summaryrefslogtreecommitdiff
path: root/doc/ref/srfi-modules.texi
blob: 08b11e0d264fbee515b5bb23ed42513d648b200c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
@c -*-texinfo-*-
@c This is part of the GNU Guile Reference Manual.
@c Copyright (C)  1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2010
@c   Free Software Foundation, Inc.
@c See the file guile.texi for copying conditions.

@node SRFI Support
@section SRFI Support Modules
@cindex SRFI

SRFI is an acronym for Scheme Request For Implementation.  The SRFI
documents define a lot of syntactic and procedure extensions to standard
Scheme as defined in R5RS.

Guile has support for a number of SRFIs.  This chapter gives an overview
over the available SRFIs and some usage hints.  For complete
documentation, design rationales and further examples, we advise you to
get the relevant SRFI documents from the SRFI home page
@url{http://srfi.schemers.org}.

@menu
* About SRFI Usage::            What to know about Guile's SRFI support.
* SRFI-0::                      cond-expand
* SRFI-1::                      List library.
* SRFI-2::                      and-let*.
* SRFI-4::                      Homogeneous numeric vector datatypes.
* SRFI-6::                      Basic String Ports.
* SRFI-8::                      receive.
* SRFI-9::                      define-record-type.
* SRFI-10::                     Hash-Comma Reader Extension.
* SRFI-11::                     let-values and let*-values.
* SRFI-13::                     String library.
* SRFI-14::                     Character-set library.
* SRFI-16::                     case-lambda
* SRFI-17::                     Generalized set!
* SRFI-18::                     Multithreading support
* SRFI-19::                     Time/Date library.
* SRFI-26::                     Specializing parameters
* SRFI-30::                     Nested multi-line block comments
* SRFI-31::                     A special form `rec' for recursive evaluation
* SRFI-34::                     Exception handling.
* SRFI-35::                     Conditions.
* SRFI-37::                     args-fold program argument processor
* SRFI-39::                     Parameter objects
* SRFI-55::                     Requiring Features.
* SRFI-60::                     Integers as bits.
* SRFI-61::                     A more general `cond' clause
* SRFI-69::                     Basic hash tables.
* SRFI-88::                     Keyword objects.
* SRFI-98::                     Accessing environment variables.
@end menu


@node About SRFI Usage
@subsection About SRFI Usage

@c FIXME::martin: Review me!

SRFI support in Guile is currently implemented partly in the core
library, and partly as add-on modules.  That means that some SRFIs are
automatically available when the interpreter is started, whereas the
other SRFIs require you to use the appropriate support module
explicitly.

There are several reasons for this inconsistency.  First, the feature
checking syntactic form @code{cond-expand} (@pxref{SRFI-0}) must be
available immediately, because it must be there when the user wants to
check for the Scheme implementation, that is, before she can know that
it is safe to use @code{use-modules} to load SRFI support modules.  The
second reason is that some features defined in SRFIs had been
implemented in Guile before the developers started to add SRFI
implementations as modules (for example SRFI-6 (@pxref{SRFI-6})).  In
the future, it is possible that SRFIs in the core library might be
factored out into separate modules, requiring explicit module loading
when they are needed.  So you should be prepared to have to use
@code{use-modules} someday in the future to access SRFI-6 bindings.  If
you want, you can do that already.  We have included the module
@code{(srfi srfi-6)} in the distribution, which currently does nothing,
but ensures that you can write future-safe code.

Generally, support for a specific SRFI is made available by using
modules named @code{(srfi srfi-@var{number})}, where @var{number} is the
number of the SRFI needed.  Another possibility is to use the command
line option @code{--use-srfi}, which will load the necessary modules
automatically (@pxref{Invoking Guile}).


@node SRFI-0
@subsection SRFI-0 - cond-expand
@cindex SRFI-0

This SRFI lets a portable Scheme program test for the presence of
certain features, and adapt itself by using different blocks of code,
or fail if the necessary features are not available.  There's no
module to load, this is in the Guile core.

A program designed only for Guile will generally not need this
mechanism, such a program can of course directly use the various
documented parts of Guile.

@deffn syntax cond-expand (feature body@dots{}) @dots{}
Expand to the @var{body} of the first clause whose @var{feature}
specification is satisfied.  It is an error if no @var{feature} is
satisfied.

Features are symbols such as @code{srfi-1}, and a feature
specification can use @code{and}, @code{or} and @code{not} forms to
test combinations.  The last clause can be an @code{else}, to be used
if no other passes.

For example, define a private version of @code{alist-cons} if SRFI-1
is not available.

@example
(cond-expand (srfi-1
              )
             (else
              (define (alist-cons key val alist)
                (cons (cons key val) alist))))
@end example

Or demand a certain set of SRFIs (list operations, string ports,
@code{receive} and string operations), failing if they're not
available.

@example
(cond-expand ((and srfi-1 srfi-6 srfi-8 srfi-13)
              ))
@end example
@end deffn

@noindent
The Guile core has the following features,

@example
guile
guile-2  ;; starting from Guile 2.x
r5rs
srfi-0
srfi-4
srfi-6
srfi-13
srfi-14
@end example

Other SRFI feature symbols are defined once their code has been loaded
with @code{use-modules}, since only then are their bindings available.

The @samp{--use-srfi} command line option (@pxref{Invoking Guile}) is
a good way to load SRFIs to satisfy @code{cond-expand} when running a
portable program.

Testing the @code{guile} feature allows a program to adapt itself to
the Guile module system, but still run on other Scheme systems.  For
example the following demands SRFI-8 (@code{receive}), but also knows
how to load it with the Guile mechanism.

@example
(cond-expand (srfi-8
              )
             (guile
              (use-modules (srfi srfi-8))))
@end example

@cindex @code{guile-2} SRFI-0 feature
@cindex portability between 2.0 and older versions
Likewise, testing the @code{guile-2} feature allows code to be portable
between Guile 2.0 and previous versions of Guile.  For instance, it
makes it possible to write code that accounts for Guile 2.0's compiler,
yet be correctly interpreted on 1.8 and earlier versions:

@example
(cond-expand (guile-2 (eval-when (compile)
                        ;; This must be evaluated at compile time.
                        (fluid-set! current-reader my-reader)))
             (guile
                      ;; Earlier versions of Guile do not have a
                      ;; separate compilation phase.
                      (fluid-set! current-reader my-reader)))
@end example

It should be noted that @code{cond-expand} is separate from the
@code{*features*} mechanism (@pxref{Feature Tracking}), feature
symbols in one are unrelated to those in the other.


@node SRFI-1
@subsection SRFI-1 - List library
@cindex SRFI-1
@cindex list

@c FIXME::martin: Review me!

The list library defined in SRFI-1 contains a lot of useful list
processing procedures for construction, examining, destructuring and
manipulating lists and pairs.

Since SRFI-1 also defines some procedures which are already contained
in R5RS and thus are supported by the Guile core library, some list
and pair procedures which appear in the SRFI-1 document may not appear
in this section.  So when looking for a particular list/pair
processing procedure, you should also have a look at the sections
@ref{Lists} and @ref{Pairs}.

@menu
* SRFI-1 Constructors::         Constructing new lists.
* SRFI-1 Predicates::           Testing list for specific properties.
* SRFI-1 Selectors::            Selecting elements from lists.
* SRFI-1 Length Append etc::    Length calculation and list appending.
* SRFI-1 Fold and Map::         Higher-order list processing.
* SRFI-1 Filtering and Partitioning::  Filter lists based on predicates.
* SRFI-1 Searching::            Search for elements.
* SRFI-1 Deleting::             Delete elements from lists.
* SRFI-1 Association Lists::    Handle association lists.
* SRFI-1 Set Operations::       Use lists for representing sets.
@end menu

@node SRFI-1 Constructors
@subsubsection Constructors
@cindex list constructor

@c FIXME::martin: Review me!

New lists can be constructed by calling one of the following
procedures.

@deffn {Scheme Procedure} xcons d a
Like @code{cons}, but with interchanged arguments.  Useful mostly when
passed to higher-order procedures.
@end deffn

@deffn {Scheme Procedure} list-tabulate n init-proc
Return an @var{n}-element list, where each list element is produced by
applying the procedure @var{init-proc} to the corresponding list
index.  The order in which @var{init-proc} is applied to the indices
is not specified.
@end deffn

@deffn {Scheme Procedure} list-copy lst
Return a new list containing the elements of the list @var{lst}.

This function differs from the core @code{list-copy} (@pxref{List
Constructors}) in accepting improper lists too.  And if @var{lst} is
not a pair at all then it's treated as the final tail of an improper
list and simply returned.
@end deffn

@deffn {Scheme Procedure} circular-list elt1 elt2 @dots{}
Return a circular list containing the given arguments @var{elt1}
@var{elt2} @dots{}.
@end deffn

@deffn {Scheme Procedure} iota count [start step]
Return a list containing @var{count} numbers, starting from
@var{start} and adding @var{step} each time.  The default @var{start}
is 0, the default @var{step} is 1.  For example,

@example
(iota 6)        @result{} (0 1 2 3 4 5)
(iota 4 2.5 -2) @result{} (2.5 0.5 -1.5 -3.5)
@end example

This function takes its name from the corresponding primitive in the
APL language.
@end deffn


@node SRFI-1 Predicates
@subsubsection Predicates
@cindex list predicate

@c FIXME::martin: Review me!

The procedures in this section test specific properties of lists.

@deffn {Scheme Procedure} proper-list? obj
Return @code{#t} if @var{obj} is a proper list, or @code{#f}
otherwise.  This is the same as the core @code{list?} (@pxref{List
Predicates}).

A proper list is a list which ends with the empty list @code{()} in
the usual way.  The empty list @code{()} itself is a proper list too.

@example
(proper-list? '(1 2 3))  @result{} #t
(proper-list? '())       @result{} #t
@end example
@end deffn

@deffn {Scheme Procedure} circular-list? obj
Return @code{#t} if @var{obj} is a circular list, or @code{#f}
otherwise.

A circular list is a list where at some point the @code{cdr} refers
back to a previous pair in the list (either the start or some later
point), so that following the @code{cdr}s takes you around in a
circle, with no end.

@example
(define x (list 1 2 3 4))
(set-cdr! (last-pair x) (cddr x))
x @result{} (1 2 3 4 3 4 3 4 ...)
(circular-list? x)  @result{} #t
@end example
@end deffn

@deffn {Scheme Procedure} dotted-list? obj
Return @code{#t} if @var{obj} is a dotted list, or @code{#f}
otherwise.

A dotted list is a list where the @code{cdr} of the last pair is not
the empty list @code{()}.  Any non-pair @var{obj} is also considered a
dotted list, with length zero.

@example
(dotted-list? '(1 2 . 3))  @result{} #t
(dotted-list? 99)          @result{} #t
@end example
@end deffn

It will be noted that any Scheme object passes exactly one of the
above three tests @code{proper-list?}, @code{circular-list?} and
@code{dotted-list?}.  Non-lists are @code{dotted-list?}, finite lists
are either @code{proper-list?} or @code{dotted-list?}, and infinite
lists are @code{circular-list?}.

@sp 1
@deffn {Scheme Procedure} null-list? lst
Return @code{#t} if @var{lst} is the empty list @code{()}, @code{#f}
otherwise.  If something else than a proper or circular list is passed
as @var{lst}, an error is signalled.  This procedure is recommended
for checking for the end of a list in contexts where dotted lists are
not allowed.
@end deffn

@deffn {Scheme Procedure} not-pair? obj
Return @code{#t} is @var{obj} is not a pair, @code{#f} otherwise.
This is shorthand notation @code{(not (pair? @var{obj}))} and is
supposed to be used for end-of-list checking in contexts where dotted
lists are allowed.
@end deffn

@deffn {Scheme Procedure} list= elt= list1 @dots{}
Return @code{#t} if all argument lists are equal, @code{#f} otherwise.
List equality is determined by testing whether all lists have the same
length and the corresponding elements are equal in the sense of the
equality predicate @var{elt=}.  If no or only one list is given,
@code{#t} is returned.
@end deffn


@node SRFI-1 Selectors
@subsubsection Selectors
@cindex list selector

@c FIXME::martin: Review me!

@deffn {Scheme Procedure} first pair
@deffnx {Scheme Procedure} second pair
@deffnx {Scheme Procedure} third pair
@deffnx {Scheme Procedure} fourth pair
@deffnx {Scheme Procedure} fifth pair
@deffnx {Scheme Procedure} sixth pair
@deffnx {Scheme Procedure} seventh pair
@deffnx {Scheme Procedure} eighth pair
@deffnx {Scheme Procedure} ninth pair
@deffnx {Scheme Procedure} tenth pair
These are synonyms for @code{car}, @code{cadr}, @code{caddr}, @dots{}.
@end deffn

@deffn {Scheme Procedure} car+cdr pair
Return two values, the @sc{car} and the @sc{cdr} of @var{pair}.
@end deffn

@deffn {Scheme Procedure} take lst i
@deffnx {Scheme Procedure} take! lst i
Return a list containing the first @var{i} elements of @var{lst}.

@code{take!} may modify the structure of the argument list @var{lst}
in order to produce the result.
@end deffn

@deffn {Scheme Procedure} drop lst i
Return a list containing all but the first @var{i} elements of
@var{lst}.
@end deffn

@deffn {Scheme Procedure} take-right lst i
Return the a list containing the @var{i} last elements of @var{lst}.
The return shares a common tail with @var{lst}.
@end deffn

@deffn {Scheme Procedure} drop-right lst i
@deffnx {Scheme Procedure} drop-right! lst i
Return the a list containing all but the @var{i} last elements of
@var{lst}.

@code{drop-right} always returns a new list, even when @var{i} is
zero.  @code{drop-right!} may modify the structure of the argument
list @var{lst} in order to produce the result.
@end deffn

@deffn {Scheme Procedure} split-at lst i
@deffnx {Scheme Procedure} split-at! lst i
Return two values, a list containing the first @var{i} elements of the
list @var{lst} and a list containing the remaining elements.

@code{split-at!} may modify the structure of the argument list
@var{lst} in order to produce the result.
@end deffn

@deffn {Scheme Procedure} last lst
Return the last element of the non-empty, finite list @var{lst}.
@end deffn


@node SRFI-1 Length Append etc
@subsubsection Length, Append, Concatenate, etc.

@c FIXME::martin: Review me!

@deffn {Scheme Procedure} length+ lst
Return the length of the argument list @var{lst}.  When @var{lst} is a
circular list, @code{#f} is returned.
@end deffn

@deffn {Scheme Procedure} concatenate list-of-lists
@deffnx {Scheme Procedure} concatenate! list-of-lists
Construct a list by appending all lists in @var{list-of-lists}.

@code{concatenate!} may modify the structure of the given lists in
order to produce the result.

@code{concatenate} is the same as @code{(apply append
@var{list-of-lists})}.  It exists because some Scheme implementations
have a limit on the number of arguments a function takes, which the
@code{apply} might exceed.  In Guile there is no such limit.
@end deffn

@deffn {Scheme Procedure} append-reverse rev-head tail
@deffnx {Scheme Procedure} append-reverse! rev-head tail
Reverse @var{rev-head}, append @var{tail} to it, and return the
result.  This is equivalent to @code{(append (reverse @var{rev-head})
@var{tail})}, but its implementation is more efficient.

@example
(append-reverse '(1 2 3) '(4 5 6)) @result{} (3 2 1 4 5 6)
@end example

@code{append-reverse!} may modify @var{rev-head} in order to produce
the result.
@end deffn

@deffn {Scheme Procedure} zip lst1 lst2 @dots{}
Return a list as long as the shortest of the argument lists, where
each element is a list.  The first list contains the first elements of
the argument lists, the second list contains the second elements, and
so on.
@end deffn

@deffn {Scheme Procedure} unzip1 lst
@deffnx {Scheme Procedure} unzip2 lst
@deffnx {Scheme Procedure} unzip3 lst
@deffnx {Scheme Procedure} unzip4 lst
@deffnx {Scheme Procedure} unzip5 lst
@code{unzip1} takes a list of lists, and returns a list containing the
first elements of each list, @code{unzip2} returns two lists, the
first containing the first elements of each lists and the second
containing the second elements of each lists, and so on.
@end deffn

@deffn {Scheme Procedure} count pred lst1 @dots{} lstN
Return a count of the number of times @var{pred} returns true when
called on elements from the given lists.

@var{pred} is called with @var{N} parameters @code{(@var{pred}
@var{elem1} @dots{} @var{elemN})}, each element being from the
corresponding @var{lst1} @dots{} @var{lstN}.  The first call is with
the first element of each list, the second with the second element
from each, and so on.

Counting stops when the end of the shortest list is reached.  At least
one list must be non-circular.
@end deffn


@node SRFI-1 Fold and Map
@subsubsection Fold, Unfold & Map
@cindex list fold
@cindex list map

@c FIXME::martin: Review me!

@deffn {Scheme Procedure} fold proc init lst1 @dots{} lstN
@deffnx {Scheme Procedure} fold-right proc init lst1 @dots{} lstN
Apply @var{proc} to the elements of @var{lst1} @dots{} @var{lstN} to
build a result, and return that result.

Each @var{proc} call is @code{(@var{proc} @var{elem1} @dots{}
@var{elemN} @var{previous})}, where @var{elem1} is from @var{lst1},
through @var{elemN} from @var{lstN}.  @var{previous} is the return
from the previous call to @var{proc}, or the given @var{init} for the
first call.  If any list is empty, just @var{init} is returned.

@code{fold} works through the list elements from first to last.  The
following shows a list reversal and the calls it makes,

@example
(fold cons '() '(1 2 3))

(cons 1 '())
(cons 2 '(1))
(cons 3 '(2 1)
@result{} (3 2 1)
@end example

@code{fold-right} works through the list elements from last to first,
ie.@: from the right.  So for example the following finds the longest
string, and the last among equal longest,

@example
(fold-right (lambda (str prev)
              (if (> (string-length str) (string-length prev))
                  str
                  prev))
            ""
            '("x" "abc" "xyz" "jk"))
@result{} "xyz"
@end example

If @var{lst1} through @var{lstN} have different lengths, @code{fold}
stops when the end of the shortest is reached; @code{fold-right}
commences at the last element of the shortest.  Ie.@: elements past
the length of the shortest are ignored in the other @var{lst}s.  At
least one @var{lst} must be non-circular.

@code{fold} should be preferred over @code{fold-right} if the order of
processing doesn't matter, or can be arranged either way, since
@code{fold} is a little more efficient.

The way @code{fold} builds a result from iterating is quite general,
it can do more than other iterations like say @code{map} or
@code{filter}.  The following for example removes adjacent duplicate
elements from a list,

@example
(define (delete-adjacent-duplicates lst)
  (fold-right (lambda (elem ret)
                (if (equal? elem (first ret))
                    ret
                    (cons elem ret)))
              (list (last lst))
              lst))
(delete-adjacent-duplicates '(1 2 3 3 4 4 4 5))
@result{} (1 2 3 4 5)
@end example

Clearly the same sort of thing can be done with a @code{for-each} and
a variable in which to build the result, but a self-contained
@var{proc} can be re-used in multiple contexts, where a
@code{for-each} would have to be written out each time.
@end deffn

@deffn {Scheme Procedure} pair-fold proc init lst1 @dots{} lstN
@deffnx {Scheme Procedure} pair-fold-right proc init lst1 @dots{} lstN
The same as @code{fold} and @code{fold-right}, but apply @var{proc} to
the pairs of the lists instead of the list elements.
@end deffn

@deffn {Scheme Procedure} reduce proc default lst
@deffnx {Scheme Procedure} reduce-right proc default lst
@code{reduce} is a variant of @code{fold}, where the first call to
@var{proc} is on two elements from @var{lst}, rather than one element
and a given initial value.

If @var{lst} is empty, @code{reduce} returns @var{default} (this is
the only use for @var{default}).  If @var{lst} has just one element
then that's the return value.  Otherwise @var{proc} is called on the
elements of @var{lst}.

Each @var{proc} call is @code{(@var{proc} @var{elem} @var{previous})},
where @var{elem} is from @var{lst} (the second and subsequent elements
of @var{lst}), and @var{previous} is the return from the previous call
to @var{proc}.  The first element of @var{lst} is the @var{previous}
for the first call to @var{proc}.

For example, the following adds a list of numbers, the calls made to
@code{+} are shown.  (Of course @code{+} accepts multiple arguments
and can add a list directly, with @code{apply}.)

@example
(reduce + 0 '(5 6 7)) @result{} 18

(+ 6 5)  @result{} 11
(+ 7 11) @result{} 18
@end example

@code{reduce} can be used instead of @code{fold} where the @var{init}
value is an ``identity'', meaning a value which under @var{proc}
doesn't change the result, in this case 0 is an identity since
@code{(+ 5 0)} is just 5.  @code{reduce} avoids that unnecessary call.

@code{reduce-right} is a similar variation on @code{fold-right},
working from the end (ie.@: the right) of @var{lst}.  The last element
of @var{lst} is the @var{previous} for the first call to @var{proc},
and the @var{elem} values go from the second last.

@code{reduce} should be preferred over @code{reduce-right} if the
order of processing doesn't matter, or can be arranged either way,
since @code{reduce} is a little more efficient.
@end deffn

@deffn {Scheme Procedure} unfold p f g seed [tail-gen]
@code{unfold} is defined as follows:

@lisp
(unfold p f g seed) =
   (if (p seed) (tail-gen seed)
       (cons (f seed)
             (unfold p f g (g seed))))
@end lisp

@table @var
@item p
Determines when to stop unfolding.

@item f
Maps each seed value to the corresponding list element.

@item g
Maps each seed value to next seed valu.

@item seed
The state value for the unfold.

@item tail-gen
Creates the tail of the list; defaults to @code{(lambda (x) '())}.
@end table

@var{g} produces a series of seed values, which are mapped to list
elements by @var{f}.  These elements are put into a list in
left-to-right order, and @var{p} tells when to stop unfolding.
@end deffn

@deffn {Scheme Procedure} unfold-right p f g seed [tail]
Construct a list with the following loop.

@lisp
(let lp ((seed seed) (lis tail))
   (if (p seed) lis
       (lp (g seed)
           (cons (f seed) lis))))
@end lisp

@table @var
@item p
Determines when to stop unfolding.

@item f
Maps each seed value to the corresponding list element.

@item g
Maps each seed value to next seed valu.

@item seed
The state value for the unfold.

@item tail-gen
Creates the tail of the list; defaults to @code{(lambda (x) '())}.
@end table

@end deffn

@deffn {Scheme Procedure} map f lst1 lst2 @dots{}
Map the procedure over the list(s) @var{lst1}, @var{lst2}, @dots{} and
return a list containing the results of the procedure applications.
This procedure is extended with respect to R5RS, because the argument
lists may have different lengths.  The result list will have the same
length as the shortest argument lists.  The order in which @var{f}
will be applied to the list element(s) is not specified.
@end deffn

@deffn {Scheme Procedure} for-each f lst1 lst2 @dots{}
Apply the procedure @var{f} to each pair of corresponding elements of
the list(s) @var{lst1}, @var{lst2}, @dots{}.  The return value is not
specified.  This procedure is extended with respect to R5RS, because
the argument lists may have different lengths.  The shortest argument
list determines the number of times @var{f} is called.  @var{f} will
be applied to the list elements in left-to-right order.

@end deffn

@deffn {Scheme Procedure} append-map f lst1 lst2 @dots{}
@deffnx {Scheme Procedure} append-map! f lst1 lst2 @dots{}
Equivalent to

@lisp
(apply append (map f clist1 clist2 ...))
@end lisp

and

@lisp
(apply append! (map f clist1 clist2 ...))
@end lisp

Map @var{f} over the elements of the lists, just as in the @code{map}
function. However, the results of the applications are appended
together to make the final result. @code{append-map} uses
@code{append} to append the results together; @code{append-map!} uses
@code{append!}.

The dynamic order in which the various applications of @var{f} are
made is not specified.
@end deffn

@deffn {Scheme Procedure} map! f lst1 lst2 @dots{}
Linear-update variant of @code{map} -- @code{map!} is allowed, but not
required, to alter the cons cells of @var{lst1} to construct the
result list.

The dynamic order in which the various applications of @var{f} are
made is not specified. In the n-ary case, @var{lst2}, @var{lst3},
@dots{} must have at least as many elements as @var{lst1}.
@end deffn

@deffn {Scheme Procedure} pair-for-each f lst1 lst2 @dots{}
Like @code{for-each}, but applies the procedure @var{f} to the pairs
from which the argument lists are constructed, instead of the list
elements.  The return value is not specified.
@end deffn

@deffn {Scheme Procedure} filter-map f lst1 lst2 @dots{}
Like @code{map}, but only results from the applications of @var{f}
which are true are saved in the result list.
@end deffn


@node SRFI-1 Filtering and Partitioning
@subsubsection Filtering and Partitioning
@cindex list filter
@cindex list partition

@c FIXME::martin: Review me!

Filtering means to collect all elements from a list which satisfy a
specific condition.  Partitioning a list means to make two groups of
list elements, one which contains the elements satisfying a condition,
and the other for the elements which don't.

The @code{filter} and @code{filter!} functions are implemented in the
Guile core, @xref{List Modification}.

@deffn {Scheme Procedure} partition pred lst
@deffnx {Scheme Procedure} partition! pred lst
Split @var{lst} into those elements which do and don't satisfy the
predicate @var{pred}.

The return is two values (@pxref{Multiple Values}), the first being a
list of all elements from @var{lst} which satisfy @var{pred}, the
second a list of those which do not.

The elements in the result lists are in the same order as in @var{lst}
but the order in which the calls @code{(@var{pred} elem)} are made on
the list elements is unspecified.

@code{partition} does not change @var{lst}, but one of the returned
lists may share a tail with it.  @code{partition!} may modify
@var{lst} to construct its return.
@end deffn

@deffn {Scheme Procedure} remove pred lst
@deffnx {Scheme Procedure} remove! pred lst
Return a list containing all elements from @var{lst} which do not
satisfy the predicate @var{pred}.  The elements in the result list
have the same order as in @var{lst}.  The order in which @var{pred} is
applied to the list elements is not specified.

@code{remove!} is allowed, but not required to modify the structure of
the input list.
@end deffn


@node SRFI-1 Searching
@subsubsection Searching
@cindex list search

@c FIXME::martin: Review me!

The procedures for searching elements in lists either accept a
predicate or a comparison object for determining which elements are to
be searched.

@deffn {Scheme Procedure} find pred lst
Return the first element of @var{lst} which satisfies the predicate
@var{pred} and @code{#f} if no such element is found.
@end deffn

@deffn {Scheme Procedure} find-tail pred lst
Return the first pair of @var{lst} whose @sc{car} satisfies the
predicate @var{pred} and @code{#f} if no such element is found.
@end deffn

@deffn {Scheme Procedure} take-while pred lst
@deffnx {Scheme Procedure} take-while! pred lst
Return the longest initial prefix of @var{lst} whose elements all
satisfy the predicate @var{pred}.

@code{take-while!} is allowed, but not required to modify the input
list while producing the result.
@end deffn

@deffn {Scheme Procedure} drop-while pred lst
Drop the longest initial prefix of @var{lst} whose elements all
satisfy the predicate @var{pred}.
@end deffn

@deffn {Scheme Procedure} span pred lst
@deffnx {Scheme Procedure} span! pred lst
@deffnx {Scheme Procedure} break pred lst
@deffnx {Scheme Procedure} break! pred lst
@code{span} splits the list @var{lst} into the longest initial prefix
whose elements all satisfy the predicate @var{pred}, and the remaining
tail.  @code{break} inverts the sense of the predicate.

@code{span!} and @code{break!} are allowed, but not required to modify
the structure of the input list @var{lst} in order to produce the
result.

Note that the name @code{break} conflicts with the @code{break}
binding established by @code{while} (@pxref{while do}).  Applications
wanting to use @code{break} from within a @code{while} loop will need
to make a new define under a different name.
@end deffn

@deffn {Scheme Procedure} any pred lst1 lst2 @dots{} lstN
Test whether any set of elements from @var{lst1} @dots{} lstN
satisfies @var{pred}.  If so the return value is the return from the
successful @var{pred} call, or if not the return is @code{#f}.

Each @var{pred} call is @code{(@var{pred} @var{elem1} @dots{}
@var{elemN})} taking an element from each @var{lst}.  The calls are
made successively for the first, second, etc elements of the lists,
stopping when @var{pred} returns non-@code{#f}, or when the end of the
shortest list is reached.

The @var{pred} call on the last set of elements (ie.@: when the end of
the shortest list has been reached), if that point is reached, is a
tail call.
@end deffn

@deffn {Scheme Procedure} every pred lst1 lst2 @dots{} lstN
Test whether every set of elements from @var{lst1} @dots{} lstN
satisfies @var{pred}.  If so the return value is the return from the
final @var{pred} call, or if not the return is @code{#f}.

Each @var{pred} call is @code{(@var{pred} @var{elem1} @dots{}
@var{elemN})} taking an element from each @var{lst}.  The calls are
made successively for the first, second, etc elements of the lists,
stopping if @var{pred} returns @code{#f}, or when the end of any of
the lists is reached.

The @var{pred} call on the last set of elements (ie.@: when the end of
the shortest list has been reached) is a tail call.

If one of @var{lst1} @dots{} @var{lstN} is empty then no calls to
@var{pred} are made, and the return is @code{#t}.
@end deffn

@deffn {Scheme Procedure} list-index pred lst1 @dots{} lstN
Return the index of the first set of elements, one from each of
@var{lst1}@dots{}@var{lstN}, which satisfies @var{pred}.

@var{pred} is called as @code{(@var{pred} elem1 @dots{} elemN)}.
Searching stops when the end of the shortest @var{lst} is reached.
The return index starts from 0 for the first set of elements.  If no
set of elements pass then the return is @code{#f}.

@example
(list-index odd? '(2 4 6 9))      @result{} 3
(list-index = '(1 2 3) '(3 1 2))  @result{} #f
@end example
@end deffn

@deffn {Scheme Procedure} member x lst [=]
Return the first sublist of @var{lst} whose @sc{car} is equal to
@var{x}.  If @var{x} does not appear in @var{lst}, return @code{#f}.

Equality is determined by @code{equal?}, or by the equality predicate
@var{=} if given.  @var{=} is called @code{(= @var{x} elem)},
ie.@: with the given @var{x} first, so for example to find the first
element greater than 5,

@example
(member 5 '(3 5 1 7 2 9) <) @result{} (7 2 9)
@end example

This version of @code{member} extends the core @code{member}
(@pxref{List Searching}) by accepting an equality predicate.
@end deffn


@node SRFI-1 Deleting
@subsubsection Deleting
@cindex list delete

@deffn {Scheme Procedure} delete x lst [=]
@deffnx {Scheme Procedure} delete! x lst [=]
Return a list containing the elements of @var{lst} but with those
equal to @var{x} deleted.  The returned elements will be in the same
order as they were in @var{lst}.

Equality is determined by the @var{=} predicate, or @code{equal?} if
not given.  An equality call is made just once for each element, but
the order in which the calls are made on the elements is unspecified.

The equality calls are always @code{(= x elem)}, ie.@: the given @var{x}
is first.  This means for instance elements greater than 5 can be
deleted with @code{(delete 5 lst <)}.

@code{delete} does not modify @var{lst}, but the return might share a
common tail with @var{lst}.  @code{delete!} may modify the structure
of @var{lst} to construct its return.

These functions extend the core @code{delete} and @code{delete!}
(@pxref{List Modification}) in accepting an equality predicate.  See
also @code{lset-difference} (@pxref{SRFI-1 Set Operations}) for
deleting multiple elements from a list.
@end deffn

@deffn {Scheme Procedure} delete-duplicates lst [=]
@deffnx {Scheme Procedure} delete-duplicates! lst [=]
Return a list containing the elements of @var{lst} but without
duplicates.

When elements are equal, only the first in @var{lst} is retained.
Equal elements can be anywhere in @var{lst}, they don't have to be
adjacent.  The returned list will have the retained elements in the
same order as they were in @var{lst}.

Equality is determined by the @var{=} predicate, or @code{equal?} if
not given.  Calls @code{(= x y)} are made with element @var{x} being
before @var{y} in @var{lst}.  A call is made at most once for each
combination, but the sequence of the calls across the elements is
unspecified.

@code{delete-duplicates} does not modify @var{lst}, but the return
might share a common tail with @var{lst}.  @code{delete-duplicates!}
may modify the structure of @var{lst} to construct its return.

In the worst case, this is an @math{O(N^2)} algorithm because it must
check each element against all those preceding it.  For long lists it
is more efficient to sort and then compare only adjacent elements.
@end deffn


@node SRFI-1 Association Lists
@subsubsection Association Lists
@cindex association list
@cindex alist

@c FIXME::martin: Review me!

Association lists are described in detail in section @ref{Association
Lists}.  The present section only documents the additional procedures
for dealing with association lists defined by SRFI-1.

@deffn {Scheme Procedure} assoc key alist [=]
Return the pair from @var{alist} which matches @var{key}.  This
extends the core @code{assoc} (@pxref{Retrieving Alist Entries}) by
taking an optional @var{=} comparison procedure.

The default comparison is @code{equal?}.  If an @var{=} parameter is
given it's called @code{(@var{=} @var{key} @var{alistcar})}, ie. the
given target @var{key} is the first argument, and a @code{car} from
@var{alist} is second.

For example a case-insensitive string lookup,

@example
(assoc "yy" '(("XX" . 1) ("YY" . 2)) string-ci=?)
@result{} ("YY" . 2)
@end example
@end deffn

@deffn {Scheme Procedure} alist-cons key datum alist
Cons a new association @var{key} and @var{datum} onto @var{alist} and
return the result.  This is equivalent to

@lisp
(cons (cons @var{key} @var{datum}) @var{alist})
@end lisp

@code{acons} (@pxref{Adding or Setting Alist Entries}) in the Guile
core does the same thing.
@end deffn

@deffn {Scheme Procedure} alist-copy alist
Return a newly allocated copy of @var{alist}, that means that the
spine of the list as well as the pairs are copied.
@end deffn

@deffn {Scheme Procedure} alist-delete key alist [=]
@deffnx {Scheme Procedure} alist-delete! key alist [=]
Return a list containing the elements of @var{alist} but with those
elements whose keys are equal to @var{key} deleted.  The returned
elements will be in the same order as they were in @var{alist}.

Equality is determined by the @var{=} predicate, or @code{equal?} if
not given.  The order in which elements are tested is unspecified, but
each equality call is made @code{(= key alistkey)}, ie. the given
@var{key} parameter is first and the key from @var{alist} second.
This means for instance all associations with a key greater than 5 can
be removed with @code{(alist-delete 5 alist <)}.

@code{alist-delete} does not modify @var{alist}, but the return might
share a common tail with @var{alist}.  @code{alist-delete!} may modify
the list structure of @var{alist} to construct its return.
@end deffn


@node SRFI-1 Set Operations
@subsubsection Set Operations on Lists
@cindex list set operation

Lists can be used to represent sets of objects.  The procedures in
this section operate on such lists as sets.

Note that lists are not an efficient way to implement large sets.  The
procedures here typically take time @math{@var{m}@cross{}@var{n}} when
operating on @var{m} and @var{n} element lists.  Other data structures
like trees, bitsets (@pxref{Bit Vectors}) or hash tables (@pxref{Hash
Tables}) are faster.

All these procedures take an equality predicate as the first argument.
This predicate is used for testing the objects in the list sets for
sameness.  This predicate must be consistent with @code{eq?}
(@pxref{Equality}) in the sense that if two list elements are
@code{eq?} then they must also be equal under the predicate.  This
simply means a given object must be equal to itself.

@deffn {Scheme Procedure} lset<= = list1 list2 @dots{}
Return @code{#t} if each list is a subset of the one following it.
Ie.@: @var{list1} a subset of @var{list2}, @var{list2} a subset of
@var{list3}, etc, for as many lists as given.  If only one list or no
lists are given then the return is @code{#t}.

A list @var{x} is a subset of @var{y} if each element of @var{x} is
equal to some element in @var{y}.  Elements are compared using the
given @var{=} procedure, called as @code{(@var{=} xelem yelem)}.

@example
(lset<= eq?)                      @result{} #t
(lset<= eqv? '(1 2 3) '(1))       @result{} #f
(lset<= eqv? '(1 3 2) '(4 3 1 2)) @result{} #t
@end example
@end deffn

@deffn {Scheme Procedure} lset= = list1 list2 @dots{}
Return @code{#t} if all argument lists are set-equal.  @var{list1} is
compared to @var{list2}, @var{list2} to @var{list3}, etc, for as many
lists as given.  If only one list or no lists are given then the
return is @code{#t}.

Two lists @var{x} and @var{y} are set-equal if each element of @var{x}
is equal to some element of @var{y} and conversely each element of
@var{y} is equal to some element of @var{x}.  The order of the
elements in the lists doesn't matter.  Element equality is determined
with the given @var{=} procedure, called as @code{(@var{=} xelem
yelem)}, but exactly which calls are made is unspecified.

@example
(lset= eq?)                      @result{} #t
(lset= eqv? '(1 2 3) '(3 2 1))   @result{} #t
(lset= string-ci=? '("a" "A" "b") '("B" "b" "a")) @result{} #t
@end example
@end deffn

@deffn {Scheme Procedure} lset-adjoin = list elem1 @dots{}
Add to @var{list} any of the given @var{elem}s not already in the
list.  @var{elem}s are @code{cons}ed onto the start of @var{list} (so
the return shares a common tail with @var{list}), but the order
they're added is unspecified.

The given @var{=} procedure is used for comparing elements, called as
@code{(@var{=} listelem elem)}, ie.@: the second argument is one of
the given @var{elem} parameters.

@example
(lset-adjoin eqv? '(1 2 3) 4 1 5) @result{} (5 4 1 2 3)
@end example
@end deffn

@deffn {Scheme Procedure} lset-union = list1 list2 @dots{}
@deffnx {Scheme Procedure} lset-union! = list1 list2 @dots{}
Return the union of the argument list sets.  The result is built by
taking the union of @var{list1} and @var{list2}, then the union of
that with @var{list3}, etc, for as many lists as given.  For one list
argument that list itself is the result, for no list arguments the
result is the empty list.

The union of two lists @var{x} and @var{y} is formed as follows.  If
@var{x} is empty then the result is @var{y}.  Otherwise start with
@var{x} as the result and consider each @var{y} element (from first to
last).  A @var{y} element not equal to something already in the result
is @code{cons}ed onto the result.

The given @var{=} procedure is used for comparing elements, called as
@code{(@var{=} relem yelem)}.  The first argument is from the result
accumulated so far, and the second is from the list being union-ed in.
But exactly which calls are made is otherwise unspecified.

Notice that duplicate elements in @var{list1} (or the first non-empty
list) are preserved, but that repeated elements in subsequent lists
are only added once.

@example
(lset-union eqv?)                          @result{} ()
(lset-union eqv? '(1 2 3))                 @result{} (1 2 3)
(lset-union eqv? '(1 2 1 3) '(2 4 5) '(5)) @result{} (5 4 1 2 1 3)
@end example

@code{lset-union} doesn't change the given lists but the result may
share a tail with the first non-empty list.  @code{lset-union!} can
modify all of the given lists to form the result.
@end deffn

@deffn {Scheme Procedure} lset-intersection = list1 list2 @dots{}
@deffnx {Scheme Procedure} lset-intersection! = list1 list2 @dots{}
Return the intersection of @var{list1} with the other argument lists,
meaning those elements of @var{list1} which are also in all of
@var{list2} etc.  For one list argument, just that list is returned.

The test for an element of @var{list1} to be in the return is simply
that it's equal to some element in each of @var{list2} etc.  Notice
this means an element appearing twice in @var{list1} but only once in
each of @var{list2} etc will go into the return twice.  The return has
its elements in the same order as they were in @var{list1}.

The given @var{=} procedure is used for comparing elements, called as
@code{(@var{=} elem1 elemN)}.  The first argument is from @var{list1}
and the second is from one of the subsequent lists.  But exactly which
calls are made and in what order is unspecified.

@example
(lset-intersection eqv? '(x y))                        @result{} (x y)
(lset-intersection eqv? '(1 2 3) '(4 3 2))             @result{} (2 3)
(lset-intersection eqv? '(1 1 2 2) '(1 2) '(2 1) '(2)) @result{} (2 2)
@end example

The return from @code{lset-intersection} may share a tail with
@var{list1}.  @code{lset-intersection!} may modify @var{list1} to form
its result.
@end deffn

@deffn {Scheme Procedure} lset-difference = list1 list2 @dots{}
@deffnx {Scheme Procedure} lset-difference! = list1 list2 @dots{}
Return @var{list1} with any elements in @var{list2}, @var{list3} etc
removed (ie.@: subtracted).  For one list argument, just that list is
returned.

The given @var{=} procedure is used for comparing elements, called as
@code{(@var{=} elem1 elemN)}.  The first argument is from @var{list1}
and the second from one of the subsequent lists.  But exactly which
calls are made and in what order is unspecified.

@example
(lset-difference eqv? '(x y))             @result{} (x y)
(lset-difference eqv? '(1 2 3) '(3 1))    @result{} (2)
(lset-difference eqv? '(1 2 3) '(3) '(2)) @result{} (1)
@end example

The return from @code{lset-difference} may share a tail with
@var{list1}.  @code{lset-difference!} may modify @var{list1} to form
its result.
@end deffn

@deffn {Scheme Procedure} lset-diff+intersection = list1 list2 @dots{}
@deffnx {Scheme Procedure} lset-diff+intersection! = list1 list2 @dots{}
Return two values (@pxref{Multiple Values}), the difference and
intersection of the argument lists as per @code{lset-difference} and
@code{lset-intersection} above.

For two list arguments this partitions @var{list1} into those elements
of @var{list1} which are in @var{list2} and not in @var{list2}.  (But
for more than two arguments there can be elements of @var{list1} which
are neither part of the difference nor the intersection.)

One of the return values from @code{lset-diff+intersection} may share
a tail with @var{list1}.  @code{lset-diff+intersection!} may modify
@var{list1} to form its results.
@end deffn

@deffn {Scheme Procedure} lset-xor = list1 list2 @dots{}
@deffnx {Scheme Procedure} lset-xor! = list1 list2 @dots{}
Return an XOR of the argument lists.  For two lists this means those
elements which are in exactly one of the lists.  For more than two
lists it means those elements which appear in an odd number of the
lists.

To be precise, the XOR of two lists @var{x} and @var{y} is formed by
taking those elements of @var{x} not equal to any element of @var{y},
plus those elements of @var{y} not equal to any element of @var{x}.
Equality is determined with the given @var{=} procedure, called as
@code{(@var{=} e1 e2)}.  One argument is from @var{x} and the other
from @var{y}, but which way around is unspecified.  Exactly which
calls are made is also unspecified, as is the order of the elements in
the result.

@example
(lset-xor eqv? '(x y))             @result{} (x y)
(lset-xor eqv? '(1 2 3) '(4 3 2))  @result{} (4 1)
@end example

The return from @code{lset-xor} may share a tail with one of the list
arguments.  @code{lset-xor!} may modify @var{list1} to form its
result.
@end deffn


@node SRFI-2
@subsection SRFI-2 - and-let*
@cindex SRFI-2

@noindent
The following syntax can be obtained with

@lisp
(use-modules (srfi srfi-2))
@end lisp

@deffn {library syntax} and-let* (clause @dots{}) body @dots{}
A combination of @code{and} and @code{let*}.

Each @var{clause} is evaluated in turn, and if @code{#f} is obtained
then evaluation stops and @code{#f} is returned.  If all are
non-@code{#f} then @var{body} is evaluated and the last form gives the
return value, or if @var{body} is empty then the result is @code{#t}.
Each @var{clause} should be one of the following,

@table @code
@item (symbol expr)
Evaluate @var{expr}, check for @code{#f}, and bind it to @var{symbol}.
Like @code{let*}, that binding is available to subsequent clauses.
@item (expr)
Evaluate @var{expr} and check for @code{#f}.
@item symbol
Get the value bound to @var{symbol} and check for @code{#f}.
@end table

Notice that @code{(expr)} has an ``extra'' pair of parentheses, for
instance @code{((eq? x y))}.  One way to remember this is to imagine
the @code{symbol} in @code{(symbol expr)} is omitted.

@code{and-let*} is good for calculations where a @code{#f} value means
termination, but where a non-@code{#f} value is going to be needed in
subsequent expressions.

The following illustrates this, it returns text between brackets
@samp{[...]} in a string, or @code{#f} if there are no such brackets
(ie.@: either @code{string-index} gives @code{#f}).

@example
(define (extract-brackets str)
  (and-let* ((start (string-index str #\[))
             (end   (string-index str #\] start)))
    (substring str (1+ start) end)))
@end example

The following shows plain variables and expressions tested too.
@code{diagnostic-levels} is taken to be an alist associating a
diagnostic type with a level.  @code{str} is printed only if the type
is known and its level is high enough.

@example
(define (show-diagnostic type str)
  (and-let* (want-diagnostics
             (level (assq-ref diagnostic-levels type))
             ((>= level current-diagnostic-level)))
    (display str)))
@end example

The advantage of @code{and-let*} is that an extended sequence of
expressions and tests doesn't require lots of nesting as would arise
from separate @code{and} and @code{let*}, or from @code{cond} with
@code{=>}.

@end deffn


@node SRFI-4
@subsection SRFI-4 - Homogeneous numeric vector datatypes
@cindex SRFI-4

SRFI-4 provides an interface to uniform numeric vectors: vectors whose elements
are all of a single numeric type. Guile offers uniform numeric vectors for
signed and unsigned 8-bit, 16-bit, 32-bit, and 64-bit integers, two sizes of
floating point values, and, as an extension to SRFI-4, complex floating-point
numbers of these two sizes.

The standard SRFI-4 procedures and data types may be included via loading the
appropriate module:

@example
(use-modules (srfi srfi-4))
@end example

This module is currently a part of the default Guile environment, but it is a
good practice to explicitly import the module. In the future, using SRFI-4
procedures without importing the SRFI-4 module will cause a deprecation message
to be printed. (Of course, one may call the C functions at any time. Would that
C had modules!)

@menu
* SRFI-4 Overview::             The warp and weft of uniform numeric vectors.
* SRFI-4 API::                  Uniform vectors, from Scheme and from C.
* SRFI-4 Generic Operations::   The general, operating on the specific.
* SRFI-4 and Bytevectors::      SRFI-4 vectors are backed by bytevectors.
* SRFI-4 Extensions::           Guile-specific extensions to the standard.
@end menu

@node SRFI-4 Overview
@subsubsection SRFI-4 - Overview

Uniform numeric vectors can be useful since they consume less memory
than the non-uniform, general vectors.  Also, since the types they can
store correspond directly to C types, it is easier to work with them
efficiently on a low level.  Consider image processing as an example,
where you want to apply a filter to some image.  While you could store
the pixels of an image in a general vector and write a general
convolution function, things are much more efficient with uniform
vectors: the convolution function knows that all pixels are unsigned
8-bit values (say), and can use a very tight inner loop.

This is implemented in Scheme by having the compiler notice calls to the SRFI-4
accessors, and inline them to appropriate compiled code. From C you have access
to the raw array; functions for efficiently working with uniform numeric vectors
from C are listed at the end of this section.

Uniform numeric vectors are the special case of one dimensional uniform
numeric arrays.

There are 12 standard kinds of uniform numeric vectors, and they all have their
own complement of constructors, accessors, and so on. Procedures that operate on
a specific kind of uniform numeric vector have a ``tag'' in their name,
indicating the element type.

@table @nicode
@item u8
unsigned 8-bit integers

@item s8
signed 8-bit integers

@item u16
unsigned 16-bit integers

@item s16
signed 16-bit integers

@item u32
unsigned 32-bit integers

@item s32
signed 32-bit integers

@item u64
unsigned 64-bit integers

@item s64
signed 64-bit integers

@item f32
the C type @code{float}

@item f64
the C type @code{double}

@end table

In addition, Guile supports uniform arrays of complex numbers, with the
nonstandard tags:

@table @nicode

@item c32
complex numbers in rectangular form with the real and imaginary part
being a @code{float}

@item c64
complex numbers in rectangular form with the real and imaginary part
being a @code{double}

@end table

The external representation (ie.@: read syntax) for these vectors is
similar to normal Scheme vectors, but with an additional tag from the
tables above indicating the vector's type.  For example,

@lisp
#u16(1 2 3)
#f64(3.1415 2.71)
@end lisp

Note that the read syntax for floating-point here conflicts with
@code{#f} for false.  In Standard Scheme one can write @code{(1 #f3)}
for a three element list @code{(1 #f 3)}, but for Guile @code{(1 #f3)}
is invalid.  @code{(1 #f 3)} is almost certainly what one should write
anyway to make the intention clear, so this is rarely a problem.


@node SRFI-4 API
@subsubsection SRFI-4 - API

Note that the @nicode{c32} and @nicode{c64} functions are only available from
@nicode{(srfi srfi-4 gnu)}.

@deffn {Scheme Procedure} u8vector? obj
@deffnx {Scheme Procedure} s8vector? obj
@deffnx {Scheme Procedure} u16vector? obj
@deffnx {Scheme Procedure} s16vector? obj
@deffnx {Scheme Procedure} u32vector? obj
@deffnx {Scheme Procedure} s32vector? obj
@deffnx {Scheme Procedure} u64vector? obj
@deffnx {Scheme Procedure} s64vector? obj
@deffnx {Scheme Procedure} f32vector? obj
@deffnx {Scheme Procedure} f64vector? obj
@deffnx {Scheme Procedure} c32vector? obj
@deffnx {Scheme Procedure} c64vector? obj
@deffnx {C Function} scm_u8vector_p (obj)
@deffnx {C Function} scm_s8vector_p (obj)
@deffnx {C Function} scm_u16vector_p (obj)
@deffnx {C Function} scm_s16vector_p (obj)
@deffnx {C Function} scm_u32vector_p (obj)
@deffnx {C Function} scm_s32vector_p (obj)
@deffnx {C Function} scm_u64vector_p (obj)
@deffnx {C Function} scm_s64vector_p (obj)
@deffnx {C Function} scm_f32vector_p (obj)
@deffnx {C Function} scm_f64vector_p (obj)
@deffnx {C Function} scm_c32vector_p (obj)
@deffnx {C Function} scm_c64vector_p (obj)
Return @code{#t} if @var{obj} is a homogeneous numeric vector of the
indicated type.
@end deffn

@deffn  {Scheme Procedure} make-u8vector n [value]
@deffnx {Scheme Procedure} make-s8vector n [value]
@deffnx {Scheme Procedure} make-u16vector n [value]
@deffnx {Scheme Procedure} make-s16vector n [value]
@deffnx {Scheme Procedure} make-u32vector n [value]
@deffnx {Scheme Procedure} make-s32vector n [value]
@deffnx {Scheme Procedure} make-u64vector n [value]
@deffnx {Scheme Procedure} make-s64vector n [value]
@deffnx {Scheme Procedure} make-f32vector n [value]
@deffnx {Scheme Procedure} make-f64vector n [value]
@deffnx {Scheme Procedure} make-c32vector n [value]
@deffnx {Scheme Procedure} make-c64vector n [value]
@deffnx {C Function} scm_make_u8vector n [value]
@deffnx {C Function} scm_make_s8vector n [value]
@deffnx {C Function} scm_make_u16vector n [value]
@deffnx {C Function} scm_make_s16vector n [value]
@deffnx {C Function} scm_make_u32vector n [value]
@deffnx {C Function} scm_make_s32vector n [value]
@deffnx {C Function} scm_make_u64vector n [value]
@deffnx {C Function} scm_make_s64vector n [value]
@deffnx {C Function} scm_make_f32vector n [value]
@deffnx {C Function} scm_make_f64vector n [value]
@deffnx {C Function} scm_make_c32vector n [value]
@deffnx {C Function} scm_make_c64vector n [value]
Return a newly allocated homogeneous numeric vector holding @var{n}
elements of the indicated type.  If @var{value} is given, the vector
is initialized with that value, otherwise the contents are
unspecified.
@end deffn

@deffn  {Scheme Procedure} u8vector value @dots{}
@deffnx {Scheme Procedure} s8vector value @dots{}
@deffnx {Scheme Procedure} u16vector value @dots{}
@deffnx {Scheme Procedure} s16vector value @dots{}
@deffnx {Scheme Procedure} u32vector value @dots{}
@deffnx {Scheme Procedure} s32vector value @dots{}
@deffnx {Scheme Procedure} u64vector value @dots{}
@deffnx {Scheme Procedure} s64vector value @dots{}
@deffnx {Scheme Procedure} f32vector value @dots{}
@deffnx {Scheme Procedure} f64vector value @dots{}
@deffnx {Scheme Procedure} c32vector value @dots{}
@deffnx {Scheme Procedure} c64vector value @dots{}
@deffnx {C Function} scm_u8vector (values)
@deffnx {C Function} scm_s8vector (values)
@deffnx {C Function} scm_u16vector (values)
@deffnx {C Function} scm_s16vector (values)
@deffnx {C Function} scm_u32vector (values)
@deffnx {C Function} scm_s32vector (values)
@deffnx {C Function} scm_u64vector (values)
@deffnx {C Function} scm_s64vector (values)
@deffnx {C Function} scm_f32vector (values)
@deffnx {C Function} scm_f64vector (values)
@deffnx {C Function} scm_c32vector (values)
@deffnx {C Function} scm_c64vector (values)
Return a newly allocated homogeneous numeric vector of the indicated
type, holding the given parameter @var{value}s.  The vector length is
the number of parameters given.
@end deffn

@deffn {Scheme Procedure} u8vector-length vec
@deffnx {Scheme Procedure} s8vector-length vec
@deffnx {Scheme Procedure} u16vector-length vec
@deffnx {Scheme Procedure} s16vector-length vec
@deffnx {Scheme Procedure} u32vector-length vec
@deffnx {Scheme Procedure} s32vector-length vec
@deffnx {Scheme Procedure} u64vector-length vec
@deffnx {Scheme Procedure} s64vector-length vec
@deffnx {Scheme Procedure} f32vector-length vec
@deffnx {Scheme Procedure} f64vector-length vec
@deffnx {Scheme Procedure} c32vector-length vec
@deffnx {Scheme Procedure} c64vector-length vec
@deffnx {C Function} scm_u8vector_length (vec)
@deffnx {C Function} scm_s8vector_length (vec)
@deffnx {C Function} scm_u16vector_length (vec)
@deffnx {C Function} scm_s16vector_length (vec)
@deffnx {C Function} scm_u32vector_length (vec)
@deffnx {C Function} scm_s32vector_length (vec)
@deffnx {C Function} scm_u64vector_length (vec)
@deffnx {C Function} scm_s64vector_length (vec)
@deffnx {C Function} scm_f32vector_length (vec)
@deffnx {C Function} scm_f64vector_length (vec)
@deffnx {C Function} scm_c32vector_length (vec)
@deffnx {C Function} scm_c64vector_length (vec)
Return the number of elements in @var{vec}.
@end deffn

@deffn {Scheme Procedure} u8vector-ref vec i
@deffnx {Scheme Procedure} s8vector-ref vec i
@deffnx {Scheme Procedure} u16vector-ref vec i
@deffnx {Scheme Procedure} s16vector-ref vec i
@deffnx {Scheme Procedure} u32vector-ref vec i
@deffnx {Scheme Procedure} s32vector-ref vec i
@deffnx {Scheme Procedure} u64vector-ref vec i
@deffnx {Scheme Procedure} s64vector-ref vec i
@deffnx {Scheme Procedure} f32vector-ref vec i
@deffnx {Scheme Procedure} f64vector-ref vec i
@deffnx {Scheme Procedure} c32vector-ref vec i
@deffnx {Scheme Procedure} c64vector-ref vec i
@deffnx {C Function} scm_u8vector_ref (vec i)
@deffnx {C Function} scm_s8vector_ref (vec i)
@deffnx {C Function} scm_u16vector_ref (vec i)
@deffnx {C Function} scm_s16vector_ref (vec i)
@deffnx {C Function} scm_u32vector_ref (vec i)
@deffnx {C Function} scm_s32vector_ref (vec i)
@deffnx {C Function} scm_u64vector_ref (vec i)
@deffnx {C Function} scm_s64vector_ref (vec i)
@deffnx {C Function} scm_f32vector_ref (vec i)
@deffnx {C Function} scm_f64vector_ref (vec i)
@deffnx {C Function} scm_c32vector_ref (vec i)
@deffnx {C Function} scm_c64vector_ref (vec i)
Return the element at index @var{i} in @var{vec}.  The first element
in @var{vec} is index 0.
@end deffn

@deffn {Scheme Procedure} u8vector-set! vec i value
@deffnx {Scheme Procedure} s8vector-set! vec i value
@deffnx {Scheme Procedure} u16vector-set! vec i value
@deffnx {Scheme Procedure} s16vector-set! vec i value
@deffnx {Scheme Procedure} u32vector-set! vec i value
@deffnx {Scheme Procedure} s32vector-set! vec i value
@deffnx {Scheme Procedure} u64vector-set! vec i value
@deffnx {Scheme Procedure} s64vector-set! vec i value
@deffnx {Scheme Procedure} f32vector-set! vec i value
@deffnx {Scheme Procedure} f64vector-set! vec i value
@deffnx {Scheme Procedure} c32vector-set! vec i value
@deffnx {Scheme Procedure} c64vector-set! vec i value
@deffnx {C Function} scm_u8vector_set_x (vec i value)
@deffnx {C Function} scm_s8vector_set_x (vec i value)
@deffnx {C Function} scm_u16vector_set_x (vec i value)
@deffnx {C Function} scm_s16vector_set_x (vec i value)
@deffnx {C Function} scm_u32vector_set_x (vec i value)
@deffnx {C Function} scm_s32vector_set_x (vec i value)
@deffnx {C Function} scm_u64vector_set_x (vec i value)
@deffnx {C Function} scm_s64vector_set_x (vec i value)
@deffnx {C Function} scm_f32vector_set_x (vec i value)
@deffnx {C Function} scm_f64vector_set_x (vec i value)
@deffnx {C Function} scm_c32vector_set_x (vec i value)
@deffnx {C Function} scm_c64vector_set_x (vec i value)
Set the element at index @var{i} in @var{vec} to @var{value}.  The
first element in @var{vec} is index 0.  The return value is
unspecified.
@end deffn

@deffn {Scheme Procedure} u8vector->list vec
@deffnx {Scheme Procedure} s8vector->list vec
@deffnx {Scheme Procedure} u16vector->list vec
@deffnx {Scheme Procedure} s16vector->list vec
@deffnx {Scheme Procedure} u32vector->list vec
@deffnx {Scheme Procedure} s32vector->list vec
@deffnx {Scheme Procedure} u64vector->list vec
@deffnx {Scheme Procedure} s64vector->list vec
@deffnx {Scheme Procedure} f32vector->list vec
@deffnx {Scheme Procedure} f64vector->list vec
@deffnx {Scheme Procedure} c32vector->list vec
@deffnx {Scheme Procedure} c64vector->list vec
@deffnx {C Function} scm_u8vector_to_list (vec)
@deffnx {C Function} scm_s8vector_to_list (vec)
@deffnx {C Function} scm_u16vector_to_list (vec)
@deffnx {C Function} scm_s16vector_to_list (vec)
@deffnx {C Function} scm_u32vector_to_list (vec)
@deffnx {C Function} scm_s32vector_to_list (vec)
@deffnx {C Function} scm_u64vector_to_list (vec)
@deffnx {C Function} scm_s64vector_to_list (vec)
@deffnx {C Function} scm_f32vector_to_list (vec)
@deffnx {C Function} scm_f64vector_to_list (vec)
@deffnx {C Function} scm_c32vector_to_list (vec)
@deffnx {C Function} scm_c64vector_to_list (vec)
Return a newly allocated list holding all elements of @var{vec}.
@end deffn

@deffn  {Scheme Procedure} list->u8vector lst
@deffnx {Scheme Procedure} list->s8vector lst
@deffnx {Scheme Procedure} list->u16vector lst
@deffnx {Scheme Procedure} list->s16vector lst
@deffnx {Scheme Procedure} list->u32vector lst
@deffnx {Scheme Procedure} list->s32vector lst
@deffnx {Scheme Procedure} list->u64vector lst
@deffnx {Scheme Procedure} list->s64vector lst
@deffnx {Scheme Procedure} list->f32vector lst
@deffnx {Scheme Procedure} list->f64vector lst
@deffnx {Scheme Procedure} list->c32vector lst
@deffnx {Scheme Procedure} list->c64vector lst
@deffnx {C Function} scm_list_to_u8vector (lst)
@deffnx {C Function} scm_list_to_s8vector (lst)
@deffnx {C Function} scm_list_to_u16vector (lst)
@deffnx {C Function} scm_list_to_s16vector (lst)
@deffnx {C Function} scm_list_to_u32vector (lst)
@deffnx {C Function} scm_list_to_s32vector (lst)
@deffnx {C Function} scm_list_to_u64vector (lst)
@deffnx {C Function} scm_list_to_s64vector (lst)
@deffnx {C Function} scm_list_to_f32vector (lst)
@deffnx {C Function} scm_list_to_f64vector (lst)
@deffnx {C Function} scm_list_to_c32vector (lst)
@deffnx {C Function} scm_list_to_c64vector (lst)
Return a newly allocated homogeneous numeric vector of the indicated type,
initialized with the elements of the list @var{lst}.
@end deffn

@deftypefn  {C Function} SCM scm_take_u8vector (const scm_t_uint8 *data, size_t len)
@deftypefnx {C Function} SCM scm_take_s8vector (const scm_t_int8 *data, size_t len)
@deftypefnx {C Function} SCM scm_take_u16vector (const scm_t_uint16 *data, size_t len)
@deftypefnx {C Function} SCM scm_take_s16vector (const scm_t_int16 *data, size_t len)
@deftypefnx {C Function} SCM scm_take_u32vector (const scm_t_uint32 *data, size_t len)
@deftypefnx {C Function} SCM scm_take_s32vector (const scm_t_int32 *data, size_t len)
@deftypefnx {C Function} SCM scm_take_u64vector (const scm_t_uint64 *data, size_t len)
@deftypefnx {C Function} SCM scm_take_s64vector (const scm_t_int64 *data, size_t len)
@deftypefnx {C Function} SCM scm_take_f32vector (const float *data, size_t len)
@deftypefnx {C Function} SCM scm_take_f64vector (const double *data, size_t len)
@deftypefnx {C Function} SCM scm_take_c32vector (const float *data, size_t len)
@deftypefnx {C Function} SCM scm_take_c64vector (const double *data, size_t len)
Return a new uniform numeric vector of the indicated type and length
that uses the memory pointed to by @var{data} to store its elements.
This memory will eventually be freed with @code{free}.  The argument
@var{len} specifies the number of elements in @var{data}, not its size
in bytes.

The @code{c32} and @code{c64} variants take a pointer to a C array of
@code{float}s or @code{double}s.  The real parts of the complex numbers
are at even indices in that array, the corresponding imaginary parts are
at the following odd index.
@end deftypefn

@deftypefn {C Function} {const scm_t_uint8 *} scm_u8vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {const scm_t_int8 *} scm_s8vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {const scm_t_uint16 *} scm_u16vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {const scm_t_int16 *} scm_s16vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {const scm_t_uint32 *} scm_u32vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {const scm_t_int32 *} scm_s32vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {const scm_t_uint64 *} scm_u64vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {const scm_t_int64 *} scm_s64vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {const float *} scm_f23vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {const double *} scm_f64vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {const float *} scm_c32vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {const double *} scm_c64vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
Like @code{scm_vector_elements} (@pxref{Vector Accessing from C}), but
returns a pointer to the elements of a uniform numeric vector of the
indicated kind.
@end deftypefn

@deftypefn {C Function} {scm_t_uint8 *} scm_u8vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {scm_t_int8 *} scm_s8vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {scm_t_uint16 *} scm_u16vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {scm_t_int16 *} scm_s16vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {scm_t_uint32 *} scm_u32vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {scm_t_int32 *} scm_s32vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {scm_t_uint64 *} scm_u64vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {scm_t_int64 *} scm_s64vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {float *} scm_f23vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {double *} scm_f64vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {float *} scm_c32vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
@deftypefnx {C Function} {double *} scm_c64vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
Like @code{scm_vector_writable_elements} (@pxref{Vector Accessing from
C}), but returns a pointer to the elements of a uniform numeric vector
of the indicated kind.
@end deftypefn

@node SRFI-4 Generic Operations
@subsubsection SRFI-4 - Generic operations

Guile also provides procedures that operate on all types of uniform numeric
vectors.  In what is probably a bug, these procedures are currently available in
the default environment as well; however prudent hackers will make sure to
import @code{(srfi srfi-4 gnu)} before using these.

@deftypefn {C Function} int scm_is_uniform_vector (SCM uvec)
Return non-zero when @var{uvec} is a uniform numeric vector, zero
otherwise.
@end deftypefn

@deftypefn {C Function} size_t scm_c_uniform_vector_length (SCM uvec)
Return the number of elements of @var{uvec} as a @code{size_t}.
@end deftypefn

@deffn  {Scheme Procedure} uniform-vector? obj
@deffnx {C Function} scm_uniform_vector_p (obj)
Return @code{#t} if @var{obj} is a homogeneous numeric vector of the
indicated type.
@end deffn

@deffn  {Scheme Procedure} uniform-vector-length vec
@deffnx {C Function} scm_uniform_vector_length (vec)
Return the number of elements in @var{vec}.
@end deffn

@deffn  {Scheme Procedure} uniform-vector-ref vec i
@deffnx {C Function} scm_uniform_vector_ref (vec i)
Return the element at index @var{i} in @var{vec}.  The first element
in @var{vec} is index 0.
@end deffn

@deffn  {Scheme Procedure} uniform-vector-set! vec i value
@deffnx {C Function} scm_uniform_vector_set_x (vec i value)
Set the element at index @var{i} in @var{vec} to @var{value}.  The
first element in @var{vec} is index 0.  The return value is
unspecified.
@end deffn

@deffn  {Scheme Procedure} uniform-vector->list vec
@deffnx {C Function} scm_uniform_vector_to_list (vec)
Return a newly allocated list holding all elements of @var{vec}.
@end deffn

@deftypefn  {C Function} {const void *} scm_uniform_vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
Like @code{scm_vector_elements} (@pxref{Vector Accessing from C}), but
returns a pointer to the elements of a uniform numeric vector.
@end deftypefn

@deftypefn  {C Function} {void *} scm_uniform_vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
Like @code{scm_vector_writable_elements} (@pxref{Vector Accessing from
C}), but returns a pointer to the elements of a uniform numeric vector.
@end deftypefn

Unless you really need to the limited generality of these functions, it is best
to use the type-specific functions, or the generalized vector accessors.

@node SRFI-4 and Bytevectors
@subsubsection SRFI-4 - Relation to bytevectors

Guile implements SRFI-4 vectors using bytevectors (@pxref{Bytevectors}). Often
when you have a numeric vector, you end up wanting to write its bytes somewhere,
or have access to the underlying bytes, or read in bytes from somewhere else.
Bytevectors are very good at this sort of thing. But the SRFI-4 APIs are nicer
to use when doing number-crunching, because they are addressed by element and
not by byte.

So as a compromise, Guile allows all bytevector functions to operate on numeric
vectors. They address the underlying bytes in the native endianness, as one
would expect.

Following the same reasoning, that it's just bytes underneath, Guile also allows
uniform vectors of a given type to be accessed as if they were of any type. One
can fill a @nicode{u32vector}, and access its elements with
@nicode{u8vector-ref}. One can use @nicode{f64vector-ref} on bytevectors. It's
all the same to Guile.

In this way, uniform numeric vectors may be written to and read from
input/output ports using the procedures that operate on bytevectors.

@xref{Bytevectors}, for more information.


@node SRFI-4 Extensions
@subsubsection SRFI-4 - Guile extensions

Guile defines some useful extensions to SRFI-4, which are not available in the
default Guile environment. They may be imported by loading the extensions
module:

@example
(use-modules (srfi srfi-4 gnu))
@end example

@deffn  {Scheme Procedure} any->u8vector obj
@deffnx {Scheme Procedure} any->s8vector obj
@deffnx {Scheme Procedure} any->u16vector obj
@deffnx {Scheme Procedure} any->s16vector obj
@deffnx {Scheme Procedure} any->u32vector obj
@deffnx {Scheme Procedure} any->s32vector obj
@deffnx {Scheme Procedure} any->u64vector obj
@deffnx {Scheme Procedure} any->s64vector obj
@deffnx {Scheme Procedure} any->f32vector obj
@deffnx {Scheme Procedure} any->f64vector obj
@deffnx {Scheme Procedure} any->c32vector obj
@deffnx {Scheme Procedure} any->c64vector obj
@deffnx {C Function} scm_any_to_u8vector (obj)
@deffnx {C Function} scm_any_to_s8vector (obj)
@deffnx {C Function} scm_any_to_u16vector (obj)
@deffnx {C Function} scm_any_to_s16vector (obj)
@deffnx {C Function} scm_any_to_u32vector (obj)
@deffnx {C Function} scm_any_to_s32vector (obj)
@deffnx {C Function} scm_any_to_u64vector (obj)
@deffnx {C Function} scm_any_to_s64vector (obj)
@deffnx {C Function} scm_any_to_f32vector (obj)
@deffnx {C Function} scm_any_to_f64vector (obj)
@deffnx {C Function} scm_any_to_c32vector (obj)
@deffnx {C Function} scm_any_to_c64vector (obj)
Return a (maybe newly allocated) uniform numeric vector of the indicated
type, initialized with the elements of @var{obj}, which must be a list,
a vector, or a uniform vector.  When @var{obj} is already a suitable
uniform numeric vector, it is returned unchanged.
@end deffn


@node SRFI-6
@subsection SRFI-6 - Basic String Ports
@cindex SRFI-6

SRFI-6 defines the procedures @code{open-input-string},
@code{open-output-string} and @code{get-output-string}.  These
procedures are included in the Guile core, so using this module does not
make any difference at the moment.  But it is possible that support for
SRFI-6 will be factored out of the core library in the future, so using
this module does not hurt, after all.

@node SRFI-8
@subsection SRFI-8 - receive
@cindex SRFI-8

@code{receive} is a syntax for making the handling of multiple-value
procedures easier.  It is documented in @xref{Multiple Values}.


@node SRFI-9
@subsection SRFI-9 - define-record-type
@cindex SRFI-9
@cindex record

This SRFI is a syntax for defining new record types and creating
predicate, constructor, and field getter and setter functions.  In
Guile this is simply an alternate interface to the core record
functionality (@pxref{Records}).  It can be used with,

@example
(use-modules (srfi srfi-9))
@end example

@deffn {library syntax} define-record-type type @* (constructor fieldname @dots{}) @* predicate @* (fieldname accessor [modifier]) @dots{}
@sp 1
Create a new record type, and make various @code{define}s for using
it.  This syntax can only occur at the top-level, not nested within
some other form.

@var{type} is bound to the record type, which is as per the return
from the core @code{make-record-type}.  @var{type} also provides the
name for the record, as per @code{record-type-name}.

@var{constructor} is bound to a function to be called as
@code{(@var{constructor} fieldval @dots{})} to create a new record of
this type.  The arguments are initial values for the fields, one
argument for each field, in the order they appear in the
@code{define-record-type} form.

The @var{fieldname}s provide the names for the record fields, as per
the core @code{record-type-fields} etc, and are referred to in the
subsequent accessor/modifier forms.

@var{predictate} is bound to a function to be called as
@code{(@var{predicate} obj)}.  It returns @code{#t} or @code{#f}
according to whether @var{obj} is a record of this type.

Each @var{accessor} is bound to a function to be called
@code{(@var{accessor} record)} to retrieve the respective field from a
@var{record}.  Similarly each @var{modifier} is bound to a function to
be called @code{(@var{modifier} record val)} to set the respective
field in a @var{record}.
@end deffn

@noindent
An example will illustrate typical usage,

@example
(define-record-type employee-type
  (make-employee name age salary)
  employee?
  (name    get-employee-name)
  (age     get-employee-age    set-employee-age)
  (salary  get-employee-salary set-employee-salary))
@end example

This creates a new employee data type, with name, age and salary
fields.  Accessor functions are created for each field, but no
modifier function for the name (the intention in this example being
that it's established only when an employee object is created).  These
can all then be used as for example,

@example
employee-type @result{} #<record-type employee-type>

(define fred (make-employee "Fred" 45 20000.00))

(employee? fred)        @result{} #t
(get-employee-age fred) @result{} 45
(set-employee-salary fred 25000.00)  ;; pay rise
@end example

The functions created by @code{define-record-type} are ordinary
top-level @code{define}s.  They can be redefined or @code{set!} as
desired, exported from a module, etc.

@unnumberedsubsubsec Custom Printers

You may use @code{set-record-type-printer!} to customize the default printing
behavior of records. This is a Guile extension and is not part of SRFI-9. It is
located in the @nicode{(srfi srfi-9 gnu)} module.

@deffn {Scheme Syntax} set-record-type-printer! name thunk
Where @var{type} corresponds to the first argument of @code{define-record-type},
and @var{thunk} is a procedure accepting two arguments, the record to print, and
an output port.
@end deffn

@noindent
This example prints the employee's name in brackets, for instance @code{[Fred]}.

@example
(set-record-type-printer! employee-type
  (lambda (record port)
    (write-char #\[ port)
    (display (get-employee-name record) port)
    (write-char #\] port)))
@end example

@node SRFI-10
@subsection SRFI-10 - Hash-Comma Reader Extension
@cindex SRFI-10

@cindex hash-comma
@cindex #,()
This SRFI implements a reader extension @code{#,()} called hash-comma.
It allows the reader to give new kinds of objects, for use both in
data and as constants or literals in source code.  This feature is
available with

@example
(use-modules (srfi srfi-10))
@end example

@noindent
The new read syntax is of the form

@example
#,(@var{tag} @var{arg}@dots{})
@end example

@noindent
where @var{tag} is a symbol and the @var{arg}s are objects taken as
parameters.  @var{tag}s are registered with the following procedure.

@deffn {Scheme Procedure} define-reader-ctor tag proc
Register @var{proc} as the constructor for a hash-comma read syntax
starting with symbol @var{tag}, ie. @nicode{#,(@var{tag} arg@dots{})}.
@var{proc} is called with the given arguments @code{(@var{proc}
arg@dots{})} and the object it returns is the result of the read.
@end deffn

@noindent
For example, a syntax giving a list of @var{N} copies of an object.

@example
(define-reader-ctor 'repeat
  (lambda (obj reps)
    (make-list reps obj)))

(display '#,(repeat 99 3))
@print{} (99 99 99)
@end example

Notice the quote @nicode{'} when the @nicode{#,( )} is used.  The
@code{repeat} handler returns a list and the program must quote to use
it literally, the same as any other list.  Ie.

@example
(display '#,(repeat 99 3))
@result{}
(display '(99 99 99))
@end example

When a handler returns an object which is self-evaluating, like a
number or a string, then there's no need for quoting, just as there's
no need when giving those directly as literals.  For example an
addition,

@example
(define-reader-ctor 'sum
  (lambda (x y)
    (+ x y)))
(display #,(sum 123 456)) @print{} 579
@end example

A typical use for @nicode{#,()} is to get a read syntax for objects
which don't otherwise have one.  For example, the following allows a
hash table to be given literally, with tags and values, ready for fast
lookup.

@example
(define-reader-ctor 'hash
  (lambda elems
    (let ((table (make-hash-table)))
      (for-each (lambda (elem)
                  (apply hash-set! table elem))
                elems)
      table)))

(define (animal->family animal)
  (hash-ref '#,(hash ("tiger" "cat")
                     ("lion"  "cat")
                     ("wolf"  "dog"))
            animal))

(animal->family "lion") @result{} "cat"
@end example

Or for example the following is a syntax for a compiled regular
expression (@pxref{Regular Expressions}).

@example
(use-modules (ice-9 regex))

(define-reader-ctor 'regexp make-regexp)

(define (extract-angs str)
  (let ((match (regexp-exec '#,(regexp "<([A-Z0-9]+)>") str)))
    (and match
         (match:substring match 1))))

(extract-angs "foo <BAR> quux") @result{} "BAR"
@end example

@sp 1
@nicode{#,()} is somewhat similar to @code{define-macro}
(@pxref{Macros}) in that handler code is run to produce a result, but
@nicode{#,()} operates at the read stage, so it can appear in data for
@code{read} (@pxref{Scheme Read}), not just in code to be executed.

Because @nicode{#,()} is handled at read-time it has no direct access
to variables etc.  A symbol in the arguments is just a symbol, not a
variable reference.  The arguments are essentially constants, though
the handler procedure can use them in any complicated way it might
want.

Once @code{(srfi srfi-10)} has loaded, @nicode{#,()} is available
globally, there's no need to use @code{(srfi srfi-10)} in later
modules.  Similarly the tags registered are global and can be used
anywhere once registered.

There's no attempt to record what previous @nicode{#,()} forms have
been seen, if two identical forms occur then two calls are made to the
handler procedure.  The handler might like to maintain a cache or
similar to avoid making copies of large objects, depending on expected
usage.

In code the best uses of @nicode{#,()} are generally when there's a
lot of objects of a particular kind as literals or constants.  If
there's just a few then some local variables and initializers are
fine, but that becomes tedious and error prone when there's a lot, and
the anonymous and compact syntax of @nicode{#,()} is much better.


@node SRFI-11
@subsection SRFI-11 - let-values
@cindex SRFI-11

@findex let-values
@findex let*-values
This module implements the binding forms for multiple values
@code{let-values} and @code{let*-values}.  These forms are similar to
@code{let} and @code{let*} (@pxref{Local Bindings}), but they support
binding of the values returned by multiple-valued expressions.

Write @code{(use-modules (srfi srfi-11))} to make the bindings
available.

@lisp
(let-values (((x y) (values 1 2))
             ((z f) (values 3 4)))
   (+ x y z f))
@result{}
10
@end lisp

@code{let-values} performs all bindings simultaneously, which means that
no expression in the binding clauses may refer to variables bound in the
same clause list.  @code{let*-values}, on the other hand, performs the
bindings sequentially, just like @code{let*} does for single-valued
expressions.


@node SRFI-13
@subsection SRFI-13 - String Library
@cindex SRFI-13

The SRFI-13 procedures are always available, @xref{Strings}.

@node SRFI-14
@subsection SRFI-14 - Character-set Library
@cindex SRFI-14

The SRFI-14 data type and procedures are always available,
@xref{Character Sets}.

@node SRFI-16
@subsection SRFI-16 - case-lambda
@cindex SRFI-16
@cindex variable arity
@cindex arity, variable

SRFI-16 defines a variable-arity @code{lambda} form,
@code{case-lambda}. This form is available in the default Guile
environment. @xref{Case-lambda}, for more information.

@node SRFI-17
@subsection SRFI-17 - Generalized set!
@cindex SRFI-17

This SRFI implements a generalized @code{set!}, allowing some
``referencing'' functions to be used as the target location of a
@code{set!}.  This feature is available from

@example
(use-modules (srfi srfi-17))
@end example

@noindent
For example @code{vector-ref} is extended so that

@example
(set! (vector-ref vec idx) new-value)
@end example

@noindent
is equivalent to

@example
(vector-set! vec idx new-value)
@end example

The idea is that a @code{vector-ref} expression identifies a location,
which may be either fetched or stored.  The same form is used for the
location in both cases, encouraging visual clarity.  This is similar
to the idea of an ``lvalue'' in C.

The mechanism for this kind of @code{set!} is in the Guile core
(@pxref{Procedures with Setters}).  This module adds definitions of
the following functions as procedures with setters, allowing them to
be targets of a @code{set!},

@quotation
@nicode{car}, @nicode{cdr}, @nicode{caar}, @nicode{cadr},
@nicode{cdar}, @nicode{cddr}, @nicode{caaar}, @nicode{caadr},
@nicode{cadar}, @nicode{caddr}, @nicode{cdaar}, @nicode{cdadr},
@nicode{cddar}, @nicode{cdddr}, @nicode{caaaar}, @nicode{caaadr},
@nicode{caadar}, @nicode{caaddr}, @nicode{cadaar}, @nicode{cadadr},
@nicode{caddar}, @nicode{cadddr}, @nicode{cdaaar}, @nicode{cdaadr},
@nicode{cdadar}, @nicode{cdaddr}, @nicode{cddaar}, @nicode{cddadr},
@nicode{cdddar}, @nicode{cddddr}

@nicode{string-ref}, @nicode{vector-ref}
@end quotation

The SRFI specifies @code{setter} (@pxref{Procedures with Setters}) as
a procedure with setter, allowing the setter for a procedure to be
changed, eg.@: @code{(set! (setter foo) my-new-setter-handler)}.
Currently Guile does not implement this, a setter can only be
specified on creation (@code{getter-with-setter} below).

@defun getter-with-setter
The same as the Guile core @code{make-procedure-with-setter}
(@pxref{Procedures with Setters}).
@end defun


@node SRFI-18
@subsection SRFI-18 - Multithreading support
@cindex SRFI-18

This is an implementation of the SRFI-18 threading and synchronization
library.  The functions and variables described here are provided by

@example
(use-modules (srfi srfi-18))
@end example

As a general rule, the data types and functions in this SRFI-18
implementation are compatible with the types and functions in Guile's
core threading code.  For example, mutexes created with the SRFI-18 
@code{make-mutex} function can be passed to the built-in Guile 
function @code{lock-mutex} (@pxref{Mutexes and Condition Variables}),
and mutexes created with the built-in Guile function @code{make-mutex}
can be passed to the SRFI-18 function @code{mutex-lock!}.  Cases in
which this does not hold true are noted in the following sections.

@menu
* SRFI-18 Threads::             Executing code 
* SRFI-18 Mutexes::             Mutual exclusion devices
* SRFI-18 Condition variables:: Synchronizing of groups of threads
* SRFI-18 Time::                Representation of times and durations
* SRFI-18 Exceptions::          Signalling and handling errors
@end menu

@node SRFI-18 Threads
@subsubsection SRFI-18 Threads

Threads created by SRFI-18 differ in two ways from threads created by 
Guile's built-in thread functions.  First, a thread created by SRFI-18
@code{make-thread} begins in a blocked state and will not start 
execution until @code{thread-start!} is called on it.  Second, SRFI-18
threads are constructed with a top-level exception handler that 
captures any exceptions that are thrown on thread exit.  In all other
regards, SRFI-18 threads are identical to normal Guile threads.

@defun current-thread
Returns the thread that called this function.  This is the same
procedure as the same-named built-in procedure @code{current-thread}
(@pxref{Threads}).
@end defun

@defun thread? obj
Returns @code{#t} if @var{obj} is a thread, @code{#f} otherwise.  This
is the same procedure as the same-named built-in procedure 
@code{thread?} (@pxref{Threads}).
@end defun

@defun make-thread thunk [name]
Call @code{thunk} in a new thread and with a new dynamic state,
returning the new thread and optionally assigning it the object name
@var{name}, which may be any Scheme object.

Note that the name @code{make-thread} conflicts with the 
@code{(ice-9 threads)} function @code{make-thread}.  Applications 
wanting to use both of these functions will need to refer to them by 
different names.
@end defun

@defun thread-name thread
Returns the name assigned to @var{thread} at the time of its creation,
or @code{#f} if it was not given a name.
@end defun

@defun thread-specific thread
@defunx thread-specific-set! thread obj
Get or set the ``object-specific'' property of @var{thread}.  In
Guile's implementation of SRFI-18, this value is stored as an object
property, and will be @code{#f} if not set.
@end defun

@defun thread-start! thread
Unblocks @var{thread} and allows it to begin execution if it has not
done so already.
@end defun

@defun thread-yield!
If one or more threads are waiting to execute, calling 
@code{thread-yield!} forces an immediate context switch to one of them.
Otherwise, @code{thread-yield!} has no effect.  @code{thread-yield!} 
behaves identically to the Guile built-in function @code{yield}.
@end defun

@defun thread-sleep! timeout
The current thread waits until the point specified by the time object
@var{timeout} is reached (@pxref{SRFI-18 Time}).  This blocks the 
thread only if @var{timeout} represents a point in the future.  it is 
an error for @var{timeout} to be @code{#f}.
@end defun

@defun thread-terminate! thread
Causes an abnormal termination of @var{thread}.  If @var{thread} is
not already terminated, all mutexes owned by @var{thread} become
unlocked/abandoned.  If @var{thread} is the current thread, 
@code{thread-terminate!} does not return.  Otherwise 
@code{thread-terminate!} returns an unspecified value; the termination
of @var{thread} will occur before @code{thread-terminate!} returns.  
Subsequent attempts to join on @var{thread} will cause a ``terminated 
thread exception'' to be raised.

@code{thread-terminate!} is compatible with the thread cancellation
procedures in the core threads API (@pxref{Threads}) in that if a 
cleanup handler has been installed for the target thread, it will be 
called before the thread exits and its return value (or exception, if
any) will be stored for later retrieval via a call to 
@code{thread-join!}.
@end defun

@defun thread-join! thread [timeout [timeout-val]]
Wait for @var{thread} to terminate and return its exit value.  When a 
time value @var{timeout} is given, it specifies a point in time where
the waiting should be aborted.  When the waiting is aborted, 
@var{timeoutval} is returned if it is specified; otherwise, a
@code{join-timeout-exception} exception is raised 
(@pxref{SRFI-18 Exceptions}).  Exceptions may also be raised if the 
thread was terminated by a call to @code{thread-terminate!} 
(@code{terminated-thread-exception} will be raised) or if the thread 
exited by raising an exception that was handled by the top-level 
exception handler (@code{uncaught-exception} will be raised; the 
original exception can be retrieved using 
@code{uncaught-exception-reason}).
@end defun


@node SRFI-18 Mutexes
@subsubsection SRFI-18 Mutexes

The behavior of Guile's built-in mutexes is parameterized via a set of
flags passed to the @code{make-mutex} procedure in the core
(@pxref{Mutexes and Condition Variables}).  To satisfy the requirements
for mutexes specified by SRFI-18, the @code{make-mutex} procedure
described below sets the following flags:
@itemize @bullet
@item
@code{recursive}: the mutex can be locked recursively
@item
@code{unchecked-unlock}: attempts to unlock a mutex that is already
unlocked will not raise an exception
@item
@code{allow-external-unlock}: the mutex can be unlocked by any thread,
not just the thread that locked it originally
@end itemize

@defun make-mutex [name]
Returns a new mutex, optionally assigning it the object name 
@var{name}, which may be any Scheme object.  The returned mutex will be
created with the configuration described above.  Note that the name 
@code{make-mutex} conflicts with Guile core function @code{make-mutex}.
Applications wanting to use both of these functions will need to refer 
to them by different names.
@end defun

@defun mutex-name mutex
Returns the name assigned to @var{mutex} at the time of its creation, 
or @code{#f} if it was not given a name.
@end defun

@defun mutex-specific mutex
@defunx mutex-specific-set! mutex obj
Get or set the ``object-specific'' property of @var{mutex}.  In Guile's
implementation of SRFI-18, this value is stored as an object property, 
and will be @code{#f} if not set.
@end defun

@defun mutex-state mutex
Returns information about the state of @var{mutex}.  Possible values 
are:
@itemize @bullet
@item
thread @code{T}: the mutex is in the locked/owned state and thread T
is the owner of the mutex
@item 
symbol @code{not-owned}: the mutex is in the locked/not-owned state
@item
symbol @code{abandoned}: the mutex is in the unlocked/abandoned state
@item
symbol @code{not-abandoned}: the mutex is in the 
unlocked/not-abandoned state 
@end itemize
@end defun

@defun mutex-lock! mutex [timeout [thread]]
Lock @var{mutex}, optionally specifying a time object @var{timeout}
after which to abort the lock attempt and a thread @var{thread} giving
a new owner for @var{mutex} different than the current thread.  This 
procedure has the same behavior as the @code{lock-mutex} procedure in 
the core library.
@end defun

@defun mutex-unlock! mutex [condition-variable [timeout]]
Unlock @var{mutex}, optionally specifying a condition variable
@var{condition-variable} on which to wait, either indefinitely or,
optionally, until the time object @var{timeout} has passed, to be
signalled.  This procedure has the same behavior as the 
@code{unlock-mutex} procedure in the core library.
@end defun


@node SRFI-18 Condition variables
@subsubsection SRFI-18 Condition variables

SRFI-18 does not specify a ``wait'' function for condition variables.
Waiting on a condition variable can be simulated using the SRFI-18
@code{mutex-unlock!} function described in the previous section, or
Guile's built-in @code{wait-condition-variable} procedure can be used.

@defun condition-variable? obj
Returns @code{#t} if @var{obj} is a condition variable, @code{#f}
otherwise.  This is the same procedure as the same-named built-in 
procedure
(@pxref{Mutexes and Condition Variables, @code{condition-variable?}}).
@end defun

@defun make-condition-variable [name]
Returns a new condition variable, optionally assigning it the object
name @var{name}, which may be any Scheme object.  This procedure 
replaces a procedure of the same name in the core library.
@end defun

@defun condition-variable-name condition-variable
Returns the name assigned to @var{thread} at the time of its creation,
or @code{#f} if it was not given a name.
@end defun

@defun condition-variable-specific condition-variable
@defunx condition-variable-specific-set! condition-variable obj
Get or set the ``object-specific'' property of 
@var{condition-variable}.  In Guile's implementation of SRFI-18, this
value is stored as an object property, and will be @code{#f} if not 
set.
@end defun

@defun condition-variable-signal! condition-variable
@defunx condition-variable-broadcast! condition-variable
Wake up one thread that is waiting for @var{condition-variable}, in
the case of @code{condition-variable-signal!}, or all threads waiting
for it, in the case of @code{condition-variable-broadcast!}.  The
behavior of these procedures is equivalent to that of the procedures
@code{signal-condition-variable} and 
@code{broadcast-condition-variable} in the core library.
@end defun


@node SRFI-18 Time
@subsubsection SRFI-18 Time

The SRFI-18 time functions manipulate time in two formats: a 
``time object'' type that represents an absolute point in time in some 
implementation-specific way; and the number of seconds since some 
unspecified ``epoch''.  In Guile's implementation, the epoch is the
Unix epoch, 00:00:00 UTC, January 1, 1970.

@defun current-time
Return the current time as a time object.  This procedure replaces 
the procedure of the same name in the core library, which returns the
current time in seconds since the epoch.
@end defun

@defun time? obj
Returns @code{#t} if @var{obj} is a time object, @code{#f} otherwise.
@end defun

@defun time->seconds time
@defunx seconds->time seconds
Convert between time objects and numerical values representing the
number of seconds since the epoch.  When converting from a time object 
to seconds, the return value is the number of seconds between 
@var{time} and the epoch.  When converting from seconds to a time 
object, the return value is a time object that represents a time 
@var{seconds} seconds after the epoch.
@end defun


@node SRFI-18 Exceptions
@subsubsection SRFI-18 Exceptions

SRFI-18 exceptions are identical to the exceptions provided by 
Guile's implementation of SRFI-34.  The behavior of exception 
handlers invoked to handle exceptions thrown from SRFI-18 functions,
however, differs from the conventional behavior of SRFI-34 in that
the continuation of the handler is the same as that of the call to
the function.  Handlers are called in a tail-recursive manner; the
exceptions do not ``bubble up''.

@defun current-exception-handler
Returns the current exception handler.
@end defun

@defun with-exception-handler handler thunk
Installs @var{handler} as the current exception handler and calls the
procedure @var{thunk} with no arguments, returning its value as the 
value of the exception.  @var{handler} must be a procedure that accepts
a single argument. The current exception handler at the time this 
procedure is called will be restored after the call returns.
@end defun

@defun raise obj
Raise @var{obj} as an exception.  This is the same procedure as the
same-named procedure defined in SRFI 34.
@end defun

@defun join-timeout-exception? obj
Returns @code{#t} if @var{obj} is an exception raised as the result of 
performing a timed join on a thread that does not exit within the
specified timeout, @code{#f} otherwise.
@end defun

@defun abandoned-mutex-exception? obj
Returns @code{#t} if @var{obj} is an exception raised as the result of
attempting to lock a mutex that has been abandoned by its owner thread,
@code{#f} otherwise.
@end defun

@defun terminated-thread-exception? obj
Returns @code{#t} if @var{obj} is an exception raised as the result of 
joining on a thread that exited as the result of a call to
@code{thread-terminate!}.
@end defun

@defun uncaught-exception? obj
@defunx uncaught-exception-reason exc
@code{uncaught-exception?} returns @code{#t} if @var{obj} is an 
exception thrown as the result of joining a thread that exited by
raising an exception that was handled by the top-level exception
handler installed by @code{make-thread}.  When this occurs, the 
original exception is preserved as part of the exception thrown by
@code{thread-join!} and can be accessed by calling 
@code{uncaught-exception-reason} on that exception.  Note that
because this exception-preservation mechanism is a side-effect of
@code{make-thread}, joining on threads that exited as described above
but were created by other means will not raise this 
@code{uncaught-exception} error.
@end defun


@node SRFI-19
@subsection SRFI-19 - Time/Date Library
@cindex SRFI-19
@cindex time
@cindex date

This is an implementation of the SRFI-19 time/date library.  The
functions and variables described here are provided by

@example
(use-modules (srfi srfi-19))
@end example

@strong{Caution}: The current code in this module incorrectly extends
the Gregorian calendar leap year rule back prior to the introduction
of those reforms in 1582 (or the appropriate year in various
countries).  The Julian calendar was used prior to 1582, and there
were 10 days skipped for the reform, but the code doesn't implement
that.

This will be fixed some time.  Until then calculations for 1583
onwards are correct, but prior to that any day/month/year and day of
the week calculations are wrong.

@menu
* SRFI-19 Introduction::        
* SRFI-19 Time::                
* SRFI-19 Date::                
* SRFI-19 Time/Date conversions::  
* SRFI-19 Date to string::      
* SRFI-19 String to date::      
@end menu

@node SRFI-19 Introduction
@subsubsection SRFI-19 Introduction

@cindex universal time
@cindex atomic time
@cindex UTC
@cindex TAI
This module implements time and date representations and calculations,
in various time systems, including universal time (UTC) and atomic
time (TAI).

For those not familiar with these time systems, TAI is based on a
fixed length second derived from oscillations of certain atoms.  UTC
differs from TAI by an integral number of seconds, which is increased
or decreased at announced times to keep UTC aligned to a mean solar
day (the orbit and rotation of the earth are not quite constant).

@cindex leap second
So far, only increases in the TAI
@tex
$\leftrightarrow$
@end tex
@ifnottex
<->
@end ifnottex
UTC difference have been needed.  Such an increase is a ``leap
second'', an extra second of TAI introduced at the end of a UTC day.
When working entirely within UTC this is never seen, every day simply
has 86400 seconds.  But when converting from TAI to a UTC date, an
extra 23:59:60 is present, where normally a day would end at 23:59:59.
Effectively the UTC second from 23:59:59 to 00:00:00 has taken two TAI
seconds.

@cindex system clock
In the current implementation, the system clock is assumed to be UTC,
and a table of leap seconds in the code converts to TAI.  See comments
in @file{srfi-19.scm} for how to update this table.

@cindex julian day
@cindex modified julian day
Also, for those not familiar with the terminology, a @dfn{Julian Day}
is a real number which is a count of days and fraction of a day, in
UTC, starting from -4713-01-01T12:00:00Z, ie.@: midday Monday 1 Jan
4713 B.C.  A @dfn{Modified Julian Day} is the same, but starting from
1858-11-17T00:00:00Z, ie.@: midnight 17 November 1858 UTC.  That time
is julian day 2400000.5.

@c  The SRFI-1 spec says -4714-11-24T12:00:00Z (November 24, -4714 at
@c  noon, UTC), but this is incorrect.  It looks like it might have
@c  arisen from the code incorrectly treating years a multiple of 100
@c  but not 400 prior to 1582 as non-leap years, where instead the Julian
@c  calendar should be used so all multiples of 4 before 1582 are leap
@c  years.


@node SRFI-19 Time
@subsubsection SRFI-19 Time
@cindex time

A @dfn{time} object has type, seconds and nanoseconds fields
representing a point in time starting from some epoch.  This is an
arbitrary point in time, not just a time of day.  Although times are
represented in nanoseconds, the actual resolution may be lower.

The following variables hold the possible time types.  For instance
@code{(current-time time-process)} would give the current CPU process
time.

@defvar time-utc
Universal Coordinated Time (UTC).
@cindex UTC
@end defvar

@defvar time-tai
International Atomic Time (TAI).
@cindex TAI
@end defvar

@defvar time-monotonic
Monotonic time, meaning a monotonically increasing time starting from
an unspecified epoch.

Note that in the current implementation @code{time-monotonic} is the
same as @code{time-tai}, and unfortunately is therefore affected by
adjustments to the system clock.  Perhaps this will change in the
future.
@end defvar

@defvar time-duration
A duration, meaning simply a difference between two times.
@end defvar

@defvar time-process
CPU time spent in the current process, starting from when the process
began.
@cindex process time
@end defvar

@defvar time-thread
CPU time spent in the current thread.  Not currently implemented.
@cindex thread time
@end defvar

@sp 1
@defun time? obj
Return @code{#t} if @var{obj} is a time object, or @code{#f} if not.
@end defun

@defun make-time type nanoseconds seconds
Create a time object with the given @var{type}, @var{seconds} and
@var{nanoseconds}.
@end defun

@defun time-type time
@defunx time-nanosecond time
@defunx time-second time
@defunx set-time-type! time type
@defunx set-time-nanosecond! time nsec
@defunx set-time-second! time sec
Get or set the type, seconds or nanoseconds fields of a time object.

@code{set-time-type!} merely changes the field, it doesn't convert the
time value.  For conversions, see @ref{SRFI-19 Time/Date conversions}.
@end defun

@defun copy-time time
Return a new time object, which is a copy of the given @var{time}.
@end defun

@defun current-time [type]
Return the current time of the given @var{type}.  The default
@var{type} is @code{time-utc}.

Note that the name @code{current-time} conflicts with the Guile core
@code{current-time} function (@pxref{Time}) as well as the SRFI-18
@code{current-time} function (@pxref{SRFI-18 Time}).  Applications 
wanting to use more than one of these functions will need to refer to
them by different names.
@end defun

@defun time-resolution [type]
Return the resolution, in nanoseconds, of the given time @var{type}.
The default @var{type} is @code{time-utc}.
@end defun

@defun time<=? t1 t2
@defunx time<? t1 t2
@defunx time=? t1 t2
@defunx time>=? t1 t2
@defunx time>? t1 t2
Return @code{#t} or @code{#f} according to the respective relation
between time objects @var{t1} and @var{t2}.  @var{t1} and @var{t2}
must be the same time type.
@end defun

@defun time-difference t1 t2
@defunx time-difference! t1 t2
Return a time object of type @code{time-duration} representing the
period between @var{t1} and @var{t2}.  @var{t1} and @var{t2} must be
the same time type.

@code{time-difference} returns a new time object,
@code{time-difference!} may modify @var{t1} to form its return.
@end defun

@defun add-duration time duration
@defunx add-duration! time duration
@defunx subtract-duration time duration
@defunx subtract-duration! time duration
Return a time object which is @var{time} with the given @var{duration}
added or subtracted.  @var{duration} must be a time object of type
@code{time-duration}.

@code{add-duration} and @code{subtract-duration} return a new time
object.  @code{add-duration!} and @code{subtract-duration!} may modify
the given @var{time} to form their return.
@end defun


@node SRFI-19 Date
@subsubsection SRFI-19 Date
@cindex date

A @dfn{date} object represents a date in the Gregorian calendar and a
time of day on that date in some timezone.

The fields are year, month, day, hour, minute, second, nanoseconds and
timezone.  A date object is immutable, its fields can be read but they
cannot be modified once the object is created.

@defun date? obj
Return @code{#t} if @var{obj} is a date object, or @code{#f} if not.
@end defun

@defun make-date nsecs seconds minutes hours date month year zone-offset
Create a new date object.
@c
@c  FIXME: What can we say about the ranges of the values.  The
@c  current code looks it doesn't normalize, but expects then in their
@c  usual range already.
@c
@end defun

@defun date-nanosecond date
Nanoseconds, 0 to 999999999.
@end defun

@defun date-second date
Seconds, 0 to 59, or 60 for a leap second.  60 is never seen when working
entirely within UTC, it's only when converting to or from TAI.
@end defun

@defun date-minute date
Minutes, 0 to 59.
@end defun

@defun date-hour date
Hour, 0 to 23.
@end defun

@defun date-day date
Day of the month, 1 to 31 (or less, according to the month).
@end defun

@defun date-month date
Month, 1 to 12.
@end defun

@defun date-year date
Year, eg.@: 2003.  Dates B.C.@: are negative, eg.@: @math{-46} is 46
B.C.  There is no year 0, year @math{-1} is followed by year 1.
@end defun

@defun date-zone-offset date
Time zone, an integer number of seconds east of Greenwich.
@end defun

@defun date-year-day date
Day of the year, starting from 1 for 1st January.
@end defun

@defun date-week-day date
Day of the week, starting from 0 for Sunday.
@end defun

@defun date-week-number date dstartw
Week of the year, ignoring a first partial week.  @var{dstartw} is the
day of the week which is taken to start a week, 0 for Sunday, 1 for
Monday, etc.
@c
@c  FIXME: The spec doesn't say whether numbering starts at 0 or 1.
@c  The code looks like it's 0, if that's the correct intention.
@c
@end defun

@c  The SRFI text doesn't actually give the default for tz-offset, but
@c  the reference implementation has the local timezone and the
@c  conversions functions all specify that, so it should be ok to
@c  document it here.
@c
@defun current-date [tz-offset]
Return a date object representing the current date/time, in UTC offset
by @var{tz-offset}.  @var{tz-offset} is seconds east of Greenwich and
defaults to the local timezone.
@end defun

@defun current-julian-day
@cindex julian day
Return the current Julian Day.
@end defun

@defun current-modified-julian-day
@cindex modified julian day
Return the current Modified Julian Day.
@end defun


@node SRFI-19 Time/Date conversions
@subsubsection SRFI-19 Time/Date conversions
@cindex time conversion
@cindex date conversion

@defun date->julian-day date
@defunx date->modified-julian-day date
@defunx date->time-monotonic date
@defunx date->time-tai date
@defunx date->time-utc date
@end defun
@defun julian-day->date jdn [tz-offset]
@defunx julian-day->time-monotonic jdn
@defunx julian-day->time-tai jdn
@defunx julian-day->time-utc jdn
@end defun
@defun modified-julian-day->date jdn [tz-offset]
@defunx modified-julian-day->time-monotonic jdn
@defunx modified-julian-day->time-tai jdn
@defunx modified-julian-day->time-utc jdn
@end defun
@defun time-monotonic->date time [tz-offset]
@defunx time-monotonic->time-tai time
@defunx time-monotonic->time-tai! time
@defunx time-monotonic->time-utc time
@defunx time-monotonic->time-utc! time
@end defun
@defun time-tai->date time [tz-offset]
@defunx time-tai->julian-day time
@defunx time-tai->modified-julian-day time
@defunx time-tai->time-monotonic time
@defunx time-tai->time-monotonic! time
@defunx time-tai->time-utc time
@defunx time-tai->time-utc! time
@end defun
@defun time-utc->date time [tz-offset]
@defunx time-utc->julian-day time
@defunx time-utc->modified-julian-day time
@defunx time-utc->time-monotonic time
@defunx time-utc->time-monotonic! time
@defunx time-utc->time-tai time
@defunx time-utc->time-tai! time
@sp 1
Convert between dates, times and days of the respective types.  For
instance @code{time-tai->time-utc} accepts a @var{time} object of type
@code{time-tai} and returns an object of type @code{time-utc}.

The @code{!} variants may modify their @var{time} argument to form
their return.  The plain functions create a new object.

For conversions to dates, @var{tz-offset} is seconds east of
Greenwich.  The default is the local timezone, at the given time, as
provided by the system, using @code{localtime} (@pxref{Time}).

On 32-bit systems, @code{localtime} is limited to a 32-bit
@code{time_t}, so a default @var{tz-offset} is only available for
times between Dec 1901 and Jan 2038.  For prior dates an application
might like to use the value in 1902, though some locations have zone
changes prior to that.  For future dates an application might like to
assume today's rules extend indefinitely.  But for correct daylight
savings transitions it will be necessary to take an offset for the
same day and time but a year in range and which has the same starting
weekday and same leap/non-leap (to support rules like last Sunday in
October).
@end defun

@node SRFI-19 Date to string
@subsubsection SRFI-19 Date to string
@cindex date to string
@cindex string, from date

@defun date->string date [format]
Convert a date to a string under the control of a format.
@var{format} should be a string containing @samp{~} escapes, which
will be expanded as per the following conversion table.  The default
@var{format} is @samp{~c}, a locale-dependent date and time.

Many of these conversion characters are the same as POSIX
@code{strftime} (@pxref{Time}), but there are some extras and some
variations.

@multitable {MMMM} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
@item @nicode{~~} @tab literal ~
@item @nicode{~a} @tab locale abbreviated weekday, eg.@: @samp{Sun}
@item @nicode{~A} @tab locale full weekday, eg.@: @samp{Sunday}
@item @nicode{~b} @tab locale abbreviated month, eg.@: @samp{Jan}
@item @nicode{~B} @tab locale full month, eg.@: @samp{January}
@item @nicode{~c} @tab locale date and time, eg.@: @*
@samp{Fri Jul 14 20:28:42-0400 2000}
@item @nicode{~d} @tab day of month, zero padded, @samp{01} to @samp{31}

@c  Spec says d/m/y, reference implementation says m/d/y.
@c  Apparently the reference code was the intention, but would like to
@c  see an errata published for the spec before contradicting it here.
@c
@c  @item @nicode{~D} @tab date @nicode{~d/~m/~y}

@item @nicode{~e} @tab day of month, blank padded, @samp{ 1} to @samp{31}
@item @nicode{~f} @tab seconds and fractional seconds,
with locale decimal point, eg.@: @samp{5.2}
@item @nicode{~h} @tab same as @nicode{~b}
@item @nicode{~H} @tab hour, 24-hour clock, zero padded, @samp{00} to @samp{23}
@item @nicode{~I} @tab hour, 12-hour clock, zero padded, @samp{01} to @samp{12}
@item @nicode{~j} @tab day of year, zero padded, @samp{001} to @samp{366}
@item @nicode{~k} @tab hour, 24-hour clock, blank padded, @samp{ 0} to @samp{23}
@item @nicode{~l} @tab hour, 12-hour clock, blank padded, @samp{ 1} to @samp{12}
@item @nicode{~m} @tab month, zero padded, @samp{01} to @samp{12}
@item @nicode{~M} @tab minute, zero padded, @samp{00} to @samp{59}
@item @nicode{~n} @tab newline
@item @nicode{~N} @tab nanosecond, zero padded, @samp{000000000} to @samp{999999999}
@item @nicode{~p} @tab locale AM or PM
@item @nicode{~r} @tab time, 12 hour clock, @samp{~I:~M:~S ~p}
@item @nicode{~s} @tab number of full seconds since ``the epoch'' in UTC
@item @nicode{~S} @tab second, zero padded @samp{00} to @samp{60} @*
(usual limit is 59, 60 is a leap second)
@item @nicode{~t} @tab horizontal tab character
@item @nicode{~T} @tab time, 24 hour clock, @samp{~H:~M:~S}
@item @nicode{~U} @tab week of year, Sunday first day of week,
@samp{00} to @samp{52}
@item @nicode{~V} @tab week of year, Monday first day of week,
@samp{01} to @samp{53}
@item @nicode{~w} @tab day of week, 0 for Sunday, @samp{0} to @samp{6}
@item @nicode{~W} @tab week of year, Monday first day of week,
@samp{00} to @samp{52}

@c  The spec has ~x as an apparent duplicate of ~W, and ~X as a locale
@c  date.  The reference code has ~x as the locale date and ~X as a
@c  locale time.  The rule is apparently that the code should be
@c  believed, but would like to see an errata for the spec before
@c  contradicting it here.
@c
@c  @item @nicode{~x} @tab week of year, Monday as first day of week,
@c  @samp{00} to @samp{53}
@c  @item @nicode{~X} @tab locale date, eg.@: @samp{07/31/00}

@item @nicode{~y} @tab year, two digits, @samp{00} to @samp{99}
@item @nicode{~Y} @tab year, full, eg.@: @samp{2003}
@item @nicode{~z} @tab time zone, RFC-822 style
@item @nicode{~Z} @tab time zone symbol (not currently implemented)
@item @nicode{~1} @tab ISO-8601 date, @samp{~Y-~m-~d}
@item @nicode{~2} @tab ISO-8601 time+zone, @samp{~k:~M:~S~z}
@item @nicode{~3} @tab ISO-8601 time, @samp{~k:~M:~S}
@item @nicode{~4} @tab ISO-8601 date/time+zone, @samp{~Y-~m-~dT~k:~M:~S~z}
@item @nicode{~5} @tab ISO-8601 date/time, @samp{~Y-~m-~dT~k:~M:~S}
@end multitable
@end defun

Conversions @samp{~D}, @samp{~x} and @samp{~X} are not currently
described here, since the specification and reference implementation
differ.

Conversion is locale-dependent on systems that support it
(@pxref{Accessing Locale Information}).  @xref{Locales,
@code{setlocale}}, for information on how to change the current
locale.


@node SRFI-19 String to date
@subsubsection SRFI-19 String to date
@cindex string to date
@cindex date, from string

@c  FIXME: Can we say what happens when an incomplete date is
@c  converted?  Ie. fields left as 0, or what?  The spec seems to be
@c  silent on this.

@defun string->date input template
Convert an @var{input} string to a date under the control of a
@var{template} string.  Return a newly created date object.

Literal characters in @var{template} must match characters in
@var{input} and @samp{~} escapes must match the input forms described
in the table below.  ``Skip to'' means characters up to one of the
given type are ignored, or ``no skip'' for no skipping.  ``Read'' is
what's then read, and ``Set'' is the field affected in the date
object.

For example @samp{~Y} skips input characters until a digit is reached,
at which point it expects a year and stores that to the year field of
the date.

@multitable {MMMM} {@nicode{char-alphabetic?}} {MMMMMMMMMMMMMMMMMMMMMMMMM} {@nicode{date-zone-offset}}
@item
@tab Skip to
@tab Read
@tab Set

@item @nicode{~~}
@tab no skip
@tab literal ~
@tab nothing

@item @nicode{~a}
@tab @nicode{char-alphabetic?}
@tab locale abbreviated weekday name
@tab nothing

@item @nicode{~A}
@tab @nicode{char-alphabetic?}
@tab locale full weekday name
@tab nothing

@c  Note that the SRFI spec says that ~b and ~B don't set anything,
@c  but that looks like a mistake.  The reference implementation sets
@c  the month field, which seems sensible and is what we describe
@c  here.

@item @nicode{~b}
@tab @nicode{char-alphabetic?}
@tab locale abbreviated month name
@tab @nicode{date-month}

@item @nicode{~B}
@tab @nicode{char-alphabetic?}
@tab locale full month name
@tab @nicode{date-month}

@item @nicode{~d}
@tab @nicode{char-numeric?}
@tab day of month
@tab @nicode{date-day}

@item @nicode{~e}
@tab no skip
@tab day of month, blank padded
@tab @nicode{date-day}

@item @nicode{~h}
@tab same as @samp{~b}

@item @nicode{~H}
@tab @nicode{char-numeric?}
@tab hour
@tab @nicode{date-hour}

@item @nicode{~k}
@tab no skip
@tab hour, blank padded
@tab @nicode{date-hour}

@item @nicode{~m}
@tab @nicode{char-numeric?}
@tab month
@tab @nicode{date-month}

@item @nicode{~M}
@tab @nicode{char-numeric?}
@tab minute
@tab @nicode{date-minute}

@item @nicode{~S}
@tab @nicode{char-numeric?}
@tab second
@tab @nicode{date-second}

@item @nicode{~y}
@tab no skip
@tab 2-digit year
@tab @nicode{date-year} within 50 years

@item @nicode{~Y}
@tab @nicode{char-numeric?}
@tab year
@tab @nicode{date-year}

@item @nicode{~z}
@tab no skip
@tab time zone
@tab date-zone-offset
@end multitable

Notice that the weekday matching forms don't affect the date object
returned, instead the weekday will be derived from the day, month and
year.

Conversion is locale-dependent on systems that support it
(@pxref{Accessing Locale Information}).  @xref{Locales,
@code{setlocale}}, for information on how to change the current
locale.
@end defun


@node SRFI-26
@subsection SRFI-26 - specializing parameters
@cindex SRFI-26
@cindex parameter specialize
@cindex argument specialize
@cindex specialize parameter

This SRFI provides a syntax for conveniently specializing selected
parameters of a function.  It can be used with,

@example
(use-modules (srfi srfi-26))
@end example

@deffn {library syntax} cut slot @dots{}
@deffnx {library syntax} cute slot @dots{}
Return a new procedure which will make a call (@var{slot} @dots{}) but
with selected parameters specialized to given expressions.

An example will illustrate the idea.  The following is a
specialization of @code{write}, sending output to
@code{my-output-port},

@example
(cut write <> my-output-port)
@result{}
(lambda (obj) (write obj my-output-port))
@end example

The special symbol @code{<>} indicates a slot to be filled by an
argument to the new procedure.  @code{my-output-port} on the other
hand is an expression to be evaluated and passed, ie.@: it specializes
the behaviour of @code{write}.

@table @nicode
@item <>
A slot to be filled by an argument from the created procedure.
Arguments are assigned to @code{<>} slots in the order they appear in
the @code{cut} form, there's no way to re-arrange arguments.

The first argument to @code{cut} is usually a procedure (or expression
giving a procedure), but @code{<>} is allowed there too.  For example,

@example
(cut <> 1 2 3)
@result{}
(lambda (proc) (proc 1 2 3))
@end example

@item <...>
A slot to be filled by all remaining arguments from the new procedure.
This can only occur at the end of a @code{cut} form.

For example, a procedure taking a variable number of arguments like
@code{max} but in addition enforcing a lower bound,

@example
(define my-lower-bound 123)

(cut max my-lower-bound <...>)
@result{}
(lambda arglist (apply max my-lower-bound arglist))
@end example
@end table

For @code{cut} the specializing expressions are evaluated each time
the new procedure is called.  For @code{cute} they're evaluated just
once, when the new procedure is created.  The name @code{cute} stands
for ``@code{cut} with evaluated arguments''.  In all cases the
evaluations take place in an unspecified order.

The following illustrates the difference between @code{cut} and
@code{cute},

@example
(cut format <> "the time is ~s" (current-time))
@result{}
(lambda (port) (format port "the time is ~s" (current-time)))

(cute format <> "the time is ~s" (current-time))
@result{}
(let ((val (current-time)))
  (lambda (port) (format port "the time is ~s" val))
@end example

(There's no provision for a mixture of @code{cut} and @code{cute}
where some expressions would be evaluated every time but others
evaluated only once.)

@code{cut} is really just a shorthand for the sort of @code{lambda}
forms shown in the above examples.  But notice @code{cut} avoids the
need to name unspecialized parameters, and is more compact.  Use in
functional programming style or just with @code{map}, @code{for-each}
or similar is typical.

@example
(map (cut * 2 <>) '(1 2 3 4))         

(for-each (cut write <> my-port) my-list)  
@end example
@end deffn

@node SRFI-30
@subsection SRFI-30 - Nested Multi-line Comments
@cindex SRFI-30

Starting from version 2.0, Guile's @code{read} supports SRFI-30/R6RS
nested multi-line comments by default, @ref{Block Comments}.

@node SRFI-31
@subsection SRFI-31 - A special form `rec' for recursive evaluation
@cindex SRFI-31
@cindex recursive expression
@findex rec

SRFI-31 defines a special form that can be used to create
self-referential expressions more conveniently.  The syntax is as
follows:

@example
@group
<rec expression> --> (rec <variable> <expression>)
<rec expression> --> (rec (<variable>+) <body>)
@end group
@end example

The first syntax can be used to create self-referential expressions,
for example:

@lisp
  guile> (define tmp (rec ones (cons 1 (delay ones))))
@end lisp

The second syntax can be used to create anonymous recursive functions:

@lisp
  guile> (define tmp (rec (display-n item n)
                       (if (positive? n)
                           (begin (display n) (display-n (- n 1))))))
  guile> (tmp 42 3)
  424242
  guile>
@end lisp


@node SRFI-34
@subsection SRFI-34 - Exception handling for programs

@cindex SRFI-34
Guile provides an implementation of
@uref{http://srfi.schemers.org/srfi-34/srfi-34.html, SRFI-34's exception
handling mechanisms} as an alternative to its own built-in mechanisms
(@pxref{Exceptions}).  It can be made available as follows:

@lisp
(use-modules (srfi srfi-34))
@end lisp

@c FIXME: Document it.


@node SRFI-35
@subsection SRFI-35 - Conditions

@cindex SRFI-35
@cindex conditions
@cindex exceptions

@uref{http://srfi.schemers.org/srfi-35/srfi-35.html, SRFI-35} implements
@dfn{conditions}, a data structure akin to records designed to convey
information about exceptional conditions between parts of a program.  It
is normally used in conjunction with SRFI-34's @code{raise}:

@lisp
(raise (condition (&message
                    (message "An error occurred"))))
@end lisp

Users can define @dfn{condition types} containing arbitrary information.
Condition types may inherit from one another.  This allows the part of
the program that handles (or ``catches'') conditions to get accurate
information about the exceptional condition that arose.

SRFI-35 conditions are made available using:

@lisp
(use-modules (srfi srfi-35))
@end lisp

The procedures available to manipulate condition types are the
following:

@deffn {Scheme Procedure} make-condition-type id parent field-names
Return a new condition type named @var{id}, inheriting from
@var{parent}, and with the fields whose names are listed in
@var{field-names}.  @var{field-names} must be a list of symbols and must
not contain names already used by @var{parent} or one of its supertypes.
@end deffn

@deffn {Scheme Procedure} condition-type? obj
Return true if @var{obj} is a condition type.
@end deffn

Conditions can be created and accessed with the following procedures:

@deffn {Scheme Procedure} make-condition type . field+value
Return a new condition of type @var{type} with fields initialized as
specified by @var{field+value}, a sequence of field names (symbols) and
values as in the following example:

@lisp
(let ((&ct (make-condition-type 'foo &condition '(a b c))))
  (make-condition &ct 'a 1 'b 2 'c 3))
@end lisp

Note that all fields of @var{type} and its supertypes must be specified.
@end deffn

@deffn {Scheme Procedure} make-compound-condition . conditions
Return a new compound condition composed of @var{conditions}.  The
returned condition has the type of each condition of @var{conditions}
(per @code{condition-has-type?}).
@end deffn

@deffn {Scheme Procedure} condition-has-type? c type
Return true if condition @var{c} has type @var{type}.
@end deffn

@deffn {Scheme Procedure} condition-ref c field-name
Return the value of the field named @var{field-name} from condition @var{c}.

If @var{c} is a compound condition and several underlying condition
types contain a field named @var{field-name}, then the value of the
first such field is returned, using the order in which conditions were
passed to @var{make-compound-condition}.
@end deffn

@deffn {Scheme Procedure} extract-condition c type
Return a condition of condition type @var{type} with the field values
specified by @var{c}.

If @var{c} is a compound condition, extract the field values from the
subcondition belonging to @var{type} that appeared first in the call to
@code{make-compound-condition} that created the condition.
@end deffn

Convenience macros are also available to create condition types and
conditions.

@deffn {library syntax} define-condition-type type supertype predicate field-spec...
Define a new condition type named @var{type} that inherits from
@var{supertype}.  In addition, bind @var{predicate} to a type predicate
that returns true when passed a condition of type @var{type} or any of
its subtypes.  @var{field-spec} must have the form @code{(field
accessor)} where @var{field} is the name of field of @var{type} and
@var{accessor} is the name of a procedure to access field @var{field} in
conditions of type @var{type}.

The example below defines condition type @code{&foo}, inheriting from
@code{&condition} with fields @code{a}, @code{b} and @code{c}:

@lisp
(define-condition-type &foo &condition
  foo-condition?
  (a  foo-a)
  (b  foo-b)
  (c  foo-c))
@end lisp
@end deffn

@deffn {library syntax} condition type-field-bindings...
Return a new condition, or compound condition, initialized according to
@var{type-field-bindings}.  Each @var{type-field-binding} must have the
form @code{(type field-specs...)}, where @var{type} is the name of a
variable bound to condition type; each @var{field-spec} must have the
form @code{(field-name value)} where @var{field-name} is a symbol
denoting the field being initialized to @var{value}.  As for
@code{make-condition}, all fields must be specified.

The following example returns a simple condition:

@lisp
(condition (&message (message "An error occurred")))
@end lisp

The one below returns a compound condition:

@lisp
(condition (&message (message "An error occurred"))
           (&serious))
@end lisp
@end deffn

Finally, SRFI-35 defines a several standard condition types.

@defvar &condition
This condition type is the root of all condition types.  It has no
fields.
@end defvar

@defvar &message
A condition type that carries a message describing the nature of the
condition to humans.
@end defvar

@deffn {Scheme Procedure} message-condition? c
Return true if @var{c} is of type @code{&message} or one of its
subtypes.
@end deffn

@deffn {Scheme Procedure} condition-message c
Return the message associated with message condition @var{c}.
@end deffn

@defvar &serious
This type describes conditions serious enough that they cannot safely be
ignored.  It has no fields.
@end defvar

@deffn {Scheme Procedure} serious-condition? c
Return true if @var{c} is of type @code{&serious} or one of its
subtypes.
@end deffn

@defvar &error
This condition describes errors, typically caused by something that has
gone wrong in the interaction of the program with the external world or
the user.
@end defvar

@deffn {Scheme Procedure} error? c
Return true if @var{c} is of type @code{&error} or one of its subtypes.
@end deffn


@node SRFI-37
@subsection SRFI-37 - args-fold
@cindex SRFI-37

This is a processor for GNU @code{getopt_long}-style program
arguments.  It provides an alternative, less declarative interface
than @code{getopt-long} in @code{(ice-9 getopt-long)}
(@pxref{getopt-long,,The (ice-9 getopt-long) Module}).  Unlike
@code{getopt-long}, it supports repeated options and any number of
short and long names per option.  Access it with:

@lisp
(use-modules (srfi srfi-37))
@end lisp

@acronym{SRFI}-37 principally provides an @code{option} type and the
@code{args-fold} function.  To use the library, create a set of
options with @code{option} and use it as a specification for invoking
@code{args-fold}.

Here is an example of a simple argument processor for the typical
@samp{--version} and @samp{--help} options, which returns a backwards
list of files given on the command line:

@lisp
(args-fold (cdr (program-arguments))
           (let ((display-and-exit-proc
                  (lambda (msg)
                    (lambda (opt name arg loads)
                      (display msg) (quit)))))
             (list (option '(#\v "version") #f #f
                           (display-and-exit-proc "Foo version 42.0\n"))
                   (option '(#\h "help") #f #f
                           (display-and-exit-proc
                            "Usage: foo scheme-file ..."))))
           (lambda (opt name arg loads)
             (error "Unrecognized option `~A'" name))
           (lambda (op loads) (cons op loads))
           '())
@end lisp

@deffn {Scheme Procedure} option names required-arg? optional-arg? processor
Return an object that specifies a single kind of program option.

@var{names} is a list of command-line option names, and should consist of
characters for traditional @code{getopt} short options and strings for
@code{getopt_long}-style long options.

@var{required-arg?} and @var{optional-arg?} are mutually exclusive;
one or both must be @code{#f}.  If @var{required-arg?}, the option
must be followed by an argument on the command line, such as
@samp{--opt=value} for long options, or an error will be signalled.
If @var{optional-arg?}, an argument will be taken if available.

@var{processor} is a procedure that takes at least 3 arguments, called
when @code{args-fold} encounters the option: the containing option
object, the name used on the command line, and the argument given for
the option (or @code{#f} if none).  The rest of the arguments are
@code{args-fold} ``seeds'', and the @var{processor} should return
seeds as well.
@end deffn

@deffn {Scheme Procedure} option-names opt
@deffnx {Scheme Procedure} option-required-arg? opt
@deffnx {Scheme Procedure} option-optional-arg? opt
@deffnx {Scheme Procedure} option-processor opt
Return the specified field of @var{opt}, an option object, as
described above for @code{option}.
@end deffn

@deffn {Scheme Procedure} args-fold args options unrecognized-option-proc operand-proc seeds @dots{}
Process @var{args}, a list of program arguments such as that returned
by @code{(cdr (program-arguments))}, in order against @var{options}, a
list of option objects as described above.  All functions called take
the ``seeds'', or the last multiple-values as multiple arguments,
starting with @var{seeds}, and must return the new seeds.  Return the
final seeds.

Call @code{unrecognized-option-proc}, which is like an option object's
processor, for any options not found in @var{options}.

Call @code{operand-proc} with any items on the command line that are
not named options.  This includes arguments after @samp{--}.  It is
called with the argument in question, as well as the seeds.
@end deffn


@node SRFI-39
@subsection SRFI-39 - Parameters
@cindex SRFI-39
@cindex parameter object
@tindex Parameter

This SRFI provides parameter objects, which implement dynamically
bound locations for values.  The functions below are available from

@example
(use-modules (srfi srfi-39))
@end example

A parameter object is a procedure.  Called with no arguments it
returns its value, called with one argument it sets the value.

@example
(define my-param (make-parameter 123))
(my-param) @result{} 123
(my-param 456)
(my-param) @result{} 456
@end example

The @code{parameterize} special form establishes new locations for
parameters, those new locations having effect within the dynamic scope
of the @code{parameterize} body.  Leaving restores the previous
locations, or re-entering through a saved continuation will again use
the new locations.

@example
(parameterize ((my-param 789))
  (my-param) @result{} 789
  )
(my-param) @result{} 456
@end example

Parameters are like dynamically bound variables in other Lisp dialects.
They allow an application to establish parameter settings (as the name
suggests) just for the execution of a particular bit of code,
restoring when done.  Examples of such parameters might be
case-sensitivity for a search, or a prompt for user input.

Global variables are not as good as parameter objects for this sort of
thing.  Changes to them are visible to all threads, but in Guile
parameter object locations are per-thread, thereby truly limiting the
effect of @code{parameterize} to just its dynamic execution.

Passing arguments to functions is thread-safe, but that soon becomes
tedious when there's more than a few or when they need to pass down
through several layers of calls before reaching the point they should
affect.  And introducing a new setting to existing code is often
easier with a parameter object than adding arguments.


@sp 1
@defun make-parameter init [converter]
Return a new parameter object, with initial value @var{init}.

A parameter object is a procedure.  When called @code{(param)} it
returns its value, or a call @code{(param val)} sets its value.  For
example,

@example
(define my-param (make-parameter 123))
(my-param) @result{} 123

(my-param 456)
(my-param) @result{} 456
@end example

If a @var{converter} is given, then a call @code{(@var{converter}
val)} is made for each value set, its return is the value stored.
Such a call is made for the @var{init} initial value too.

A @var{converter} allows values to be validated, or put into a
canonical form.  For example,

@example
(define my-param (make-parameter 123
                   (lambda (val)
                     (if (not (number? val))
                         (error "must be a number"))
                     (inexact->exact val))))
(my-param 0.75)
(my-param) @result{} 3/4
@end example
@end defun

@deffn {library syntax} parameterize ((param value) @dots{}) body @dots{}
Establish a new dynamic scope with the given @var{param}s bound to new
locations and set to the given @var{value}s.  @var{body} is evaluated
in that environment, the result is the return from the last form in
@var{body}.

Each @var{param} is an expression which is evaluated to get the
parameter object.  Often this will just be the name of a variable
holding the object, but it can be anything that evaluates to a
parameter.

The @var{param} expressions and @var{value} expressions are all
evaluated before establishing the new dynamic bindings, and they're
evaluated in an unspecified order.

For example,

@example
(define prompt (make-parameter "Type something: "))
(define (get-input)
  (display (prompt))
  ...)

(parameterize ((prompt "Type a number: "))
  (get-input)
  ...)
@end example
@end deffn

@deffn {Parameter object} current-input-port [new-port]
@deffnx {Parameter object} current-output-port [new-port]
@deffnx {Parameter object} current-error-port [new-port]
This SRFI extends the core @code{current-input-port} and
@code{current-output-port}, making them parameter objects.  The
Guile-specific @code{current-error-port} is extended too, for
consistency.  (@pxref{Default Ports}.)

This is an upwardly compatible extension, a plain call like
@code{(current-input-port)} still returns the current input port, and
@code{set-current-input-port} can still be used.  But the port can now
also be set with @code{(current-input-port my-port)} and bound
dynamically with @code{parameterize}.
@end deffn

@defun with-parameters* param-list value-list thunk
Establish a new dynamic scope, as per @code{parameterize} above,
taking parameters from @var{param-list} and corresponding values from
@var{values-list}.  A call @code{(@var{thunk})} is made in the new
scope and the result from that @var{thunk} is the return from
@code{with-parameters*}.

This function is a Guile-specific addition to the SRFI, it's similar
to the core @code{with-fluids*} (@pxref{Fluids and Dynamic States}).
@end defun


@sp 1
Parameter objects are implemented using fluids (@pxref{Fluids and
Dynamic States}), so each dynamic state has it's own parameter
locations.  That includes the separate locations when outside any
@code{parameterize} form.  When a parameter is created it gets a
separate initial location in each dynamic state, all initialized to
the given @var{init} value.

As alluded to above, because each thread usually has a separate
dynamic state, each thread has it's own locations behind parameter
objects, and changes in one thread are not visible to any other.  When
a new dynamic state or thread is created, the values of parameters in
the originating context are copied, into new locations.

SRFI-39 doesn't specify the interaction between parameter objects and
threads, so the threading behaviour described here should be regarded
as Guile-specific.


@node SRFI-55
@subsection SRFI-55 - Requiring Features
@cindex SRFI-55

SRFI-55 provides @code{require-extension} which is a portable
mechanism to load selected SRFI modules.  This is implemented in the
Guile core, there's no module needed to get SRFI-55 itself.

@deffn {library syntax} require-extension clause@dots{}
Require each of the given @var{clause} features, throwing an error if
any are unavailable.

A @var{clause} is of the form @code{(@var{identifier} arg...)}.  The
only @var{identifier} currently supported is @code{srfi} and the
arguments are SRFI numbers.  For example to get SRFI-1 and SRFI-6,

@example
(require-extension (srfi 1 6))
@end example

@code{require-extension} can only be used at the top-level.

A Guile-specific program can simply @code{use-modules} to load SRFIs
not already in the core, @code{require-extension} is for programs
designed to be portable to other Scheme implementations.
@end deffn


@node SRFI-60
@subsection SRFI-60 - Integers as Bits
@cindex SRFI-60
@cindex integers as bits
@cindex bitwise logical

This SRFI provides various functions for treating integers as bits and
for bitwise manipulations.  These functions can be obtained with,

@example
(use-modules (srfi srfi-60))
@end example

Integers are treated as infinite precision twos-complement, the same
as in the core logical functions (@pxref{Bitwise Operations}).  And
likewise bit indexes start from 0 for the least significant bit.  The
following functions in this SRFI are already in the Guile core,

@quotation
@code{logand},
@code{logior},
@code{logxor},
@code{lognot},
@code{logtest},
@code{logcount},
@code{integer-length},
@code{logbit?},
@code{ash}
@end quotation

@sp 1
@defun bitwise-and n1 ...
@defunx bitwise-ior n1 ...
@defunx bitwise-xor n1 ...
@defunx bitwise-not n
@defunx any-bits-set? j k
@defunx bit-set? index n
@defunx arithmetic-shift n count
@defunx bit-field n start end
@defunx bit-count n
Aliases for @code{logand}, @code{logior}, @code{logxor},
@code{lognot}, @code{logtest}, @code{logbit?}, @code{ash},
@code{bit-extract} and @code{logcount} respectively.

Note that the name @code{bit-count} conflicts with @code{bit-count} in
the core (@pxref{Bit Vectors}).
@end defun

@defun bitwise-if mask n1 n0
@defunx bitwise-merge mask n1 n0
Return an integer with bits selected from @var{n1} and @var{n0}
according to @var{mask}.  Those bits where @var{mask} has 1s are taken
from @var{n1}, and those where @var{mask} has 0s are taken from
@var{n0}.

@example
(bitwise-if 3 #b0101 #b1010) @result{} 9
@end example
@end defun

@defun log2-binary-factors n
@defunx first-set-bit n
Return a count of how many factors of 2 are present in @var{n}.  This
is also the bit index of the lowest 1 bit in @var{n}.  If @var{n} is
0, the return is @math{-1}.

@example
(log2-binary-factors 6) @result{} 1
(log2-binary-factors -8) @result{} 3
@end example
@end defun

@defun copy-bit index n newbit
Return @var{n} with the bit at @var{index} set according to
@var{newbit}.  @var{newbit} should be @code{#t} to set the bit to 1,
or @code{#f} to set it to 0.  Bits other than at @var{index} are
unchanged in the return.

@example
(copy-bit 1 #b0101 #t) @result{} 7
@end example
@end defun

@defun copy-bit-field n newbits start end
Return @var{n} with the bits from @var{start} (inclusive) to @var{end}
(exclusive) changed to the value @var{newbits}.

The least significant bit in @var{newbits} goes to @var{start}, the
next to @math{@var{start}+1}, etc.  Anything in @var{newbits} past the
@var{end} given is ignored.

@example
(copy-bit-field #b10000 #b11 1 3) @result{} #b10110
@end example
@end defun

@defun rotate-bit-field n count start end
Return @var{n} with the bit field from @var{start} (inclusive) to
@var{end} (exclusive) rotated upwards by @var{count} bits.

@var{count} can be positive or negative, and it can be more than the
field width (it'll be reduced modulo the width).

@example
(rotate-bit-field #b0110 2 1 4) @result{} #b1010
@end example
@end defun

@defun reverse-bit-field n start end
Return @var{n} with the bits from @var{start} (inclusive) to @var{end}
(exclusive) reversed.

@example
(reverse-bit-field #b101001 2 4) @result{} #b100101
@end example
@end defun

@defun integer->list n [len]
Return bits from @var{n} in the form of a list of @code{#t} for 1 and
@code{#f} for 0.  The least significant @var{len} bits are returned,
and the first list element is the most significant of those bits.  If
@var{len} is not given, the default is @code{(integer-length @var{n})}
(@pxref{Bitwise Operations}).

@example
(integer->list 6)   @result{} (#t #t #f)
(integer->list 1 4) @result{} (#f #f #f #t)
@end example
@end defun
   
@defun list->integer lst
@defunx booleans->integer bool@dots{}
Return an integer formed bitwise from the given @var{lst} list of
booleans, or for @code{booleans->integer} from the @var{bool}
arguments.

Each boolean is @code{#t} for a 1 and @code{#f} for a 0.  The first
element becomes the most significant bit in the return.

@example
(list->integer '(#t #f #t #f)) @result{} 10
@end example
@end defun


@node SRFI-61
@subsection SRFI-61 - A more general @code{cond} clause

This SRFI extends RnRS @code{cond} to support test expressions that
return multiple values, as well as arbitrary definitions of test
success.  SRFI 61 is implemented in the Guile core; there's no module
needed to get SRFI-61 itself.  Extended @code{cond} is documented in
@ref{if cond case,, Simple Conditional Evaluation}.


@node SRFI-69
@subsection SRFI-69 - Basic hash tables
@cindex SRFI-69

This is a portable wrapper around Guile's built-in hash table and weak
table support.  @xref{Hash Tables}, for information on that built-in
support.  Above that, this hash-table interface provides association
of equality and hash functions with tables at creation time, so
variants of each function are not required, as well as a procedure
that takes care of most uses for Guile hash table handles, which this
SRFI does not provide as such.

Access it with:

@lisp
(use-modules (srfi srfi-69))
@end lisp

@menu
* SRFI-69 Creating hash tables::  
* SRFI-69 Accessing table items::  
* SRFI-69 Table properties::    
* SRFI-69 Hash table algorithms::  
@end menu

@node SRFI-69 Creating hash tables
@subsubsection Creating hash tables

@deffn {Scheme Procedure} make-hash-table [equal-proc hash-proc #:weak weakness start-size]
Create and answer a new hash table with @var{equal-proc} as the
equality function and @var{hash-proc} as the hashing function.

By default, @var{equal-proc} is @code{equal?}.  It can be any
two-argument procedure, and should answer whether two keys are the
same for this table's purposes.

My default @var{hash-proc} assumes that @code{equal-proc} is no
coarser than @code{equal?}  unless it is literally @code{string-ci=?}.
If provided, @var{hash-proc} should be a two-argument procedure that
takes a key and the current table size, and answers a reasonably good
hash integer between 0 (inclusive) and the size (exclusive).

@var{weakness} should be @code{#f} or a symbol indicating how ``weak''
the hash table is:

@table @code
@item #f
An ordinary non-weak hash table.  This is the default.

@item key
When the key has no more non-weak references at GC, remove that entry.

@item value
When the value has no more non-weak references at GC, remove that
entry.

@item key-or-value
When either has no more non-weak references at GC, remove the
association.
@end table

As a legacy of the time when Guile couldn't grow hash tables,
@var{start-size} is an optional integer argument that specifies the
approximate starting size for the hash table, which will be rounded to
an algorithmically-sounder number.
@end deffn

By @dfn{coarser} than @code{equal?}, we mean that for all @var{x} and
@var{y} values where @code{(@var{equal-proc} @var{x} @var{y})},
@code{(equal? @var{x} @var{y})} as well.  If that does not hold for
your @var{equal-proc}, you must provide a @var{hash-proc}.

In the case of weak tables, remember that @dfn{references} above
always refers to @code{eq?}-wise references.  Just because you have a
reference to some string @code{"foo"} doesn't mean that an association
with key @code{"foo"} in a weak-key table @emph{won't} be collected;
it only counts as a reference if the two @code{"foo"}s are @code{eq?},
regardless of @var{equal-proc}.  As such, it is usually only sensible
to use @code{eq?} and @code{hashq} as the equivalence and hash
functions for a weak table.  @xref{Weak References}, for more
information on Guile's built-in weak table support.

@deffn {Scheme Procedure} alist->hash-table alist [equal-proc hash-proc #:weak weakness start-size]
As with @code{make-hash-table}, but initialize it with the
associations in @var{alist}.  Where keys are repeated in @var{alist},
the leftmost association takes precedence.
@end deffn

@node SRFI-69 Accessing table items
@subsubsection Accessing table items

@deffn {Scheme Procedure} hash-table-ref table key [default-thunk]
@deffnx {Scheme Procedure} hash-table-ref/default table key default
Answer the value associated with @var{key} in @var{table}.  If
@var{key} is not present, answer the result of invoking the thunk
@var{default-thunk}, which signals an error instead by default.

@code{hash-table-ref/default} is a variant that requires a third
argument, @var{default}, and answers @var{default} itself instead of
invoking it.
@end deffn

@deffn {Scheme Procedure} hash-table-set! table key new-value
Set @var{key} to @var{new-value} in @var{table}.
@end deffn

@deffn {Scheme Procedure} hash-table-delete! table key
Remove the association of @var{key} in @var{table}, if present.  If
absent, do nothing.
@end deffn

@deffn {Scheme Procedure} hash-table-exists? table key
Answer whether @var{key} has an association in @var{table}.
@end deffn

@deffn {Scheme Procedure} hash-table-update! table key modifier [default-thunk]
@deffnx {Scheme Procedure} hash-table-update!/default table key modifier default
Replace @var{key}'s associated value in @var{table} by invoking
@var{modifier} with one argument, the old value.

If @var{key} is not present, and @var{default-thunk} is provided,
invoke it with no arguments to get the ``old value'' to be passed to
@var{modifier} as above.  If @var{default-thunk} is not provided in
such a case, signal an error.

@code{hash-table-update!/default} is a variant that requires the
fourth argument, which is used directly as the ``old value'' rather
than as a thunk to be invoked to retrieve the ``old value''.
@end deffn

@node SRFI-69 Table properties
@subsubsection Table properties

@deffn {Scheme Procedure} hash-table-size table
Answer the number of associations in @var{table}.  This is guaranteed
to run in constant time for non-weak tables.
@end deffn

@deffn {Scheme Procedure} hash-table-keys table
Answer an unordered list of the keys in @var{table}.
@end deffn

@deffn {Scheme Procedure} hash-table-values table
Answer an unordered list of the values in @var{table}.
@end deffn

@deffn {Scheme Procedure} hash-table-walk table proc
Invoke @var{proc} once for each association in @var{table}, passing
the key and value as arguments.
@end deffn

@deffn {Scheme Procedure} hash-table-fold table proc init
Invoke @code{(@var{proc} @var{key} @var{value} @var{previous})} for
each @var{key} and @var{value} in @var{table}, where @var{previous} is
the result of the previous invocation, using @var{init} as the first
@var{previous} value.  Answer the final @var{proc} result.
@end deffn

@deffn {Scheme Procedure} hash-table->alist table
Answer an alist where each association in @var{table} is an
association in the result.
@end deffn

@node SRFI-69 Hash table algorithms
@subsubsection Hash table algorithms

Each hash table carries an @dfn{equivalence function} and a @dfn{hash
function}, used to implement key lookups.  Beginning users should
follow the rules for consistency of the default @var{hash-proc}
specified above.  Advanced users can use these to implement their own
equivalence and hash functions for specialized lookup semantics.

@deffn {Scheme Procedure} hash-table-equivalence-function hash-table
@deffnx {Scheme Procedure} hash-table-hash-function hash-table
Answer the equivalence and hash function of @var{hash-table}, respectively.
@end deffn

@deffn {Scheme Procedure} hash obj [size]
@deffnx {Scheme Procedure} string-hash obj [size]
@deffnx {Scheme Procedure} string-ci-hash obj [size]
@deffnx {Scheme Procedure} hash-by-identity obj [size]
Answer a hash value appropriate for equality predicate @code{equal?},
@code{string=?}, @code{string-ci=?}, and @code{eq?}, respectively.
@end deffn

@code{hash} is a backwards-compatible replacement for Guile's built-in
@code{hash}.

@node SRFI-88
@subsection SRFI-88 Keyword Objects
@cindex SRFI-88
@cindex keyword objects

@uref{http://srfi.schemers.org/srfi-88/srfi-88.html, SRFI-88} provides
@dfn{keyword objects}, which are equivalent to Guile's keywords
(@pxref{Keywords}).  SRFI-88 keywords can be entered using the
@dfn{postfix keyword syntax}, which consists of an identifier followed
by @code{:} (@pxref{Reader options, @code{postfix} keyword syntax}).
SRFI-88 can be made available with:

@example
(use-modules (srfi srfi-88))
@end example

Doing so installs the right reader option for keyword syntax, using
@code{(read-set! keywords 'postfix)}.  It also provides the procedures
described below.

@deffn {Scheme Procedure} keyword? obj
Return @code{#t} if @var{obj} is a keyword.  This is the same procedure
as the same-named built-in procedure (@pxref{Keyword Procedures,
@code{keyword?}}).

@example
(keyword? foo:)         @result{} #t
(keyword? 'foo:)        @result{} #t
(keyword? "foo")        @result{} #f
@end example
@end deffn

@deffn {Scheme Procedure} keyword->string kw
Return the name of @var{kw} as a string, i.e., without the trailing
colon.  The returned string may not be modified, e.g., with
@code{string-set!}.

@example
(keyword->string foo:)  @result{} "foo"
@end example
@end deffn

@deffn {Scheme Procedure} string->keyword str
Return the keyword object whose name is @var{str}.

@example
(keyword->string (string->keyword "a b c"))     @result{} "a b c"
@end example
@end deffn

@node SRFI-98
@subsection SRFI-98 Accessing environment variables.
@cindex SRFI-98
@cindex environment variables

This is a portable wrapper around Guile's built-in support for 
interacting with the current environment, @xref{Runtime Environment}.

@deffn {Scheme Procedure} get-environment-variable name
Returns a string containing the value of the environment variable 
given by the string @code{name}, or @code{#f} if the named 
environment variable is not found.  This is equivalent to 
@code{(getenv name)}.
@end deffn

@deffn {Scheme Procedure} get-environment-variables
Returns the names and values of all the environment variables as an
association list in which both the keys and the values are strings.
@end deffn

@c srfi-modules.texi ends here

@c Local Variables:
@c TeX-master: "guile.texi"
@c End: