x1, x2)
Return the maximum of all parameter values.
@end deffn
@c begin (texi-doc-string "guile" "min")
@deffn {Scheme Procedure} min x1 x2 @dots{}
@deffnx {C Function} scm_min (x1, x2)
Return the minimum of all parameter values.
@end deffn
@c begin (texi-doc-string "guile" "truncate")
@deffn {Scheme Procedure} truncate
@deffnx {C Function} scm_truncate_number (x)
Round the inexact number @var{x} towards zero.
@end deffn
@c begin (texi-doc-string "guile" "round")
@deffn {Scheme Procedure} round x
@deffnx {C Function} scm_round_number (x)
Round the inexact number @var{x} to the nearest integer. When exactly
halfway between two integers, round to the even one.
@end deffn
@c begin (texi-doc-string "guile" "floor")
@deffn {Scheme Procedure} floor x
@deffnx {C Function} scm_floor (x)
Round the number @var{x} towards minus infinity.
@end deffn
@c begin (texi-doc-string "guile" "ceiling")
@deffn {Scheme Procedure} ceiling x
@deffnx {C Function} scm_ceiling (x)
Round the number @var{x} towards infinity.
@end deffn
@node Scientific
@subsubsection Scientific Functions
The following procedures accept any kind of number as arguments,
including complex numbers.
@rnindex sqrt
@c begin (texi-doc-string "guile" "sqrt")
@deffn {Scheme Procedure} sqrt z
Return the square root of @var{z}.
@end deffn
@rnindex expt
@c begin (texi-doc-string "guile" "expt")
@deffn {Scheme Procedure} expt z1 z2
Return @var{z1} raised to the power of @var{z2}.
@end deffn
@rnindex sin
@c begin (texi-doc-string "guile" "sin")
@deffn {Scheme Procedure} sin z
Return the sine of @var{z}.
@end deffn
@rnindex cos
@c begin (texi-doc-string "guile" "cos")
@deffn {Scheme Procedure} cos z
Return the cosine of @var{z}.
@end deffn
@rnindex tan
@c begin (texi-doc-string "guile" "tan")
@deffn {Scheme Procedure} tan z
Return the tangent of @var{z}.
@end deffn
@rnindex asin
@c begin (texi-doc-string "guile" "asin")
@deffn {Scheme Procedure} asin z
Return the arcsine of @var{z}.
@end deffn
@rnindex acos
@c begin (texi-doc-string "guile" "acos")
@deffn {Scheme Procedure} acos z
Return the arccosine of @var{z}.
@end deffn
@rnindex atan
@c begin (texi-doc-string "guile" "atan")
@deffn {Scheme Procedure} atan z
@deffnx {Scheme Procedure} atan y x
Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
@end deffn
@rnindex exp
@c begin (texi-doc-string "guile" "exp")
@deffn {Scheme Procedure} exp z
Return e to the power of @var{z}, where e is the base of natural
logarithms (2.71828@dots{}).
@end deffn
@rnindex log
@c begin (texi-doc-string "guile" "log")
@deffn {Scheme Procedure} log z
Return the natural logarithm of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "log10")
@deffn {Scheme Procedure} log10 z
Return the base 10 logarithm of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "sinh")
@deffn {Scheme Procedure} sinh z
Return the hyperbolic sine of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "cosh")
@deffn {Scheme Procedure} cosh z
Return the hyperbolic cosine of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "tanh")
@deffn {Scheme Procedure} tanh z
Return the hyperbolic tangent of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "asinh")
@deffn {Scheme Procedure} asinh z
Return the hyperbolic arcsine of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "acosh")
@deffn {Scheme Procedure} acosh z
Return the hyperbolic arccosine of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "atanh")
@deffn {Scheme Procedure} atanh z
Return the hyperbolic arctangent of @var{z}.
@end deffn
@node Primitive Numerics
@subsubsection Primitive Numeric Functions
Many of Guile's numeric procedures which accept any kind of numbers as
arguments, including complex numbers, are implemented as Scheme
procedures that use the following real number-based primitives. These
primitives signal an error if they are called with complex arguments.
@c begin (texi-doc-string "guile" "$abs")
@deffn {Scheme Procedure} $abs x
Return the absolute value of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$sqrt")
@deffn {Scheme Procedure} $sqrt x
Return the square root of @var{x}.
@end deffn
@deffn {Scheme Procedure} $expt x y
@deffnx {C Function} scm_sys_expt (x, y)
Return @var{x} raised to the power of @var{y}. This
procedure does not accept complex arguments.
@end deffn
@c begin (texi-doc-string "guile" "$sin")
@deffn {Scheme Procedure} $sin x
Return the sine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$cos")
@deffn {Scheme Procedure} $cos x
Return the cosine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$tan")
@deffn {Scheme Procedure} $tan x
Return the tangent of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$asin")
@deffn {Scheme Procedure} $asin x
Return the arcsine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$acos")
@deffn {Scheme Procedure} $acos x
Return the arccosine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$atan")
@deffn {Scheme Procedure} $atan x
Return the arctangent of @var{x} in the range @minus{}@math{PI/2} to
@math{PI/2}.
@end deffn
@deffn {Scheme Procedure} $atan2 x y
@deffnx {C Function} scm_sys_atan2 (x, y)
Return the arc tangent of the two arguments @var{x} and
@var{y}. This is similar to calculating the arc tangent of
@var{x} / @var{y}, except that the signs of both arguments
are used to determine the quadrant of the result. This
procedure does not accept complex arguments.
@end deffn
@c begin (texi-doc-string "guile" "$exp")
@deffn {Scheme Procedure} $exp x
Return e to the power of @var{x}, where e is the base of natural
logarithms (2.71828@dots{}).
@end deffn
@c begin (texi-doc-string "guile" "$log")
@deffn {Scheme Procedure} $log x
Return the natural logarithm of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$sinh")
@deffn {Scheme Procedure} $sinh x
Return the hyperbolic sine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$cosh")
@deffn {Scheme Procedure} $cosh x
Return the hyperbolic cosine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$tanh")
@deffn {Scheme Procedure} $tanh x
Return the hyperbolic tangent of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$asinh")
@deffn {Scheme Procedure} $asinh x
Return the hyperbolic arcsine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$acosh")
@deffn {Scheme Procedure} $acosh x
Return the hyperbolic arccosine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$atanh")
@deffn {Scheme Procedure} $atanh x
Return the hyperbolic arctangent of @var{x}.
@end deffn
C functions for the above are provided by the standard mathematics
library. Naturally these expect and return @code{double} arguments
(@pxref{Mathematics,,, libc, GNU C Library Reference Manual}).
@multitable {xx} {Scheme Procedure} {C Function}
@item @tab Scheme Procedure @tab C Function
@item @tab @code{$abs} @tab @code{fabs}
@item @tab @code{$sqrt} @tab @code{sqrt}
@item @tab @code{$sin} @tab @code{sin}
@item @tab @code{$cos} @tab @code{cos}
@item @tab @code{$tan} @tab @code{tan}
@item @tab @code{$asin} @tab @code{asin}
@item @tab @code{$acos} @tab @code{acos}
@item @tab @code{$atan} @tab @code{atan}
@item @tab @code{$atan2} @tab @code{atan2}
@item @tab @code{$exp} @tab @code{exp}
@item @tab @code{$expt} @tab @code{pow}
@item @tab @code{$log} @tab @code{log}
@item @tab @code{$sinh} @tab @code{sinh}
@item @tab @code{$cosh} @tab @code{cosh}
@item @tab @code{$tanh} @tab @code{tanh}
@item @tab @code{$asinh} @tab @code{asinh}
@item @tab @code{$acosh} @tab @code{acosh}
@item @tab @code{$atanh} @tab @code{atanh}
@end multitable
@code{asinh}, @code{acosh} and @code{atanh} are C99 standard but might
not be available on older systems. Guile provides the following
equivalents (on all systems).
@deftypefn {C Function} double scm_asinh (double x)
@deftypefnx {C Function} double scm_acosh (double x)
@deftypefnx {C Function} double scm_atanh (double x)
Return the hyperbolic arcsine, arccosine or arctangent of @var{x}
respectively.
@end deftypefn
@node Bitwise Operations
@subsubsection Bitwise Operations
For the following bitwise functions, negative numbers are treated as
infinite precision twos-complements. For instance @math{-6} is bits
@math{@dots{}111010}, with infinitely many ones on the left. It can
be seen that adding 6 (binary 110) to such a bit pattern gives all
zeros.
@deffn {Scheme Procedure} logand n1 n2 @dots{}
@deffnx {C Function} scm_logand (n1, n2)
Return the bitwise @sc{and} of the integer arguments.
@lisp
(logand) @result{} -1
(logand 7) @result{} 7
(logand #b111 #b011 #b001) @result{} 1
@end lisp
@end deffn
@deffn {Scheme Procedure} logior n1 n2 @dots{}
@deffnx {C Function} scm_logior (n1, n2)
Return the bitwise @sc{or} of the integer arguments.
@lisp
(logior) @result{} 0
(logior 7) @result{} 7
(logior #b000 #b001 #b011) @result{} 3
@end lisp
@end deffn
@deffn {Scheme Procedure} logxor n1 n2 @dots{}
@deffnx {C Function} scm_loxor (n1, n2)
Return the bitwise @sc{xor} of the integer arguments. A bit is
set in the result if it is set in an odd number of arguments.
@lisp
(logxor) @result{} 0
(logxor 7) @result{} 7
(logxor #b000 #b001 #b011) @result{} 2
(logxor #b000 #b001 #b011 #b011) @result{} 1
@end lisp
@end deffn
@deffn {Scheme Procedure} lognot n
@deffnx {C Function} scm_lognot (n)
Return the integer which is the ones-complement of the integer
argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
@lisp
(number->string (lognot #b10000000) 2)
@result{} "-10000001"
(number->string (lognot #b0) 2)
@result{} "-1"
@end lisp
@end deffn
@deffn {Scheme Procedure} logtest j k
@deffnx {C Function} scm_logtest (j, k)
@lisp
(logtest j k) @equiv{} (not (zero? (logand j k)))
(logtest #b0100 #b1011) @result{} #f
(logtest #b0100 #b0111) @result{} #t
@end lisp
@end deffn
@deffn {Scheme Procedure} logbit? index j
@deffnx {C Function} scm_logbit_p (index, j)
@lisp
(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)
(logbit? 0 #b1101) @result{} #t
(logbit? 1 #b1101) @result{} #f
(logbit? 2 #b1101) @result{} #t
(logbit? 3 #b1101) @result{} #t
(logbit? 4 #b1101) @result{} #f
@end lisp
@end deffn
@deffn {Scheme Procedure} ash n cnt
@deffnx {C Function} scm_ash (n, cnt)
Return @var{n} shifted left by @var{cnt} bits, or shifted right if
@var{cnt} is negative. This is an ``arithmetic'' shift.
This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
when @var{cnt} is negative it's a division, rounded towards negative
infinity. (Note that this is not the same rounding as @code{quotient}
does.)
With @var{n} viewed as an infinite precision twos complement,
@code{ash} means a left shift introducing zero bits, or a right shift
dropping bits.
@lisp
(number->string (ash #b1 3) 2) @result{} "1000"
(number->string (ash #b1010 -1) 2) @result{} "101"
;; -23 is bits ...11101001, -6 is bits ...111010
(ash -23 -2) @result{} -6
@end lisp
@end deffn
@deffn {Scheme Procedure} logcount n
@deffnx {C Function} scm_logcount (n)
Return the number of bits in integer @var{n}. If integer is
positive, the 1-bits in its binary representation are counted.
If negative, the 0-bits in its two's-complement binary
representation are counted. If 0, 0 is returned.
@lisp
(logcount #b10101010)
@result{} 4
(logcount 0)
@result{} 0
(logcount -2)
@result{} 1
@end lisp
@end deffn
@deffn {Scheme Procedure} integer-length n
@deffnx {C Function} scm_integer_length (n)
Return the number of bits necessary to represent @var{n}.
For positive @var{n} this is how many bits to the most significant one
bit. For negative @var{n} it's how many bits to the most significant
zero bit in twos complement form.
@lisp
(integer-length #b10101010) @result{} 8
(integer-length #b1111) @result{} 4
(integer-length 0) @result{} 0
(integer-length -1) @result{} 0
(integer-length -256) @result{} 8
(integer-length -257) @result{} 9
@end lisp
@end deffn
@deffn {Scheme Procedure} integer-expt n k
@deffnx {C Function} scm_integer_expt (n, k)
Return @var{n} raised to the non-negative integer exponent
@var{k}.
@lisp
(integer-expt 2 5)
@result{} 32
(integer-expt -3 3)
@result{} -27
@end lisp
@end deffn
@deffn {Scheme Procedure} bit-extract n start end
@deffnx {C Function} scm_bit_extract (n, start, end)
Return the integer composed of the @var{start} (inclusive)
through @var{end} (exclusive) bits of @var{n}. The
@var{start}th bit becomes the 0-th bit in the result.
@lisp
(number->string (bit-extract #b1101101010 0 4) 2)
@result{} "1010"
(number->string (bit-extract #b1101101010 4 9) 2)
@result{} "10110"
@end lisp
@end deffn
@node Random
@subsubsection Random Number Generation
Pseudo-random numbers are generated from a random state object, which
can be created with @code{seed->random-state}. The @var{state}
parameter to the various functions below is optional, it defaults to
the state object in the @code{*random-state*} variable.
@deffn {Scheme Procedure} copy-random-state [state]
@deffnx {C Function} scm_copy_random_state (state)
Return a copy of the random state @var{state}.
@end deffn
@deffn {Scheme Procedure} random n [state]
@deffnx {C Function} scm_random (n, state)
Return a number in [0, @var{n}).
Accepts a positive integer or real n and returns a
number of the same type between zero (inclusive) and
@var{n} (exclusive). The values returned have a uniform
distribution.
@end deffn
@deffn {Scheme Procedure} random:exp [state]
@deffnx {C Function} scm_random_exp (state)
Return an inexact real in an exponential distribution with mean
1. For an exponential distribution with mean @var{u} use @code{(*
@var{u} (random:exp))}.
@end deffn
@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
Fills @var{vect} with inexact real random numbers the sum of whose
squares is equal to 1.0. Thinking of @var{vect} as coordinates in
space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
the coordinates are uniformly distributed over the surface of the unit
n-sphere.
@end deffn
@deffn {Scheme Procedure} random:normal [state]
@deffnx {C Function} scm_random_normal (state)
Return an inexact real in a normal distribution. The distribution
used has mean 0 and standard deviation 1. For a normal distribution
with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
(* @var{d} (random:normal)))}.
@end deffn
@deffn {Scheme Procedure} random:normal-vector! vect [state]
@deffnx {C Function} scm_random_normal_vector_x (vect, state)
Fills @var{vect} with inexact real random numbers that are
independent and standard normally distributed
(i.e., with mean 0 and variance 1).
@end deffn
@deffn {Scheme Procedure} random:solid-sphere! vect [state]
@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
Fills @var{vect} with inexact real random numbers the sum of whose
squares is less than 1.0. Thinking of @var{vect} as coordinates in
space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
the coordinates are uniformly distributed within the unit
@var{n}-sphere. The sum of the squares of the numbers is returned.
@c FIXME: What does this mean, particularly the n-sphere part?
@end deffn
@deffn {Scheme Procedure} random:uniform [state]
@deffnx {C Function} scm_random_uniform (state)
Return a uniformly distributed inexact real random number in
[0,1).
@end deffn
@deffn {Scheme Procedure} seed->random-state seed
@deffnx {C Function} scm_seed_to_random_state (seed)
Return a new random state using @var{seed}.
@end deffn
@defvar *random-state*
The global random state used by the above functions when the
@var{state} parameter is not given.
@end defvar
@node Characters
@subsection Characters
@tpindex Characters
@noindent
[@strong{FIXME}: how do you specify regular (non-control) characters?]
Most of the ``control characters'' (those below codepoint 32) in the
@acronym{ASCII} character set, as well as the space, may be referred
to by name: for example, @code{#\tab}, @code{#\esc}, @code{#\stx}, and
so on. The following table describes the @acronym{ASCII} names for
each character.
@multitable @columnfractions .25 .25 .25 .25
@item 0 = @code{#\nul}
@tab 1 = @code{#\soh}
@tab 2 = @code{#\stx}
@tab 3 = @code{#\etx}
@item 4 = @code{#\eot}
@tab 5 = @code{#\enq}
@tab 6 = @code{#\ack}
@tab 7 = @code{#\bel}
@item 8 = @code{#\bs}
@tab 9 = @code{#\ht}
@tab 10 = @code{#\nl}
@tab 11 = @code{#\vt}
@item 12 = @code{#\np}
@tab 13 = @code{#\cr}
@tab 14 = @code{#\so}
@tab 15 = @code{#\si}
@item 16 = @code{#\dle}
@tab 17 = @code{#\dc1}
@tab 18 = @code{#\dc2}
@tab 19 = @code{#\dc3}
@item 20 = @code{#\dc4}
@tab 21 = @code{#\nak}
@tab 22 = @code{#\syn}
@tab 23 = @code{#\etb}
@item 24 = @code{#\can}
@tab 25 = @code{#\em}
@tab 26 = @code{#\sub}
@tab 27 = @code{#\esc}
@item 28 = @code{#\fs}
@tab 29 = @code{#\gs}
@tab 30 = @code{#\rs}
@tab 31 = @code{#\us}
@item 32 = @code{#\sp}
@end multitable
The ``delete'' character (octal 177) may be referred to with the name
@code{#\del}.
Several characters have more than one name:
@multitable {@code{#\backspace}} {Original}
@item Alias @tab Original
@item @code{#\space} @tab @code{#\sp}
@item @code{#\newline} @tab @code{#\nl}
@item @code{#\tab} @tab @code{#\ht}
@item @code{#\backspace} @tab @code{#\bs}
@item @code{#\return} @tab @code{#\cr}
@item @code{#\page} @tab @code{#\np}
@item @code{#\null} @tab @code{#\nul}
@end multitable
@rnindex char?
@deffn {Scheme Procedure} char? x
@deffnx {C Function} scm_char_p (x)
Return @code{#t} iff @var{x} is a character, else @code{#f}.
@end deffn
@rnindex char=?
@deffn {Scheme Procedure} char=? x y
Return @code{#t} iff @var{x} is the same character as @var{y}, else @code{#f}.
@end deffn
@rnindex char<?
@deffn {Scheme Procedure} char<? x y
Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence,
else @code{#f}.
@end deffn
@rnindex char<=?
@deffn {Scheme Procedure} char<=? x y
Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
@acronym{ASCII} sequence, else @code{#f}.
@end deffn
@rnindex char>?
@deffn {Scheme Procedure} char>? x y
Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
sequence, else @code{#f}.
@end deffn
@rnindex char>=?
@deffn {Scheme Procedure} char>=? x y
Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
@acronym{ASCII} sequence, else @code{#f}.
@end deffn
@rnindex char-ci=?
@deffn {Scheme Procedure} char-ci=? x y
Return @code{#t} iff @var{x} is the same character as @var{y} ignoring
case, else @code{#f}.
@end deffn
@rnindex char-ci<?
@deffn {Scheme Procedure} char-ci<? x y
Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence
ignoring case, else @code{#f}.
@end deffn
@rnindex char-ci<=?
@deffn {Scheme Procedure} char-ci<=? x y
Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
@acronym{ASCII} sequence ignoring case, else @code{#f}.
@end deffn
@rnindex char-ci>?
@deffn {Scheme Procedure} char-ci>? x y
Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
sequence ignoring case, else @code{#f}.
@end deffn
@rnindex char-ci>=?
@deffn {Scheme Procedure} char-ci>=? x y
Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
@acronym{ASCII} sequence ignoring case, else @code{#f}.
@end deffn
@rnindex char-alphabetic?
@deffn {Scheme Procedure} char-alphabetic? chr
@deffnx {C Function} scm_char_alphabetic_p (chr)
Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
Alphabetic means the same thing as the @code{isalpha} C library function.
@end deffn
@rnindex char-numeric?
@deffn {Scheme Procedure} char-numeric? chr
@deffnx {C Function} scm_char_numeric_p (chr)
Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
Numeric means the same thing as the @code{isdigit} C library function.
@end deffn
@rnindex char-whitespace?
@deffn {Scheme Procedure} char-whitespace? chr
@deffnx {C Function} scm_char_whitespace_p (chr)
Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
Whitespace means the same thing as the @code{isspace} C library function.
@end deffn
@rnindex char-upper-case?
@deffn {Scheme Procedure} char-upper-case? chr
@deffnx {C Function} scm_char_upper_case_p (chr)
Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
Uppercase means the same thing as the @code{isupper} C library function.
@end deffn
@rnindex char-lower-case?
@deffn {Scheme Procedure} char-lower-case? chr
@deffnx {C Function} scm_char_lower_case_p (chr)
Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
Lowercase means the same thing as the @code{islower} C library function.
@end deffn
@deffn {Scheme Procedure} char-is-both? chr
@deffnx {C Function} scm_char_is_both_p (chr)
Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
@code{#f}. Uppercase and lowercase are as defined by the
@code{isupper} and @code{islower} C library functions.
@end deffn
@rnindex char->integer
@deffn {Scheme Procedure} char->integer chr
@deffnx {C Function} scm_char_to_integer (chr)
Return the number corresponding to ordinal position of @var{chr} in the
@acronym{ASCII} sequence.
@end deffn
@rnindex integer->char
@deffn {Scheme Procedure} integer->char n
@deffnx {C Function} scm_integer_to_char (n)
Return the character at position @var{n} in the @acronym{ASCII} sequence.
@end deffn
@rnindex char-upcase
@deffn {Scheme Procedure} char-upcase chr
@deffnx {C Function} scm_char_upcase (chr)
Return the uppercase character version of @var{chr}.
@end deffn
@rnindex char-downcase
@deffn {Scheme Procedure} char-downcase chr
@deffnx {C Function} scm_char_downcase (chr)
Return the lowercase character version of @var{chr}.
@end deffn
@xref{Classification of Characters,,,libc,GNU C Library Reference
Manual}, for information about the @code{is*} Standard C functions
mentioned above.
@node Strings
@subsection Strings
@tpindex Strings
Strings are fixed-length sequences of characters. They can be created
by calling constructor procedures, but they can also literally get
entered at the @acronym{REPL} or in Scheme source files.
@c Guile provides a rich set of string processing procedures, because text
@c handling is very important when Guile is used as a scripting language.
Strings always carry the information about how many characters they are
composed of with them, so there is no special end-of-string character,
like in C. That means that Scheme strings can contain any character,
even the @samp{NUL} character @samp{\0}. But note: Since most operating
system calls dealing with strings (such as for file operations) expect
strings to be zero-terminated, they might do unexpected things when
called with string containing unusual characters.
@menu
* String Syntax:: Read syntax for strings.
* String Predicates:: Testing strings for certain properties.
* String Constructors:: Creating new string objects.
* List/String Conversion:: Converting from/to lists of characters.
* String Selection:: Select portions from strings.
* String Modification:: Modify parts or whole strings.
* String Comparison:: Lexicographic ordering predicates.
* String Searching:: Searching in strings.
* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
* Appending Strings:: Appending strings to form a new string.
@end menu
@node String Syntax
@subsubsection String Read Syntax
@c In the following @code is used to get a good font in TeX etc, but
@c is omitted for Info format, so as not to risk any confusion over
@c whether surrounding ` ' quotes are part of the escape or are
@c special in a string (they're not).
The read syntax for strings is an arbitrarily long sequence of
characters enclosed in double quotes (@nicode{"}). @footnote{Actually,
the current implementation restricts strings to a length of
@math{2^24}, or 16,777,216, characters. Sorry.}
Backslash is an escape character and can be used to insert the
following special characters. @nicode{\"} and @nicode{\\} are R5RS
standard, the rest are Guile extensions, notice they follow C string
syntax.
@table @asis
@item @nicode{\\}
Backslash character.
@item @nicode{\"}
Double quote character (an unescaped @nicode{"} is otherwise the end
of the string).
@item @nicode{\0}
NUL character (ASCII 0).
@item @nicode{\a}
Bell character (ASCII 7).
@item @nicode{\f}
Formfeed character (ASCII 12).
@item @nicode{\n}
Newline character (ASCII 10).
@item @nicode{\r}
Carriage return character (ASCII 13).
@item @nicode{\t}
Tab character (ASCII 9).
@item @nicode{\v}
Vertical tab character (ASCII 11).
@item @nicode{\xHH}
Character code given by two hexadecimal digits. For example
@nicode{\x7f} for an ASCII DEL (127).
@end table
@noindent
The following are examples of string literals:
@lisp
"foo"
"bar plonk"
"Hello World"
"\"Hi\", he said."
@end lisp
@node String Predicates
@subsubsection String Predicates
The following procedures can be used to check whether a given string
fulfills some specified property.
@rnindex string?
@deffn {Scheme Procedure} string? obj
@deffnx {C Function} scm_string_p (obj)
Return @code{#t} if @var{obj} is a string, else @code{#f}.
@end deffn
@deffn {Scheme Procedure} string-null? str
@deffnx {C Function} scm_string_null_p (str)
Return @code{#t} if @var{str}'s length is zero, and
@code{#f} otherwise.
@lisp
(string-null? "") @result{} #t
y @result{} "foo"
(string-null? y) @result{} #f
@end lisp
@end deffn
@node String Constructors
@subsubsection String Constructors
The string constructor procedures create new string objects, possibly
initializing them with some specified character data.
@c FIXME::martin: list->string belongs into `List/String Conversion'
@rnindex string
@rnindex list->string
@deffn {Scheme Procedure} string . chrs
@deffnx {Scheme Procedure} list->string chrs
@deffnx {C Function} scm_string (chrs)
Return a newly allocated string composed of the arguments,
@var{chrs}.
@end deffn
@rnindex make-string
@deffn {Scheme Procedure} make-string k [chr]
@deffnx {C Function} scm_make_string (k, chr)
Return a newly allocated string of
length @var{k}. If @var{chr} is given, then all elements of
the string are initialized to @var{chr}, otherwise the contents
of the @var{string} are unspecified.
@end deffn
@node List/String Conversion
@subsubsection List/String conversion
When processing strings, it is often convenient to first convert them
into a list representation by using the procedure @code{string->list},
work with the resulting list, and then convert it back into a string.
These procedures are useful for similar tasks.
@rnindex string->list
@deffn {Scheme Procedure} string->list str
@deffnx {C Function} scm_string_to_list (str)
Return a newly allocated list of the characters that make up
the given string @var{str}. @code{string->list} and
@code{list->string} are inverses as far as @samp{equal?} is
concerned.
@end deffn
@deffn {Scheme Procedure} string-split str chr
@deffnx {C Function} scm_string_split (str, chr)
Split the string @var{str} into the a list of the substrings delimited
by appearances of the character @var{chr}. Note that an empty substring
between separator characters will result in an empty string in the
result list.
@lisp
(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
@result{}
("root" "x" "0" "0" "root" "/root" "/bin/bash")
(string-split "::" #\:)
@result{}
("" "" "")
(string-split "" #\:)
@result{}
("")
@end lisp
@end deffn
@node String Selection
@subsubsection String Selection
Portions of strings can be extracted by these procedures.
@code{string-ref} delivers individual characters whereas
@code{substring} can be used to extract substrings from longer strings.
@rnindex string-length
@deffn {Scheme Procedure} string-length string
@deffnx {C Function} scm_string_length (string)
Return the number of characters in @var{string}.
@end deffn
@rnindex string-ref
@deffn {Scheme Procedure} string-ref str k
@deffnx {C Function} scm_string_ref (str, k)
Return character @var{k} of @var{str} using zero-origin
indexing. @var{k} must be a valid index of @var{str}.
@end deffn
@rnindex string-copy
@deffn {Scheme Procedure} string-copy str
@deffnx {C Function} scm_string_copy (str)
Return a newly allocated copy of the given @var{string}.
@end deffn
@rnindex substring
@deffn {Scheme Procedure} substring str start [end]
@deffnx {C Function} scm_substring (str, start, end)
Return a newly allocated string formed from the characters
of @var{str} beginning with index @var{start} (inclusive) and
ending with index @var{end} (exclusive).
@var{str} must be a string, @var{start} and @var{end} must be
exact integers satisfying:
0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
@end deffn
@node String Modification
@subsubsection String Modification
These procedures are for modifying strings in-place. This means that the
result of the operation is not a new string; instead, the original string's
memory representation is modified.
@rnindex string-set!
@deffn {Scheme Procedure} string-set! str k chr
@deffnx {C Function} scm_string_set_x (str, k, chr)
Store @var{chr} in element @var{k} of @var{str} and return
an unspecified value. @var{k} must be a valid index of
@var{str}.
@end deffn
@rnindex string-fill!
@deffn {Scheme Procedure} string-fill! str chr
@deffnx {C Function} scm_string_fill_x (str, chr)
Store @var{char} in every element of the given @var{string} and
return an unspecified value.
@end deffn
@deffn {Scheme Procedure} substring-fill! str start end fill
@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
Change every character in @var{str} between @var{start} and
@var{end} to @var{fill}.
@lisp
(define y "abcdefg")
(substring-fill! y 1 3 #\r)
y
@result{} "arrdefg"
@end lisp
@end deffn
@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
into @var{str2} beginning at position @var{start2}.
@var{str1} and @var{str2} can be the same string.
@end deffn
@node String Comparison
@subsubsection String Comparison
The procedures in this section are similar to the character ordering
predicates (@pxref{Characters}), but are defined on character sequences.
They all return @code{#t} on success and @code{#f} on failure. The
predicates ending in @code{-ci} ignore the character case when comparing
strings.
@rnindex string=?
@deffn {Scheme Procedure} string=? s1 s2
Lexicographic equality predicate; return @code{#t} if the two
strings are the same length and contain the same characters in
the same positions, otherwise return @code{#f}.
The procedure @code{string-ci=?} treats upper and lower case
letters as though they were the same character, but
@code{string=?} treats upper and lower case as distinct
characters.
@end deffn
@rnindex string<?
@deffn {Scheme Procedure} string<? s1 s2
Lexicographic ordering predicate; return @code{#t} if @var{s1}
is lexicographically less than @var{s2}.
@end deffn
@rnindex string<=?
@deffn {Scheme Procedure} string<=? s1 s2
Lexicographic ordering predicate; return @code{#t} if @var{s1}
is lexicographically less than or equal to @var{s2}.
@end deffn
@rnindex string>?
@deffn {Scheme Procedure} string>? s1 s2
Lexicographic ordering predicate; return @code{#t} if @var{s1}
is lexicographically greater than @var{s2}.
@end deffn
@rnindex string>=?
@deffn {Scheme Procedure} string>=? s1 s2
Lexicographic ordering predicate; return @code{#t} if @var{s1}
is lexicographically greater than or equal to @var{s2}.
@end deffn
@rnindex string-ci=?
@deffn {Scheme Procedure} string-ci=? s1 s2
Case-insensitive string equality predicate; return @code{#t} if
the two strings are the same length and their component
characters match (ignoring case) at each position; otherwise
return @code{#f}.
@end deffn
@rnindex string-ci<
@deffn {Scheme Procedure} string-ci<? s1 s2
Case insensitive lexicographic ordering predicate; return
@code{#t} if @var{s1} is lexicographically less than @var{s2}
regardless of case.
@end deffn
@rnindex string<=?
@deffn {Scheme Procedure} string-ci<=? s1 s2
Case insensitive lexicographic ordering predicate; return
@code{#t} if @var{s1} is lexicographically less than or equal
to @var{s2} regardless of case.
@end deffn
@rnindex string-ci>?
@deffn {Scheme Procedure} string-ci>? s1 s2
Case insensitive lexicographic ordering predicate; return
@code{#t} if @var{s1} is lexicographically greater than
@var{s2} regardless of case.
@end deffn
@rnindex string-ci>=?
@deffn {Scheme Procedure} string-ci>=? s1 s2
Case insensitive lexicographic ordering predicate; return
@code{#t} if @var{s1} is lexicographically greater than or
equal to @var{s2} regardless of case.
@end deffn
@node String Searching
@subsubsection String Searching
When searching for the index of a character in a string, these
procedures can be used.
@deffn {Scheme Procedure} string-index str chr [frm [to]]
@deffnx {C Function} scm_string_index (str, chr, frm, to)
Return the index of the first occurrence of @var{chr} in
@var{str}. The optional integer arguments @var{frm} and
@var{to} limit the search to a portion of the string. This
procedure essentially implements the @code{index} or
@code{strchr} functions from the C library.
@lisp
(string-index "weiner" #\e)
@result{} 1
(string-index "weiner" #\e 2)
@result{} 4
(string-index "weiner" #\e 2 4)
@result{} #f
@end lisp
@end deffn
@deffn {Scheme Procedure} string-rindex str chr [frm [to]]
@deffnx {C Function} scm_string_rindex (str, chr, frm, to)
Like @code{string-index}, but search from the right of the
string rather than from the left. This procedure essentially
implements the @code{rindex} or @code{strrchr} functions from
the C library.
@lisp
(string-rindex "weiner" #\e)
@result{} 4
(string-rindex "weiner" #\e 2 4)
@result{} #f
(string-rindex "weiner" #\e 2 5)
@result{} 4
@end lisp
@end deffn
@node Alphabetic Case Mapping
@subsubsection Alphabetic Case Mapping
These are procedures for mapping strings to their upper- or lower-case
equivalents, respectively, or for capitalizing strings.
@deffn {Scheme Procedure} string-upcase str
@deffnx {C Function} scm_string_upcase (str)
Return a freshly allocated string containing the characters of
@var{str} in upper case.
@end deffn
@deffn {Scheme Procedure} string-upcase! str
@deffnx {C Function} scm_string_upcase_x (str)
Destructively upcase every character in @var{str} and return
@var{str}.
@lisp
y @result{} "arrdefg"
(string-upcase! y) @result{} "ARRDEFG"
y @result{} "ARRDEFG"
@end lisp
@end deffn
@deffn {Scheme Procedure} string-downcase str
@deffnx {C Function} scm_string_downcase (str)
Return a freshly allocation string containing the characters in
@var{str} in lower case.
@end deffn
@deffn {Scheme Procedure} string-downcase! str
@deffnx {C Function} scm_string_downcase_x (str)
Destructively downcase every character in @var{str} and return
@var{str}.
@lisp
y @result{} "ARRDEFG"
(string-downcase! y) @result{} "arrdefg"
y @result{} "arrdefg"
@end lisp
@end deffn
@deffn {Scheme Procedure} string-capitalize str
@deffnx {C Function} scm_string_capitalize (str)
Return a freshly allocated string with the characters in
@var{str}, where the first character of every word is
capitalized.
@end deffn
@deffn {Scheme Procedure} string-capitalize! str
@deffnx {C Function} scm_string_capitalize_x (str)
Upcase the first character of every word in @var{str}
destructively and return @var{str}.
@lisp
y @result{} "hello world"
(string-capitalize! y) @result{} "Hello World"
y @result{} "Hello World"
@end lisp
@end deffn
@node Appending Strings
@subsubsection Appending Strings
The procedure @code{string-append} appends several strings together to
form a longer result string.
@rnindex string-append
@deffn {Scheme Procedure} string-append . args
@deffnx {C Function} scm_string_append (args)
Return a newly allocated string whose characters form the
concatenation of the given strings, @var{args}.
@example
(let ((h "hello "))
(string-append h "world"))
@result{} "hello world"
@end example
@end deffn
@node Regular Expressions
@subsection Regular Expressions
@tpindex Regular expressions
@cindex regular expressions
@cindex regex
@cindex emacs regexp
A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
describes a whole class of strings. A full description of regular
expressions and their syntax is beyond the scope of this manual;
an introduction can be found in the Emacs manual (@pxref{Regexps,
, Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
in many general Unix reference books.
If your system does not include a POSIX regular expression library,
and you have not linked Guile with a third-party regexp library such
as Rx, these functions will not be available. You can tell whether
your Guile installation includes regular expression support by
checking whether @code{(provided? 'regex)} returns true.
The following regexp and string matching features are provided by the
@code{(ice-9 regex)} module. Before using the described functions,
you should load this module by executing @code{(use-modules (ice-9
regex))}.
@menu
* Regexp Functions:: Functions that create and match regexps.
* Match Structures:: Finding what was matched by a regexp.
* Backslash Escapes:: Removing the special meaning of regexp
meta-characters.
@end menu
@node Regexp Functions
@subsubsection Regexp Functions
By default, Guile supports POSIX extended regular expressions.
That means that the characters @samp{(}, @samp{)}, @samp{+} and
@samp{?} are special, and must be escaped if you wish to match the
literal characters.
This regular expression interface was modeled after that
implemented by SCSH, the Scheme Shell. It is intended to be
upwardly compatible with SCSH regular expressions.
@deffn {Scheme Procedure} string-match pattern str [start]
Compile the string @var{pattern} into a regular expression and compare
it with @var{str}. The optional numeric argument @var{start} specifies
the position of @var{str} at which to begin matching.
@code{string-match} returns a @dfn{match structure} which
describes what, if anything, was matched by the regular
expression. @xref{Match Structures}. If @var{str} does not match
@var{pattern} at all, @code{string-match} returns @code{#f}.
@end deffn
Two examples of a match follow. In the first example, the pattern
matches the four digits in the match string. In the second, the pattern
matches nothing.
@example
(string-match "[0-9][0-9][0-9][0-9]" "blah2002")
@result{} #("blah2002" (4 . 8))
(string-match "[A-Za-z]" "123456")
@result{} #f
@end example
Each time @code{string-match} is called, it must compile its
@var{pattern} argument into a regular expression structure. This
operation is expensive, which makes @code{string-match} inefficient if
the same regular expression is used several times (for example, in a
loop). For better performance, you can compile a regular expression in
advance and then match strings against the compiled regexp.
@deffn {Scheme Procedure} make-regexp pat flag@dots{}
@deffnx {C Function} scm_make_regexp (pat, flaglst)
Compile the regular expression described by @var{pat}, and
return the compiled regexp structure. If @var{pat} does not
describe a legal regular expression, @code{make-regexp} throws
a @code{regular-expression-syntax} error.
The @var{flag} arguments change the behavior of the compiled
regular expression. The following values may be supplied:
@defvar regexp/icase
Consider uppercase and lowercase letters to be the same when
matching.
@end defvar
@defvar regexp/newline
If a newline appears in the target string, then permit the
@samp{^} and @samp{$} operators to match immediately after or
immediately before the newline, respectively. Also, the
@samp{.} and @samp{[^...]} operators will never match a newline
character. The intent of this flag is to treat the target
string as a buffer containing many lines of text, and the
regular expression as a pattern that may match a single one of
those lines.
@end defvar
@defvar regexp/basic
Compile a basic (``obsolete'') regexp instead of the extended
(``modern'') regexps that are the default. Basic regexps do
not consider @samp{|}, @samp{+} or @samp{?} to be special
characters, and require the @samp{@{...@}} and @samp{(...)}
metacharacters to be backslash-escaped (@pxref{Backslash
Escapes}). There are several other differences between basic
and extended regular expressions, but these are the most
significant.
@end defvar
@defvar regexp/extended
Compile an extended regular expression rather than a basic
regexp. This is the default behavior; this flag will not
usually be needed. If a call to @code{make-regexp} includes
both @code{regexp/basic} and @code{regexp/extended} flags, the
one which comes last will override the earlier one.
@end defvar
@end deffn
@deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
@deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
Match the compiled regular expression @var{rx} against
@code{str}. If the optional integer @var{start} argument is
provided, begin matching from that position in the string.
Return a match structure describing the results of the match,
or @code{#f} if no match could be found.
The @var{flags} arguments change the matching behavior.
The following flags may be supplied:
@defvar regexp/notbol
Operator @samp{^} always fails (unless @code{regexp/newline}
is used). Use this when the beginning of the string should
not be considered the beginning of a line.
@end defvar
@defvar regexp/noteol
Operator @samp{$} always fails (unless @code{regexp/newline}
is used). Use this when the end of the string should not be
considered the end of a line.
@end defvar
@end deffn
@lisp
;; Regexp to match uppercase letters
(define r (make-regexp "[A-Z]*"))
;; Regexp to match letters, ignoring case
(define ri (make-regexp "[A-Z]*" regexp/icase))
;; Search for bob using regexp r
(match:substring (regexp-exec r "bob"))
@result{} "" ; no match
;; Search for bob using regexp ri
(match:substring (regexp-exec ri "Bob"))
@result{} "Bob" ; matched case insensitive
@end lisp
@deffn {Scheme Procedure} regexp? obj
@deffnx {C Function} scm_regexp_p (obj)
Return @code{#t} if @var{obj} is a compiled regular expression,
or @code{#f} otherwise.
@end deffn
Regular expressions are commonly used to find patterns in one string and
replace them with the contents of another string.
@c begin (scm-doc-string "regex.scm" "regexp-substitute")
@deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
Write to the output port @var{port} selected contents of the match
structure @var{match}. Each @var{item} specifies what should be
written, and may be one of the following arguments:
@itemize @bullet
@item
A string. String arguments are written out verbatim.
@item
An integer. The submatch with that number is written.
@item
The symbol @samp{pre}. The portion of the matched string preceding
the regexp match is written.
@item
The symbol @samp{post}. The portion of the matched string following
the regexp match is written.
@end itemize
The @var{port} argument may be @code{#f}, in which case nothing is
written; instead, @code{regexp-substitute} constructs a string from the
specified @var{item}s and returns that.
@end deffn
The following example takes a regular expression that matches a standard
@sc{yyyymmdd}-format date such as @code{"20020828"}. The
@code{regexp-substitute} call returns a string computed from the
information in the match structure, consisting of the fields and text
from the original string reordered and reformatted.
@lisp
(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
(define s "Date 20020429 12am.")
(define sm (string-match date-regex s))
(regexp-substitute #f sm 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
@result{} "Date 04-29-2002 12am. (20020429)"
@end lisp
@c begin (scm-doc-string "regex.scm" "regexp-substitute")
@deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
Similar to @code{regexp-substitute}, but can be used to perform global
substitutions on @var{str}. Instead of taking a match structure as an
argument, @code{regexp-substitute/global} takes two string arguments: a
@var{regexp} string describing a regular expression, and a @var{target}
string which should be matched against this regular expression.
Each @var{item} behaves as in @code{regexp-substitute}, with the
following exceptions:
@itemize @bullet
@item
A function may be supplied. When this function is called, it will be
passed one argument: a match structure for a given regular expression
match. It should return a string to be written out to @var{port}.
@item
The @samp{post} symbol causes @code{regexp-substitute/global} to recurse
on the unmatched portion of @var{str}. This @emph{must} be supplied in
order to perform global search-and-replace on @var{str}; if it is not
present among the @var{item}s, then @code{regexp-substitute/global} will
return after processing a single match.
@end itemize
@end deffn
The example above for @code{regexp-substitute} could be rewritten as
follows to remove the @code{string-match} stage:
@lisp
(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
(define s "Date 20020429 12am.")
(regexp-substitute/global #f date-regex s
'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
@result{} "Date 04-29-2002 12am. (20020429)"
@end lisp
@node Match Structures
@subsubsection Match Structures
@cindex match structures
A @dfn{match structure} is the object returned by @code{string-match} and
@code{regexp-exec}. It describes which portion of a string, if any,
matched the given regular expression. Match structures include: a
reference to the string that was checked for matches; the starting and
ending positions of the regexp match; and, if the regexp included any
parenthesized subexpressions, the starting and ending positions of each
submatch.
In each of the regexp match functions described below, the @code{match}
argument must be a match structure returned by a previous call to
@code{string-match} or @code{regexp-exec}. Most of these functions
return some information about the original target string that was
matched against a regular expression; we will call that string
@var{target} for easy reference.
@c begin (scm-doc-string "regex.scm" "regexp-match?")
@deffn {Scheme Procedure} regexp-match? obj
Return @code{#t} if @var{obj} is a match structure returned by a
previous call to @code{regexp-exec}, or @code{#f} otherwise.
@end deffn
@c begin (scm-doc-string "regex.scm" "match:substring")
@deffn {Scheme Procedure} match:substring match [n]
Return the portion of @var{target} matched by subexpression number
@var{n}. Submatch 0 (the default) represents the entire regexp match.
If the regular expression as a whole matched, but the subexpression
number @var{n} did not match, return @code{#f}.
@end deffn
@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:substring s)
@result{} "2002"
;; match starting at offset 6 in the string
(match:substring
(string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
@result{} "7654"
@end lisp
@c begin (scm-doc-string "regex.scm" "match:start")
@deffn {Scheme Procedure} match:start match [n]
Return the starting position of submatch number @var{n}.
@end deffn
In the following example, the result is 4, since the match starts at
character index 4:
@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:start s)
@result{} 4
@end lisp
@c begin (scm-doc-string "regex.scm" "match:end")
@deffn {Scheme Procedure} match:end match [n]
Return the ending position of submatch number @var{n}.
@end deffn
In the following example, the result is 8, since the match runs between
characters 4 and 8 (i.e. the ``2002'').
@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:end s)
@result{} 8
@end lisp
@c begin (scm-doc-string "regex.scm" "match:prefix")
@deffn {Scheme Procedure} match:prefix match
Return the unmatched portion of @var{target} preceding the regexp match.
@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:prefix s)
@result{} "blah"
@end lisp
@end deffn
@c begin (scm-doc-string "regex.scm" "match:suffix")
@deffn {Scheme Procedure} match:suffix match
Return the unmatched portion of @var{target} following the regexp match.
@end deffn
@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:suffix s)
@result{} "foo"
@end lisp
@c begin (scm-doc-string "regex.scm" "match:count")
@deffn {Scheme Procedure} match:count match
Return the number of parenthesized subexpressions from @var{match}.
Note that the entire regular expression match itself counts as a
subexpression, and failed submatches are included in the count.
@end deffn
@c begin (scm-doc-string "regex.scm" "match:string")
@deffn {Scheme Procedure} match:string match
Return the original @var{target} string.
@end deffn
@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:string s)
@result{} "blah2002foo"
@end lisp
@node Backslash Escapes
@subsubsection Backslash Escapes
Sometimes you will want a regexp to match characters like @samp{*} or
@samp{$} exactly. For example, to check whether a particular string
represents a menu entry from an Info node, it would be useful to match
it against a regexp like @samp{^* [^:]*::}. However, this won't work;
because the asterisk is a metacharacter, it won't match the @samp{*} at
the beginning of the string. In this case, we want to make the first
asterisk un-magic.
You can do this by preceding the metacharacter with a backslash
character @samp{\}. (This is also called @dfn{quoting} the
metacharacter, and is known as a @dfn{backslash escape}.) When Guile
sees a backslash in a regular expression, it considers the following
glyph to be an ordinary character, no matter what special meaning it
would ordinarily have. Therefore, we can make the above example work by
changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
the regular expression engine to match only a single asterisk in the
target string.
Since the backslash is itself a metacharacter, you may force a regexp to
match a backslash in the target string by preceding the backslash with
itself. For example, to find variable references in a @TeX{} program,
you might want to find occurrences of the string @samp{\let\} followed
by any number of alphabetic characters. The regular expression
@samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
regexp each match a single backslash in the target string.
@c begin (scm-doc-string "regex.scm" "regexp-quote")
@deffn {Scheme Procedure} regexp-quote str
Quote each special character found in @var{str} with a backslash, and
return the resulting string.
@end deffn
@strong{Very important:} Using backslash escapes in Guile source code
(as in Emacs Lisp or C) can be tricky, because the backslash character
has special meaning for the Guile reader. For example, if Guile
encounters the character sequence @samp{\n} in the middle of a string
while processing Scheme code, it replaces those characters with a
newline character. Similarly, the character sequence @samp{\t} is
replaced by a horizontal tab. Several of these @dfn{escape sequences}
are processed by the Guile reader before your code is executed.
Unrecognized escape sequences are ignored: if the characters @samp{\*}
appear in a string, they will be translated to the single character
@samp{*}.
This translation is obviously undesirable for regular expressions, since
we want to be able to include backslashes in a string in order to
escape regexp metacharacters. Therefore, to make sure that a backslash
is preserved in a string in your Guile program, you must use @emph{two}
consecutive backslashes:
@lisp
(define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
@end lisp
The string in this example is preprocessed by the Guile reader before
any code is executed. The resulting argument to @code{make-regexp} is
the string @samp{^\* [^:]*}, which is what we really want.
This also means that in order to write a regular expression that matches
a single backslash character, the regular expression string in the
source code must include @emph{four} backslashes. Each consecutive pair
of backslashes gets translated by the Guile reader to a single
backslash, and the resulting double-backslash is interpreted by the
regexp engine as matching a single backslash character. Hence:
@lisp
(define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
@end lisp
The reason for the unwieldiness of this syntax is historical. Both
regular expression pattern matchers and Unix string processing systems
have traditionally used backslashes with the special meanings
described above. The POSIX regular expression specification and ANSI C
standard both require these semantics. Attempting to abandon either
convention would cause other kinds of compatibility problems, possibly
more severe ones. Therefore, without extending the Scheme reader to
support strings with different quoting conventions (an ungainly and
confusing extension when implemented in other languages), we must adhere
to this cumbersome escape syntax.
@node Symbols
@subsection Symbols
@tpindex Symbols
Symbols in Scheme are widely used in three ways: as items of discrete
data, as lookup keys for alists and hash tables, and to denote variable
references.
A @dfn{symbol} is similar to a string in that it is defined by a
sequence of characters. The sequence of characters is known as the
symbol's @dfn{name}. In the usual case --- that is, where the symbol's
name doesn't include any characters that could be confused with other
elements of Scheme syntax --- a symbol is written in a Scheme program by
writing the sequence of characters that make up the name, @emph{without}
any quotation marks or other special syntax. For example, the symbol
whose name is ``multiply-by-2'' is written, simply:
@lisp
multiply-by-2
@end lisp
Notice how this differs from a @emph{string} with contents
``multiply-by-2'', which is written with double quotation marks, like
this:
@lisp
"multiply-by-2"
@end lisp
Looking beyond how they are written, symbols are different from strings
in two important respects.
The first important difference is uniqueness. If the same-looking
string is read twice from two different places in a program, the result
is two @emph{different} string objects whose contents just happen to be
the same. If, on the other hand, the same-looking symbol is read twice
from two different places in a program, the result is the @emph{same}
symbol object both times.
Given two read symbols, you can use @code{eq?} to test whether they are
the same (that is, have the same name). @code{eq?} is the most
efficient comparison operator in Scheme, and comparing two symbols like
this is as fast as comparing, for example, two numbers. Given two
strings, on the other hand, you must use @code{equal?} or
@code{string=?}, which are much slower comparison operators, to
determine whether the strings have the same contents.
@lisp
(define sym1 (quote hello))
(define sym2 (quote hello))
(eq? sym1 sym2) @result{} #t
(define str1 "hello")
(define str2 "hello")
(eq? str1 str2) @result{} #f
(equal? str1 str2) @result{} #t
@end lisp
The second important difference is that symbols, unlike strings, are not
self-evaluating. This is why we need the @code{(quote @dots{})}s in the
example above: @code{(quote hello)} evaluates to the symbol named
"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
symbol named "hello" and evaluated as a variable reference @dots{} about
which more below (@pxref{Symbol Variables}).
@menu
* Symbol Data:: Symbols as discrete data.
* Symbol Keys:: Symbols as lookup keys.
* Symbol Variables:: Symbols as denoting variables.
* Symbol Primitives:: Operations related to symbols.
* Symbol Props:: Function slots and property lists.
* Symbol Read Syntax:: Extended read syntax for symbols.
* Symbol Uninterned:: Uninterned symbols.
@end menu
@node Symbol Data
@subsubsection Symbols as Discrete Data
Numbers and symbols are similar to the extent that they both lend
themselves to @code{eq?} comparison. But symbols are more descriptive
than numbers, because a symbol's name can be used directly to describe
the concept for which that symbol stands.
For example, imagine that you need to represent some colours in a
computer program. Using numbers, you would have to choose arbitrarily
some mapping between numbers and colours, and then take care to use that
mapping consistently:
@lisp
;; 1=red, 2=green, 3=purple
(if (eq? (colour-of car) 1)
...)
@end lisp
@noindent
You can make the mapping more explicit and the code more readable by
defining constants:
@lisp
(define red 1)
(define green 2)
(define purple 3)
(if (eq? (colour-of car) red)
...)
@end lisp
@noindent
But the simplest and clearest approach is not to use numbers at all, but
symbols whose names specify the colours that they refer to:
@lisp
(if (eq? (colour-of car) 'red)
...)
@end lisp
The descriptive advantages of symbols over numbers increase as the set
of concepts that you want to describe grows. Suppose that a car object
can have other properties as well, such as whether it has or uses:
@itemize @bullet
@item
automatic or manual transmission
@item
leaded or unleaded fuel
@item
power steering (or not).
@end itemize
@noindent
Then a car's combined property set could be naturally represented and
manipulated as a list of symbols:
@lisp
(properties-of car1)
@result{}
(red manual unleaded power-steering)
(if (memq 'power-steering (properties-of car1))
(display "Unfit people can drive this car.\n")
(display "You'll need strong arms to drive this car!\n"))
@print{}
Unfit people can drive this car.
@end lisp
Remember, the fundamental property of symbols that we are relying on
here is that an occurrence of @code{'red} in one part of a program is an
@emph{indistinguishable} symbol from an occurrence of @code{'red} in
another part of a program; this means that symbols can usefully be
compared using @code{eq?}. At the same time, symbols have naturally
descriptive names. This combination of efficiency and descriptive power
makes them ideal for use as discrete data.
@node Symbol Keys
@subsubsection Symbols as Lookup Keys
Given their efficiency and descriptive power, it is natural to use
symbols as the keys in an association list or hash table.
To illustrate this, consider a more structured representation of the car
properties example from the preceding subsection. Rather than
mixing all the properties up together in a flat list, we could use an
association list like this:
@lisp
(define car1-properties '((colour . red)
(transmission . manual)
(fuel . unleaded)
(steering . power-assisted)))
@end lisp
Notice how this structure is more explicit and extensible than the flat
list. For example it makes clear that @code{manual} refers to the
transmission rather than, say, the windows or the locking of the car.
It also allows further properties to use the same symbols among their
possible values without becoming ambiguous:
@lisp
(define car1-properties '((colour . red)
(transmission . manual)
(fuel . unleaded)
(steering . power-assisted)
(seat-colour . red)
(locking . manual)))
@end lisp
With a representation like this, it is easy to use the efficient
@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
extract or change individual pieces of information:
@lisp
(assq-ref car1-properties 'fuel) @result{} unleaded
(assq-ref car1-properties 'transmission) @result{} manual
(assq-set! car1-properties 'seat-colour 'black)
@result{}
((colour . red)
(transmission . manual)
(fuel . unleaded)
(steering . power-assisted)
(seat-colour . black)
(locking . manual)))
@end lisp
Hash tables also have keys, and exactly the same arguments apply to the
use of symbols in hash tables as in association lists. The hash value
that Guile uses to decide where to add a symbol-keyed entry to a hash
table can be obtained by calling the @code{symbol-hash} procedure:
@deffn {Scheme Procedure} symbol-hash symbol
@deffnx {C Function} scm_symbol_hash (symbol)
Return a hash value for @var{symbol}.
@end deffn
See @ref{Hash Tables} for information about hash tables in general, and
for why you might choose to use a hash table rather than an association
list.
@node Symbol Variables
@subsubsection Symbols as Denoting Variables
When an unquoted symbol in a Scheme program is evaluated, it is
interpreted as a variable reference, and the result of the evaluation is
the appropriate variable's value.
For example, when the expression @code{(string-length "abcd")} is read
and evaluated, the sequence of characters @code{string-length} is read
as the symbol whose name is "string-length". This symbol is associated
with a variable whose value is the procedure that implements string
length calculation. Therefore evaluation of the @code{string-length}
symbol results in that procedure.
The details of the connection between an unquoted symbol and the
variable to which it refers are explained elsewhere. See @ref{Binding
Constructs}, for how associations between symbols and variables are
created, and @ref{Modules}, for how those associations are affected by
Guile's module system.
@node Symbol Primitives
@subsubsection Operations Related to Symbols
Given any Scheme value, you can determine whether it is a symbol using
the @code{symbol?} primitive:
@rnindex symbol?
@deffn {Scheme Procedure} symbol? obj
@deffnx {C Function} scm_symbol_p (obj)
Return @code{#t} if @var{obj} is a symbol, otherwise return
@code{#f}.
@end deffn
Once you know that you have a symbol, you can obtain its name as a
string by calling @code{symbol->string}. Note that Guile differs by
default from R5RS on the details of @code{symbol->string} as regards
case-sensitivity:
@rnindex symbol->string
@deffn {Scheme Procedure} symbol->string s
@deffnx {C Function} scm_symbol_to_string (s)
Return the name of symbol @var{s} as a string. By default, Guile reads
symbols case-sensitively, so the string returned will have the same case
variation as the sequence of characters that caused @var{s} to be
created.
If Guile is set to read symbols case-insensitively (as specified by
R5RS), and @var{s} comes into being as part of a literal expression
(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
by a call to the @code{read} or @code{string-ci->symbol} procedures,
Guile converts any alphabetic characters in the symbol's name to
lower case before creating the symbol object, so the string returned
here will be in lower case.
If @var{s} was created by @code{string->symbol}, the case of characters
in the string returned will be the same as that in the string that was
passed to @code{string->symbol}, regardless of Guile's case-sensitivity
setting at the time @var{s} was created.
It is an error to apply mutation procedures like @code{string-set!} to
strings returned by this procedure.
@end deffn
Most symbols are created by writing them literally in code. However it
is also possible to create symbols programmatically using the following
@code{string->symbol} and @code{string-ci->symbol} procedures:
@rnindex string->symbol
@deffn {Scheme Procedure} string->symbol string
@deffnx {C Function} scm_string_to_symbol (string)
Return the symbol whose name is @var{string}. This procedure can create
symbols with names containing special characters or letters in the
non-standard case, but it is usually a bad idea to create such symbols
because in some implementations of Scheme they cannot be read as
themselves.
@end deffn
@deffn {Scheme Procedure} string-ci->symbol str
@deffnx {C Function} scm_string_ci_to_symbol (str)
Return the symbol whose name is @var{str}. If Guile is currently
reading symbols case-insensitively, @var{str} is converted to lowercase
before the returned symbol is looked up or created.
@end deffn
The following examples illustrate Guile's detailed behaviour as regards
the case-sensitivity of symbols:
@lisp
(read-enable 'case-insensitive) ; R5RS compliant behaviour
(symbol->string 'flying-fish) @result{} "flying-fish"
(symbol->string 'Martin) @result{} "martin"
(symbol->string
(string->symbol "Malvina")) @result{} "Malvina"
(eq? 'mISSISSIppi 'mississippi) @result{} #t
(string->symbol "mISSISSIppi") @result{} mISSISSIppi
(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
(eq? 'LolliPop
(string->symbol (symbol->string 'LolliPop))) @result{} #t
(string=? "K. Harper, M.D."
(symbol->string
(string->symbol "K. Harper, M.D."))) @result{} #t
(read-disable 'case-insensitive) ; Guile default behaviour
(symbol->string 'flying-fish) @result{} "flying-fish"
(symbol->string 'Martin) @result{} "Martin"
(symbol->string
(string->symbol "Malvina")) @result{} "Malvina"
(eq? 'mISSISSIppi 'mississippi) @result{} #f
(string->symbol "mISSISSIppi") @result{} mISSISSIppi
(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
(eq? 'LolliPop
(string->symbol (symbol->string 'LolliPop))) @result{} #t
(string=? "K. Harper, M.D."
(symbol->string
(string->symbol "K. Harper, M.D."))) @result{} #t
@end lisp
From C, there are lower level functions that construct a Scheme symbol
from a null terminated C string or from a sequence of bytes whose length
is specified explicitly.
@deffn {C Function} scm_str2symbol (const char * name)
@deffnx {C Function} scm_mem2symbol (const char * name, size_t len)
Construct and return a Scheme symbol whose name is specified by
@var{name}. For @code{scm_str2symbol} @var{name} must be null
terminated; For @code{scm_mem2symbol} the length of @var{name} is
specified explicitly by @var{len}.
@end deffn
Finally, some applications, especially those that generate new Scheme
code dynamically, need to generate symbols for use in the generated
code. The @code{gensym} primitive meets this need:
@deffn {Scheme Procedure} gensym [prefix]
@deffnx {C Function} scm_gensym (prefix)
Create a new symbol with a name constructed from a prefix and a counter
value. The string @var{prefix} can be specified as an optional
argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
at each call. There is no provision for resetting the counter.
@end deffn
The symbols generated by @code{gensym} are @emph{likely} to be unique,
since their names begin with a space and it is only otherwise possible
to generate such symbols if a programmer goes out of their way to do
so. Uniqueness can be guaranteed by instead using uninterned symbols
(@pxref{Symbol Uninterned}), though they can't be usefully written out
and read back in.
@node Symbol Props
@subsubsection Function Slots and Property Lists
In traditional Lisp dialects, symbols are often understood as having
three kinds of value at once:
@itemize @bullet
@item
a @dfn{variable} value, which is used when the symbol appears in
code in a variable reference context
@item
a @dfn{function} value, which is used when the symbol appears in
code in a function name position (i.e. as the first element in an
unquoted list)
@item
a @dfn{property list} value, which is used when the symbol is given as
the first argument to Lisp's @code{put} or @code{get} functions.
@end itemize
Although Scheme (as one of its simplifications with respect to Lisp)
does away with the distinction between variable and function namespaces,
Guile currently retains some elements of the traditional structure in
case they turn out to be useful when implementing translators for other
languages, in particular Emacs Lisp.
Specifically, Guile symbols have two extra slots. for a symbol's
property list, and for its ``function value.'' The following procedures
are provided to access these slots.
@deffn {Scheme Procedure} symbol-fref symbol
@deffnx {C Function} scm_symbol_fref (symbol)
Return the contents of @var{symbol}'s @dfn{function slot}.
@end deffn
@deffn {Scheme Procedure} symbol-fset! symbol value
@deffnx {C Function} scm_symbol_fset_x (symbol, value)
Set the contents of @var{symbol}'s function slot to @var{value}.
@end deffn
@deffn {Scheme Procedure} symbol-pref symbol
@deffnx {C Function} scm_symbol_pref (symbol)
Return the @dfn{property list} currently associated with @var{symbol}.
@end deffn
@deffn {Scheme Procedure} symbol-pset! symbol value
@deffnx {C Function} scm_symbol_pset_x (symbol, value)
Set @var{symbol}'s property list to @var{value}.
@end deffn
@deffn {Scheme Procedure} symbol-property sym prop
From @var{sym}'s property list, return the value for property
@var{prop}. The assumption is that @var{sym}'s property list is an
association list whose keys are distinguished from each other using
@code{equal?}; @var{prop} should be one of the keys in that list. If
the property list has no entry for @var{prop}, @code{symbol-property}
returns @code{#f}.
@end deffn
@deffn {Scheme Procedure} set-symbol-property! sym prop val
In @var{sym}'s property list, set the value for property @var{prop} to
@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
none already exists. For the structure of the property list, see
@code{symbol-property}.
@end deffn
@deffn {Scheme Procedure} symbol-property-remove! sym prop
From @var{sym}'s property list, remove the entry for property
@var{prop}, if there is one. For the structure of the property list,
see @code{symbol-property}.
@end deffn
Support for these extra slots may be removed in a future release, and it
is probably better to avoid using them. (In release 1.6, Guile itself
uses the property list slot sparingly, and the function slot not at
all.) For a more modern and Schemely approach to properties, see
@ref{Object Properties}.
@node Symbol Read Syntax
@subsubsection Extended Read Syntax for Symbols
The read syntax for a symbol is a sequence of letters, digits, and
@dfn{extended alphabetic characters}, beginning with a character that
cannot begin a number. In addition, the special cases of @code{+},
@code{-}, and @code{...} are read as symbols even though numbers can
begin with @code{+}, @code{-} or @code{.}.
Extended alphabetic characters may be used within identifiers as if
they were letters. The set of extended alphabetic characters is:
@example
! $ % & * + - . / : < = > ? @@ ^ _ ~
@end example
In addition to the standard read syntax defined above (which is taken
from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
Scheme})), Guile provides an extended symbol read syntax that allows the
inclusion of unusual characters such as space characters, newlines and
parentheses. If (for whatever reason) you need to write a symbol
containing characters not mentioned above, you can do so as follows.
@itemize @bullet
@item
Begin the symbol with the characters @code{#@{},
@item
write the characters of the symbol and
@item
finish the symbol with the characters @code{@}#}.
@end itemize
Here are a few examples of this form of read syntax. The first symbol
needs to use extended syntax because it contains a space character, the
second because it contains a line break, and the last because it looks
like a number.
@lisp
#@{foo bar@}#
#@{what
ever@}#
#@{4242@}#
@end lisp
Although Guile provides this extended read syntax for symbols,
widespread usage of it is discouraged because it is not portable and not
very readable.
@node Symbol Uninterned
@subsubsection Uninterned Symbols
What makes symbols useful is that they are automatically kept unique.
There are no two symbols that are distinct objects but have the same
name. But of course, there is no rule without exception. In addition
to the normal symbols that have been discussed up to now, you can also
create special @dfn{uninterned} symbols that behave slightly
differently.
To understand what is different about them and why they might be useful,
we look at how normal symbols are actually kept unique.
Whenever Guile wants to find the symbol with a specific name, for
example during @code{read} or when executing @code{string->symbol}, it
first looks into a table of all existing symbols to find out whether a
symbol with the given name already exists. When this is the case, Guile
just returns that symbol. When not, a new symbol with the name is
created and entered into the table so that it can be found later.
Sometimes you might want to create a symbol that is guaranteed `fresh',
i.e. a symbol that did not exist previously. You might also want to
somehow guarantee that no one else will ever unintentionally stumble
across your symbol in the future. These properties of a symbol are
often needed when generating code during macro expansion. When
introducing new temporary variables, you want to guarantee that they
don't conflict with variables in other people's code.
The simplest way to arrange for this is to create a new symbol but
not enter it into the global table of all symbols. That way, no one
will ever get access to your symbol by chance. Symbols that are not in
the table are called @dfn{uninterned}. Of course, symbols that
@emph{are} in the table are called @dfn{interned}.
You create new uninterned symbols with the function @code{make-symbol}.
You can test whether a symbol is interned or not with
@code{symbol-interned?}.
Uninterned symbols break the rule that the name of a symbol uniquely
identifies the symbol object. Because of this, they can not be written
out and read back in like interned symbols. Currently, Guile has no
support for reading uninterned symbols. Note that the function
@code{gensym} does not return uninterned symbols for this reason.
@deffn {Scheme Procedure} make-symbol name
@deffnx {C Function} scm_make_symbol (name)
Return a new uninterned symbol with the name @var{name}. The returned
symbol is guaranteed to be unique and future calls to
@code{string->symbol} will not return it.
@end deffn
@deffn {Scheme Procedure} symbol-interned? symbol
@deffnx {C Function} scm_symbol_interned_p (symbol)
Return @code{#t} if @var{symbol} is interned, otherwise return
@code{#f}.
@end deffn
For example:
@lisp
(define foo-1 (string->symbol "foo"))
(define foo-2 (string->symbol "foo"))
(define foo-3 (make-symbol "foo"))
(define foo-4 (make-symbol "foo"))
(eq? foo-1 foo-2)
@result{} #t
; Two interned symbols with the same name are the same object,
(eq? foo-1 foo-3)
@result{} #f
; but a call to make-symbol with the same name returns a
; distinct object.
(eq? foo-3 foo-4)
@result{} #f
; A call to make-symbol always returns a new object, even for
; the same name.
foo-3
@result{} #<uninterned-symbol foo 8085290>
; Uninterned symbols print differently from interned symbols,
(symbol? foo-3)
@result{} #t
; but they are still symbols,
(symbol-interned? foo-3)
@result{} #f
; just not interned.
@end lisp
@node Keywords
@subsection Keywords
@tpindex Keywords
Keywords are self-evaluating objects with a convenient read syntax that
makes them easy to type.
Guile's keyword support conforms to R5RS, and adds a (switchable) read
syntax extension to permit keywords to begin with @code{:} as well as
@code{#:}.
@menu
* Why Use Keywords?:: Motivation for keyword usage.
* Coding With Keywords:: How to use keywords.
* Keyword Read Syntax:: Read syntax for keywords.
* Keyword Procedures:: Procedures for dealing with keywords.
* Keyword Primitives:: The underlying primitive procedures.
@end menu
@node Why Use Keywords?
@subsubsection Why Use Keywords?
Keywords are useful in contexts where a program or procedure wants to be
able to accept a large number of optional arguments without making its
interface unmanageable.
To illustrate this, consider a hypothetical @code{make-window}
procedure, which creates a new window on the screen for drawing into
using some graphical toolkit. There are many parameters that the caller
might like to specify, but which could also be sensibly defaulted, for
example:
@itemize @bullet
@item
color depth -- Default: the color depth for the screen
@item
background color -- Default: white
@item
width -- Default: 600
@item
height -- Default: 400
@end itemize
If @code{make-window} did not use keywords, the caller would have to
pass in a value for each possible argument, remembering the correct
argument order and using a special value to indicate the default value
for that argument:
@lisp
(make-window 'default ;; Color depth
'default ;; Background color
800 ;; Width
100 ;; Height
@dots{}) ;; More make-window arguments
@end lisp
With keywords, on the other hand, defaulted arguments are omitted, and
non-default arguments are clearly tagged by the appropriate keyword. As
a result, the invocation becomes much clearer:
@lisp
(make-window #:width 800 #:height 100)
@end lisp
On the other hand, for a simpler procedure with few arguments, the use
of keywords would be a hindrance rather than a help. The primitive
procedure @code{cons}, for example, would not be improved if it had to
be invoked as
@lisp
(cons #:car x #:cdr y)
@end lisp
So the decision whether to use keywords or not is purely pragmatic: use
them if they will clarify the procedure invocation at point of call.
@node Coding With Keywords
@subsubsection Coding With Keywords
If a procedure wants to support keywords, it should take a rest argument
and then use whatever means is convenient to extract keywords and their
corresponding arguments from the contents of that rest argument.
The following example illustrates the principle: the code for
@code{make-window} uses a helper procedure called
@code{get-keyword-value} to extract individual keyword arguments from
the rest argument.
@lisp
(define (get-keyword-value args keyword default)
(let ((kv (memq keyword args)))
(if (and kv (>= (length kv) 2))
(cadr kv)
default)))
(define (make-window . args)
(let ((depth (get-keyword-value args #:depth screen-depth))
(bg (get-keyword-value args #:bg "white"))
(width (get-keyword-value args #:width 800))
(height (get-keyword-value args #:height 100))
@dots{})
@dots{}))
@end lisp
But you don't need to write @code{get-keyword-value}. The @code{(ice-9
optargs)} module provides a set of powerful macros that you can use to
implement keyword-supporting procedures like this:
@lisp
(use-modules (ice-9 optargs))
(define (make-window . args)
(let-keywords args #f ((depth screen-depth)
(bg "white")
(width 800)
(height 100))
...))
@end lisp
@noindent
Or, even more economically, like this:
@lisp
(use-modules (ice-9 optargs))
(define* (make-window #:key (depth screen-depth)
(bg "white")
(width 800)
(height 100))
...)
@end lisp
For further details on @code{let-keywords}, @code{define*} and other
facilities provided by the @code{(ice-9 optargs)} module, see
@ref{Optional Arguments}.
@node Keyword Read Syntax
@subsubsection Keyword Read Syntax
Guile, by default, only recognizes the keyword syntax specified by R5RS.
A token of the form @code{#:NAME}, where @code{NAME} has the same syntax
as a Scheme symbol (@pxref{Symbol Read Syntax}), is the external
representation of the keyword named @code{NAME}. Keyword objects print
using this syntax as well, so values containing keyword objects can be
read back into Guile. When used in an expression, keywords are
self-quoting objects.
If the @code{keyword} read option is set to @code{'prefix}, Guile also
recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
of the form @code{:NAME} are read as symbols, as required by R5RS.
To enable and disable the alternative non-R5RS keyword syntax, you use
the @code{read-set!} procedure documented in @ref{User level options
interfaces} and @ref{Reader options}.
@smalllisp
(read-set! keywords 'prefix)
#:type
@result{}
#:type
:type
@result{}
#:type
(read-set! keywords #f)
#:type
@result{}
#:type
:type
@print{}
ERROR: In expression :type:
ERROR: Unbound variable: :type
ABORT: (unbound-variable)
@end smalllisp
@node Keyword Procedures
@subsubsection Keyword Procedures
The following procedures can be used for converting symbols to keywords
and back.
@deffn {Scheme Procedure} symbol->keyword sym
Return a keyword with the same characters as in @var{sym}.
@end deffn
@deffn {Scheme Procedure} keyword->symbol kw
Return a symbol with the same characters as in @var{kw}.
@end deffn
@node Keyword Primitives
@subsubsection Keyword Primitives
Internally, a keyword is implemented as something like a tagged symbol,
where the tag identifies the keyword as being self-evaluating, and the
symbol, known as the keyword's @dfn{dash symbol} has the same name as
the keyword name but prefixed by a single dash. For example, the
keyword @code{#:name} has the corresponding dash symbol @code{-name}.
Most keyword objects are constructed automatically by the reader when it
reads a token beginning with @code{#:}. However, if you need to
construct a keyword object programmatically, you can do so by calling
@code{make-keyword-from-dash-symbol} with the corresponding dash symbol
(as the reader does). The dash symbol for a keyword object can be
retrieved using the @code{keyword-dash-symbol} procedure.
@deffn {Scheme Procedure} make-keyword-from-dash-symbol symbol
@deffnx {C Function} scm_make_keyword_from_dash_symbol (symbol)
Make a keyword object from a @var{symbol} that starts with a dash.
For example,
@example
(make-keyword-from-dash-symbol '-foo)
@result{} #:foo
@end example
@end deffn
@deffn {Scheme Procedure} keyword? obj
@deffnx {C Function} scm_keyword_p (obj)
Return @code{#t} if the argument @var{obj} is a keyword, else
@code{#f}.
@end deffn
@deffn {Scheme Procedure} keyword-dash-symbol keyword
@deffnx {C Function} scm_keyword_dash_symbol (keyword)
Return the dash symbol for @var{keyword}.
This is the inverse of @code{make-keyword-from-dash-symbol}.
For example,
@example
(keyword-dash-symbol #:foo)
@result{} -foo
@end example
@end deffn
@deftypefn {C Function} SCM scm_c_make_keyword (char *@var{str})
Make a keyword object from a string. For example,
@example
scm_c_make_keyword ("foo")
@result{} #:foo
@end example
@c
@c FIXME: What can be said about the string argument? Currently it's
@c not used after creation, but should that be documented?
@end deftypefn
@node Other Types
@subsection ``Functionality-Centric'' Data Types
Procedures and macros are documented in their own chapter: see
@ref{Procedures and Macros}.
Variable objects are documented as part of the description of Guile's
module system: see @ref{Variables}.
Asyncs, dynamic roots and fluids are described in the chapter on
scheduling: see @ref{Scheduling}.
Hooks are documented in the chapter on general utility functions: see
@ref{Hooks}.
Ports are described in the chapter on I/O: see @ref{Input and Output}.
@c Local Variables:
@c TeX-master: "guile.texi"
@c End:
|