summaryrefslogtreecommitdiff
path: root/gc-benchmarks/larceny/twobit.sch
blob: b52f108bdfb5e23f4694849c83b2cab2f96711d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
; Complete source for Twobit and Sparc assembler in one file.
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; See 'twobit-benchmark', at end.

; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Completely fundamental pathname manipulation.

; This takes zero or more directory components and a file name and
; constructs a filename relative to the current directory.

(define (make-relative-filename . components)

  (define (construct l)
    (if (null? (cdr l))
	l
	(cons (car l)
	      (cons "/" (construct (cdr l))))))

  (if (null? (cdr components))
      (car components)
      (apply string-append (construct components))))

; This takes one or more directory components and constructs a 
; directory name with proper termination (a crock -- we can finess 
; this later).

(define (pathname-append . components)

  (define (construct l)
    (cond ((null? (cdr l))
	   l)
	  ((string=? (car l) "")
	   (construct (cdr l)))
          ((char=? #\/ (string-ref (car l) (- (string-length (car l)) 1)))
           (cons (car l) (construct (cdr l))))
	  (else
	   (cons (car l)
		 (cons "/" (construct (cdr l)))))))

  (let ((n (if (null? (cdr components))
	       (car components)
	       (apply string-append (construct components)))))
    (if (not (char=? #\/ (string-ref n (- (string-length n) 1))))
	(string-append n "/")
	n)))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Nbuild parameters for SPARC Larceny.

(define (make-nbuild-parameter dir source? verbose? hostdir hostname)
  (let ((parameters 
	 `((compiler       . ,(pathname-append dir "Compiler"))
	   (util           . ,(pathname-append dir "Util"))
	   (build          . ,(pathname-append dir "Rts" "Build"))
	   (source         . ,(pathname-append dir "Lib"))
           (common-source  . ,(pathname-append dir "Lib" "Common"))
           (repl-source    . ,(pathname-append dir "Repl"))
           (interp-source  . ,(pathname-append dir "Eval"))
           (machine-source . ,(pathname-append dir "Lib" "Sparc"))
	   (common-asm     . ,(pathname-append dir "Asm" "Common"))
	   (sparc-asm      . ,(pathname-append dir "Asm" "Sparc"))
	   (target-machine . SPARC)
	   (endianness     . big)
	   (word-size      . 32)
	   (always-source? . ,source?)
	   (verbose-load?  . ,verbose?)
	   (compatibility  . ,(pathname-append dir "Compat" hostdir))
	   (host-system    . ,hostname)
	   )))
    (lambda (key)
      (let ((probe (assq key parameters)))
	(if probe 
	    (cdr probe)
	    #f)))))

(define nbuild-parameter
  (make-nbuild-parameter "" #f #f "Larceny" "Larceny"))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Useful list functions.
;
; Notes:
; * Reduce, reduce-right, fold-right, fold-left are compatible with MIT Scheme.
; * Make-list is compatible with MIT Scheme and Chez Scheme.
; * These are not (yet) compatible with Shivers's proposed list functions.
; * remq, remv, remove, remq!, remv!, remov!, every?, and some? are in the 
;   basic library.

; Destructively remove all associations whose key matches `key' from `alist'.

(define (aremq! key alist)
  (cond ((null? alist) alist)
	((eq? key (caar alist))
	 (aremq! key (cdr alist)))
	(else
	 (set-cdr! alist (aremq! key (cdr alist)))
	 alist)))

(define (aremv! key alist)
  (cond ((null? alist) alist)
	((eqv? key (caar alist))
	 (aremv! key (cdr alist)))
	(else
	 (set-cdr! alist (aremv! key (cdr alist)))
	 alist)))

(define (aremove! key alist)
  (cond ((null? alist) alist)
	((equal? key (caar alist))
	 (aremove! key (cdr alist)))
	(else
	 (set-cdr! alist (aremove! key (cdr alist)))
	 alist)))

; Return a list of elements of `list' selected by the predicate.

(define (filter select? list)
  (cond ((null? list) list)
	((select? (car list))
	 (cons (car list) (filter select? (cdr list))))
	(else
	 (filter select? (cdr list)))))

; Return the first element of `list' selected by the predicate.

(define (find selected? list)
  (cond ((null? list) #f)
	((selected? (car list)) (car list))
	(else (find selected? (cdr list)))))

; Return a list with all duplicates (according to predicate) removed.

(define (remove-duplicates list same?)

  (define (member? x list)
    (cond ((null? list) #f)
          ((same? x (car list)) #t)
          (else (member? x (cdr list)))))

  (cond ((null? list) list)
        ((member? (car list) (cdr list))
         (remove-duplicates (cdr list) same?))
        (else
         (cons (car list) (remove-duplicates (cdr list) same?)))))

; Return the least element of `list' according to some total order.

(define (least less? list)
  (reduce (lambda (a b) (if (less? a b) a b)) #f list))

; Return the greatest element of `list' according to some total order.

(define (greatest greater? list)
  (reduce (lambda (a b) (if (greater? a b) a b)) #f list))
  
; (mappend p l) = (apply append (map p l))

(define (mappend proc l)
  (apply append (map proc l)))

; (make-list n)   => (a1 ... an) for some ai
; (make-list n x) => (a1 ... an) where ai = x

(define (make-list nelem . rest)
  (let ((val (if (null? rest) #f (car rest))))
    (define (loop n l)
      (if (zero? n)
	  l
	  (loop (- n 1) (cons val l))))
    (loop nelem '())))

; (reduce p x ()) => x
; (reduce p x (a)) => a
; (reduce p x (a b ...)) => (p (p a b) ...))

(define (reduce proc initial l)

  (define (loop val l)
    (if (null? l)
        val
        (loop (proc val (car l)) (cdr l))))

  (cond ((null? l) initial)
	((null? (cdr l)) (car l))
	(else (loop (car l) (cdr l)))))

; (reduce-right p x ()) => x
; (reduce-right p x (a)) => a
; (reduce-right p x (a b ...)) => (p a (p b ...))

(define (reduce-right proc initial l)

  (define (loop l)
    (if (null? (cdr l))
	(car l)
	(proc (car l) (loop (cdr l)))))

  (cond ((null? l) initial)
	((null? (cdr l)) (car l))
	(else (loop l))))

; (fold-left p x (a b ...)) => (p (p (p x a) b) ...)

(define (fold-left proc initial l)
  (if (null? l)
      initial
      (fold-left proc (proc initial (car l)) (cdr l))))

; (fold-right p x (a b ...)) => (p a (p b (p ... x)))

(define (fold-right proc initial l)
  (if (null? l)
      initial
      (proc (car l) (fold-right proc initial (cdr l)))))

; (iota n) => (0 1 2 ... n-1)

(define (iota n)
  (let loop ((n (- n 1)) (r '()))
    (let ((r (cons n r)))
      (if (= n 0)
	  r
	  (loop (- n 1) r)))))

; (list-head (a1 ... an) m) => (a1 ... am)   for m <= n

(define (list-head l n)
  (if (zero? n)
      '()
      (cons (car l) (list-head (cdr l) (- n 1)))))

	
; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Larceny -- compatibility library for Twobit running under Larceny.

(define ($$trace x) #t)

(define host-system 'larceny)

; Temporary?

(define (.check! flag exn . args)
  (if (not flag)
      (apply error "Runtime check exception: " exn args)))

; The compatibility library loads Auxlib if compat:initialize is called
; without arguments.  Compat:load will load fasl files when appropriate.

(define (compat:initialize . rest)
  (if (null? rest)
      (let ((dir (nbuild-parameter 'compatibility)))
	(compat:load (string-append dir "compat2.sch"))
	(compat:load (string-append dir "../../Auxlib/list.sch"))
	(compat:load (string-append dir "../../Auxlib/pp.sch")))))

(define (with-optimization level thunk) 
  (thunk))

; Calls thunk1, and if thunk1 causes an error to be signalled, calls thunk2.

(define (call-with-error-control thunk1 thunk2) 
  (let ((eh (error-handler)))
    (error-handler (lambda args
		     (error-handler eh)
		     (thunk2)
		     (apply eh args)))
    (thunk1)
    (error-handler eh)))

(define (larc-new-extension fn ext)
  (let* ((l (string-length fn))
	 (x (let loop ((i (- l 1)))
	      (cond ((< i 0) #f)
		    ((char=? (string-ref fn i) #\.) (+ i 1))
		    (else (loop (- i 1)))))))
    (if (not x)
	(string-append fn "." ext)
	(string-append (substring fn 0 x) ext))))

(define (compat:load filename)
  (define (loadit fn)
    (if (nbuild-parameter 'verbose-load?)
	(format #t "~a~%" fn))
    (load fn))
  (if (nbuild-parameter 'always-source?)
      (loadit filename)
      (let ((fn (larc-new-extension filename "fasl")))
	(if (and (file-exists? fn)
		 (compat:file-newer? fn filename))
	    (loadit fn)
	    (loadit filename)))))

(define (compat:file-newer? a b)
  (let* ((ta    (file-modification-time a))
	 (tb    (file-modification-time b))
	 (limit (vector-length ta)))
    (let loop ((i 0))
      (cond ((= i limit)
	     #f)
	    ((= (vector-ref ta i) (vector-ref tb i))
	     (loop (+ i 1)))
	    (else
	     (> (vector-ref ta i) (vector-ref tb i)))))))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Larceny -- second part of compatibility code
; This file ought to be compiled, but doesn't have to be.
;
; 12 April 1999

(define host-system 'larceny)		; Don't remove this!

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; A well-defined sorting procedure.

(define compat:sort (lambda (list less?) (sort list less?)))


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Well-defined character codes.
; Returns the UCS-2 code for a character.

(define compat:char->integer char->integer)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Input and output

(define (write-lop item port)
  (lowlevel-write item port)
  (newline port)
  (newline port))

(define write-fasl-datum lowlevel-write)

; The power of self-hosting ;-)

(define (misc->bytevector x)
  (let ((bv (bytevector-like-copy x)))
    (typetag-set! bv $tag.bytevector-typetag)
    bv))

(define string->bytevector misc->bytevector)

(define bignum->bytevector misc->bytevector)

(define (flonum->bytevector x)
  (clear-first-word (misc->bytevector x)))

(define (compnum->bytevector x)
  (clear-first-word (misc->bytevector x)))

; Clears garbage word of compnum/flonum; makes regression testing much
; easier.

(define (clear-first-word bv)
  (bytevector-like-set! bv 0 0)
  (bytevector-like-set! bv 1 0)
  (bytevector-like-set! bv 2 0)
  (bytevector-like-set! bv 3 0)
  bv)

(define (list->bytevector l)
  (let ((b (make-bytevector (length l))))
    (do ((i 0 (+ i 1))
	 (l l (cdr l)))
	((null? l) b)
      (bytevector-set! b i (car l)))))

(define bytevector-word-ref 
  (let ((two^8  (expt 2 8))
	(two^16 (expt 2 16))
	(two^24 (expt 2 24)))
    (lambda (bv i)
      (+ (* (bytevector-ref bv i) two^24)
	 (* (bytevector-ref bv (+ i 1)) two^16)
	 (* (bytevector-ref bv (+ i 2)) two^8)
	 (bytevector-ref bv (+ i 3))))))

(define (twobit-format fmt . rest)
  (let ((out (open-output-string)))
    (apply format out fmt rest)
    (get-output-string out)))

; This needs to be a random number in both a weaker and stronger sense
; than `random': it doesn't need to be a truly random number, so a sequence
; of calls can return a non-random sequence, but if two processes generate
; two sequences, then those sequences should not be the same.
;
; Gross, huh?

(define (an-arbitrary-number)
  (system "echo \\\"`date`\\\" > a-random-number")
  (let ((x (string-hash (call-with-input-file "a-random-number" read))))
    (delete-file "a-random-number")
    x))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Miscellaneous

(define cerror error)

; eof
; Copyright 1991 Wiliam Clinger.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Sets represented as lists.
;
; 5 April 1999.

(define (empty-set) '())

(define (empty-set? x) (null? x))

(define (make-set x)
  (define (loop x y)
    (cond ((null? x) y)
          ((member (car x) y) (loop (cdr x) y))
          (else (loop (cdr x) (cons (car x) y)))))
  (loop x '()))

(define (set-equal? x y)
  (and (subset? x y) (subset? y x)))

(define (subset? x y)
  (every? (lambda (x) (member x y))
          x))

; To get around MacScheme's limit on the number of arguments.

(define apply-union)

(define union
  (letrec ((union2
            (lambda (x y)
              (cond ((null? x) y)
                    ((member (car x) y)
                     (union2 (cdr x) y))
                    (else (union2 (cdr x) (cons (car x) y)))))))
    
    (set! apply-union
          (lambda (sets)
            (do ((sets sets (cdr sets))
                 (result '() (union2 (car sets) result)))
                ((null? sets)
                 result))))
    
    (lambda args
      (cond ((null? args) '())
            ((null? (cdr args)) (car args))
            ((null? (cddr args)) (union2 (car args) (cadr args)))
            (else (union2 (union2 (car args)
                                  (cadr args))
                          (apply union (cddr args))))))))

(define intersection
  (letrec ((intersection2
            (lambda (x y)
              (cond ((null? x) '())
                    ((member (car x) y)
                     (cons (car x) (intersection2 (cdr x) y)))
                    (else (intersection2 (cdr x) y))))))
    (lambda args
      (cond ((null? args) '())
            ((null? (cdr args)) (car args))
            ((null? (cddr args)) (intersection2 (car args) (cadr args)))
            (else (intersection2 (intersection2 (car args)
                                                (cadr args))
                                 (apply intersection (cddr args))))))))

(define (difference x y)
  (cond ((null? x) '())
        ((member (car x) y)
         (difference (cdr x) y))
        (else (cons (car x) (difference (cdr x) y)))))
; Reasonably portable hashing on EQ?, EQV?, EQUAL?.
; Requires bignums, SYMBOL-HASH.
;
; Given any Scheme object, returns a non-negative exact integer
; less than 2^24.

(define object-hash (lambda (x) 0))    ; hash on EQ?, EQV?
(define equal-hash (lambda (x) 0))     ; hash on EQUAL?

(let ((n 16777216)
      (n-1 16777215)
      (adj:fixnum   9000000)
      (adj:negative 8000000)
      (adj:large    7900000)
      (adj:ratnum   7800000)
      (adj:complex  7700000)
      (adj:flonum   7000000)
      (adj:compnum  6900000)
      (adj:char     6111000)
      (adj:string   5022200)
      (adj:vector   4003330)
      (adj:misc     3000444)
      (adj:pair     2555000)
      (adj:proc     2321001)
      (adj:iport    2321002)
      (adj:oport    2321003)
      (adj:weird    2321004)
      (budget0      32))
  
  (define (combine hash adjustment)
    (modulo (+ hash hash hash adjustment) 16777216))
  
  (define (hash-on-equal x budget)
    (if (> budget 0)
        (cond ((string? x)
               (string-hash x))
              ((pair? x)
               (let ((budget (quotient budget 2)))
                 (combine (hash-on-equal (car x) budget)
                          (hash-on-equal (cdr x) budget))))
              ((vector? x)
               (let ((n (vector-length x))
                     (budget (quotient budget 4)))
                 (if (> n 0)
                     (combine
                      (combine (hash-on-equal (vector-ref x 0) budget)
                               (hash-on-equal (vector-ref x (- n 1)) budget))
                      (hash-on-equal (vector-ref x (quotient n 2))
                                     (+ budget budget)))
                     adj:vector)))
              (else
               (object-hash x)))
        adj:weird))
  
  (set! object-hash
        (lambda (x)
          (cond ((symbol? x)
                 (symbol-hash x))
                ((number? x)
                 (if (exact? x)
                     (cond ((integer? x)
                            (cond ((negative? x)
                                   (combine (object-hash (- x)) adj:negative))
                                  ((< x n)
                                   (combine x adj:fixnum))
                                  (else
                                   (combine (modulo x n) adj:large))))
                           ((rational? x)
                            (combine (combine (object-hash (numerator x))
                                              adj:ratnum)
                                     (object-hash (denominator x))))
                           ((real? x)
                            adj:weird)
                           ((complex? x)
                            (combine (combine (object-hash (real-part x))
                                              adj:complex)
                                     (object-hash (imag-part x))))
                           (else
                            adj:weird))
                     (cond (#t
                            ; We can't really do anything with inexact numbers
                            ; unless infinities and NaNs behave reasonably.
                            adj:flonum)
                           ((rational? x)
                            (combine
                             (combine (object-hash
                                       (inexact->exact (numerator x)))
                                      adj:flonum)
                             (object-hash (inexact->exact (denominator x)))))
                           ((real? x)
                            adj:weird)
                           ((complex? x)
                            (combine (combine (object-hash (real-part x))
                                              adj:compnum)
                                     (object-hash (imag-part x))))
                           (else adj:weird))))
                ((char? x)
                 (combine (char->integer x) adj:char))
                ((string? x)
                 (combine (string-length x) adj:string))
                ((vector? x)
                 (combine (vector-length x) adj:vector))
                ((eq? x #t)
                 (combine 1 adj:misc))
                ((eq? x #f)
                 (combine 2 adj:misc))
                ((null? x)
                 (combine 3 adj:misc))
                ((pair? x)
                 adj:pair)
                ((procedure? x)
                 adj:proc)
                ((input-port? x)
                 adj:iport)
                ((output-port? x)
                 adj:oport)
                (else
                 adj:weird))))
  
  (set! equal-hash
        (lambda (x)
          (hash-on-equal x budget0)))); Hash tables.
; Requires CALL-WITHOUT-INTERRUPTS.
; This code should be thread-safe provided VECTOR-REF is atomic.
;
; (make-hashtable <hash-function> <bucket-searcher> <size>)
;
;     Returns a newly allocated mutable hash table
;     using <hash-function> as the hash function
;     and <bucket-searcher>, e.g. ASSQ, ASSV, ASSOC, to search a bucket
;     with <size> buckets at first, expanding the number of buckets as needed.
;     The <hash-function> must accept a key and return a non-negative exact
;     integer.
;
; (make-hashtable <hash-function> <bucket-searcher>)
;
;     Equivalent to (make-hashtable <hash-function> <bucket-searcher> n)
;     for some value of n chosen by the implementation.
;
; (make-hashtable <hash-function>)
;
;     Equivalent to (make-hashtable <hash-function> assv).
;
; (make-hashtable)
;
;     Equivalent to (make-hashtable object-hash assv).
;
; (hashtable-contains? <hashtable> <key>)
;
;     Returns true iff the <hashtable> contains an entry for <key>.
;
; (hashtable-fetch <hashtable> <key> <flag>)
;
;     Returns the value associated with <key> in the <hashtable> if the
;     <hashtable> contains <key>; otherwise returns <flag>.
;
; (hashtable-get <hashtable> <key>)
;
;     Equivalent to (hashtable-fetch <hashtable> <key> #f)
;
; (hashtable-put! <hashtable> <key> <value>)
;
;     Changes the <hashtable> to associate <key> with <value>, replacing
;     any existing association for <key>.
;
; (hashtable-remove! <hashtable> <key>)
;
;     Removes any association for <key> within the <hashtable>.
;
; (hashtable-clear! <hashtable>)
;
;     Removes all associations from the <hashtable>.
;
; (hashtable-size <hashtable>)
;
;     Returns the number of keys contained within the <hashtable>.
;
; (hashtable-for-each <procedure> <hashtable>)
;
;     The <procedure> must accept two arguments, a key and the value
;     associated with that key.  Calls the <procedure> once for each
;     key-value association.  The order of these calls is indeterminate.
;
; (hashtable-map <procedure> <hashtable>)
;
;     The <procedure> must accept two arguments, a key and the value
;     associated with that key.  Calls the <procedure> once for each
;     key-value association, and returns a list of the results.  The
;     order of the calls is indeterminate.
;
; (hashtable-copy <hashtable>)
;
;     Returns a copy of the <hashtable>.

; These global variables are assigned new values later.

(define make-hashtable      (lambda args '*))
(define hashtable-contains? (lambda (ht key) #f))
(define hashtable-fetch     (lambda (ht key flag) flag))
(define hashtable-get       (lambda (ht key) (hashtable-fetch ht key #f)))
(define hashtable-put!      (lambda (ht key val) '*))
(define hashtable-remove!   (lambda (ht key) '*))
(define hashtable-clear!    (lambda (ht) '*))
(define hashtable-size      (lambda (ht) 0))
(define hashtable-for-each  (lambda (ht proc) '*))
(define hashtable-map       (lambda (ht proc) '()))
(define hashtable-copy      (lambda (ht) ht))

; Implementation.
; A hashtable is represented as a vector of the form
;
;     #(("HASHTABLE") <count> <hasher> <searcher> <buckets>)
;
; where <count> is the number of associations within the hashtable,
; <hasher> is the hash function, <searcher> is the bucket searcher,
; and <buckets> is a vector of buckets.
;
; The <hasher> and <searcher> fields are constant, but
; the <count> and <buckets> fields are mutable.
;
; For thread-safe operation, the mutators must modify both
; as an atomic operation.  Other operations do not require
; critical sections provided VECTOR-REF is an atomic operation
; and the operation does not modify the hashtable, does not
; reference the <count> field, and fetches the <buckets>
; field exactly once.

(let ((doc      (list "HASHTABLE"))
      (count    (lambda (ht)   (vector-ref ht 1)))
      (count!   (lambda (ht n) (vector-set! ht 1 n)))
      (hasher   (lambda (ht)   (vector-ref ht 2)))
      (searcher (lambda (ht)   (vector-ref ht 3)))
      (buckets  (lambda (ht)   (vector-ref ht 4)))
      (buckets! (lambda (ht v) (vector-set! ht 4 v)))
      (defaultn 10))
  (let ((hashtable? (lambda (ht)
                      (and (vector? ht)
                           (= 5 (vector-length ht))
                           (eq? doc (vector-ref ht 0)))))
        (hashtable-error (lambda (x)
                           (display "ERROR: Bad hash table: ")
                           (newline)
                           (write x)
                           (newline))))
    
    ; Internal operations.
    
    (define (make-ht hashfun searcher size)
      (vector doc 0 hashfun searcher (make-vector size '())))
    
    ; Substitute x for the first occurrence of y within the list z.
    ; y is known to occur within z.
    
    (define (substitute1 x y z)
      (cond ((eq? y (car z))
             (cons x (cdr z)))
            (else
             (cons (car z)
                   (substitute1 x y (cdr z))))))
    
    ; Remove the first occurrence of x from y.
    ; x is known to occur within y.
    
    (define (remq1 x y)
      (cond ((eq? x (car y))
             (cdr y))
            (else
             (cons (car y)
                   (remq1 x (cdr y))))))
    
    (define (resize ht0)
      (call-without-interrupts
       (lambda ()
         (let ((ht (make-ht (hasher ht0)
                            (searcher ht0)
                            (+ 1 (* 2 (count ht0))))))
           (ht-for-each (lambda (key val)
                          (put! ht key val))
                        ht0)
           (buckets! ht0 (buckets ht))))))
    
    ; Returns the contents of the hashtable as a vector of pairs.
    
    (define (contents ht)
      (let* ((v (buckets ht))
             (n (vector-length v))
             (z (make-vector (count ht) '())))
        (define (loop i bucket j)
          (if (null? bucket)
              (if (= i n)
                  (if (= j (vector-length z))
                      z
                      (begin (display "BUG in hashtable")
                             (newline)
                             '#()))
                  (loop (+ i 1)
                        (vector-ref v i)
                        j))
              (let ((entry (car bucket)))
                (vector-set! z j (cons (car entry) (cdr entry)))
                (loop i
                      (cdr bucket)
                      (+ j 1)))))
        (loop 0 '() 0)))
    
    (define (contains? ht key)
      (if (hashtable? ht)
          (let* ((v (buckets ht))
                 (n (vector-length v))
                 (h (modulo ((hasher ht) key) n))
                 (b (vector-ref v h)))
            (if ((searcher ht) key b)
                #t
                #f))
          (hashtable-error ht)))
    
    (define (fetch ht key flag)
      (if (hashtable? ht)
          (let* ((v (buckets ht))
                 (n (vector-length v))
                 (h (modulo ((hasher ht) key) n))
                 (b (vector-ref v h))
                 (probe ((searcher ht) key b)))
            (if probe
                (cdr probe)
                flag))
          (hashtable-error ht)))
    
    (define (put! ht key val)
      (if (hashtable? ht)
          (call-without-interrupts
           (lambda ()
             (let* ((v (buckets ht))
                    (n (vector-length v))
                    (h (modulo ((hasher ht) key) n))
                    (b (vector-ref v h))
                    (probe ((searcher ht) key b)))
               (if probe
                   ; Using SET-CDR! on the probe would make it necessary
                   ; to synchronize the CONTENTS routine.
                   (vector-set! v h (substitute1 (cons key val) probe b))
                   (begin (count! ht (+ (count ht) 1))
                          (vector-set! v h (cons (cons key val) b))
                          (if (> (count ht) n)
                              (resize ht)))))
             #f))
          (hashtable-error ht)))
    
    (define (remove! ht key)
      (if (hashtable? ht)
          (call-without-interrupts
           (lambda ()
             (let* ((v (buckets ht))
                    (n (vector-length v))
                    (h (modulo ((hasher ht) key) n))
                    (b (vector-ref v h))
                    (probe ((searcher ht) key b)))
               (if probe
                   (begin (count! ht (- (count ht) 1))
                          (vector-set! v h (remq1 probe b))
                          (if (< (* 2 (+ defaultn (count ht))) n)
                              (resize ht))))
               #f)))
          (hashtable-error ht)))
    
    (define (clear! ht)
      (if (hashtable? ht)
          (call-without-interrupts
           (lambda ()
             (begin (count! ht 0)
                    (buckets! ht (make-vector defaultn '()))
                    #f)))
          (hashtable-error ht)))
    
    (define (size ht)
      (if (hashtable? ht)
          (count ht)
          (hashtable-error ht)))
    
    ; This code must be written so that the procedure can modify the
    ; hashtable without breaking any invariants.
    
    (define (ht-for-each f ht)
      (if (hashtable? ht)
          (let* ((v (contents ht))
                 (n (vector-length v)))
            (do ((j 0 (+ j 1)))
                ((= j n))
                (let ((x (vector-ref v j)))
                  (f (car x) (cdr x)))))
          (hashtable-error ht)))
    
    (define (ht-map f ht)
      (if (hashtable? ht)
          (let* ((v (contents ht))
                 (n (vector-length v)))
            (do ((j 0 (+ j 1))
                 (results '() (let ((x (vector-ref v j)))
                                (cons (f (car x) (cdr x))
                                      results))))
                ((= j n)
                 (reverse results))))
          (hashtable-error ht)))
    
    (define (ht-copy ht)
      (if (hashtable? ht)
          (let* ((newtable (make-hashtable (hasher ht) (searcher ht) 0))
                 (v (buckets ht))
                 (n (vector-length v))
                 (newvector (make-vector n '())))
            (count! newtable (count ht))
            (buckets! newtable newvector)
            (do ((i 0 (+ i 1)))
                ((= i n))
                (vector-set! newvector i (append (vector-ref v i) '())))
            newtable)
          (hashtable-error ht)))
    
    ; External entry points.
    
    (set! make-hashtable
          (lambda args
            (let* ((hashfun (if (null? args) object-hash (car args)))
                   (searcher (if (or (null? args) (null? (cdr args)))
                                 assv
                                 (cadr args)))
                   (size (if (or (null? args) (null? (cdr args)) (null? (cddr args)))
                             defaultn
                             (caddr args))))
              (make-ht hashfun searcher size))))
    
    (set! hashtable-contains? (lambda (ht key)      (contains? ht key)))
    (set! hashtable-fetch     (lambda (ht key flag) (fetch ht key flag)))
    (set! hashtable-get       (lambda (ht key)      (fetch ht key #f)))
    (set! hashtable-put!      (lambda (ht key val)  (put! ht key val)))
    (set! hashtable-remove!   (lambda (ht key)      (remove! ht key)))
    (set! hashtable-clear!    (lambda (ht)          (clear! ht)))
    (set! hashtable-size      (lambda (ht)          (size ht)))
    (set! hashtable-for-each  (lambda (ht proc)     (ht-for-each ht proc)))
    (set! hashtable-map       (lambda (ht proc)     (ht-map ht proc)))
    (set! hashtable-copy      (lambda (ht)          (ht-copy ht)))
    #f))
; Hash trees: a functional data structure analogous to hash tables.
;
; (make-hashtree <hash-function> <bucket-searcher>)
;
;     Returns a newly allocated mutable hash table
;     using <hash-function> as the hash function
;     and <bucket-searcher>, e.g. ASSQ, ASSV, ASSOC, to search a bucket.
;     The <hash-function> must accept a key and return a non-negative exact
;     integer.
;
; (make-hashtree <hash-function>)
;
;     Equivalent to (make-hashtree <hash-function> assv).
;
; (make-hashtree)
;
;     Equivalent to (make-hashtree object-hash assv).
;
; (hashtree-contains? <hashtree> <key>)
;
;     Returns true iff the <hashtree> contains an entry for <key>.
;
; (hashtree-fetch <hashtree> <key> <flag>)
;
;     Returns the value associated with <key> in the <hashtree> if the
;     <hashtree> contains <key>; otherwise returns <flag>.
;
; (hashtree-get <hashtree> <key>)
;
;     Equivalent to (hashtree-fetch <hashtree> <key> #f)
;
; (hashtree-put <hashtree> <key> <value>)
;
;     Returns a new hashtree that is like <hashtree> except that
;     <key> is associated with <value>.
;
; (hashtree-remove <hashtree> <key>)
;
;     Returns a new hashtree that is like <hashtree> except that
;     <key> is not associated with any value.
;
; (hashtree-size <hashtree>)
;
;     Returns the number of keys contained within the <hashtree>.
;
; (hashtree-for-each <procedure> <hashtree>)
;
;     The <procedure> must accept two arguments, a key and the value
;     associated with that key.  Calls the <procedure> once for each
;     key-value association.  The order of these calls is indeterminate.
;
; (hashtree-map <procedure> <hashtree>)
;
;     The <procedure> must accept two arguments, a key and the value
;     associated with that key.  Calls the <procedure> once for each
;     key-value association, and returns a list of the results.  The
;     order of the calls is indeterminate.

; These global variables are assigned new values later.

(define make-hashtree      (lambda args '*))
(define hashtree-contains? (lambda (ht key) #f))
(define hashtree-fetch     (lambda (ht key flag) flag))
(define hashtree-get       (lambda (ht key) (hashtree-fetch ht key #f)))
(define hashtree-put       (lambda (ht key val) '*))
(define hashtree-remove    (lambda (ht key) '*))
(define hashtree-size      (lambda (ht) 0))
(define hashtree-for-each  (lambda (ht proc) '*))
(define hashtree-map       (lambda (ht proc) '()))

; Implementation.
; A hashtree is represented as a vector of the form
;
;     #(("hashtree") <count> <hasher> <searcher> <buckets>)
;
; where <count> is the number of associations within the hashtree,
; <hasher> is the hash function, <searcher> is the bucket searcher,
; and <buckets> is generated by the following grammar:
;
; <buckets>       ::=  ()
;                   |  (<fixnum> <associations> <buckets> <buckets>)
; <alist>         ::=  (<associations>)
; <associations>  ::=  
;                   |  <association> <associations>
; <association>   ::=  (<key> . <value>)
;
; If <buckets> is of the form (n alist buckets1 buckets2),
; then n is the hash code of all keys in alist, all keys in buckets1
; have a hash code less than n, and all keys in buckets2 have a hash
; code greater than n.

(let ((doc      (list "hashtree"))
      (count    (lambda (ht)   (vector-ref ht 1)))
      (hasher   (lambda (ht)   (vector-ref ht 2)))
      (searcher (lambda (ht)   (vector-ref ht 3)))
      (buckets  (lambda (ht)   (vector-ref ht 4)))
      
      (make-empty-buckets (lambda () '()))
      
      (make-buckets
       (lambda (h alist buckets1 buckets2)
         (list h alist buckets1 buckets2)))
      
      (buckets-empty? (lambda (buckets) (null? buckets)))
      
      (buckets-n      (lambda (buckets) (car buckets)))
      (buckets-alist  (lambda (buckets) (cadr buckets)))
      (buckets-left   (lambda (buckets) (caddr buckets)))
      (buckets-right  (lambda (buckets) (cadddr buckets))))
  
  (let ((hashtree? (lambda (ht)
                      (and (vector? ht)
                           (= 5 (vector-length ht))
                           (eq? doc (vector-ref ht 0)))))
        (hashtree-error (lambda (x)
                           (display "ERROR: Bad hash tree: ")
                           (newline)
                           (write x)
                           (newline))))
    
    ; Internal operations.
    
    (define (make-ht count hashfun searcher buckets)
      (vector doc count hashfun searcher buckets))
    
    ; Substitute x for the first occurrence of y within the list z.
    ; y is known to occur within z.
    
    (define (substitute1 x y z)
      (cond ((eq? y (car z))
             (cons x (cdr z)))
            (else
             (cons (car z)
                   (substitute1 x y (cdr z))))))
    
    ; Remove the first occurrence of x from y.
    ; x is known to occur within y.
    
    (define (remq1 x y)
      (cond ((eq? x (car y))
             (cdr y))
            (else
             (cons (car y)
                   (remq1 x (cdr y))))))
    
    ; Returns the contents of the hashtree as a list of pairs.
    
    (define (contents ht)
      (let* ((t (buckets ht)))
        
        (define (contents t alist)
          (if (buckets-empty? t)
              alist
              (contents (buckets-left t)
                        (contents (buckets-right t)
                                  (append-reverse (buckets-alist t)
                                                  alist)))))
        
        (define (append-reverse x y)
          (if (null? x)
              y
              (append-reverse (cdr x)
                              (cons (car x) y))))
        
        ; Creating a new hashtree from a list that is almost sorted
        ; in hash code order would create an extremely unbalanced
        ; hashtree, so this routine randomizes the order a bit.
        
        (define (randomize1 alist alist1 alist2 alist3)
          (if (null? alist)
              (randomize-combine alist1 alist2 alist3)
              (randomize2 (cdr alist)
                          (cons (car alist) alist1)
                          alist2
                          alist3)))
        
        (define (randomize2 alist alist1 alist2 alist3)
          (if (null? alist)
              (randomize-combine alist1 alist2 alist3)
              (randomize3 (cdr alist)
                          alist1
                          (cons (car alist) alist2)
                          alist3)))
        
        (define (randomize3 alist alist1 alist2 alist3)
          (if (null? alist)
              (randomize-combine alist1 alist2 alist3)
              (randomize1 (cdr alist)
                          alist1
                          alist2
                          (cons (car alist) alist3))))
        
        (define (randomize-combine alist1 alist2 alist3)
          (cond ((null? alist2)
                 alist1)
                ((null? alist3)
                 (append-reverse alist2 alist1))
                (else
                 (append-reverse
                  (randomize1 alist3 '() '() '())
                  (append-reverse
                   (randomize1 alist1 '() '() '())
                   (randomize1 alist2 '() '() '()))))))
        
        (randomize1 (contents t '()) '() '() '())))
    
    (define (contains? ht key)
      (if (hashtree? ht)
          (let* ((t (buckets ht))
                 (h ((hasher ht) key)))
            (if ((searcher ht) key (find-bucket t h))
                #t
                #f))
          (hashtree-error ht)))
    
    (define (fetch ht key flag)
      (if (hashtree? ht)
          (let* ((t (buckets ht))
                 (h ((hasher ht) key))
                 (probe ((searcher ht) key (find-bucket t h))))
            (if probe
                (cdr probe)
                flag))
          (hashtree-error ht)))
    
    ; Given a <buckets> t and a hash code h, returns the alist for h.
    
    (define (find-bucket t h)
      (if (buckets-empty? t)
          '()
          (let ((n (buckets-n t)))
            (cond ((< h n)
                   (find-bucket (buckets-left t) h))
                  ((< n h)
                   (find-bucket (buckets-right t) h))
                  (else
                   (buckets-alist t))))))
    
    (define (put ht key val)
      (if (hashtree? ht)
          (let ((t (buckets ht))
                (h ((hasher ht) key))
                (association (cons key val))
                (c (count ht)))
            (define (put t h)
              (if (buckets-empty? t)
                  (begin (set! c (+ c 1))
                         (make-buckets h (list association) t t))
                  (let ((n     (buckets-n t))
                        (alist (buckets-alist t))
                        (left  (buckets-left t))
                        (right (buckets-right t)))
                    (cond ((< h n)
                           (make-buckets n
                                         alist
                                         (put (buckets-left t) h)
                                         right))
                          ((< n h)
                           (make-buckets n
                                         alist
                                         left
                                         (put (buckets-right t) h)))
                          (else
                           (let ((probe ((searcher ht) key alist)))
                             (if probe
                                 (make-buckets n
                                               (substitute1 association
                                                            probe
                                                            alist)
                                               left
                                               right)
                                 (begin
                                  (set! c (+ c 1))
                                  (make-buckets n
                                                (cons association alist)
                                                left
                                                right)))))))))
            (let ((buckets (put t h)))
              (make-ht c (hasher ht) (searcher ht) buckets)))
          (hashtree-error ht)))
    
    (define (remove ht key)
      (if (hashtree? ht)
          (let ((t (buckets ht))
                (h ((hasher ht) key))
                (c (count ht)))
            (define (remove t h)
              (if (buckets-empty? t)
                  t
                  (let ((n     (buckets-n t))
                        (alist (buckets-alist t))
                        (left  (buckets-left t))
                        (right (buckets-right t)))
                    (cond ((< h n)
                           (make-buckets n
                                         alist
                                         (remove left h)
                                         right))
                          ((< n h)
                           (make-buckets n
                                         alist
                                         left
                                         (remove right h)))
                          (else
                           (let ((probe ((searcher ht) key alist)))
                             (if probe
                                 (begin (set! c (- c 1))
                                        (make-buckets n
                                                      (remq1 probe alist)
                                                      left
                                                      right))
                                 t)))))))
            (let ((buckets (remove t h)))
              (make-ht c (hasher ht) (searcher ht) buckets)))
          (hashtree-error ht)))
    
    (define (size ht)
      (if (hashtree? ht)
          (count ht)
          (hashtree-error ht)))
    
    (define (ht-for-each f ht)
      (if (hashtree? ht)
          (for-each (lambda (association)
                      (f (car association)
                         (cdr association)))
                    (contents ht))
          (hashtree-error ht)))
    
    (define (ht-map f ht)
      (if (hashtree? ht)
          (map (lambda (association)
                 (f (car association)
                    (cdr association)))
               (contents ht))
          (hashtree-error ht)))
    
    ; External entry points.
    
    (set! make-hashtree
          (lambda args
            (let* ((hashfun (if (null? args) object-hash (car args)))
                   (searcher (if (or (null? args) (null? (cdr args)))
                                 assv
                                 (cadr args))))
              (make-ht 0 hashfun searcher (make-empty-buckets)))))
    
    (set! hashtree-contains? (lambda (ht key)      (contains? ht key)))
    (set! hashtree-fetch     (lambda (ht key flag) (fetch ht key flag)))
    (set! hashtree-get       (lambda (ht key)      (fetch ht key #f)))
    (set! hashtree-put       (lambda (ht key val)  (put ht key val)))
    (set! hashtree-remove    (lambda (ht key)      (remove ht key)))
    (set! hashtree-size      (lambda (ht)          (size ht)))
    (set! hashtree-for-each  (lambda (ht proc)     (ht-for-each ht proc)))
    (set! hashtree-map       (lambda (ht proc)     (ht-map ht proc)))
    #f))
; Copyright 1994 William Clinger
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 24 April 1999
;
; Compiler switches needed by Twobit.

(define make-twobit-flag)
(define display-twobit-flag)

(define make-twobit-flag
  (lambda (name)

    (define (twobit-warning)
      (display "Error: incorrect arguments to ")
      (write name)
      (newline)
      (reset))

    (define (display-flag state)
      (display (if state "  + " "  - "))
      (display name)
      (display " is ")
      (display (if state "on" "off"))
      (newline))

    (let ((state #t))
      (lambda args
        (cond ((null? args) state)
              ((and (null? (cdr args))
                    (boolean? (car args)))
               (set! state (car args))
               state)
              ((and (null? (cdr args))
                    (eq? (car args) 'display))
               (display-flag state))
              (else (twobit-warning)))))))

(define (display-twobit-flag flag)
  (flag 'display))
  
; Debugging and convenience.

(define issue-warnings
  (make-twobit-flag 'issue-warnings))

(define include-source-code
  (make-twobit-flag 'include-source-code))

(define include-variable-names
  (make-twobit-flag 'include-variable-names))

(define include-procedure-names
  (make-twobit-flag 'include-procedure-names))

; Space efficiency.
; This switch isn't fully implemented yet.  If it is true, then
; Twobit will generate flat closures and will go to some trouble
; to zero stale registers and stack slots.
; Don't turn this switch off unless space is more important than speed.

(define avoid-space-leaks
  (make-twobit-flag 'avoid-space-leaks))

; Major optimizations.

(define integrate-usual-procedures
  (make-twobit-flag 'integrate-usual-procedures))

(define control-optimization
  (make-twobit-flag 'control-optimization))

(define parallel-assignment-optimization
  (make-twobit-flag 'parallel-assignment-optimization))

(define lambda-optimization
  (make-twobit-flag 'lambda-optimization))

(define benchmark-mode
  (make-twobit-flag 'benchmark-mode))

(define benchmark-block-mode
  (make-twobit-flag 'benchmark-block-mode))

(define global-optimization
  (make-twobit-flag 'global-optimization))

(define interprocedural-inlining
  (make-twobit-flag 'interprocedural-inlining))

(define interprocedural-constant-propagation
  (make-twobit-flag 'interprocedural-constant-propagation))

(define common-subexpression-elimination
  (make-twobit-flag 'common-subexpression-elimination))

(define representation-inference
  (make-twobit-flag 'representation-inference))

(define local-optimization
  (make-twobit-flag 'local-optimization))

; For backwards compatibility, until I can change the code.

(define (ignore-space-leaks . args)
  (if (null? args)
      (not (avoid-space-leaks))
      (avoid-space-leaks (not (car args)))))

(define lambda-optimizations lambda-optimization)
(define local-optimizations local-optimization)

(define (set-compiler-flags! how)
  (case how
    ((no-optimization)
     (set-compiler-flags! 'standard)
     (avoid-space-leaks #t)
     (integrate-usual-procedures #f)
     (control-optimization #f)
     (parallel-assignment-optimization #f)
     (lambda-optimization #f)
     (benchmark-mode #f)
     (benchmark-block-mode #f)
     (global-optimization #f)
     (interprocedural-inlining #f)
     (interprocedural-constant-propagation #f)
     (common-subexpression-elimination #f)
     (representation-inference #f)
     (local-optimization #f))
    ((standard) 
     (issue-warnings #t)
     (include-source-code #f)
     (include-procedure-names #t)
     (include-variable-names #t)
     (avoid-space-leaks #f)
     (runtime-safety-checking #t)
     (integrate-usual-procedures #f)
     (control-optimization #t)
     (parallel-assignment-optimization #t)
     (lambda-optimization #t)
     (benchmark-mode #f)
     (benchmark-block-mode #f)
     (global-optimization #t)
     (interprocedural-inlining #t)
     (interprocedural-constant-propagation #t)
     (common-subexpression-elimination #t)
     (representation-inference #t)
     (local-optimization #t))
    ((fast-safe)
     (let ((bbmode (benchmark-block-mode)))
       (set-compiler-flags! 'standard)
       (integrate-usual-procedures #t)
       (benchmark-mode #t)
       (benchmark-block-mode bbmode)))
    ((fast-unsafe) 
     (set-compiler-flags! 'fast-safe)
     (runtime-safety-checking #f))
    (else 
     (error "set-compiler-flags!: unknown mode " how))))

(define (display-twobit-flags which)
  (case which
    ((debugging)
     (display-twobit-flag issue-warnings)
     (display-twobit-flag include-procedure-names)
     (display-twobit-flag include-variable-names)
     (display-twobit-flag include-source-code))
    ((safety)
     (display-twobit-flag avoid-space-leaks))
    ((optimization)
     (display-twobit-flag integrate-usual-procedures)
     (display-twobit-flag control-optimization)
     (display-twobit-flag parallel-assignment-optimization)
     (display-twobit-flag lambda-optimization)
     (display-twobit-flag benchmark-mode)
     (display-twobit-flag benchmark-block-mode)
     (display-twobit-flag global-optimization)
     (if (global-optimization)
         (begin (display "  ")
                (display-twobit-flag interprocedural-inlining)
                (display "  ")
                (display-twobit-flag interprocedural-constant-propagation)
                (display "  ")
                (display-twobit-flag common-subexpression-elimination)
                (display "  ")
                (display-twobit-flag representation-inference)))
     (display-twobit-flag local-optimization))
    (else
     ; The switch might mean something to the assembler, but not to Twobit
     #t)))

; eof
; Copyright 1991 William Clinger
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 14 April 1999 / wdc

($$trace "pass1.aux")

;***************************************************************
;
; Each definition in this section should be overridden by an assignment
; in a target-specific file.
;
; If a lambda expression has more than @maxargs-with-rest-arg@ required
; arguments followed by a rest argument, then the macro expander will
; rewrite the lambda expression as a lambda expression with only one
; argument (a rest argument) whose body is a LET that binds the arguments
; of the original lambda expression.

(define @maxargs-with-rest-arg@
  1000000)                              ; infinity

(define (prim-entry name) #f)           ; no integrable procedures
(define (prim-arity name) 0)            ; all of which take 0 arguments
(define (prim-opcodename name) name)    ; and go by their source names

; End of definitions to be overridden by target-specific assignments.
;
;***************************************************************

; Miscellaneous routines.

(define (m-warn msg . more)
  (if (issue-warnings)
      (begin
       (display "WARNING from macro expander:")
       (newline)
       (display msg)
       (newline)
       (for-each (lambda (x) (write x) (newline))
                 more))))

(define (m-error msg . more)
  (display "ERROR detected during macro expansion:")
  (newline)
  (display msg)
  (newline)
  (for-each (lambda (x) (write x) (newline))
            more)
  (m-quit (make-constant #f)))

(define (m-bug msg . more)
  (display "BUG in macro expander: ")
  (newline)
  (display msg)
  (newline)
  (for-each (lambda (x) (write x) (newline))
            more)
  (m-quit (make-constant #f)))

; Given a <formals>, returns a list of bound variables.

'
(define (make-null-terminated x)
  (cond ((null? x) '())
        ((pair? x)
         (cons (car x) (make-null-terminated (cdr x))))
        (else (list x))))

; Returns the length of the given list, or -1 if the argument
; is not a list.  Does not check for circular lists.

(define (safe-length x)
  (define (loop x n)
    (cond ((null? x) n)
          ((pair? x) (loop (cdr x) (+ n 1)))
          (else -1)))
  (loop x 0))

; Given a unary predicate and a list, returns a list of those
; elements for which the predicate is true.

(define (filter1 p x)
  (cond ((null? x) '())
        ((p (car x)) (cons (car x) (filter1 p (cdr x))))
        (else (filter1 p (cdr x)))))

; Given a unary predicate and a list, returns #t if the
; predicate is true of every element of the list.

(define (every1? p x)
  (cond ((null? x) #t)
        ((p (car x)) (every1? p (cdr x)))
        (else #f)))

; Binary union of two sets represented as lists, using equal?.

(define (union2 x y)
  (cond ((null? x) y)
        ((member (car x) y)
         (union2 (cdr x) y))
        (else (union2 (cdr x) (cons (car x) y)))))

; Given an association list, copies the association pairs.

(define (copy-alist alist)
  (map (lambda (x) (cons (car x) (cdr x)))
       alist))

; Removes a value from a list.  May destroy the list.

'
(define remq!
  (letrec ((loop (lambda (x y prev)
                   (cond ((null? y) #t)
                         ((eq? x (car y))
                          (set-cdr! prev (cdr y))
                          (loop x (cdr prev) prev))
                         (else
                          (loop x (cdr y) y))))))
    (lambda (x y)
      (cond ((null? y) '())
            ((eq? x (car y))
             (remq! x (cdr y)))
            (else
             (loop x (cdr y) y)
             y)))))

; Procedure-specific source code transformations.
; The transformer is passed a source code expression and a predicate
; and returns one of:
;
;    the original source code expression
;    a new source code expression to use in place of the original
;    #f to indicate that the procedure is being called
;      with an incorrect number of arguments or
;      with an incorrect operand
;
; The original source code expression is guaranteed to be a list whose
; car is the name associated with the transformer.
; The predicate takes an identifier (a symbol) and returns true iff
; that identifier is bound to something other than its global binding.
;
; Since the procedures and their transformations are target-specific,
; they are defined in another file, in the Target subdirectory.

; FIXME:
; I think this is now used in only one place, in simplify-if.

(define (integrable? name)
  (and (integrate-usual-procedures)
       (prim-entry name)))

; MAKE-READABLE strips the referencing information
; and replaces (begin I) by I.
; If the optional argument is true, then it also reconstructs LET.

(define (make-readable exp . rest)
  (let ((fancy? (and (not (null? rest))
                     (car rest))))
    (define (make-readable exp)
      (case (car exp)
        ((quote)    (make-readable-quote exp))
        ((lambda)   `(lambda ,(lambda.args exp)
                             ,@(map (lambda (def)
                                      `(define ,(def.lhs def)
                                               ,(make-readable (def.rhs def))))
                                    (lambda.defs exp))
                               ,(make-readable (lambda.body exp))))
        ((set!)     `(set! ,(assignment.lhs exp)
                           ,(make-readable (assignment.rhs exp))))
        ((if)       `(if ,(make-readable (if.test exp))
                         ,(make-readable (if.then exp))
                         ,(make-readable (if.else exp))))
        ((begin)    (if (variable? exp)
                        (variable.name exp)
                        `(begin ,@(map make-readable (begin.exprs exp)))))
        (else       (make-readable-call exp))))
    (define (make-readable-quote exp)
      (let ((x (constant.value exp)))
        (if (and fancy?
                 (or (boolean? x)
                     (number? x)
                     (char? x)
                     (string? x)))
            x
            exp)))
    (define (make-readable-call exp)
      (let ((proc (call.proc exp)))
        (if (and fancy?
                 (lambda? proc)
                 (list? (lambda.args proc)))
            ;(make-readable-let* exp '() '() '())
            (make-readable-let exp)
            `(,(make-readable (call.proc exp))
              ,@(map make-readable (call.args exp))))))
    (define (make-readable-let exp)
      (let* ((L (call.proc exp))
             (formals (lambda.args L))
             (args (map make-readable (call.args exp)))
             (body (make-readable (lambda.body L))))
        (if (and (null? (lambda.defs L))
                 (= (length args) 1)
                 (pair? body)
                 (or (and (eq? (car body) 'let)
                          (= (length (cadr body)) 1))
                     (eq? (car body) 'let*)))
            `(let* ((,(car formals) ,(car args))
                    ,@(cadr body))
                   ,@(cddr body))
            `(let ,(map list
                        (lambda.args L)
                        args)
                  ,@(map (lambda (def)
                           `(define ,(def.lhs def)
                                    ,(make-readable (def.rhs def))))
                         (lambda.defs L))
                    ,body))))
    (define (make-readable-let* exp vars inits defs)
      (if (and (null? defs)
               (call? exp)
               (lambda? (call.proc exp))
               (= 1 (length (lambda.args (call.proc exp)))))
          (let ((proc (call.proc exp))
                (arg (car (call.args exp))))
            (if (and (call? arg)
                     (lambda? (call.proc arg))
                     (= 1 (length (lambda.args (call.proc arg))))
                     (null? (lambda.defs (call.proc arg))))
                (make-readable-let*
                 (make-call proc (list (lambda.body (call.proc arg))))
                 (cons (car (lambda.args (call.proc arg))) vars)
                 (cons (make-readable (car (call.args arg))) inits)
                 '())
                (make-readable-let* (lambda.body proc)
                                    (cons (car (lambda.args proc)) vars)
                                    (cons (make-readable (car (call.args exp)))
                                          inits)
                                    (map (lambda (def)
                                           `(define ,(def.lhs def)
                                                    ,(make-readable (def.rhs def))))
                                         (reverse (lambda.defs proc))))))
          (cond ((or (not (null? vars))
                     (not (null? defs)))
                 `(let* ,(map list
                              (reverse vars)
                              (reverse inits))
                        ,@defs
                         ,(make-readable exp)))
                ((and (call? exp)
                      (lambda? (call.proc exp)))
                 (let ((proc (call.proc exp)))
                   `(let ,(map list
                               (lambda.args proc)
                               (map make-readable (call.args exp)))
                         ,@(map (lambda (def)
                                  `(define ,(def.lhs def)
                                           ,(make-readable (def.rhs def))))
                                (lambda.defs proc))
                          ,(make-readable (lambda.body proc)))))
                (else
                 (make-readable exp)))))
    (make-readable exp)))

; For testing.

; MAKE-UNREADABLE does the reverse.
; It assumes there are no internal definitions.

(define (make-unreadable exp)
  (cond ((symbol? exp) (list 'begin exp))
        ((pair? exp)
         (case (car exp)
           ((quote) exp)
           ((lambda) (list 'lambda
                           (cadr exp)
                           '(begin)
                           (list '() '() '() '())
                           (make-unreadable (cons 'begin (cddr exp)))))
           ((set!) (list 'set! (cadr exp) (make-unreadable (caddr exp))))
           ((if) (list 'if
                       (make-unreadable (cadr exp))
                       (make-unreadable (caddr exp))
                       (if (= (length exp) 3)
                           '(unspecified)
                           (make-unreadable (cadddr exp)))))
           ((begin) (if (= (length exp) 2)
                        (make-unreadable (cadr exp))
                        (cons 'begin (map make-unreadable (cdr exp)))))
           (else (map make-unreadable exp))))
        (else (list 'quote exp))))
; Copyright 1991 William D Clinger.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 12 April 1999.
;
; Procedures for fetching and clobbering parts of expressions.

($$trace "pass2.aux")

(define (constant? exp) (eq? (car exp) 'quote))
(define (variable? exp)
  (and (eq? (car exp) 'begin)
       (null? (cddr exp))))
(define (lambda? exp) (eq? (car exp) 'lambda))
(define (call? exp) (pair? (car exp)))
(define (assignment? exp) (eq? (car exp) 'set!))
(define (conditional? exp) (eq? (car exp) 'if))
(define (begin? exp)
  (and (eq? (car exp) 'begin)
       (not (null? (cddr exp)))))

(define (make-constant value) (list 'quote value))
(define (make-variable name) (list 'begin name))
(define (make-lambda formals defs R F G decls doc body)
  (list 'lambda
        formals
        (cons 'begin defs)
        (list 'quote (list R F G decls doc))
        body))
(define (make-call proc args) (cons proc (append args '())))
(define (make-assignment lhs rhs) (list 'set! lhs rhs))
(define (make-conditional e0 e1 e2) (list 'if e0 e1 e2))
(define (make-begin exprs)
  (if (null? (cdr exprs))
      (car exprs)
      (cons 'begin (append exprs '()))))
(define (make-definition lhs rhs) (list 'define lhs rhs))

(define (constant.value exp) (cadr exp))
(define (variable.name exp) (cadr exp))
(define (lambda.args exp) (cadr exp))
(define (lambda.defs exp) (cdr (caddr exp)))
(define (lambda.R exp) (car (cadr (cadddr exp))))
(define (lambda.F exp) (cadr (cadr (cadddr exp))))
(define (lambda.G exp) (caddr (cadr (cadddr exp))))
(define (lambda.decls exp) (cadddr (cadr (cadddr exp))))
(define (lambda.doc exp) (car (cddddr (cadr (cadddr exp)))))
(define (lambda.body exp) (car (cddddr exp)))
(define (call.proc exp) (car exp))
(define (call.args exp) (cdr exp))
(define (assignment.lhs exp) (cadr exp))
(define (assignment.rhs exp) (caddr exp))
(define (if.test exp) (cadr exp))
(define (if.then exp) (caddr exp))
(define (if.else exp) (cadddr exp))
(define (begin.exprs exp) (cdr exp))
(define (def.lhs exp) (cadr exp))
(define (def.rhs exp) (caddr exp))

(define (variable-set! exp newexp)
  (set-car! exp (car newexp))
  (set-cdr! exp (append (cdr newexp) '())))
(define (lambda.args-set! exp args) (set-car! (cdr exp) args))
(define (lambda.defs-set! exp defs) (set-cdr! (caddr exp) defs))
(define (lambda.R-set! exp R) (set-car! (cadr (cadddr exp)) R))
(define (lambda.F-set! exp F) (set-car! (cdr (cadr (cadddr exp))) F))
(define (lambda.G-set! exp G) (set-car! (cddr (cadr (cadddr exp))) G))
(define (lambda.decls-set! exp decls) (set-car! (cdddr (cadr (cadddr exp))) decls))
(define (lambda.doc-set! exp doc) (set-car! (cddddr (cadr (cadddr exp))) doc))
(define (lambda.body-set! exp exp0) (set-car! (cddddr exp) exp0))
(define (call.proc-set! exp exp0) (set-car! exp exp0))
(define (call.args-set! exp exprs) (set-cdr! exp exprs))
(define (assignment.rhs-set! exp exp0) (set-car! (cddr exp) exp0))
(define (if.test-set! exp exp0) (set-car! (cdr exp) exp0))
(define (if.then-set! exp exp0) (set-car! (cddr exp) exp0))
(define (if.else-set! exp exp0) (set-car! (cdddr exp) exp0))
(define (begin.exprs-set! exp exprs) (set-cdr! exp exprs))

(define expression-set! variable-set!)  ; used only by pass 3

; FIXME:  This duplicates information in Lib/procinfo.sch.

(define (make-doc name arity formals source-code filename filepos)
  (vector name source-code arity filename filepos formals))
(define (doc.name d)    (vector-ref d 0))
(define (doc.code d)    (vector-ref d 1))
(define (doc.arity d)   (vector-ref d 2))
(define (doc.file d)    (vector-ref d 3))
(define (doc.filepos d) (vector-ref d 4))
(define (doc.formals d) (vector-ref d 5))
(define (doc.name-set! d x)    (if d (vector-set! d 0 x)))
(define (doc.code-set! d x)    (if d (vector-set! d 1 x)))
(define (doc.arity-set! d x)   (if d (vector-set! d 2 x)))
(define (doc.file-set! d x)    (if d (vector-set! d 3 x)))
(define (doc.filepos-set! d x) (if d (vector-set! d 4 x)))
(define (doc.formals-set! d x) (if d (vector-set! d 5 x)))
(define (doc-copy d) (list->vector (vector->list d)))

(define (ignored? name) (eq? name name:IGNORED))

; Fairly harmless bug: rest arguments aren't getting flagged.

(define (flag-as-ignored name L)
  (define (loop name formals)
    (cond ((null? formals)
           ;(pass2-error p2error:violation-of-invariant name formals)
           #t)
          ((symbol? formals) #t)
          ((eq? name (car formals))
           (set-car! formals name:IGNORED)
           (if (not (local? (lambda.R L) name:IGNORED))
               (lambda.R-set! L
                 (cons (make-R-entry name:IGNORED '() '() '())
                       (lambda.R L)))))
          (else (loop name (cdr formals)))))
  (loop name (lambda.args L)))

(define (make-null-terminated formals)
  (cond ((null? formals) '())
        ((symbol? formals) (list formals))
        (else (cons (car formals)
                    (make-null-terminated (cdr formals))))))

(define (list-head x n)
  (cond ((zero? n) '())
        (else (cons (car x) (list-head (cdr x) (- n 1))))))

(define (remq x y)
  (cond ((null? y) '())
        ((eq? x (car y)) (remq x (cdr y)))
        (else (cons (car y) (remq x (cdr y))))))

(define (make-call-to-LIST args)
  (cond ((null? args) (make-constant '()))
        ((null? (cdr args))
         (make-call (make-variable name:CONS)
                    (list (car args) (make-constant '()))))
        (else (make-call (make-variable name:LIST) args))))

(define (pass2-error i . etc)
  (apply cerror (cons (vector-ref pass2-error-messages i) etc)))

(define pass2-error-messages
  '#("System error: violation of an invariant in pass 2"
     "Wrong number of arguments to known procedure"))

(define p2error:violation-of-invariant 0)
(define p2error:wna 1)

; Procedures for fetching referencing information from R-tables.

(define (make-R-entry name refs assigns calls)
  (list name refs assigns calls))

(define (R-entry.name x) (car x))
(define (R-entry.references x) (cadr x))
(define (R-entry.assignments x) (caddr x))
(define (R-entry.calls x) (cadddr x))

(define (R-entry.references-set! x refs) (set-car! (cdr x) refs))
(define (R-entry.assignments-set! x assignments) (set-car! (cddr x) assignments))
(define (R-entry.calls-set! x calls) (set-car! (cdddr x) calls))

(define (local? R I)
  (assq I R))

(define (R-entry R I)
  (assq I R))

(define (R-lookup R I)
  (or (assq I R)
      (pass2-error p2error:violation-of-invariant R I)))

(define (references R I)
  (cadr (R-lookup R I)))

(define (assignments R I)
  (caddr (R-lookup R I)))

(define (calls R I)
  (cadddr (R-lookup R I)))

(define (references-set! R I X)
  (set-car! (cdr (R-lookup R I)) X))

(define (assignments-set! R I X)
  (set-car! (cddr (R-lookup R I)) X))

(define (calls-set! R I X)
  (set-car! (cdddr (R-lookup R I)) X))

; A notepad is a vector of the form #(L0 (L1 ...) (L2 ...) (I ...)),
; where the components are:
;    element 0: a parent lambda expression (or #f if there is no enclosing
;               parent, or we want to pretend that there isn't).
;    element 1: a list of lambda expressions that the parent lambda
;               expression encloses immediately.
;    element 2: a subset of that list that does not escape.
;    element 3: a list of free variables.

(define (make-notepad L)
  (vector L '() '() '()))

(define (notepad.parent np)      (vector-ref np 0))
(define (notepad.lambdas np)     (vector-ref np 1))
(define (notepad.nonescaping np) (vector-ref np 2))
(define (notepad.vars np)        (vector-ref np 3))

(define (notepad.lambdas-set! np x)     (vector-set! np 1 x))
(define (notepad.nonescaping-set! np x) (vector-set! np 2 x))
(define (notepad.vars-set! np x)        (vector-set! np 3 x))

(define (notepad-lambda-add! np L)
  (notepad.lambdas-set! np (cons L (notepad.lambdas np))))

(define (notepad-nonescaping-add! np L)
  (notepad.nonescaping-set! np (cons L (notepad.nonescaping np))))

(define (notepad-var-add! np I)
  (let ((vars (notepad.vars np)))
    (if (not (memq I vars))
        (notepad.vars-set! np (cons I vars)))))

; Given a notepad, returns the list of variables that are closed
; over by some nested lambda expression that escapes.

(define (notepad-captured-variables np)
  (let ((nonescaping (notepad.nonescaping np)))
    (apply-union
     (map (lambda (L)
            (if (memq L nonescaping)
                (lambda.G L)
                (lambda.F L)))
          (notepad.lambdas np)))))

; Given a notepad, returns a list of free variables computed
; as the union of the immediate free variables with the free
; variables of nested lambda expressions.

(define (notepad-free-variables np)
  (do ((lambdas (notepad.lambdas np) (cdr lambdas))
       (fv (notepad.vars np)
           (let ((L (car lambdas)))
             (union (difference (lambda.F L)
                                (make-null-terminated (lambda.args L)))
                    fv))))
      ((null? lambdas) fv)))
; Copyright 1992 William Clinger
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 13 December 1998
; Implementation-dependent parameters and preferences that determine
; how identifiers are represented in the output of the macro expander.
;
; The basic problem is that there are no reserved words, so the
; syntactic keywords of core Scheme that are used to express the
; output need to be represented by data that cannot appear in the
; input.  This file defines those data.

($$trace "prefs")

; FIXME: The following definitions are currently ignored.

; The following definitions assume that identifiers of mixed case
; cannot appear in the input.

(define begin1  (string->symbol "Begin"))
(define define1 (string->symbol "Define"))
(define quote1  (string->symbol "Quote"))
(define lambda1 (string->symbol "Lambda"))
(define if1     (string->symbol "If"))
(define set!1   (string->symbol "Set!"))

; The following defines an implementation-dependent expression
; that evaluates to an undefined (not unspecified!) value, for
; use in expanding the (define x) syntax.

(define undefined1 (list (string->symbol "Undefined")))

; End of FIXME.

; A variable is renamed by suffixing a vertical bar followed by a unique
; integer.  In IEEE and R4RS Scheme, a vertical bar cannot appear as part
; of an identifier, but presumably this is enforced by the reader and not
; by the compiler.  Any other character that cannot appear as part of an
; identifier may be used instead of the vertical bar.

(define renaming-prefix-character #\.)
(define renaming-suffix-character #\|)

(define renaming-prefix (string renaming-prefix-character))
(define renaming-suffix (string renaming-suffix-character))

; Patches for Twobit.  Here temporarily.

(define (make-toplevel-definition id exp)
  (if (lambda? exp)
      (doc.name-set! (lambda.doc exp) id))
  (make-begin
   (list (make-assignment id exp)
         (make-constant id))))
        
(define (make-undefined)
  (make-call (make-variable 'undefined) '()))

(define (make-unspecified)
  (make-call (make-variable 'unspecified) '()))
; Copyright 1992 William Clinger
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 9 December 1998
; Syntactic environments.
;
; A syntactic environment maps identifiers to denotations,
; where a denotation is one of
;
;    (special <special>)
;    (macro <rules> <env>)
;    (inline <rules> <env>)
;    (identifier <id> <references> <assignments> <calls>)
;
; and where <special> is one of
;
;    quote
;    lambda
;    if
;    set!
;    begin
;    define
;    define-syntax
;    let-syntax
;    letrec-syntax
;    syntax-rules
;
; and where <rules> is a compiled <transformer spec> (see R4RS),
; <env> is a syntactic environment, and <id> is an identifier.
;
; An inline denotation is like a macro denotation, except that it
; is not an error when none of the rules match the use.  Inline
; denotations are created by DEFINE-INLINE.
; The standard syntactic environment should not include any
; identifier denotations; space leaks will result if it does.

($$trace "syntaxenv")

(define standard-syntactic-environment
  `((quote         . (special quote))
    (lambda        . (special lambda))
    (if            . (special if))
    (set!          . (special set!))
    (begin         . (special begin))
    (define        . (special define))
    (define-inline . (special define-inline))
    (define-syntax . (special define-syntax))
    (let-syntax    . (special let-syntax))
    (letrec-syntax . (special letrec-syntax))
    (syntax-rules  . (special syntax-rules))
    ))

; Unforgeable synonyms for lambda and set!, used to expand definitions.

(define lambda0 (string->symbol " lambda "))
(define set!0 (string->symbol " set! "))

(define (syntactic-copy env)
  (copy-alist env))

(define (make-basic-syntactic-environment)
  (cons (cons lambda0
              (cdr (assq 'lambda standard-syntactic-environment)))
        (cons (cons set!0
                    (cdr (assq 'set! standard-syntactic-environment)))
              (syntactic-copy standard-syntactic-environment))))

; The global-syntactic-environment will always be a nonempty
; association list since there is no way to remove the entry
; for lambda0.  That entry is used as a header by destructive
; operations.

(define global-syntactic-environment
  (make-basic-syntactic-environment))

(define (global-syntactic-environment-set! env)
  (set-cdr! global-syntactic-environment env)
  #t)

(define (syntactic-bind-globally! id denotation)
  (if (and (identifier-denotation? denotation)
           (eq? id (identifier-name denotation)))
      (letrec ((remove-bindings-for-id
                (lambda (bindings)
                  (cond ((null? bindings) '())
                        ((eq? (caar bindings) id)
                         (remove-bindings-for-id (cdr bindings)))
                        (else (cons (car bindings)
                                    (remove-bindings-for-id (cdr bindings))))))))
        (global-syntactic-environment-set!
         (remove-bindings-for-id (cdr global-syntactic-environment))))
      (let ((x (assq id global-syntactic-environment)))
        (if x
            (begin (set-cdr! x denotation) #t)
            (global-syntactic-environment-set!
             (cons (cons id denotation)
                   (cdr global-syntactic-environment)))))))

(define (syntactic-divert env1 env2)
  (append env2 env1))

(define (syntactic-extend env ids denotations)
  (syntactic-divert env (map cons ids denotations)))

(define (syntactic-lookup env id)
  (let ((entry (assq id env)))
    (if entry
        (cdr entry)
        (make-identifier-denotation id))))

(define (syntactic-assign! env id denotation)
  (let ((entry (assq id env)))
    (if entry
        (set-cdr! entry denotation)
        (m-bug "Bug detected in syntactic-assign!" env id denotation))))

; Denotations.

(define denotation-class car)

(define (special-denotation? denotation)
  (eq? (denotation-class denotation) 'special))

(define (macro-denotation? denotation)
  (eq? (denotation-class denotation) 'macro))

(define (inline-denotation? denotation)
  (eq? (denotation-class denotation) 'inline))

(define (identifier-denotation? denotation)
  (eq? (denotation-class denotation) 'identifier))

(define (make-macro-denotation rules env)
  (list 'macro rules env))

(define (make-inline-denotation id rules env)
  (list 'inline rules env id))

(define (make-identifier-denotation id)
  (list 'identifier id '() '() '()))

(define macro-rules        cadr)
(define macro-env          caddr)

(define inline-rules       macro-rules)
(define inline-env         macro-env)
(define inline-name        cadddr)

(define identifier-name    cadr)
(define identifier-R-entry cdr)

(define (same-denotation? d1 d2)
  (or (eq? d1 d2)
      (and (identifier-denotation? d1)
           (identifier-denotation? d2)
           (eq? (identifier-name d1)
                (identifier-name d2)))))

(define denotation-of-quote
  (syntactic-lookup standard-syntactic-environment 'quote))

(define denotation-of-lambda
  (syntactic-lookup standard-syntactic-environment 'lambda))

(define denotation-of-if
  (syntactic-lookup standard-syntactic-environment 'if))

(define denotation-of-set!
  (syntactic-lookup standard-syntactic-environment 'set!))

(define denotation-of-begin
  (syntactic-lookup standard-syntactic-environment 'begin))

(define denotation-of-define
  (syntactic-lookup standard-syntactic-environment 'define))

(define denotation-of-define-inline
  (syntactic-lookup standard-syntactic-environment 'define-inline))

(define denotation-of-define-syntax
  (syntactic-lookup standard-syntactic-environment 'define-syntax))

(define denotation-of-let-syntax
  (syntactic-lookup standard-syntactic-environment 'let-syntax))

(define denotation-of-letrec-syntax
  (syntactic-lookup standard-syntactic-environment 'letrec-syntax))

(define denotation-of-syntax-rules
  (syntactic-lookup standard-syntactic-environment 'syntax-rules))

(define denotation-of-...
  (syntactic-lookup standard-syntactic-environment '...))

(define denotation-of-transformer
  (syntactic-lookup standard-syntactic-environment 'transformer))

; Given a syntactic environment env to be extended, an alist returned
; by rename-vars, and a syntactic environment env2, extends env by
; binding the fresh identifiers to the denotations of the original
; identifiers in env2.

(define (syntactic-alias env alist env2)
  (syntactic-divert
   env
   (map (lambda (name-pair)
          (let ((old-name (car name-pair))
                (new-name (cdr name-pair)))
            (cons new-name
                  (syntactic-lookup env2 old-name))))
        alist)))

; Given a syntactic environment and an alist returned by rename-vars,
; extends the environment by binding the old identifiers to the fresh
; identifiers.
; For Twobit, it also binds the fresh identifiers to their denotations.
; This is ok so long as the fresh identifiers are not legal Scheme
; identifiers.

(define (syntactic-rename env alist)
  (if (null? alist)
      env
      (let* ((old (caar alist))
             (new (cdar alist))
             (denotation (make-identifier-denotation new)))
        (syntactic-rename
         (cons (cons old denotation)
               (cons (cons new denotation)
                     env))
         (cdr alist)))))

; Renaming of variables.

(define renaming-counter 0)

(define (make-rename-procedure)
  (set! renaming-counter (+ renaming-counter 1))
  (let ((suffix (string-append renaming-suffix (number->string renaming-counter))))
    (lambda (sym)
      (if (symbol? sym)
          (let ((s (symbol->string sym)))
            (if (and (positive? (string-length s))
                     (char=? (string-ref s 0) renaming-prefix-character))
                (string->symbol (string-append s suffix))
                (string->symbol (string-append renaming-prefix s suffix))))
          (m-warn "Illegal use of rename procedure" 'ok:FIXME sym)))))

; Given a datum, strips the suffixes from any symbols that appear within
; the datum, trying not to copy any more of the datum than necessary.

(define (m-strip x)
  (define (original-symbol x)
    (define (loop sym s i n)
      (cond ((= i n) sym)
            ((char=? (string-ref s i)
                     renaming-suffix-character)
             (string->symbol (substring s 1 i)))
            (else
             (loop sym s (+ i 1) n))))
    (let ((s (symbol->string x)))
      (if (and (positive? (string-length s))
               (char=? (string-ref s 0) renaming-prefix-character))
          (loop x s 0 (string-length s))
          x)))
  (cond ((symbol? x)
         (original-symbol x))
        ((pair? x)
         (let ((a (m-strip (car x)))
               (b (m-strip (cdr x))))
           (if (and (eq? a (car x))
                    (eq? b (cdr x)))
               x
               (cons a b))))
        ((vector? x)
         (let* ((v (vector->list x))
                (v2 (map m-strip v)))
           (if (equal? v v2)
               x
               (list->vector v2))))
        (else x)))

; Given a list of identifiers, or a formal parameter "list",
; returns an alist that associates each identifier with a fresh identifier.

(define (rename-vars original-vars)
  (let ((rename (make-rename-procedure)))
    (define (loop vars newvars)
      (cond ((null? vars) (reverse newvars))
            ((pair? vars)
             (let ((var (car vars)))
               (if (symbol? var)
                   (loop (cdr vars)
                         (cons (cons var (rename var))
                               newvars))
                   (m-error "Illegal variable" var))))
            ((symbol? vars)
             (loop (list vars) newvars))
            (else (m-error "Malformed parameter list" original-vars))))
    (loop original-vars '())))

; Given a <formals> and an alist returned by rename-vars that contains
; a new name for each formal identifier in <formals>, renames the
; formal identifiers.

(define (rename-formals formals alist)
  (cond ((null? formals) '())
        ((pair? formals)
         (cons (cdr (assq (car formals) alist))
               (rename-formals (cdr formals) alist)))
        (else (cdr (assq formals alist)))))
; Copyright 1992 William Clinger
;
; Permission to copy this software, in whole or in part, to use this
; software for any lawful purpose, and to redistribute this software
; is granted subject to the restriction that all copies made of this
; software must include this copyright notice in full.
;
; I also request that you send me a copy of any improvements that you
; make to this software so that they may be incorporated within it to
; the benefit of the Scheme community.
;
; 23 November 1998
; Compiler for a <transformer spec>.
;
; References:
;
;    The Revised^4 Report on the Algorithmic Language Scheme.
;    Clinger and Rees [editors].  To appear in Lisp Pointers.
;    Also available as a technical report from U of Oregon,
;    MIT AI Lab, and Cornell.
;
;    Macros That Work.  Clinger and Rees.  POPL '91.
;
; The input is a <transformer spec> and a syntactic environment.
; Syntactic environments are described in another file.
;
; The supported syntax differs from the R4RS in that vectors are
; allowed as patterns and as templates and are not allowed as
; pattern or template data.
;
;    <transformer spec>  -->  (syntax-rules <literals> <rules>)
;    <rules>  -->  ()  |  (<rule> . <rules>)
;    <rule> --> (<pattern> <template>)
;    <pattern> --> <pattern_var>      ; a <symbol> not in <literals>
;                | <symbol>           ; a <symbol> in <literals>
;                | ()
;                | (<pattern> . <pattern>)
;                | (<ellipsis_pattern>)
;                | #(<pattern>*)                     ; extends R4RS
;                | #(<pattern>* <ellipsis_pattern>)  ; extends R4RS
;                | <pattern_datum>
;    <template> --> <pattern_var>
;                |  <symbol>
;                |  ()
;                |  (<template2> . <template2>)
;                |  #(<template>*)                   ; extends R4RS
;                |  <pattern_datum>
;    <template2> --> <template>  |  <ellipsis_template>
;    <pattern_datum> --> <string>                    ; no <vector>
;                     |  <character>
;                     |  <boolean>
;                     |  <number>
;    <ellipsis_pattern>  --> <pattern> ...
;    <ellipsis_template> --> <template> ...
;    <pattern_var>       --> <symbol> ; not in <literals>
;    <literals>  -->  ()  |  (<symbol> . <literals>)
;
; Definitions.
;
; scope of an ellipsis
;
;    Within a pattern or template, the scope of an ellipsis
;    (...) is the pattern or template that appears to its left.
;
; rank of a pattern variable
;
;    The rank of a pattern variable is the number of ellipses
;    within whose scope it appears in the pattern.
;
; rank of a subtemplate
;
;    The rank of a subtemplate is the number of ellipses within
;    whose scope it appears in the template.
;
; template rank of an occurrence of a pattern variable
;
;    The template rank of an occurrence of a pattern variable
;    within a template is the rank of that occurrence, viewed
;    as a subtemplate.
;
; variables bound by a pattern
;
;    The variables bound by a pattern are the pattern variables
;    that appear within it.
;
; referenced variables of a subtemplate
;
;    The referenced variables of a subtemplate are the pattern
;    variables that appear within it.
;
; variables opened by an ellipsis template
;
;    The variables opened by an ellipsis template are the
;    referenced pattern variables whose rank is greater than
;    the rank of the ellipsis template.
;    
;
; Restrictions.
;
;    No pattern variable appears more than once within a pattern.
;
;    For every occurrence of a pattern variable within a template,
;    the template rank of the occurrence must be greater than or
;    equal to the pattern variable's rank.
;
;    Every ellipsis template must open at least one variable.
;    
;    For every ellipsis template, the variables opened by an
;    ellipsis template must all be bound to sequences of the
;    same length.
;
;
; The compiled form of a <rule> is
;
;    <rule> --> (<pattern> <template> <inserted>)
;    <pattern> --> <pattern_var>
;                | <symbol>
;                | ()
;                | (<pattern> . <pattern>)
;                | <ellipsis_pattern>
;                | #(<pattern>)
;                | <pattern_datum>
;    <template> --> <pattern_var>
;                |  <symbol>
;                |  ()
;                |  (<template2> . <template2>)
;                |  #(<pattern>)
;                |  <pattern_datum>
;    <template2> --> <template>  |  <ellipsis_template>
;    <pattern_datum> --> <string>
;                     |  <character>
;                     |  <boolean>
;                     |  <number>
;    <pattern_var>       --> #(<V> <symbol> <rank>)
;    <ellipsis_pattern>  --> #(<E> <pattern> <pattern_vars>)
;    <ellipsis_template> --> #(<E> <template> <pattern_vars>)
;    <inserted> -->     ()  |  (<symbol> . <inserted>)
;    <pattern_vars> --> ()  |  (<pattern_var> . <pattern_vars>)
;    <rank>  -->  <exact non-negative integer>
;
; where <V> and <E> are unforgeable values.
; The pattern variables associated with an ellipsis pattern
; are the variables bound by the pattern, and the pattern
; variables associated with an ellipsis template are the
; variables opened by the ellipsis template.
;
;
; What's wrong with the above?
; If the template contains a big chunk that contains no pattern variables
; or inserted identifiers, then the big chunk will be copied unnecessarily.
; That shouldn't matter very often.

($$trace "syntaxrules")

(define pattern-variable-flag (list 'v))
(define ellipsis-pattern-flag (list 'e))
(define ellipsis-template-flag ellipsis-pattern-flag)

(define (make-patternvar v rank)
  (vector pattern-variable-flag v rank))
(define (make-ellipsis-pattern P vars)
  (vector ellipsis-pattern-flag P vars))
(define (make-ellipsis-template T vars)
  (vector ellipsis-template-flag T vars))

(define (patternvar? x)
  (and (vector? x)
       (= (vector-length x) 3)
       (eq? (vector-ref x 0) pattern-variable-flag)))

(define (ellipsis-pattern? x)
  (and (vector? x)
       (= (vector-length x) 3)
       (eq? (vector-ref x 0) ellipsis-pattern-flag)))

(define (ellipsis-template? x)
  (and (vector? x)
       (= (vector-length x) 3)
       (eq? (vector-ref x 0) ellipsis-template-flag)))

(define (patternvar-name V) (vector-ref V 1))
(define (patternvar-rank V) (vector-ref V 2))
(define (ellipsis-pattern P) (vector-ref P 1))
(define (ellipsis-pattern-vars P) (vector-ref P 2))
(define (ellipsis-template T) (vector-ref T 1))
(define (ellipsis-template-vars T) (vector-ref T 2))

(define (pattern-variable v vars)
  (cond ((null? vars) #f)
        ((eq? v (patternvar-name (car vars)))
         (car vars))
        (else (pattern-variable v (cdr vars)))))

; Given a <transformer spec> and a syntactic environment,
; returns a macro denotation.
;
; A macro denotation is of the form
;
;    (macro (<rule> ...) env)
;
; where each <rule> has been compiled as described above.

(define (m-compile-transformer-spec spec env)
  (if (and (> (safe-length spec) 1)
           (eq? (syntactic-lookup env (car spec))
                denotation-of-syntax-rules))
      (let ((literals (cadr spec))
            (rules (cddr spec)))
        (if (or (not (list? literals))
                (not (every1? (lambda (rule)
                                (and (= (safe-length rule) 2)
                                     (pair? (car rule))))
                              rules)))
            (m-error "Malformed syntax-rules" spec))
        (list 'macro
              (map (lambda (rule)
                     (m-compile-rule rule literals env))
                   rules)
              env))
      (m-error "Malformed syntax-rules" spec)))

(define (m-compile-rule rule literals env)
  (m-compile-pattern (cdr (car rule))
                     literals
                     env
                     (lambda (compiled-rule patternvars)
                       ; FIXME
                       ; should check uniqueness of pattern variables here
                       (cons compiled-rule
                             (m-compile-template
                              (cadr rule)
                              patternvars
                              env)))))

(define (m-compile-pattern P literals env k)
  (define (loop P vars rank k)
    (cond ((symbol? P)
           (if (memq P literals)
               (k P vars)
               (let ((var (make-patternvar P rank)))
                 (k var (cons var vars)))))
          ((null? P) (k '() vars))
          ((pair? P)
           (if (and (pair? (cdr P))
                    (symbol? (cadr P))
                    (same-denotation? (syntactic-lookup env (cadr P))
                                      denotation-of-...))
               (if (null? (cddr P))
                   (loop (car P)
                         '()
                         (+ rank 1)
                         (lambda (P vars1)
                           (k (make-ellipsis-pattern P vars1)
                              (union2 vars1 vars))))
                   (m-error "Malformed pattern" P))
               (loop (car P)
                     vars
                     rank
                     (lambda (P1 vars)
                       (loop (cdr P)
                             vars
                             rank
                             (lambda (P2 vars)
                               (k (cons P1 P2) vars)))))))
          ((vector? P)
           (loop (vector->list P)
                 vars
                 rank
                 (lambda (P vars)
                   (k (vector P) vars))))
          (else (k P vars))))
  (loop P '() 0 k))

(define (m-compile-template T vars env)
  
  (define (loop T inserted referenced rank escaped? k)
    (cond ((symbol? T)
           (let ((x (pattern-variable T vars)))
             (if x
                 (if (>= rank (patternvar-rank x))
                     (k x inserted (cons x referenced))
                     (m-error
                      "Too few ellipses follow pattern variable in template"
                      (patternvar-name x)))
                 (k T (cons T inserted) referenced))))
          ((null? T) (k '() inserted referenced))
          ((pair? T)
           (cond ((and (not escaped?)
                       (symbol? (car T))
                       (same-denotation? (syntactic-lookup env (car T))
                                         denotation-of-...)
                       (pair? (cdr T))
                       (null? (cddr T)))
                  (loop (cadr T) inserted referenced rank #t k))
                 ((and (not escaped?)
                       (pair? (cdr T))
                       (symbol? (cadr T))
                       (same-denotation? (syntactic-lookup env (cadr T))
                                         denotation-of-...))
                  (loop1 T inserted referenced rank escaped? k))
                 (else
                  (loop (car T)
                        inserted
                        referenced
                        rank
                        escaped?
                        (lambda (T1 inserted referenced)
                          (loop (cdr T)
                                inserted
                                referenced
                                rank
                                escaped?
                                (lambda (T2 inserted referenced)
                                  (k (cons T1 T2) inserted referenced))))))))
          ((vector? T)
           (loop (vector->list T)
                 inserted
                 referenced
                 rank
                 escaped?
                 (lambda (T inserted referenced)
                   (k (vector T) inserted referenced))))
          (else (k T inserted referenced))))
  
  (define (loop1 T inserted referenced rank escaped? k)
    (loop (car T)
          inserted
          '()
          (+ rank 1)
          escaped?
          (lambda (T1 inserted referenced1)
            (loop (cddr T)
                  inserted
                  (append referenced1 referenced)
                  rank
                  escaped?
                  (lambda (T2 inserted referenced)
                    (k (cons (make-ellipsis-template
                              T1
                              (filter1 (lambda (var)
                                         (> (patternvar-rank var)
                                            rank))
                                       referenced1))
                             T2)
                       inserted
                       referenced))))))
  
  (loop T
        '()
        '()
        0
        #f
        (lambda (T inserted referenced)
          (list T inserted))))

; The pattern matcher.
;
; Given an input, a pattern, and two syntactic environments,
; returns a pattern variable environment (represented as an alist)
; if the input matches the pattern, otherwise returns #f.

(define empty-pattern-variable-environment
  (list (make-patternvar (string->symbol "") 0)))

(define (m-match F P env-def env-use)
  
  (define (match F P answer rank)
    (cond ((null? P)
           (and (null? F) answer))
          ((pair? P)
           (and (pair? F)
                (let ((answer (match (car F) (car P) answer rank)))
                  (and answer (match (cdr F) (cdr P) answer rank)))))
          ((symbol? P)
           (and (symbol? F)
                (same-denotation? (syntactic-lookup env-def P)
                                  (syntactic-lookup env-use F))
                answer))
          ((patternvar? P)
           (cons (cons P F) answer))
          ((ellipsis-pattern? P)
           (match1 F P answer (+ rank 1)))
          ((vector? P)
           (and (vector? F)
                (match (vector->list F) (vector-ref P 0) answer rank)))
          (else (and (equal? F P) answer))))
  
  (define (match1 F P answer rank)
    (cond ((not (list? F)) #f)
          ((null? F)
           (append (map (lambda (var) (cons var '()))
                        (ellipsis-pattern-vars P))
                   answer))
          (else
           (let* ((P1 (ellipsis-pattern P))
                  (answers (map (lambda (F) (match F P1 answer rank))
                                F)))
             (if (every1? (lambda (answer) answer) answers)
                 (append (map (lambda (var)
                                (cons var
                                      (map (lambda (answer)
                                             (cdr (assq var answer)))
                                           answers)))
                              (ellipsis-pattern-vars P))
                         answer)
                 #f)))))
  
  (match F P empty-pattern-variable-environment 0))

(define (m-rewrite T alist)
  
  (define (rewrite T alist rank)
    (cond ((null? T) '())
          ((pair? T)
           ((if (ellipsis-pattern? (car T))
                append
                cons)
            (rewrite (car T) alist rank)
            (rewrite (cdr T) alist rank)))
          ((symbol? T) (cdr (assq T alist)))
          ((patternvar? T) (cdr (assq T alist)))
          ((ellipsis-template? T)
           (rewrite1 T alist (+ rank 1)))
          ((vector? T)
           (list->vector (rewrite (vector-ref T 0) alist rank)))
          (else T)))
  
  (define (rewrite1 T alist rank)
    (let* ((T1 (ellipsis-template T))
           (vars (ellipsis-template-vars T))
           (rows (map (lambda (var) (cdr (assq var alist)))
                      vars)))
      (map (lambda (alist) (rewrite T1 alist rank))
           (make-columns vars rows alist))))
  
  (define (make-columns vars rows alist)
    (define (loop rows)
      (if (null? (car rows))
          '()
          (cons (append (map (lambda (var row)
                               (cons var (car row)))
                             vars
                             rows)
                        alist)
                (loop (map cdr rows)))))
    (if (or (null? (cdr rows))
            (apply = (map length rows)))
        (loop rows)
        (m-error "Use of macro is not consistent with definition"
                 vars
                 rows)))
  
  (rewrite T alist 0))

; Given a use of a macro, the syntactic environment of the use,
; a continuation that expects a transcribed expression and
; a new environment in which to continue expansion, and a boolean
; that is true if this transcription is for an inline procedure,
; does the right thing.

(define (m-transcribe0 exp env-use k inline?)
  (let* ((m (syntactic-lookup env-use (car exp)))
         (rules (macro-rules m))
         (env-def (macro-env m))
         (F (cdr exp)))
    (define (loop rules)
      (if (null? rules)
          (if inline?
              (k exp env-use)
              (m-error "Use of macro does not match definition" exp))
          (let* ((rule (car rules))
                 (pattern (car rule))
                 (alist (m-match F pattern env-def env-use)))
            (if alist
                (let* ((template (cadr rule))
                       (inserted (caddr rule))
                       (alist2 (rename-vars inserted))
                       (newexp (m-rewrite template (append alist2 alist))))
                  (k newexp
                     (syntactic-alias env-use alist2 env-def)))
                (loop (cdr rules))))))
    (if (procedure? rules)
        (m-transcribe-low-level exp env-use k rules env-def)
        (loop rules))))

(define (m-transcribe exp env-use k)
  (m-transcribe0 exp env-use k #f))

(define (m-transcribe-inline exp env-use k)
  (m-transcribe0 exp env-use k #t))

; Copyright 1998 William Clinger
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Low-level macro facility based on explicit renaming.  See
; William D Clinger. Hygienic macros through explicit renaming.
; In Lisp Pointers IV(4), 25-28, December 1991.

($$trace "lowlevel")

(define (m-transcribe-low-level exp env-use k transformer env-def)
  (let ((rename0 (make-rename-procedure))
        (renamed '())
        (ok #t))
    (define (lookup sym)
      (let loop ((alist renamed))
        (cond ((null? alist)
               (syntactic-lookup env-use sym))
              ((eq? sym (cdr (car alist)))
               (syntactic-lookup env-def (car (car alist))))
              (else
               (loop (cdr alist))))))
    (let ((rename
           (lambda (sym)
             (if ok
                 (let ((probe (assq sym renamed)))
                   (if probe
                       (cdr probe)
                       (let ((sym2 (rename0 sym)))
                         (set! renamed (cons (cons sym sym2) renamed))
                         sym2)))
                 (m-error "Illegal use of a rename procedure" sym))))
          (compare
           (lambda (sym1 sym2)
             (same-denotation? (lookup sym1) (lookup sym2)))))
      (let ((exp2 (transformer exp rename compare)))
        (set! ok #f)
        (k exp2
           (syntactic-alias env-use renamed env-def))))))

(define identifier? symbol?)

(define (identifier->symbol id)
  (m-strip id))
; Copyright 1992 William Clinger
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 22 April 1999

($$trace "expand")

; This procedure sets the default scope of global macro definitions.

(define define-syntax-scope
  (let ((flag 'letrec))
    (lambda args
      (cond ((null? args) flag)
            ((not (null? (cdr args)))
             (apply m-warn
                    "Too many arguments passed to define-syntax-scope"
                    args))
            ((memq (car args) '(letrec letrec* let*))
             (set! flag (car args)))
            (else (m-warn "Unrecognized argument to define-syntax-scope"
                          (car args)))))))

; The main entry point.
; The outermost lambda allows known procedures to be lifted outside
; all local variables.

(define (macro-expand def-or-exp)
  (call-with-current-continuation
   (lambda (k)
     (set! m-quit k)
     (set! renaming-counter 0)
     (make-call
      (make-lambda '() ; formals
                   '() ; definitions
                   '() ; R
                   '() ; F
                   '() ; G
                   '() ; declarations
                   #f  ; documentation
                   (desugar-definitions def-or-exp
                                        global-syntactic-environment
                                        make-toplevel-definition))
      '()))))

(define (desugar-definitions exp env make-toplevel-definition)
  (letrec
    
    ((define-loop 
       (lambda (exp rest first env)
         (cond ((and (pair? exp)
                     (symbol? (car exp))
                     (eq? (syntactic-lookup env (car exp))
                          denotation-of-begin)
                     (pair? (cdr exp)))
                (define-loop (cadr exp) (append (cddr exp) rest) first env))
               ((and (pair? exp)
                     (symbol? (car exp))
                     (eq? (syntactic-lookup env (car exp))
                          denotation-of-define))
                (let ((exp (desugar-define exp env)))
                  (cond ((and (null? first) (null? rest))
                         exp)
                        ((null? rest)
                         (make-begin (reverse (cons exp first))))
                        (else (define-loop (car rest)
                                (cdr rest)
                                (cons exp first)
                                env)))))
               ((and (pair? exp)
                     (symbol? (car exp))
                     (or (eq? (syntactic-lookup env (car exp))
                              denotation-of-define-syntax)
                         (eq? (syntactic-lookup env (car exp))
                              denotation-of-define-inline))
                     (null? first))
                (define-syntax-loop exp rest env))
               ((and (pair? exp)
                     (symbol? (car exp))
                     (macro-denotation? (syntactic-lookup env (car exp))))
                (m-transcribe exp
                              env
                              (lambda (exp env)
                                (define-loop exp rest first env))))
               ((and (null? first) (null? rest))
                (m-expand exp env))
               ((null? rest)
                (make-begin (reverse (cons (m-expand exp env) first))))
               (else (make-begin
                      (append (reverse first)
                              (map (lambda (exp) (m-expand exp env))
                                   (cons exp rest))))))))
     
     (define-syntax-loop 
       (lambda (exp rest env)
         (cond ((and (pair? exp)
                     (symbol? (car exp))
                     (eq? (syntactic-lookup env (car exp))
                          denotation-of-begin)
                     (pair? (cdr exp)))
                (define-syntax-loop (cadr exp) (append (cddr exp) rest) env))
               ((and (pair? exp)
                     (symbol? (car exp))
                     (eq? (syntactic-lookup env (car exp))
                          denotation-of-define-syntax))
                (if (pair? (cdr exp))
                    (redefinition (cadr exp)))
                (if (null? rest)
                    (m-define-syntax exp env)
                    (begin (m-define-syntax exp env)
                           (define-syntax-loop (car rest) (cdr rest) env))))
               ((and (pair? exp)
                     (symbol? (car exp))
                     (eq? (syntactic-lookup env (car exp))
                          denotation-of-define-inline))
                (if (pair? (cdr exp))
                    (redefinition (cadr exp)))
                (if (null? rest)
                    (m-define-inline exp env)
                    (begin (m-define-inline exp env)
                           (define-syntax-loop (car rest) (cdr rest) env))))
               ((and (pair? exp)
                     (symbol? (car exp))
                     (macro-denotation? (syntactic-lookup env (car exp))))
                (m-transcribe exp
                              env
                              (lambda (exp env)
                                (define-syntax-loop exp rest env))))
               ((and (pair? exp)
                     (symbol? (car exp))
                     (eq? (syntactic-lookup env (car exp))
                          denotation-of-define))
                (define-loop exp rest '() env))
               ((null? rest)
                (m-expand exp env))
               (else (make-begin
                      (map (lambda (exp) (m-expand exp env))
                           (cons exp rest)))))))
     
     (desugar-define
      (lambda (exp env)
        (cond 
         ((null? (cdr exp)) (m-error "Malformed definition" exp))
         ; (define foo) syntax is transformed into (define foo (undefined)).
         ((null? (cddr exp))
          (let ((id (cadr exp)))
            (if (or (null? pass1-block-inlines)
                    (not (memq id pass1-block-inlines)))
                (begin
                 (redefinition id)
                 (syntactic-bind-globally! id (make-identifier-denotation id))))
            (make-toplevel-definition id (make-undefined))))
         ((pair? (cadr exp))              
          (desugar-define
           (let* ((def (car exp))
                  (pattern (cadr exp))
                  (f (car pattern))
                  (args (cdr pattern))
                  (body (cddr exp)))
             (if (and (symbol? (car (cadr exp)))
                      (benchmark-mode)
                      (list? (cadr exp)))
                 `(,def ,f
                        (,lambda0 ,args
                           ((,lambda0 (,f)
                               (,set!0 ,f (,lambda0 ,args ,@body))
                               ,pattern)
                            0)))
                 `(,def ,f (,lambda0 ,args ,@body))))
           env))
         ((> (length exp) 3) (m-error "Malformed definition" exp))
         (else (let ((id (cadr exp)))
                 (if (or (null? pass1-block-inlines)
                         (not (memq id pass1-block-inlines)))
                     (begin
                      (redefinition id)
                      (syntactic-bind-globally! id (make-identifier-denotation id))))
                 (make-toplevel-definition id (m-expand (caddr exp) env)))))))
     
     (redefinition
      (lambda (id)
        (if (symbol? id)
            (if (not (identifier-denotation?
                      (syntactic-lookup global-syntactic-environment id)))
                (if (issue-warnings)
                    (m-warn "Redefining " id)))
            (m-error "Malformed variable or keyword" id)))))
    
    ; body of letrec
    
    (define-loop exp '() '() env)))

; Given an expression and a syntactic environment,
; returns an expression in core Scheme.

(define (m-expand exp env)
  (cond ((not (pair? exp))
         (m-atom exp env))
        ((not (symbol? (car exp)))
         (m-application exp env))
        (else
         (let ((keyword (syntactic-lookup env (car exp))))
           (case (denotation-class keyword)
             ((special)
              (cond
               ((eq? keyword denotation-of-quote)         (m-quote exp))
               ((eq? keyword denotation-of-lambda)        (m-lambda exp env))
               ((eq? keyword denotation-of-if)            (m-if exp env))
               ((eq? keyword denotation-of-set!)          (m-set exp env))
               ((eq? keyword denotation-of-begin)         (m-begin exp env))
               ((eq? keyword denotation-of-let-syntax)
		(m-let-syntax exp env))
               ((eq? keyword denotation-of-letrec-syntax)
		(m-letrec-syntax exp env))
               ((or (eq? keyword denotation-of-define)
                    (eq? keyword denotation-of-define-syntax)
                    (eq? keyword denotation-of-define-inline))
                (m-error "Definition out of context" exp))
               (else (m-bug "Bug detected in m-expand" exp env))))
             ((macro) (m-macro exp env))
             ((inline) (m-inline exp env))
             ((identifier) (m-application exp env))
             (else (m-bug "Bug detected in m-expand" exp env)))))))

(define (m-atom exp env)
  (cond ((not (symbol? exp))
         ; Here exp ought to be a boolean, number, character, or string.
         ; I'll warn about other things but treat them as if quoted.
	 ;
	 ; I'm turning off some of the warnings because notably procedures
	 ; and #!unspecified can occur in loaded files and it's a major
	 ; pain if a warning is printed for each. --lars
         (if (and (not (boolean? exp))
                  (not (number? exp))
                  (not (char? exp))
                  (not (string? exp))
		  (not (procedure? exp))
		  (not (eq? exp (unspecified))))
             (m-warn "Malformed constant -- should be quoted" exp))
         (make-constant exp))
        (else (let ((denotation (syntactic-lookup env exp)))
                (case (denotation-class denotation)
                  ((special macro)
                   (m-warn "Syntactic keyword used as a variable" exp)
                   ; Syntactic keywords used as variables are treated as #t.
                   (make-constant #t))
                  ((inline)
                   (make-variable (inline-name denotation)))
                  ((identifier)
                   (let ((var (make-variable (identifier-name denotation)))
                         (R-entry (identifier-R-entry denotation)))
                     (R-entry.references-set!
                      R-entry
                      (cons var (R-entry.references R-entry)))
                     var))
                  (else (m-bug "Bug detected by m-atom" exp env)))))))

(define (m-quote exp)
  (if (and (pair? (cdr exp))
           (null? (cddr exp)))
      (make-constant (m-strip (cadr exp)))
      (m-error "Malformed quoted constant" exp)))

(define (m-lambda exp env)
  (if (> (safe-length exp) 2)
      
      (let* ((formals (cadr exp))
             (alist (rename-vars formals))
             (env (syntactic-rename env alist))
             (body (cddr exp)))
        
        (do ((alist alist (cdr alist)))
            ((null? alist))
            (if (assq (caar alist) (cdr alist))
                (m-error "Malformed parameter list" formals)))
        
        ; To simplify the run-time system, there's a limit on how many
        ; fixed arguments can be followed by a rest argument.
        ; That limit is removed here.
        ; Bug: documentation slot isn't right when this happens.
        ; Bug: this generates extremely inefficient code.
        
        (if (and (not (list? formals))
                 (> (length alist) @maxargs-with-rest-arg@))
            (let ((TEMP (car (rename-vars '(temp)))))
              (m-lambda
               `(,lambda0 ,TEMP
                           ((,lambda0 ,(map car alist)
                                      ,@(cddr exp))
                            ,@(do ((actuals '() (cons (list name:CAR path)
                                                      actuals))
                                   (path TEMP (list name:CDR path))
                                   (formals formals (cdr formals)))
                                  ((symbol? formals)
                                   (append (reverse actuals) (list path))))))
               env))
            (make-lambda (rename-formals formals alist)
                         '() ; no definitions yet
                         (map (lambda (entry)
                                (cdr (syntactic-lookup env (cdr entry))))
                              alist) ; R
                         '() ; F
                         '() ; G
                         '() ; decls
                         (make-doc #f
                                   (if (list? formals)
                                       (length alist)
                                       (exact->inexact (- (length alist) 1)))
                                   (if (include-variable-names)
                                       formals
                                       #f)
                                   (if (include-source-code)
                                       exp
                                       #f)
                                   source-file-name
                                   source-file-position)
                         (m-body body env))))
      
      (m-error "Malformed lambda expression" exp)))

(define (m-body body env)
  (define (loop body env defs)
    (if (null? body)
        (m-error "Empty body"))
    (let ((exp (car body)))
      (if (and (pair? exp)
               (symbol? (car exp)))
          (let ((denotation (syntactic-lookup env (car exp))))
            (case (denotation-class denotation)
              ((special)
               (cond ((eq? denotation denotation-of-begin)
                      (loop (append (cdr exp) (cdr body)) env defs))
                     ((eq? denotation denotation-of-define)
                      (loop (cdr body) env (cons exp defs)))
                     (else (finalize-body body env defs))))
              ((macro)
               (m-transcribe exp
                             env
                             (lambda (exp env)
                               (loop (cons exp (cdr body))
                                     env
                                     defs))))
              ((inline identifier)
               (finalize-body body env defs))
              (else (m-bug "Bug detected in m-body" body env))))
          (finalize-body body env defs))))
  (loop body env '()))

(define (finalize-body body env defs)
  (if (null? defs)
      (let ((body (map (lambda (exp) (m-expand exp env))
                       body)))
        (if (null? (cdr body))
            (car body)
            (make-begin body)))
      (let ()
        (define (sort-defs defs)
          (let* ((augmented
                  (map (lambda (def)
                         (let ((rhs (cadr def)))
                           (if (not (pair? rhs))
                               (cons 'trivial def)
                               (let ((denotation
                                      (syntactic-lookup env (car rhs))))
                                 (cond ((eq? denotation
                                             denotation-of-lambda)
                                        (cons 'procedure def))
                                       ((eq? denotation
                                             denotation-of-quote)
                                        (cons 'trivial def))
                                       (else
                                        (cons 'miscellaneous def)))))))
                       defs))
                 (sorted (twobit-sort (lambda (x y)
                                        (or (eq? (car x) 'procedure)
                                            (eq? (car y) 'miscellaneous)))
                                      augmented)))
            (map cdr sorted)))
        (define (desugar-definition def)
          (if (> (safe-length def) 2)
              (cond ((pair? (cadr def))
                     (desugar-definition
                      `(,(car def)
                        ,(car (cadr def))
                        (,lambda0
                          ,(cdr (cadr def))
                          ,@(cddr def)))))
                    ((and (= (length def) 3)
                          (symbol? (cadr def)))
                     (cdr def))
                    (else (m-error "Malformed definition" def)))
              (m-error "Malformed definition" def)))
        (define (expand-letrec bindings body)
          (make-call
           (m-expand
            `(,lambda0 ,(map car bindings)
                       ,@(map (lambda (binding)
                                `(,set!0 ,(car binding)
                                         ,(cadr binding)))
                              bindings)
                         ,@body)
            env)
           (map (lambda (binding) (make-unspecified)) bindings)))
        (expand-letrec (sort-defs (map desugar-definition
                                       (reverse defs)))
                       body))))

(define (m-if exp env)
  (let ((n (safe-length exp)))
    (if (or (= n 3) (= n 4))
        (make-conditional (m-expand (cadr exp) env)
                          (m-expand (caddr exp) env)
                          (if (= n 3)
                              (make-unspecified)
                              (m-expand (cadddr exp) env)))
        (m-error "Malformed if expression" exp))))

(define (m-set exp env)
  (if (= (safe-length exp) 3)
      (let ((lhs (m-expand (cadr exp) env))
            (rhs (m-expand (caddr exp) env)))
        (if (variable? lhs)
            (let* ((x (variable.name lhs))
                   (assignment (make-assignment x rhs))
                   (denotation (syntactic-lookup env x)))
              (if (identifier-denotation? denotation)
                  (let ((R-entry (identifier-R-entry denotation)))
                    (R-entry.references-set!
                     R-entry
                     (remq lhs (R-entry.references R-entry)))
                    (R-entry.assignments-set!
                     R-entry
                     (cons assignment (R-entry.assignments R-entry)))))
              (if (and (lambda? rhs)
                       (include-procedure-names))
                  (let ((doc (lambda.doc rhs)))
                    (doc.name-set! doc x)))
              (if pass1-block-compiling?
                  (set! pass1-block-assignments
                        (cons x pass1-block-assignments)))
              assignment)
            (m-error "Malformed assignment" exp)))
      (m-error "Malformed assignment" exp)))

(define (m-begin exp env)
  (cond ((> (safe-length exp) 1)
         (make-begin (map (lambda (exp) (m-expand exp env)) (cdr exp))))
        ((= (safe-length exp) 1)
         (m-warn "Non-standard begin expression" exp)
         (make-unspecified))
        (else
         (m-error "Malformed begin expression" exp))))

(define (m-application exp env)
  (if (> (safe-length exp) 0)
      (let* ((proc (m-expand (car exp) env))
             (args (map (lambda (exp) (m-expand exp env))
                        (cdr exp)))
             (call (make-call proc args)))
        (if (variable? proc)
            (let* ((procname (variable.name proc))
                   (entry
                    (and (not (null? args))
                         (constant? (car args))
                         (integrate-usual-procedures)
                         (every1? constant? args)
                         (let ((entry (constant-folding-entry procname)))
                           (and entry
                                (let ((predicates
                                       (constant-folding-predicates entry)))
                                  (and (= (length args)
                                          (length predicates))
                                       (let loop ((args args)
                                                  (predicates predicates))
                                         (cond ((null? args) entry)
                                               (((car predicates)
                                                 (constant.value (car args)))
                                                (loop (cdr args)
                                                      (cdr predicates)))
                                               (else #f))))))))))
              (if entry
                  (make-constant (apply (constant-folding-folder entry)
                                        (map constant.value args)))
                  (let ((denotation (syntactic-lookup env procname)))
                    (if (identifier-denotation? denotation)
                        (let ((R-entry (identifier-R-entry denotation)))
                          (R-entry.calls-set!
                           R-entry
                           (cons call (R-entry.calls R-entry)))))
                    call)))
            call))
      (m-error "Malformed application" exp)))

; The environment argument should always be global here.

(define (m-define-inline exp env)
  (cond ((and (= (safe-length exp) 3)
              (symbol? (cadr exp)))
         (let ((name (cadr exp)))
           (m-define-syntax1 name
                             (caddr exp)
                             env
                             (define-syntax-scope))
           (let ((denotation
                  (syntactic-lookup global-syntactic-environment name)))
             (syntactic-bind-globally!
              name
              (make-inline-denotation name
                                      (macro-rules denotation)
                                      (macro-env denotation))))
           (make-constant name)))
        (else
         (m-error "Malformed define-inline" exp))))

; The environment argument should always be global here.

(define (m-define-syntax exp env)
  (cond ((and (= (safe-length exp) 3)
              (symbol? (cadr exp)))
         (m-define-syntax1 (cadr exp)
                           (caddr exp)
                           env
                           (define-syntax-scope)))
        ((and (= (safe-length exp) 4)
              (symbol? (cadr exp))
              ; FIXME: should use denotations here
              (memq (caddr exp) '(letrec letrec* let*)))
         (m-define-syntax1 (cadr exp)
                           (cadddr exp)
                           env
                           (caddr exp)))
        (else (m-error "Malformed define-syntax" exp))))

(define (m-define-syntax1 keyword spec env scope)
  (if (and (pair? spec)
           (symbol? (car spec)))
      (let* ((transformer-keyword (car spec))
             (denotation (syntactic-lookup env transformer-keyword)))
        (cond ((eq? denotation denotation-of-syntax-rules)
               (case scope
                 ((letrec)  (m-define-syntax-letrec keyword spec env))
                 ((letrec*) (m-define-syntax-letrec* keyword spec env))
                 ((let*)    (m-define-syntax-let* keyword spec env))
                 (else      (m-bug "Weird scope" scope))))
              ((same-denotation? denotation denotation-of-transformer)
               ; FIXME: no error checking here
               (syntactic-bind-globally!
                keyword
                (make-macro-denotation (eval (cadr spec)) env)))
              (else
               (m-error "Malformed syntax transformer" spec))))
      (m-error "Malformed syntax transformer" spec))
  (make-constant keyword))

(define (m-define-syntax-letrec keyword spec env)
  (syntactic-bind-globally!
   keyword
   (m-compile-transformer-spec spec env)))

(define (m-define-syntax-letrec* keyword spec env)
  (let* ((env (syntactic-extend (syntactic-copy env)
                                (list keyword)
                                '((fake denotation))))
         (transformer (m-compile-transformer-spec spec env)))
    (syntactic-assign! env keyword transformer)
    (syntactic-bind-globally! keyword transformer)))

(define (m-define-syntax-let* keyword spec env)
  (syntactic-bind-globally!
   keyword
   (m-compile-transformer-spec spec (syntactic-copy env))))

(define (m-let-syntax exp env)
  (if (and (> (safe-length exp) 2)
           (every1? (lambda (binding)
                      (and (pair? binding)
                           (symbol? (car binding))
                           (pair? (cdr binding))
                           (null? (cddr binding))))
                    (cadr exp)))
      (m-body (cddr exp)
              (syntactic-extend env
                                (map car (cadr exp))
                                (map (lambda (spec)
                                       (m-compile-transformer-spec
                                        spec
                                        env))
                                     (map cadr (cadr exp)))))
      (m-error "Malformed let-syntax" exp)))

(define (m-letrec-syntax exp env)
  (if (and (> (safe-length exp) 2)
           (every1? (lambda (binding)
                      (and (pair? binding)
                           (symbol? (car binding))
                           (pair? (cdr binding))
                           (null? (cddr binding))))
                    (cadr exp)))
      (let ((env (syntactic-extend env
                                   (map car (cadr exp))
                                   (map (lambda (id)
                                          '(fake denotation))
                                        (cadr exp)))))
        (for-each (lambda (id spec)
                    (syntactic-assign!
                     env
                     id
                     (m-compile-transformer-spec spec env)))
                  (map car (cadr exp))
                  (map cadr (cadr exp)))
        (m-body (cddr exp) env))
      (m-error "Malformed let-syntax" exp)))

(define (m-macro exp env)
  (m-transcribe exp
                env
                (lambda (exp env)
                  (m-expand exp env))))

(define (m-inline exp env)
  (if (integrate-usual-procedures)
      (m-transcribe-inline exp
                           env
                           (lambda (newexp env)
                             (if (eq? exp newexp)
                                 (m-application exp env)
                                 (m-expand newexp env))))
      (m-application exp env)))

(define m-quit             ; assigned by macro-expand
  (lambda (v) v))

; To do:
; Clean up alist hacking et cetera.
; Declarations.
; Integrable procedures.
; New semantics for body of LET-SYNTAX and LETREC-SYNTAX.
; Copyright 1992 William Clinger
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 5 April 1999.

($$trace "usual")

; The usual macros, adapted from Jonathan's Version 2 implementation.
; DEFINE is handled primitively, since top-level DEFINE has a side
; effect on the global syntactic environment, and internal definitions
; have to be handled specially anyway.
;
; Some extensions are noted, as are some optimizations.
;
; The LETREC* scope rule is used here to protect these macros against
; redefinition of LAMBDA etc.  The scope rule is changed to LETREC at
; the end of this file.

(define-syntax-scope 'letrec*)

(for-each (lambda (form)
            (macro-expand form))
          '(

; Named LET is defined later, after LETREC has been defined.

(define-syntax let
  (syntax-rules ()
    ((let ((?name ?val) ...) ?body ?body1 ...)
     ((lambda (?name ...) ?body ?body1 ...) ?val ...))))

(define-syntax let*
  (syntax-rules ()
    ((let* () ?body ?body1 ...)
     (let () ?body ?body1 ...))
    ((let* ((?name1 ?val1) (?name ?val) ...) ?body ?body1 ...)
     (let ((?name1 ?val1)) (let* ((?name ?val) ...) ?body ?body1 ...)))))

; Internal definitions have to be handled specially anyway,
; so we might as well rely on them here.

(define-syntax letrec
  (syntax-rules (lambda quote)
   ((letrec ((?name ?val) ...) ?body ?body2 ...)
    ((lambda ()
       (define ?name ?val) ...
       ?body ?body2 ...)))))

; This definition of named LET extends the prior definition of LET.
; The first rule is non-circular, thanks to the LET* scope that is
; specified for this use of DEFINE-SYNTAX.

(define-syntax let let*
  (syntax-rules ()
    ((let (?bindings ...) . ?body)
     (let (?bindings ...) . ?body))
    ((let ?tag ((?name ?val) ...) ?body ?body1 ...)
     (let ((?name ?val) ...)
       (letrec ((?tag (lambda (?name ...) ?body ?body1 ...)))
         (?tag ?name ...))))))

(define-syntax and
  (syntax-rules ()
    ((and) #t)
    ((and ?e) ?e)
    ((and ?e1 ?e2 ?e3 ...)
     (if ?e1 (and ?e2 ?e3 ...) #f))))

(define-syntax or
  (syntax-rules ()
    ((or) #f)
    ((or ?e) ?e)
    ((or ?e1 ?e2 ?e3 ...)
     (let ((temp ?e1))
       (if temp temp (or ?e2 ?e3 ...))))))

(define-syntax cond
  (syntax-rules (else =>)
    ((cond (else ?result ?result2 ...))
     (begin ?result ?result2 ...))
    
    ((cond (?test => ?result))
     (let ((temp ?test))
       (if temp (?result temp))))
    
    ((cond (?test)) ?test)
    
    ((cond (?test ?result ?result2 ...))
     (if ?test (begin ?result ?result2 ...)))
    
    ((cond (?test => ?result) ?clause ?clause2 ...)
     (let ((temp ?test))
       (if temp (?result temp) (cond ?clause ?clause2 ...))))
    
    ((cond (?test) ?clause ?clause2 ...)
     (or ?test (cond ?clause ?clause2 ...)))
    
    ((cond (?test ?result ?result2 ...)
           ?clause ?clause2 ...)
     (if ?test
         (begin ?result ?result2 ...)
         (cond ?clause ?clause2 ...)))))

; The R4RS says a <step> may be omitted.
; That's a good excuse for a macro-defining macro that uses LETREC-SYNTAX
; and the ... escape.

(define-syntax do
  (syntax-rules ()
    ((do (?bindings0 ...) (?test) ?body0 ...)
     (do (?bindings0 ...) (?test (if #f #f)) ?body0 ...))
    ((do (?bindings0 ...) ?clause0 ?body0 ...)
     (letrec-syntax
       ((do-aux
         (... (syntax-rules ()
                ((do-aux () ((?name ?init ?step) ...) ?clause ?body ...)
                 (letrec ((loop (lambda (?name ...)
                                  (cond ?clause
                                        (else
                                         (begin #t ?body ...)
                                         (loop ?step ...))))))
                   (loop ?init ...)))
                ((do-aux ((?name ?init ?step) ?todo ...)
                         (?bindings ...)
                         ?clause
                         ?body ...)
                 (do-aux (?todo ...)
                         (?bindings ... (?name ?init ?step))
                         ?clause
                         ?body ...))
                ((do-aux ((?name ?init) ?todo ...)
                         (?bindings ...)
                         ?clause
                         ?body ...)
                 (do-aux (?todo ...)
                         (?bindings ... (?name ?init ?name))
                         ?clause
                         ?body ...))))))
       (do-aux (?bindings0 ...) () ?clause0 ?body0 ...)))))

(define-syntax delay
  (syntax-rules ()
    ((delay ?e) (.make-promise (lambda () ?e)))))

; Another use of LETREC-SYNTAX and the escape extension.

(define-syntax case
  (syntax-rules (else)
    ((case ?e1 (else ?body ?body2 ...))
     (begin ?e1 ?body ?body2 ...))
    ((case ?e1 (?z ?body ?body2 ...))
     (if (memv ?e1 '?z) (begin ?body ?body2 ...)))
    ((case ?e1 ?clause1 ?clause2 ?clause3 ...)
     (letrec-syntax
       ((case-aux
          (... (syntax-rules (else)
                ((case-aux ?temp (else ?body ?body2 ...))
                 (begin ?body ?body2 ...))
                ((case-aux ?temp ((?z ...) ?body ?body2 ...))
                 (if (memv ?temp '(?z ...)) (begin ?body ?body2 ...)))
                ((case-aux ?temp ((?z ...) ?body ?body2 ...) ?c1 ?c2 ...)
                 (if (memv ?temp '(?z ...))
                     (begin ?body ?body2 ...)
                     (case-aux ?temp ?c1 ?c2 ...)))
                ; a popular extension
                ((case-aux ?temp (?z ?body ...) ?c1 ...)
                 (case-aux ?temp ((?z) ?body ...) ?c1 ...))))))
       (let ((temp ?e1))
         (case-aux temp ?clause1 ?clause2 ?clause3 ...))))))

; A complete implementation of quasiquote, obtained by translating
; Jonathan Rees's implementation that was posted to RRRS-AUTHORS
; on 22 December 1986.
; Unfortunately, the use of LETREC scope means that it is vulnerable
; to top-level redefinitions of QUOTE etc.  That could be fixed, but
; it has hair enough already.

(begin
 
 (define-syntax .finalize-quasiquote letrec
   (syntax-rules (quote unquote unquote-splicing)
    ((.finalize-quasiquote quote ?arg ?return)
     (.interpret-continuation ?return (quote ?arg)))
    ((.finalize-quasiquote unquote ?arg ?return)
     (.interpret-continuation ?return ?arg))
    ((.finalize-quasiquote unquote-splicing ?arg ?return)
     (syntax-error ",@ in illegal context" ?arg))
    ((.finalize-quasiquote ?mode ?arg ?return)
     (.interpret-continuation ?return (?mode . ?arg)))))
 
 ; The first two "arguments" to .descend-quasiquote and to
 ; .descend-quasiquote-pair are always identical.
 
 (define-syntax .descend-quasiquote letrec
   (syntax-rules (quasiquote unquote unquote-splicing)
    ((.descend-quasiquote `?y ?x ?level ?return)
     (.descend-quasiquote-pair ?x ?x (?level) ?return))
    ((.descend-quasiquote ,?y ?x () ?return)
     (.interpret-continuation ?return unquote ?y))
    ((.descend-quasiquote ,?y ?x (?level) ?return)
     (.descend-quasiquote-pair ?x ?x ?level ?return))
    ((.descend-quasiquote ,@?y ?x () ?return)
     (.interpret-continuation ?return unquote-splicing ?y))
    ((.descend-quasiquote ,@?y ?x (?level) ?return)
     (.descend-quasiquote-pair ?x ?x ?level ?return))
    ((.descend-quasiquote (?y . ?z) ?x ?level ?return)
     (.descend-quasiquote-pair ?x ?x ?level ?return))
    ((.descend-quasiquote #(?y ...) ?x ?level ?return)
     (.descend-quasiquote-vector ?x ?x ?level ?return))
    ((.descend-quasiquote ?y ?x ?level ?return)
     (.interpret-continuation ?return quote ?x))))
 
 (define-syntax .descend-quasiquote-pair letrec
   (syntax-rules (quote unquote unquote-splicing)
    ((.descend-quasiquote-pair (?carx . ?cdrx) ?x ?level ?return)
     (.descend-quasiquote ?carx ?carx ?level (1 ?cdrx ?x ?level ?return)))))
 
 (define-syntax .descend-quasiquote-vector letrec
   (syntax-rules (quote)
    ((.descend-quasiquote-vector #(?y ...) ?x ?level ?return)
     (.descend-quasiquote (?y ...) (?y ...) ?level (6 ?x ?return)))))
 
 ; Representations for continuations used here.
 ; Continuation types 0, 1, 2, and 6 take a mode and an expression.
 ; Continuation types -1, 3, 4, 5, and 7 take just an expression.
 ;
 ; (-1)
 ;     means no continuation
 ; (0)
 ;     means to call .finalize-quasiquote with no further continuation
 ; (1 ?cdrx ?x ?level ?return)
 ;     means a return from the call to .descend-quasiquote from
 ;     .descend-quasiquote-pair
 ; (2 ?car-mode ?car-arg ?x ?return)
 ;     means a return from the second call to .descend-quasiquote in
 ;     in Jonathan's code for .descend-quasiquote-pair
 ; (3 ?car-arg ?return)
 ;     means take the result and return an append of ?car-arg with it
 ; (4 ?cdr-mode ?cdr-arg ?return)
 ;     means take the result and call .finalize-quasiquote on ?cdr-mode
 ;     and ?cdr-arg with a continuation of type 5
 ; (5 ?car-result ?return)
 ;     means take the result and return a cons of ?car-result onto it
 ; (6 ?x ?return)
 ;     means a return from the call to .descend-quasiquote from
 ;     .descend-quasiquote-vector
 ; (7 ?return)
 ;     means take the result and return a call of list->vector on it
 
 (define-syntax .interpret-continuation letrec
   (syntax-rules (quote unquote unquote-splicing)
    ((.interpret-continuation (-1) ?e) ?e)
    ((.interpret-continuation (0) ?mode ?arg)
     (.finalize-quasiquote ?mode ?arg (-1)))    
    ((.interpret-continuation (1 ?cdrx ?x ?level ?return) ?car-mode ?car-arg)
     (.descend-quasiquote ?cdrx
                          ?cdrx
                          ?level
                          (2 ?car-mode ?car-arg ?x ?return)))    
    ((.interpret-continuation (2 quote ?car-arg ?x ?return) quote ?cdr-arg)
     (.interpret-continuation ?return quote ?x))    
    ((.interpret-continuation (2 unquote-splicing ?car-arg ?x ?return) quote ())
     (.interpret-continuation ?return unquote ?car-arg))
    ((.interpret-continuation (2 unquote-splicing ?car-arg ?x ?return)
                              ?cdr-mode ?cdr-arg)
     (.finalize-quasiquote ?cdr-mode ?cdr-arg (3 ?car-arg ?return)))  
    ((.interpret-continuation (2 ?car-mode ?car-arg ?x ?return)
                              ?cdr-mode ?cdr-arg)
     (.finalize-quasiquote ?car-mode ?car-arg (4 ?cdr-mode ?cdr-arg ?return)))
      
    ((.interpret-continuation (3 ?car-arg ?return) ?e)
     (.interpret-continuation ?return append (?car-arg ?e)))
    ((.interpret-continuation (4 ?cdr-mode ?cdr-arg ?return) ?e1)
     (.finalize-quasiquote ?cdr-mode ?cdr-arg (5 ?e1 ?return)))
    ((.interpret-continuation (5 ?e1 ?return) ?e2)
     (.interpret-continuation ?return .cons (?e1 ?e2)))
    ((.interpret-continuation (6 ?x ?return) quote ?arg)
     (.interpret-continuation ?return quote ?x))
    ((.interpret-continuation (6 ?x ?return) ?mode ?arg)
     (.finalize-quasiquote ?mode ?arg (7 ?return)))
    ((.interpret-continuation (7 ?return) ?e)
     (.interpret-continuation ?return .list->vector (?e)))))
 
 (define-syntax quasiquote letrec
   (syntax-rules ()
    ((quasiquote ?x)
     (.descend-quasiquote ?x ?x () (0)))))
 )

(define-syntax let*-syntax
  (syntax-rules ()
    ((let*-syntax () ?body)
     (let-syntax () ?body))
    ((let*-syntax ((?name1 ?val1) (?name ?val) ...) ?body)
     (let-syntax ((?name1 ?val1)) (let*-syntax ((?name ?val) ...) ?body)))))


            ))

(define-syntax-scope 'letrec)

(define standard-syntactic-environment
  (syntactic-copy global-syntactic-environment))

(define (make-standard-syntactic-environment)
  (syntactic-copy standard-syntactic-environment))
; Copyright 1998 William Clinger.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 25 April 1999
;
; Given an expression in the subset of Scheme used as an intermediate language
; by Twobit, returns a newly allocated copy of the expression in which the
; local variables have been renamed and the referencing information has been
; recomputed.

(define (copy-exp exp)
  
  (define special-names (cons name:IGNORED argument-registers))
  
  (define original-names (make-hashtable symbol-hash assq))
  
  (define renaming-counter 0)
  
  (define (rename-vars vars)
    (let ((rename (make-rename-procedure)))
      (map (lambda (var)
             (cond ((memq var special-names)
                    var)
                   ((hashtable-get original-names var)
                    (rename var))
                   (else
                    (hashtable-put! original-names var #t)
                    var)))
           vars)))
  
  (define (rename-formals formals newnames)
    (cond ((null? formals) '())
          ((symbol? formals) (car newnames))
          ((memq (car formals) special-names)
           (cons (car formals)
                 (rename-formals (cdr formals)
                                 (cdr newnames))))
          (else (cons (car newnames)
                      (rename-formals (cdr formals)
                                      (cdr newnames))))))
  
  ; Environments that map symbols to arbitrary information.
  ; This data type is mutable, and uses the shallow binding technique.
  
  (define (make-env) (make-hashtable symbol-hash assq))
  
  (define (env-bind! env sym info)
    (let ((stack (hashtable-get env sym)))
      (hashtable-put! env sym (cons info stack))))
  
  (define (env-unbind! env sym)
    (let ((stack (hashtable-get env sym)))
      (hashtable-put! env sym (cdr stack))))
  
  (define (env-lookup env sym default)
    (let ((stack (hashtable-get env sym)))
      (if stack
          (car stack)
          default)))
  
  (define (env-bind-multiple! env symbols infos)
    (for-each (lambda (sym info) (env-bind! env sym info))
              symbols
              infos))
  
  (define (env-unbind-multiple! env symbols)
    (for-each (lambda (sym) (env-unbind! env sym))
              symbols))
  
  ;
  
  (define (lexical-lookup R-table name)
    (assq name R-table))
  
  (define (copy exp env notepad R-table)
    (cond ((constant? exp) exp)
          ((lambda? exp)
           (let* ((bvl (make-null-terminated (lambda.args exp)))
                  (newnames (rename-vars bvl))
                  (procnames (map def.lhs (lambda.defs exp)))
                  (newprocnames (rename-vars procnames))
                  (refinfo (map (lambda (var)
                                  (make-R-entry var '() '() '()))
                                (append newnames newprocnames)))
                  (newexp
                   (make-lambda
                    (rename-formals (lambda.args exp) newnames)
                    '()
                    refinfo
                    '()
                    '()
                    (lambda.decls exp)
                    (lambda.doc exp)
                    (lambda.body exp))))
             (env-bind-multiple! env procnames newprocnames)
             (env-bind-multiple! env bvl newnames)
             (for-each (lambda (entry)
                         (env-bind! R-table (R-entry.name entry) entry))
                       refinfo)
             (notepad-lambda-add! notepad newexp)
             (let ((newnotepad (make-notepad notepad)))
               (for-each (lambda (name rhs)
                           (lambda.defs-set!
                             newexp
                             (cons (make-definition
                                    name
                                    (copy rhs env newnotepad R-table))
                                   (lambda.defs newexp))))
                         (reverse newprocnames)
                         (map def.rhs
                              (reverse (lambda.defs exp))))
               (lambda.body-set!
                 newexp
                 (copy (lambda.body exp) env newnotepad R-table))
               (lambda.F-set! newexp (notepad-free-variables newnotepad))
               (lambda.G-set! newexp (notepad-captured-variables newnotepad)))
             (env-unbind-multiple! env procnames)
             (env-unbind-multiple! env bvl)
             (for-each (lambda (entry)
                         (env-unbind! R-table (R-entry.name entry)))
                       refinfo)
             newexp))
          ((assignment? exp)
           (let* ((oldname (assignment.lhs exp))
                  (name (env-lookup env oldname oldname))
                  (varinfo (env-lookup R-table name #f))
                  (newexp
                   (make-assignment name
                                    (copy (assignment.rhs exp) env notepad R-table))))
             (notepad-var-add! notepad name)
             (if varinfo
                 (R-entry.assignments-set!
                  varinfo
                  (cons newexp (R-entry.assignments varinfo))))
             newexp))
          ((conditional? exp)
           (make-conditional (copy (if.test exp) env notepad R-table)
                             (copy (if.then exp) env notepad R-table)
                             (copy (if.else exp) env notepad R-table)))
          ((begin? exp)
           (make-begin (map (lambda (exp) (copy exp env notepad R-table))
                            (begin.exprs exp))))
          ((variable? exp)
           (let* ((oldname (variable.name exp))
                  (name (env-lookup env oldname oldname))
                  (varinfo (env-lookup R-table name #f))
                  (newexp (make-variable name)))
             (notepad-var-add! notepad name)
             (if varinfo
                 (R-entry.references-set!
                  varinfo
                  (cons newexp (R-entry.references varinfo))))
             newexp))
          ((call? exp)
           (let ((newexp (make-call (copy (call.proc exp) env notepad R-table)
                                    (map (lambda (exp)
                                           (copy exp env notepad R-table))
                                         (call.args exp)))))
             (if (variable? (call.proc newexp))
                 (let ((varinfo
                        (env-lookup R-table
                                    (variable.name
                                     (call.proc newexp))
                                    #f)))
                   (if varinfo
                       (R-entry.calls-set!
                        varinfo
                        (cons newexp (R-entry.calls varinfo))))))
             (if (lambda? (call.proc newexp))
                 (notepad-nonescaping-add! notepad (call.proc newexp)))
             newexp))
          (else ???)))
  
  (copy exp (make-env) (make-notepad #f) (make-env)))

; For debugging.
; Given an expression, traverses the expression to confirm
; that the referencing invariants are correct.

(define (check-referencing-invariants exp . flags)
  
  (let ((check-free-variables? (memq 'free flags))
        (check-referencing? (memq 'reference flags))
        (first-violation? #t))
    
    ; env is the list of enclosing lambda expressions,
    ; beginning with the innermost.
    
    (define (check exp env)
      (cond ((constant? exp) (return exp #t))
            ((lambda? exp)
             (let ((env (cons exp env)))
               (return exp
                       (and (every? (lambda (exp)
                                      (check exp env))
                                    (map def.rhs (lambda.defs exp)))
                            (check (lambda.body exp) env)
                            (if (and check-free-variables?
                                     (not (null? env)))
                                 (subset? (difference
                                           (lambda.F exp)
                                           (make-null-terminated
                                            (lambda.args exp)))
                                          (lambda.F (car env)))
                                #t)
                            (if check-referencing?
                                (let ((env (cons exp env))
                                      (R (lambda.R exp)))
                                  (every? (lambda (formal)
                                            (or (ignored? formal)
                                                (R-entry R formal)))
                                          (make-null-terminated
                                           (lambda.args exp))))
                                #t)))))
            ((variable? exp)
             (return exp
                     (and (if (and check-free-variables?
                                   (not (null? env)))
                              (memq (variable.name exp)
                                    (lambda.F (car env)))
                              #t)
                          (if check-referencing?
                              (let ((Rinfo (lookup env (variable.name exp))))
                                (if Rinfo
                                    (memq exp (R-entry.references Rinfo))
                                    #t))
                              #t))))
            ((assignment? exp)
             (return exp
                     (and (check (assignment.rhs exp) env)
                          (if (and check-free-variables?
                                   (not (null? env)))
                              (memq (assignment.lhs exp)
                                    (lambda.F (car env)))
                              #t)
                          (if check-referencing?
                              (let ((Rinfo (lookup env (assignment.lhs exp))))
                                (if Rinfo
                                    (memq exp (R-entry.assignments Rinfo))
                                    #t))
                              #t))))
            ((conditional? exp)
             (return exp
                     (and (check (if.test exp) env)
                          (check (if.then exp) env)
                          (check (if.else exp) env))))
            ((begin? exp)
             (return exp
                     (every? (lambda (exp) (check exp env))
                             (begin.exprs exp))))
            ((call? exp)
             (return exp
                     (and (check (call.proc exp) env)
                          (every? (lambda (exp) (check exp env))
                                  (call.args exp))
                          (if (and check-referencing?
                                   (variable? (call.proc exp)))
                              (let ((Rinfo (lookup env
                                                   (variable.name 
                                                    (call.proc exp)))))
                                (if Rinfo
                                    (memq exp (R-entry.calls Rinfo))
                                    #t))
                              #t))))
            (else ???)))
    
    (define (return exp flag)
      (cond (flag
             #t)
            (first-violation?
             (set! first-violation? #f)
             (display "Violation of referencing invariants")
             (newline)
             (pretty-print (make-readable exp))
             #f)
            (else (pretty-print (make-readable exp))
                  #f)))
    
    (define (lookup env I)
      (if (null? env)
          #f
          (let ((Rinfo (R-entry (lambda.R (car env)) I)))
            (or Rinfo
                (lookup (cdr env) I)))))
    
    (if (null? flags)
        (begin (set! check-free-variables? #t)
               (set! check-referencing? #t)))
    
    (check exp '())))


; Calculating the free variable information for an expression
; as output by pass 2.  This should be faster than computing both
; the free variables and the referencing information.

(define (compute-free-variables! exp)
  
  (define empty-set (make-set '()))
  
  (define (singleton x) (list x))
  
  (define (union2 x y) (union x y))
  (define (union3 x y z) (union x y z))
  
  (define (set->list set) set)
  
  (define (free exp)
    (cond ((constant? exp) empty-set)
          ((lambda? exp)
           (let* ((defs (lambda.defs exp))
                  (formals (make-set
                            (make-null-terminated (lambda.args exp))))
                  (defined (make-set (map def.lhs defs)))
                  (Fdefs
                   (apply-union
                    (map (lambda (def)
                           (free (def.rhs def)))
                         defs)))
                  (Fbody (free (lambda.body exp)))
                  (F (union2 Fdefs Fbody)))
             (lambda.F-set! exp (set->list F))
             (lambda.G-set! exp (set->list F))
             (difference F (union2 formals defined))))
          ((assignment? exp)
           (union2 (make-set (list (assignment.lhs exp)))
                   (free (assignment.rhs exp))))
          ((conditional? exp)
           (union3 (free (if.test exp))
                   (free (if.then exp))
                   (free (if.else exp))))
          ((begin? exp)
           (apply-union
            (map (lambda (exp) (free exp))
                 (begin.exprs exp))))
          ((variable? exp)
           (singleton (variable.name exp)))
          ((call? exp)
           (union2 (free (call.proc exp))
                   (apply-union
                    (map (lambda (exp) (free exp))
                         (call.args exp)))))
          (else ???)))
  
  (free exp))

; As above, but representing sets as hashtrees.
; This is commented out because it is much slower than the implementation
; above.  Because the set of free variables is represented as a list
; within a lambda expression, this implementation must convert the
; representation for every lambda expression, which is quite expensive
; for A-normal form.

(begin
'
(define (compute-free-variables! exp)
  
  (define empty-set (make-hashtree symbol-hash assq))
  
  (define (singleton x)
    (hashtree-put empty-set x #t))
  
  (define (make-set values)
    (if (null? values)
        empty-set
        (hashtree-put (make-set (cdr values))
                      (car values)
                      #t)))
  
  (define (union2 x y)
    (hashtree-for-each (lambda (key val)
                         (set! x (hashtree-put x key #t)))
                       y)
    x)
  
  (define (union3 x y z)
    (union2 (union2 x y) z))
  
  (define (apply-union sets)
    (cond ((null? sets)
           (make-set '()))
          ((null? (cdr sets))
           (car sets))
          (else
           (union2 (car sets)
                   (apply-union (cdr sets))))))
  
  (define (difference x y)
    (hashtree-for-each (lambda (key val)
                         (set! x (hashtree-remove x key)))
                       y)
    x)
  
  (define (set->list set)
    (hashtree-map (lambda (sym val) sym) set))
  
  (define (free exp)
    (cond ((constant? exp) empty-set)
          ((lambda? exp)
           (let* ((defs (lambda.defs exp))
                  (formals (make-set
                            (make-null-terminated (lambda.args exp))))
                  (defined (make-set (map def.lhs defs)))
                  (Fdefs
                   (apply-union
                    (map (lambda (def)
                           (free (def.rhs def)))
                         defs)))
                  (Fbody (free (lambda.body exp)))
                  (F (union2 Fdefs Fbody)))
             (lambda.F-set! exp (set->list F))
             (lambda.G-set! exp (set->list F))
             (difference F (union2 formals defined))))
          ((assignment? exp)
           (union2 (make-set (list (assignment.lhs exp)))
                   (free (assignment.rhs exp))))
          ((conditional? exp)
           (union3 (free (if.test exp))
                   (free (if.then exp))
                   (free (if.else exp))))
          ((begin? exp)
           (apply-union
            (map (lambda (exp) (free exp))
                 (begin.exprs exp))))
          ((variable? exp)
           (singleton (variable.name exp)))
          ((call? exp)
           (union2 (free (call.proc exp))
                   (apply-union
                    (map (lambda (exp) (free exp))
                         (call.args exp)))))
          (else ???)))
  
  (hashtree-map (lambda (sym val) sym)
                (free exp)))
#t); Copyright 1991 William Clinger
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 24 April 1999
;
; First pass of the Twobit compiler:
;   macro expansion, syntax checking, alpha conversion,
;   preliminary annotation.
;
; The input to this pass is a Scheme definition or expression.
; The output is an expression in the subset of Scheme described
; by the following grammar, where the output satisfies certain
; additional invariants described below.
;
; "X ..." means zero or more occurrences of X.
;
; L  -->  (lambda (I_1 ...)
;           (begin D ...)
;           (quote (R F G <decls> <doc>)
;           E)
;      |  (lambda (I_1 ... . I_rest)
;           (begin D ...)
;           (quote (R F <decls> <doc>))
;           E)
; D  -->  (define I L)
; E  -->  (quote K)                        ; constants
;      |  (begin I)                        ; variable references
;      |  L                                ; lambda expressions
;      |  (E0 E1 ...)                      ; calls
;      |  (set! I E)                       ; assignments
;      |  (if E0 E1 E2)                    ; conditionals
;      |  (begin E0 E1 E2 ...)             ; sequential expressions
; I  -->  <identifier>
;
; R  -->  ((I <references> <assignments> <calls>) ...)
; F  -->  (I ...)
; G  -->  (I ...)
;
; Invariants that hold for the output:
;   *  There are no internal definitions.
;   *  No identifier containing an upper case letter is bound anywhere.
;      (Change the "name:..." variables if upper case is preferred.)
;   *  No identifier is bound in more than one place.
;   *  Each R contains one entry for every identifier bound in the
;      formal argument list and the internal definition list that
;      precede it.  Each entry contains a list of pointers to all
;      references to the identifier, a list of pointers to all
;      assignments to the identifier, and a list of pointers to all
;      calls to the identifier.
;   *  Except for constants, the expression does not share structure
;      with the original input or itself, except that the references
;      and assignments in R are guaranteed to share structure with
;      the expression.  Thus the expression may be side effected, and
;      side effects to references or assignments obtained through R
;      are guaranteed to change the references or assignments pointed
;      to by R.
;   *  F and G are garbage.

($$trace "pass1")

(define source-file-name #f)
(define source-file-position #f)

(define pass1-block-compiling? #f)
(define pass1-block-assignments '())
(define pass1-block-inlines '())

(define (pass1 def-or-exp . rest)
  (set! source-file-name #f)
  (set! source-file-position #f)
  (set! pass1-block-compiling? #f)
  (set! pass1-block-assignments '())
  (set! pass1-block-inlines '())
  (if (not (null? rest))
      (begin (set! source-file-name (car rest))
             (if (not (null? (cdr rest)))
                 (set! source-file-position (cadr rest)))))
  (set! renaming-counter 0)
  (macro-expand def-or-exp))

; Compiles a whole sequence of top-level forms on the assumption
; that no variable that is defined by a form in the sequence is
; ever defined or assigned outside of the sequence.
;
; This is a crock in three parts:
;
;    1.  Macro-expand each form and record assignments.
;    2.  Find the top-level variables that are defined but not
;        assigned, give them local names, generate a DEFINE-INLINE
;        for each of the top-level procedures, and macro-expand
;        each form again.
;    3.  Wrap the whole mess in an appropriate LET and recompute
;        the referencing information by copying it.
;
; Note that macros get expanded twice, and that all DEFINE-SYNTAX
; macros are considered local to the forms.

; FIXME: Need to turn off warning messages.

(define (pass1-block forms . rest)
  
  (define (part1)
    (set! pass1-block-compiling? #t)
    (set! pass1-block-assignments '())
    (set! pass1-block-inlines '())
    (set! renaming-counter 0)
    (let ((env0 (syntactic-copy global-syntactic-environment))
          (bmode (benchmark-mode))
          (wmode (issue-warnings))
          (defined '()))
      (define (make-toplevel-definition id exp)
        (cond ((memq id defined)
               (set! pass1-block-assignments
                     (cons id pass1-block-assignments)))
              ((or (constant? exp)
                   (and (lambda? exp)
                        (list? (lambda.args exp))))
               (set! defined (cons id defined))))
        (make-begin
         (list (make-assignment id exp)
               (make-constant id))))
      (benchmark-mode #f)
      (issue-warnings #f)
      (for-each (lambda (form)
                  (desugar-definitions form
                                       global-syntactic-environment
                                       make-toplevel-definition))
                forms)
      (set! global-syntactic-environment env0)
      (benchmark-mode bmode)
      (issue-warnings wmode)
      (part2 (filter (lambda (id)
                       (not (memq id pass1-block-assignments)))
                     (reverse defined)))))
  
  (define (part2 defined)
    (set! pass1-block-compiling? #f)
    (set! pass1-block-assignments '())
    (set! pass1-block-inlines '())
    (set! renaming-counter 0)
    (let* ((rename (make-rename-procedure))
           (alist (map (lambda (id)
                         (cons id (rename id)))
                       defined))
           (definitions0 '())    ; for constants
           (definitions1 '()))   ; for lambda expressions
      (define (make-toplevel-definition id exp)
        (if (lambda? exp)
            (doc.name-set! (lambda.doc exp) id))
        (let ((probe (assq id alist)))
          (if probe
              (let ((id1 (cdr probe)))
                (cond ((constant? exp)
                       (set! definitions0
                             (cons (make-assignment id exp)
                                   definitions0))
                       (make-constant id))
                      ((lambda? exp)
                       (set! definitions1
                             (cons (make-assignment id1 exp)
                                   definitions1))
                       (make-assignment
                        id
                        (make-lambda (lambda.args exp)
                                     '() ; no definitions
                                     '() ; R
                                     '() ; F
                                     '() ; G
                                     '() ; decls
                                     (lambda.doc exp)
                                     (make-call
                                      (make-variable id1)
                                      (map make-variable
                                           (lambda.args exp))))))
                      (else
                       (m-error "Inconsistent macro expansion"
                                (make-readable exp)))))
              (make-assignment id exp))))
      (let ((env0 (syntactic-copy global-syntactic-environment))
            (bmode (benchmark-mode))
            (wmode (issue-warnings)))
        (issue-warnings #f)
        (for-each (lambda (pair)
                    (let ((id0 (car pair))
                          (id1 (cdr pair)))
                      (syntactic-bind-globally!
                       id0
                       (make-inline-denotation
                        id0
                        (lambda (exp rename compare)
                          ; Deliberately non-hygienic!
                          (cons id1 (cdr exp)))
                        global-syntactic-environment))
                      (set! pass1-block-inlines
                            (cons id0 pass1-block-inlines))))
                  alist)
        (benchmark-mode #f)
        (issue-warnings wmode)
        (let ((forms
               (do ((forms forms (cdr forms))
                    (newforms '()
                              (cons (desugar-definitions
                                     (car forms)
                                     global-syntactic-environment
                                     make-toplevel-definition)
                                    newforms)))
                   ((null? forms)
                    (reverse newforms)))))
          (benchmark-mode bmode)
          (set! global-syntactic-environment env0)
          (part3 alist definitions0 definitions1 forms)))))
  
  (define (part3 alist definitions0 definitions1 forms)
    (set! pass1-block-compiling? #f)
    (set! pass1-block-assignments '())
    (set! pass1-block-inlines '())
    (let* ((constnames0 (map assignment.lhs definitions0))
           (constnames1 (map (lambda (id0)
                               (cdr (assq id0 alist)))
                             constnames0))
           (procnames1 (map assignment.lhs definitions1)))
      (copy-exp
       (make-call
        (make-lambda
         constnames1
         '() ; no definitions
         '() ; R
         '() ; F
         '() ; G
         '() ; decls
         #f  ; doc
         (make-begin
          (list
           (make-begin
            (cons (make-constant #f)
                  (reverse
                   (map (lambda (id)
                          (make-assignment id (make-variable (cdr (assq id alist)))))
                        constnames0))))
           (make-call
            (make-lambda
             constnames0
             '() ; no definitions
             '() ; R
             '() ; F
             '() ; G
             '() ; decls
             #f  ; doc
             (make-call
              (make-lambda
               (map assignment.lhs definitions1)
               '() ; no definitions
               '() ; R
               '() ; F
               '() ; G
               '() ; decls
               #f  ; doc
               (make-begin (cons (make-constant #f)
                                 (append definitions1 forms))))
              (map (lambda (ignored) (make-unspecified))
                   definitions1)))
            (map make-variable constnames1))
           )))
        (map assignment.rhs definitions0)))))
  
  (set! source-file-name #f)
  (set! source-file-position #f)
  (if (not (null? rest))
      (begin (set! source-file-name (car rest))
             (if (not (null? (cdr rest)))
                 (set! source-file-position (cadr rest)))))
  (part1))
; Copyright 1999 William D Clinger.
;
; Permission to copy this software, in whole or in part, to use this
; software for any lawful noncommercial purpose, and to redistribute
; this software is granted subject to the restriction that all copies
; made of this software must include this copyright notice in full.
;
; I also request that you send me a copy of any improvements that you
; make to this software so that they may be incorporated within it to
; the benefit of the Scheme community.
;
; 7 June 1999.
;
; Support for intraprocedural value numbering:
;     set of available expressions
;     miscellaneous
;
; The set of available expressions is represented as a
; mutable abstract data type Available with these operations:
;
; make-available-table:                                    -> Available
; copy-available-table: Available                          -> Available
; available-expression: Available x Expr                   -> (symbol + {#f})
; available-variable:   Available x symbol                 -> Expr
; available-extend!:    Available x symbol x Expr x Killer ->
; available-kill!:      Available x Killer                 ->
;
; where Expr is of the form
;
; Expr  -->  W
;         |  (W_0 W_1 ...)
;
; W  -->  (quote K)
;      |  (begin I)
;
; and Killer is a fixnum, as defined later in this file.
;
; (make-available-table)
;     returns an empty table of available expressions.
; (copy-available-table available)
;     copies the given table.
; (available-expression available E)
;     returns the name of E if it is available in the table, else #f.
; (available-variable available T)
;     returns a constant or variable to use in place of T, else #f.
; (available-extend! available T E K)
;     adds the binding (T E) to the table, with Killer K.
;     If E is a variable and this binding is never killed, then copy
;         propagation will replace uses of T by uses of E; otherwise
;         commoning will replace uses of E by uses of T, until the
;         binding is killed.
; (available-kill! available K)
;     removes all bindings whose Killer intersects K.
;
; (available-extend! available T E K) is very fast if the previous
; operation on the table was (available-expression available E).

; Implementation.
;
; Quick and dirty.
; The available expressions are represented as a vector of 2 association
; lists.  The first list is used for common subexpression elimination,
; and the second is used for copy and constant propagation.
;
; Each element of the first list is a binding of
; a symbol T to an expression E, with killer K,
; represented by the list (E T K).
;
; Each element of the second list is a binding of
; a symbol T to an expression E, with killer K,
; represented by the list (T E K).
; The expression E will be a constant or variable.

(define (make-available-table)
  (vector '() '()))

(define (copy-available-table available)
  (vector (vector-ref available 0)
          (vector-ref available 1)))

(define (available-expression available E)
  (let ((binding (assoc E (vector-ref available 0))))
    (if binding
        (cadr binding)
        #f)))

(define (available-variable available T)
  (let ((binding (assq T (vector-ref available 1))))
    (if binding
        (cadr binding)
        #f)))

(define (available-extend! available T E K)
  (cond ((constant? E)
         (vector-set! available
                      1
                      (cons (list T E K)
                            (vector-ref available 1))))
        ((and (variable? E)
              (eq? K available:killer:none))
         (vector-set! available
                      1
                      (cons (list T E K)
                            (vector-ref available 1))))
        (else
         (vector-set! available
                      0
                      (cons (list E T K)
                            (vector-ref available 0))))))

(define (available-kill! available K)
  (vector-set! available
               0
               (filter (lambda (binding)
                         (zero?
                          (logand K
                                  (caddr binding))))
                       (vector-ref available 0)))
  (vector-set! available
               1
               (filter (lambda (binding)
                         (zero?
                          (logand K
                                  (caddr binding))))
                       (vector-ref available 1))))

(define (available-intersect! available0 available1 available2)
  (vector-set! available0
               0
               (intersection (vector-ref available1 0)
                             (vector-ref available2 0)))
  (vector-set! available0
               1
               (intersection (vector-ref available1 1)
                             (vector-ref available2 1))))

; The Killer concrete data type, represented as a fixnum.
;
; The set of side effects that can kill an available expression
; are a subset of
;
; assignments to global variables
; uses of SET-CAR!
; uses of SET-CDR!
; uses of STRING-SET!
; uses of VECTOR-SET!
;
; This list is not complete.  If we were trying to perform common
; subexpression elimination on calls to PEEK-CHAR, for example,
; then those calls would be killed by reads.

(define available:killer:globals   2)
(define available:killer:car       4)
(define available:killer:cdr       8)
(define available:killer:string   16) ; also bytevectors etc
(define available:killer:vector   32) ; also structures etc
(define available:killer:cell     64)
(define available:killer:io      128)
(define available:killer:none      0) ; none of the above
(define available:killer:all    1022) ; all of the above

(define available:killer:immortal  0) ; never killed
(define available:killer:dead   1023) ; never available



(define (available:killer-combine k1 k2)
  (logior k1 k2))

; Miscellaneous.

; A simple lambda expression has no internal definitions at its head
; and no declarations aside from A-normal form.

(define (simple-lambda? L)
  (and (null? (lambda.defs L))
       (every? (lambda (decl)
                 (eq? decl A-normal-form-declaration))
               (lambda.decls L))))

; A real call is a call whose procedure expression is
; neither a lambda expression nor a primop.

(define (real-call? E)
  (and (call? E)
       (let ((proc (call.proc E)))
         (and (not (lambda? proc))
              (or (not (variable? proc))
                  (let ((f (variable.name proc)))
                    (or (not (integrate-usual-procedures))
                        (not (prim-entry f)))))))))

(define (prim-call E)
  (and (call? E)
       (let ((proc (call.proc E)))
         (and (variable? proc)
              (integrate-usual-procedures)
              (prim-entry (variable.name proc))))))

(define (no-side-effects? E)
  (or (constant? E)
      (variable? E)
      (lambda? E)
      (and (conditional? E)
           (no-side-effects? (if.test E))
           (no-side-effects? (if.then E))
           (no-side-effects? (if.else E)))
      (and (call? E)
           (let ((proc (call.proc E)))
             (and (variable? proc)
                  (integrate-usual-procedures)
                  (let ((entry (prim-entry (variable.name proc))))
                    (and entry
                         (not (eq? available:killer:dead
                                   (prim-lives-until entry))))))))))

; Given a local variable, the expression within its scope, and
; a list of local variables that are known to be used only once,
; returns #t if the variable is used only once.
;
; The purpose of this routine is to recognize temporaries that
; may once have had two or more uses because of CSE, but now have
; only one use because of further CSE followed by dead code elimination.

(define (temporary-used-once? T E used-once)
  (cond ((call? E)
         (let ((proc (call.proc E))
               (args (call.args E)))
           (or (and (lambda? proc)
                    (not (memq T (lambda.F proc)))
                    (and (pair? args)
                         (null? (cdr args))
                         (temporary-used-once? T (car args) used-once)))
               (do ((exprs (cons proc (call.args E))
                           (cdr exprs))
                    (n     0
                           (let ((exp (car exprs)))
                             (cond ((constant? exp)
                                    n)
                                   ((variable? exp)
                                    (if (eq? T (variable.name exp))
                                        (+ n 1)
                                        n))
                                   (else
                                    ; Terminate the loop and return #f.
                                    2)))))
                   ((or (null? exprs)
                        (> n 1))
                    (= n 1))))))
        (else
         (memq T used-once))))

; Register bindings.

(define (make-regbinding lhs rhs use)
  (list lhs rhs use))

(define (regbinding.lhs x) (car x))
(define (regbinding.rhs x) (cadr x))
(define (regbinding.use x) (caddr x))

; Given a list of register bindings, an expression E and its free variables F,
; returns two values:
;     E with the register bindings wrapped around it
;     the free variables of the wrapped expression

(define (wrap-with-register-bindings regbindings E F)
  (if (null? regbindings)
      (values E F)
      (let* ((regbinding (car regbindings))
             (R (regbinding.lhs regbinding))
             (x (regbinding.rhs regbinding)))
        (wrap-with-register-bindings
         (cdr regbindings)
         (make-call (make-lambda (list R)
                                 '()
                                 '()
                                 F
                                 F
                                 (list A-normal-form-declaration)
                                 #f
                                 E)
                    (list (make-variable x)))
         (union (list x)
                (difference F (list R)))))))

; Returns two values:
;   the subset of regbindings that have x as their right hand side
;   the rest of regbindings

(define (register-bindings regbindings x)
  (define (loop regbindings to-x others)
    (cond ((null? regbindings)
           (values to-x others))
          ((eq? x (regbinding.rhs (car regbindings)))
           (loop (cdr regbindings)
                 (cons (car regbindings) to-x)
                 others))
          (else
           (loop (cdr regbindings)
                 to-x
                 (cons (car regbindings) others)))))
  (loop regbindings '() '()))

; This procedure is called when the compiler can tell that an assertion
; is never true.

(define (declaration-error E)
  (if (issue-warnings)
      (begin (display "WARNING: Assertion is false: ")
             (write (make-readable E #t))
             (newline))))
; Representations, which form a subtype hierarchy.
;
; <rep>  ::=  <fixnum>  |  (<fixnum> <datum> ...)
;
; (<rep> <datum> ...) is a subtype of <rep>, but the non-fixnum
; representations are otherwise interpreted by arbitrary code.

(define *nreps* 0)
(define *rep-encodings* '())
(define *rep-decodings* '())
(define *rep-subtypes* '())
(define *rep-joins* (make-bytevector 0))
(define *rep-meets* (make-bytevector 0))
(define *rep-joins-special* '#())
(define *rep-meets-special* '#())

(define (representation-error msg . stuff)
  (apply error
         (if (string? msg)
             (string-append "Bug in flow analysis: " msg)
             msg)
         stuff))

(define (symbol->rep sym)
  (let ((probe (assq sym *rep-encodings*)))
    (if probe
        (cdr probe)
        (let ((rep *nreps*))
          (set! *nreps* (+ *nreps* 1))
          (if (> *nreps* 255)
              (representation-error "Too many representation types"))
          (set! *rep-encodings*
                (cons (cons sym rep)
                      *rep-encodings*))
          (set! *rep-decodings*
                (cons (cons rep sym)
                      *rep-decodings*))
          rep))))

(define (rep->symbol rep)
  (if (pair? rep)
      (cons (rep->symbol (car rep)) (cdr rep))
      (let ((probe (assv rep *rep-decodings*)))
        (if probe
            (cdr probe)
            'unknown))))

(define (representation-table table)
  (map (lambda (row)
         (map (lambda (x)
                (if (list? x)
                    (map symbol->rep x)
                    x))
              row))
       table))

; DEFINE-SUBTYPE is how representation types are defined.

(define (define-subtype sym1 sym2)
  (let* ((rep2 (symbol->rep sym2))
         (rep1 (symbol->rep sym1)))
    (set! *rep-subtypes*
          (cons (cons rep1 rep2)
                *rep-subtypes*))
    sym1))

; COMPUTE-TYPE-STRUCTURE! must be called before DEFINE-INTERSECTION.

(define (define-intersection sym1 sym2 sym3)
  (let ((rep1 (symbol->rep sym1))
        (rep2 (symbol->rep sym2))
        (rep3 (symbol->rep sym3)))
    (representation-aset! *rep-meets* rep1 rep2 rep3)
    (representation-aset! *rep-meets* rep2 rep1 rep3)))

;

(define (representation-aref bv i j)
  (bytevector-ref bv (+ (* *nreps* i) j)))

(define (representation-aset! bv i j x)
  (bytevector-set! bv (+ (* *nreps* i) j) x))

(define (compute-unions!)
  
  ; Always define a bottom element.
  
  (for-each (lambda (sym)
              (define-subtype 'bottom sym))
            (map car *rep-encodings*))
  
  (let* ((debugging? #f)
         (n *nreps*)
         (n^2 (* n n))
         (matrix (make-bytevector n^2)))
    
    ; This code assumes there will always be a top element.
    
    (define (lub rep1 rep2 subtype?)
      (do ((i 0 (+ i 1))
           (bounds '()
                   (if (and (subtype? rep1 i)
                            (subtype? rep2 i))
                       (cons i bounds)
                       bounds)))
          ((= i n)
           (car (twobit-sort subtype? bounds)))))
    
    (define (join i j)
      (lub i j (lambda (rep1 rep2)
                 (= 1 (representation-aref matrix rep1 rep2)))))
    
    (define (compute-transitive-closure!)
      (let ((changed? #f))
        (define (loop)
          (do ((i 0 (+ i 1)))
              ((= i n))
              (do ((k 0 (+ k 1)))
                  ((= k n))
                  (do ((j 0 (+ j 1))
                       (sum 0
                            (logior sum
                                    (logand
                                     (representation-aref matrix i j)
                                     (representation-aref matrix j k)))))
                      ((= j n)
                       (if (> sum 0)
                           (let ((x (representation-aref matrix i k)))
                             (if (zero? x)
                                 (begin
                                  (set! changed? #t)
                                  (representation-aset! matrix i k 1)))))))))
          (if changed?
              (begin (set! changed? #f)
                     (loop))))
        (loop)))
    
    (define (compute-joins!)
      (let ((default (lambda (x y)
                       (error "Compiler bug: special meet or join" x y))))
        (set! *rep-joins-special* (make-vector n default))
        (set! *rep-meets-special* (make-vector n default)))
      (set! *rep-joins* (make-bytevector n^2))
      (set! *rep-meets* (make-bytevector n^2))
      (do ((i 0 (+ i 1)))
          ((= i n))
          (do ((j 0 (+ j 1)))
              ((= j n))
              (representation-aset! *rep-joins*
                                    i
                                    j
                                    (join i j)))))
    
    (do ((i 0 (+ i 1)))
        ((= i n))
        (do ((j 0 (+ j 1)))
            ((= j n))
            (representation-aset! matrix i j 0))
        (representation-aset! matrix i i 1))
    (for-each (lambda (subtype)
                (let ((rep1 (car subtype))
                      (rep2 (cdr subtype)))
                  (representation-aset! matrix rep1 rep2 1)))
              *rep-subtypes*)
    (compute-transitive-closure!)
    (if debugging?
        (do ((i 0 (+ i 1)))
            ((= i n))
            (do ((j 0 (+ j 1)))
                ((= j n))
                (write-char #\space)
                (write (representation-aref matrix i j)))
            (newline)))
    (compute-joins!)
    (set! *rep-subtypes* '())))

; Intersections are not dual to unions because a conservative analysis
; must always err on the side of the larger subtype.
; COMPUTE-UNIONS! must be called before COMPUTE-INTERSECTIONS!.

(define (compute-intersections!)
  (let ((n *nreps*))
    
    (define (meet i j)
      (let ((k (representation-union i j)))
        (if (= i k)
            j
            i)))
    
    (do ((i 0 (+ i 1)))
        ((= i n))
        (do ((j 0 (+ j 1)))
            ((= j n))
            (representation-aset! *rep-meets*
                                  i
                                  j
                                  (meet i j))))))

(define (compute-type-structure!)
  (compute-unions!)
  (compute-intersections!))

(define (representation-subtype? rep1 rep2)
  (equal? rep2 (representation-union rep1 rep2)))

(define (representation-union rep1 rep2)
  (if (fixnum? rep1)
      (if (fixnum? rep2)
          (representation-aref *rep-joins* rep1 rep2)
          (representation-union rep1 (car rep2)))
      (if (fixnum? rep2)
          (representation-union (car rep1) rep2)
          (let ((r1 (car rep1))
                (r2 (car rep2)))
            (if (= r1 r2)
                ((vector-ref *rep-joins-special* r1) rep1 rep2)
                (representation-union r1 r2))))))

(define (representation-intersection rep1 rep2)
  (if (fixnum? rep1)
      (if (fixnum? rep2)
          (representation-aref *rep-meets* rep1 rep2)
          (representation-intersection rep1 (car rep2)))
      (if (fixnum? rep2)
          (representation-intersection (car rep1) rep2)
          (let ((r1 (car rep1))
                (r2 (car rep2)))
            (if (= r1 r2)
                ((vector-ref *rep-meets-special* r1) rep1 rep2)
                (representation-intersection r1 r2))))))

; For debugging.

(define (display-unions-and-intersections)
  (let* ((column-width 10)
         (columns/row (quotient 80 column-width)))
    
    (define (display-symbol sym)
      (let* ((s (symbol->string sym))
             (n (string-length s)))
        (if (< n column-width)
            (begin (display s)
                   (display (make-string (- column-width n) #\space)))
            (begin (display (substring s 0 (- column-width 1)))
                   (write-char #\space)))))
    
    ; Display columns i to n.
    
    (define (display-matrix f i n)
      (display (make-string column-width #\space))
      (do ((i i (+ i 1)))
          ((= i n))
          (display-symbol (rep->symbol i)))
      (newline)
      (newline)
      (do ((k 0 (+ k 1)))
          ((= k *nreps*))
          (display-symbol (rep->symbol k))
          (do ((i i (+ i 1)))
              ((= i n))
              (display-symbol (rep->symbol (f k i))))
          (newline))
      (newline)
      (newline))
    
    (display "Unions:")
    (newline)
    (newline)
    
    (do ((i 0 (+ i columns/row)))
        ((>= i *nreps*))
        (display-matrix representation-union
                        i
                        (min *nreps* (+ i columns/row))))
    
    (display "Intersections:")
    (newline)
    (newline)
    
    (do ((i 0 (+ i columns/row)))
        ((>= i *nreps*))
        (display-matrix representation-intersection
                        i
                        (min *nreps* (+ i columns/row))))))

; Operations that can be specialized.
;
; Format: (<name> (<arg-rep> ...) <specific-name>)

(define (rep-specific? f rs)
  (rep-match f rs rep-specific caddr))

; Operations whose result has some specific representation.
;
; Format: (<name> (<arg-rep> ...) (<result-rep>))

(define (rep-result? f rs)
  (rep-match f rs rep-result caaddr))

; Unary predicates that give information about representation.
;
; Format: (<name> <rep-if-true> <rep-if-false>)

(define (rep-if-true f rs)
  (rep-match f rs rep-informing caddr))

(define (rep-if-false f rs)
  (rep-match f rs rep-informing cadddr))

; Given the name of an integrable primitive,
; the representations of its arguments,
; a representation table, and a selector function
; finds the most type-specific row of the table that matches both
; the name of the primitive and the representations of its arguments,
; and returns the result of applying the selector to that row.
; If no row matches, then REP-MATCH returns #f.
;
; FIXME:  This should be more efficient, and should prefer the most
; specific matches.

(define (rep-match f rs table selector)
  (let ((n (length rs)))
    (let loop ((entries table))
      (cond ((null? entries)
             #f)
            ((eq? f (car (car entries)))
             (let ((rs0 (cadr (car entries))))
               (if (and (= n (length rs0))
                        (every? (lambda (r1+r2)
                                  (let ((r1 (car r1+r2))
                                        (r2 (cdr r1+r2)))
                                    (representation-subtype? r1 r2)))
                                (map cons rs rs0)))
                   (selector (car entries))
                   (loop (cdr entries)))))
            (else
             (loop (cdr entries)))))))

; Abstract interpretation with respect to types and constraints.
; Returns a representation type.

(define (aeval E types constraints)
  (cond ((call? E)
         (let ((proc (call.proc E)))
           (if (variable? proc)
               (let* ((op (variable.name proc))
                      (argtypes (map (lambda (E)
                                       (aeval E types constraints))
                                     (call.args E)))
                      (type (rep-result? op argtypes)))
                 (if type
                     type
                     rep:object))
               rep:object)))
        ((variable? E)
         (representation-typeof (variable.name E) types constraints))
        ((constant? E)
         (representation-of-value (constant.value E)))
        (else
         rep:object)))

; If x has representation type t0 in the hash table,
; and some further constraints
;
;     x = (op y1 ... yn)
;     x : t1
;      ...
;     x : tk
;
; then
;
;     typeof (x) = op (typeof (y1), ..., typeof (yn))
;                  &  t0  &  t1  &  ...  &  tk
;
; where & means intersection and op is the abstraction of op.
;
; Also if T : true and T = E then E may give information about
; the types of other variables.  Similarly for T : false.

(define (representation-typeof name types constraints)
  (let ((t0 (hashtable-fetch types name rep:object))
        (cs (hashtable-fetch (constraints.table constraints) name '())))
    (define (loop type cs)
      (if (null? cs)
          type
          (let* ((c (car cs))
                 (cs (cdr cs))
                 (E (constraint.rhs c)))
            (cond ((constant? E)
                   (loop (representation-intersection type
                                                      (constant.value E))
                         cs))
                  ((call? E)
                   (loop (representation-intersection
                          type (aeval E types constraints))
                         cs))
                  (else
                   (loop type cs))))))
    (loop t0 cs)))

; Constraints.
;
; The constraints used by this analysis consist of type constraints
; together with the available expressions used for commoning.
;
; (T E      K)   T = E     until killed by an effect in K
; (T '<rep> K)   T : <rep> until killed by an effect in K

(define (make-constraint T E K)
  (list T E K))

(define (constraint.lhs c)
  (car c))

(define (constraint.rhs c)
  (cadr c))

(define (constraint.killer c)
  (caddr c))

(define (make-type-constraint T type K)
  (make-constraint T
                   (make-constant type)
                   K))

; If the new constraint is of the form T = E until killed by K,
; then there shouldn't be any prior constraints.
;
; Otherwise the new constraint is of the form T : t until killed by K.
; Suppose the prior constraints are
;     T = E  until killed by K
;     T : t1 until killed by K1
;      ...
;     T : tn until killed by Kn
;
; If there exists i such that ti is a subtype of t and Ki a subset of K,
; then the new constraint adds no new information and should be ignored.
; Otherwise compute t' = t1 & ... & tn and K' = K1 | ... | Kn, where
; & indicates intersection and | indicates union.
; If K = K' then add the new constraint T : t' until killed by K;
; otherwise add two new constraints:
;     T : t' until killed by K'
;     T : t  until killed by K

(define (constraints-add! types constraints new)
  (let* ((debugging? #f)
         (T (constraint.lhs new))
         (E (constraint.rhs new))
         (K (constraint.killer new))
         (cs (constraints-for-variable constraints T)))
    
    (define (loop type K cs newcs)
      (if (null? cs)
          (cons (make-type-constraint T type K) newcs)
          (let* ((c2 (car cs))
                 (cs (cdr cs))
                 (E2 (constraint.rhs c2))
                 (K2 (constraint.killer c2)))
            (if (constant? E2)
                (let* ((type2 (constant.value E2))
                       (type3 (representation-intersection type type2)))
                  (cond ((eq? type2 type3)
                         (if (= K2 (logand K K2))
                             (append newcs cs)
                             (loop (representation-intersection type type2)
                                   (available:killer-combine K K2)
                                   cs
                                   (cons c2 newcs))))
                        ((representation-subtype? type type3)
                         (if (= K (logand K K2))
                             (loop type K cs newcs)
                             (loop type K cs (cons c2 newcs))))
                        (else
                         (loop type3
                               (available:killer-combine K K2)
                               cs
                               (cons c2 newcs)))))
                (let* ((op (variable.name (call.proc E2)))
                       (args (call.args E2))
                       (argtypes (map (lambda (exp)
                                        (aeval exp types constraints))
                                      args)))
                  (cond ((representation-subtype? type rep:true)
                         (let ((reps (rep-if-true op argtypes)))
                           (if reps
                               (record-new-reps! args argtypes reps K2))))
                        ((representation-subtype? type rep:false)
                         (let ((reps (rep-if-false op argtypes)))
                           (if reps
                               (record-new-reps! args argtypes reps K2)))))
                  (loop type K cs (cons c2 newcs)))))))
    
    (define (record-new-reps! args argtypes reps K2)
      (if debugging?
          (begin (write (list (map make-readable args)
                              (map rep->symbol argtypes)
                              (map rep->symbol reps)))
                 (newline)))
      (for-each (lambda (arg type0 type1)
                  (if (not (representation-subtype? type0 type1))
                      (if (variable? arg)
                          (let ((name (variable.name arg)))
                            ; FIXME:  In this context, a variable
                            ; should always be local so the hashtable
                            ; operation isn't necessary.
                            (if (hashtable-get types name)
                                (constraints-add!
                                 types
                                 constraints
                                 (make-type-constraint
                                  name
                                  type1 
                                  (available:killer-combine K K2)))
                                (cerror
                                 "Compiler bug: unexpected global: "
                                 name))))))
                args argtypes reps))
    
    (if (not (zero? K))
        (constraints-add-killedby! constraints T K))
    
    (let* ((table (constraints.table constraints))
           (cs (hashtable-fetch table T '())))
      (cond ((constant? E)
             ; It's a type constraint.
             (let ((type (constant.value E)))
               (if debugging?
                   (begin (display T)
                          (display " : ")
                          (display (rep->symbol type))
                          (newline)))
               (let ((cs (loop type K cs '())))
                 (hashtable-put! table T cs)
                 constraints)))
            (else
             (if debugging?
                 (begin (display T)
                        (display " = ")
                        (display (make-readable E #t))
                        (newline)))
             (if (not (null? cs))
                 (begin
                  (display "Compiler bug: ")
                  (write T)
                  (display " has unexpectedly nonempty constraints")
                  (newline)))
             (hashtable-put! table T (list (list T E K)))
             constraints)))))

; Sets of constraints.
;
; The set of constraints is represented as (<hashtable> <killedby>),
; where <hashtable> is a hashtable mapping variables to lists of
; constraints as above, and <killedby> is a vector mapping basic killers
; to lists of variables that need to be examined for constraints that
; are killed by that basic killer.

(define number-of-basic-killers
  (do ((i 0 (+ i 1))
       (k 1 (+ k k)))
      ((> k available:killer:dead)
       i)))

(define (constraints.table  constraints) (car constraints))
(define (constraints.killed constraints) (cadr constraints))

(define (make-constraints-table)
  (list (make-hashtable symbol-hash assq)
        (make-vector number-of-basic-killers '())))

(define (copy-constraints-table constraints)
  (list (hashtable-copy (constraints.table constraints))
        (list->vector (vector->list (constraints.killed constraints)))))

(define (constraints-for-variable constraints T)
  (hashtable-fetch (constraints.table constraints) T '()))

(define (constraints-add-killedby! constraints T K0)
  (if (not (zero? K0))
      (let ((v (constraints.killed constraints)))
        (do ((i 0 (+ i 1))
             (k 1 (+ k k)))
            ((= i number-of-basic-killers))
            (if (not (zero? (logand k K0)))
                (vector-set! v i (cons T (vector-ref v i))))))))

(define (constraints-kill! constraints K)
  (if (not (zero? K))
      (let ((table (constraints.table constraints))
            (killed (constraints.killed constraints)))
        (define (examine! T)
          (let ((cs (filter (lambda (c)
                              (zero? (logand (constraint.killer c) K)))
                            (hashtable-fetch table T '()))))
            (if (null? cs)
                (hashtable-remove! table T)
                (hashtable-put! table T cs))))
        (do ((i 0 (+ i 1))
             (j 1 (+ j j)))
            ((= i number-of-basic-killers))
            (if (not (zero? (logand j K)))
                (begin (for-each examine! (vector-ref killed i))
                       (vector-set! killed i '())))))))

(define (constraints-intersect! constraints0 constraints1 constraints2)
  (let ((table0 (constraints.table constraints0))
        (table1 (constraints.table constraints1))
        (table2 (constraints.table constraints2)))
    (if (eq? table0 table1)
        ; FIXME:  Which is more efficient: to update the killed vector,
        ; or not to update it?  Both are safe.
        (hashtable-for-each (lambda (T cs)
                              (if (not (null? cs))
                                  (hashtable-put!
                                   table0
                                   T
                                   (cs-intersect
                                    (hashtable-fetch table2 T '())
                                    cs))))
                            table1)
        ; This case shouldn't ever happen, so it can be slow.
        (begin
         (constraints-intersect! constraints0 constraints0 constraints1)
         (constraints-intersect! constraints0 constraints0 constraints2)))))

(define (cs-intersect cs1 cs2)
  (define (loop cs init rep Krep)
    (if (null? cs)
        (values init rep Krep)
        (let* ((c (car cs))
               (cs (cdr cs))
               (E2 (constraint.rhs c))
               (K2 (constraint.killer c)))
          (cond ((constant? E2)
                 (loop cs
                       init
                       (representation-intersection rep (constant.value E2))
                       (available:killer-combine Krep K2)))
                ((call? E2)
                 (if init
                     (begin (display "Compiler bug in cs-intersect")
                            (break))
                     (loop cs c rep Krep)))
                (else
                 (error "Compiler bug in cs-intersect"))))))
  (call-with-values
   (lambda ()
     (loop cs1 #f rep:object available:killer:none))
   (lambda (c1 rep1 Krep1)
     (call-with-values
      (lambda ()
        (loop cs2 #f rep:object available:killer:none))
      (lambda (c2 rep2 Krep2)
        (let ((c (if (equal? c1 c2) c1 #f))
              (rep (representation-union rep1 rep2))
              (Krep (available:killer-combine Krep1 Krep2)))
          (if (eq? rep rep:object)
              (if c (list c) '())
              (let ((T (constraint.lhs (car cs1))))
                (if c
                    (list c (make-type-constraint T rep Krep))
                    (list (make-type-constraint T rep Krep)))))))))))
; DO NOT EDIT THIS FILE. Edit the config file and rerun "config".

(define $gc.ephemeral 0)
(define $gc.tenuring 1)
(define $gc.full 2)
(define $mstat.wallocated-hi 0)
(define $mstat.wallocated-lo 1)
(define $mstat.wcollected-hi 2)
(define $mstat.wcollected-lo 3)
(define $mstat.wcopied-hi 4)
(define $mstat.wcopied-lo 5)
(define $mstat.gctime 6)
(define $mstat.wlive 7)
(define $mstat.gc-last-gen 8)
(define $mstat.gc-last-type 9)
(define $mstat.generations 10)
(define $mstat.g-gc-count 0)
(define $mstat.g-prom-count 1)
(define $mstat.g-gctime 2)
(define $mstat.g-wlive 3)
(define $mstat.g-np-youngp 4)
(define $mstat.g-np-oldp 5)
(define $mstat.g-np-j 6)
(define $mstat.g-np-k 7)
(define $mstat.g-alloc 8)
(define $mstat.g-target 9)
(define $mstat.g-promtime 10)
(define $mstat.remsets 11)
(define $mstat.r-apool 0)
(define $mstat.r-upool 1)
(define $mstat.r-ahash 2)
(define $mstat.r-uhash 3)
(define $mstat.r-hrec-hi 4)
(define $mstat.r-hrec-lo 5)
(define $mstat.r-hrem-hi 6)
(define $mstat.r-hrem-lo 7)
(define $mstat.r-hscan-hi 8)
(define $mstat.r-hscan-lo 9)
(define $mstat.r-wscan-hi 10)
(define $mstat.r-wscan-lo 11)
(define $mstat.r-ssbrec-hi 12)
(define $mstat.r-ssbrec-lo 13)
(define $mstat.r-np-p 14)
(define $mstat.fflushed-hi 12)
(define $mstat.fflushed-lo 13)
(define $mstat.wflushed-hi 14)
(define $mstat.wflushed-lo 15)
(define $mstat.stk-created 16)
(define $mstat.frestored-hi 17)
(define $mstat.frestored-lo 18)
(define $mstat.words-heap 19)
(define $mstat.words-remset 20)
(define $mstat.words-rts 21)
(define $mstat.swb-assign 22)
(define $mstat.swb-lhs-ok 23)
(define $mstat.swb-rhs-const 24)
(define $mstat.swb-not-xgen 25)
(define $mstat.swb-trans 26)
(define $mstat.rtime 27)
(define $mstat.stime 28)
(define $mstat.utime 29)
(define $mstat.minfaults 30)
(define $mstat.majfaults 31)
(define $mstat.np-remsetp 32)
(define $mstat.max-heap 33)
(define $mstat.promtime 34)
(define $mstat.wmoved-hi 35)
(define $mstat.wmoved-lo 36)
(define $mstat.vsize 37)
(define $g.reg0 12)
(define $r.reg8 44)
(define $r.reg9 48)
(define $r.reg10 52)
(define $r.reg11 56)
(define $r.reg12 60)
(define $r.reg13 64)
(define $r.reg14 68)
(define $r.reg15 72)
(define $r.reg16 76)
(define $r.reg17 80)
(define $r.reg18 84)
(define $r.reg19 88)
(define $r.reg20 92)
(define $r.reg21 96)
(define $r.reg22 100)
(define $r.reg23 104)
(define $r.reg24 108)
(define $r.reg25 112)
(define $r.reg26 116)
(define $r.reg27 120)
(define $r.reg28 124)
(define $r.reg29 128)
(define $r.reg30 132)
(define $r.reg31 136)
(define $g.stkbot 180)
(define $g.gccnt 420)
(define $m.alloc 1024)
(define $m.alloci 1032)
(define $m.gc 1040)
(define $m.addtrans 1048)
(define $m.stkoflow 1056)
(define $m.stkuflow 1072)
(define $m.creg 1080)
(define $m.creg-set! 1088)
(define $m.add 1096)
(define $m.subtract 1104)
(define $m.multiply 1112)
(define $m.quotient 1120)
(define $m.remainder 1128)
(define $m.divide 1136)
(define $m.modulo 1144)
(define $m.negate 1152)
(define $m.numeq 1160)
(define $m.numlt 1168)
(define $m.numle 1176)
(define $m.numgt 1184)
(define $m.numge 1192)
(define $m.zerop 1200)
(define $m.complexp 1208)
(define $m.realp 1216)
(define $m.rationalp 1224)
(define $m.integerp 1232)
(define $m.exactp 1240)
(define $m.inexactp 1248)
(define $m.exact->inexact 1256)
(define $m.inexact->exact 1264)
(define $m.make-rectangular 1272)
(define $m.real-part 1280)
(define $m.imag-part 1288)
(define $m.sqrt 1296)
(define $m.round 1304)
(define $m.truncate 1312)
(define $m.apply 1320)
(define $m.varargs 1328)
(define $m.typetag 1336)
(define $m.typetag-set 1344)
(define $m.break 1352)
(define $m.eqv 1360)
(define $m.partial-list->vector 1368)
(define $m.timer-exception 1376)
(define $m.exception 1384)
(define $m.singlestep 1392)
(define $m.syscall 1400)
(define $m.bvlcmp 1408)
(define $m.enable-interrupts 1416)
(define $m.disable-interrupts 1424)
(define $m.alloc-bv 1432)
(define $m.global-ex 1440)
(define $m.invoke-ex 1448)
(define $m.global-invoke-ex 1456)
(define $m.argc-ex 1464)
; DO NOT EDIT THIS FILE. Edit the config file and rerun "config".

(define $r.g0 0)
(define $r.g1 1)
(define $r.g2 2)
(define $r.g3 3)
(define $r.g4 4)
(define $r.g5 5)
(define $r.g6 6)
(define $r.g7 7)
(define $r.o0 8)
(define $r.o1 9)
(define $r.o2 10)
(define $r.o3 11)
(define $r.o4 12)
(define $r.o5 13)
(define $r.o6 14)
(define $r.o7 15)
(define $r.l0 16)
(define $r.l1 17)
(define $r.l2 18)
(define $r.l3 19)
(define $r.l4 20)
(define $r.l5 21)
(define $r.l6 22)
(define $r.l7 23)
(define $r.i0 24)
(define $r.i1 25)
(define $r.i2 26)
(define $r.i3 27)
(define $r.i4 28)
(define $r.i5 29)
(define $r.i6 30)
(define $r.i7 31)
(define $r.result $r.o0)
(define $r.argreg2 $r.o1)
(define $r.argreg3 $r.o2)
(define $r.stkp $r.o3)
(define $r.stklim $r.i0)
(define $r.tmp1 $r.o4)
(define $r.tmp2 $r.o5)
(define $r.tmp0 $r.g1)
(define $r.e-top $r.i0)
(define $r.e-limit $r.o3)
(define $r.timer $r.i4)
(define $r.millicode $r.i7)
(define $r.globals $r.i7)
(define $r.reg0 $r.l0)
(define $r.reg1 $r.l1)
(define $r.reg2 $r.l2)
(define $r.reg3 $r.l3)
(define $r.reg4 $r.l4)
(define $r.reg5 $r.l5)
(define $r.reg6 $r.l6)
(define $r.reg7 $r.l7)
; DO NOT EDIT THIS FILE. Edit the config file and rerun "config".

(define $ex.car 0)
(define $ex.cdr 1)
(define $ex.setcar 2)
(define $ex.setcdr 3)
(define $ex.add 10)
(define $ex.sub 11)
(define $ex.mul 12)
(define $ex.div 13)
(define $ex.lessp 14)
(define $ex.lesseqp 15)
(define $ex.equalp 16)
(define $ex.greatereqp 17)
(define $ex.greaterp 18)
(define $ex.quotient 19)
(define $ex.remainder 20)
(define $ex.modulo 21)
(define $ex.logior 22)
(define $ex.logand 23)
(define $ex.logxor 24)
(define $ex.lognot 25)
(define $ex.lsh 26)
(define $ex.rsha 27)
(define $ex.rshl 28)
(define $ex.e2i 29)
(define $ex.i2e 30)
(define $ex.exactp 31)
(define $ex.inexactp 32)
(define $ex.round 33)
(define $ex.trunc 34)
(define $ex.zerop 35)
(define $ex.neg 36)
(define $ex.abs 37)
(define $ex.realpart 38)
(define $ex.imagpart 39)
(define $ex.vref 40)
(define $ex.vset 41)
(define $ex.vlen 42)
(define $ex.pref 50)
(define $ex.pset 51)
(define $ex.plen 52)
(define $ex.sref 60)
(define $ex.sset 61)
(define $ex.slen 62)
(define $ex.bvref 70)
(define $ex.bvset 71)
(define $ex.bvlen 72)
(define $ex.bvlref 80)
(define $ex.bvlset 81)
(define $ex.bvllen 82)
(define $ex.vlref 90)
(define $ex.vlset 91)
(define $ex.vllen 92)
(define $ex.typetag 100)
(define $ex.typetagset 101)
(define $ex.apply 102)
(define $ex.argc 103)
(define $ex.vargc 104)
(define $ex.nonproc 105)
(define $ex.undef-global 106)
(define $ex.dump 107)
(define $ex.dumpfail 108)
(define $ex.timer 109)
(define $ex.unsupported 110)
(define $ex.int2char 111)
(define $ex.char2int 112)
(define $ex.mkbvl 113)
(define $ex.mkvl 114)
(define $ex.char<? 115)
(define $ex.char<=? 116)
(define $ex.char=? 117)
(define $ex.char>? 118)
(define $ex.char>=? 119)
(define $ex.bvfill 120)
(define $ex.enable-interrupts 121)
(define $ex.keyboard-interrupt 122)
(define $ex.arithmetic-exception 123)
(define $ex.global-invoke 124)
(define $ex.fx+ 140)
(define $ex.fx- 141)
(define $ex.fx-- 142)
(define $ex.fx= 143)
(define $ex.fx< 144)
(define $ex.fx<= 145)
(define $ex.fx> 146)
(define $ex.fx>= 147)
(define $ex.fxpositive? 148)
(define $ex.fxnegative? 149)
(define $ex.fxzero? 150)
(define $ex.fx* 151)
; DO NOT EDIT THIS FILE. Edit the config file and rerun "config".

(define $tag.tagmask 7)
(define $tag.pair-tag 1)
(define $tag.vector-tag 3)
(define $tag.bytevector-tag 5)
(define $tag.procedure-tag 7)
(define $imm.vector-header 162)
(define $imm.bytevector-header 194)
(define $imm.procedure-header 254)
(define $imm.true 6)
(define $imm.false 2)
(define $imm.null 10)
(define $imm.unspecified 278)
(define $imm.eof 534)
(define $imm.undefined 790)
(define $imm.character 38)
(define $tag.vector-typetag 0)
(define $tag.rectnum-typetag 4)
(define $tag.ratnum-typetag 8)
(define $tag.symbol-typetag 12)
(define $tag.port-typetag 16)
(define $tag.structure-typetag 20)
(define $tag.bytevector-typetag 0)
(define $tag.string-typetag 4)
(define $tag.flonum-typetag 8)
(define $tag.compnum-typetag 12)
(define $tag.bignum-typetag 16)
(define $hdr.port 178)
(define $hdr.struct 182)
(define $p.codevector -3)
(define $p.constvector 1)
(define $p.linkoffset 5)
(define $p.reg0 5)
(define $p.codeoffset -1)
; Copyright 1991 William Clinger
;
; Relatively target-independent information for Twobit's backend.
;
; 24 April 1999 / wdc
;
; Most of the definitions in this file can be extended or overridden by
; target-specific definitions.

(define twobit-sort
  (lambda (less? list) (compat:sort list less?)))

(define renaming-prefix ".")

; The prefix used for cells introduced by the compiler.

(define cell-prefix (string-append renaming-prefix "CELL:"))

; Names of global procedures that cannot be redefined or assigned
; by ordinary code.
; The expansion of quasiquote uses .cons and .list directly, so these
; should not be changed willy-nilly.
; Others may be used directly by a DEFINE-INLINE.

(define name:CHECK!  '.check!)
(define name:CONS '.cons)
(define name:LIST '.list)
(define name:MAKE-CELL '.make-cell)
(define name:CELL-REF '.cell-ref)
(define name:CELL-SET! '.cell-set!)
(define name:IGNORED (string->symbol "IGNORED"))
(define name:CAR '.car)
(define name:CDR '.cdr)

;(begin (eval `(define ,name:CONS cons))
;       (eval `(define ,name:LIST list))
;       (eval `(define ,name:MAKE-CELL list))
;       (eval `(define ,name:CELL-REF car))
;       (eval `(define ,name:CELL-SET! set-car!)))

; If (INTEGRATE-USUAL-PROCEDURES) is true, then control optimization
; recognizes calls to these procedures.

(define name:NOT 'not)
(define name:MEMQ 'memq)
(define name:MEMV 'memv)

; If (INTEGRATE-USUAL-PROCEDURES) is true, then control optimization
; recognizes calls to these procedures and also creates calls to them.

(define name:EQ? 'eq?)
(define name:EQV? 'eqv?)

; Control optimization creates calls to these procedures,
; which do not need to check their arguments.

(define name:FIXNUM?       'fixnum?)
(define name:CHAR?         'char?)
(define name:SYMBOL?       'symbol?)
(define name:FX<           '<:fix:fix)
(define name:FX-           'fx-)                   ; non-checking version
(define name:CHAR->INTEGER 'char->integer)         ; non-checking version
(define name:VECTOR-REF    'vector-ref:trusted)


; Constant folding.
; Prototype, will probably change in the future.

(define (constant-folding-entry name)
  (assq name $usual-constant-folding-procedures$))

(define constant-folding-predicates cadr)
(define constant-folding-folder caddr)

(define $usual-constant-folding-procedures$
  (let ((always? (lambda (x) #t))
        (charcode? (lambda (n)
                     (and (number? n)
                          (exact? n)
                          (<= 0 n)
                          (< n 128))))
        (ratnum? (lambda (n)
                   (and (number? n)
                        (exact? n)
                        (rational? n))))
        ; smallint? is defined later.
        (smallint? (lambda (n) (smallint? n))))
    `(
      ; This makes some assumptions about the host system.
      
      (integer->char (,charcode?) ,integer->char)
      (char->integer (,char?) ,char->integer)
      (zero? (,ratnum?) ,zero?)
      (< (,ratnum? ,ratnum?) ,<)
      (<= (,ratnum? ,ratnum?) ,<=)
      (= (,ratnum? ,ratnum?) ,=)
      (>= (,ratnum? ,ratnum?) ,>=)
      (> (,ratnum? ,ratnum?) ,>)
      (+ (,ratnum? ,ratnum?) ,+)
      (- (,ratnum? ,ratnum?) ,-)
      (* (,ratnum? ,ratnum?) ,*)
      (-- (,ratnum?) ,(lambda (x) (- 0 x)))
      (eq? (,always? ,always?) ,eq?)
      (eqv? (,always? ,always?) ,eqv?)
      (equal? (,always? ,always?) ,equal?)
      (memq (,always? ,list?) ,memq)
      (memv (,always? ,list?) ,memv)
      (member (,always? ,list?) ,member)
      (assq (,always? ,list?) ,assq)
      (assv (,always? ,list?) ,assv)
      (assoc (,always? ,list?) ,assoc)
      (length (,list?) ,length)
      (fixnum? (,smallint?) ,smallint?)
      (=:fix:fix  (,smallint? ,smallint?) ,=)
      (<:fix:fix  (,smallint? ,smallint?) ,<)
      (<=:fix:fix (,smallint? ,smallint?) ,<=)
      (>:fix:fix  (,smallint? ,smallint?) ,>)
      (>=:fix:fix (,smallint? ,smallint?) ,>=)
      )))

(begin '
       (define (.check! flag exn . args)
         (if (not flag)
             (apply error "Runtime check exception: " exn args)))
       #t)

; Order matters.  If f and g are both inlined, and the definition of g
; uses f, then f should be defined before g.

(for-each pass1
          `(

(define-inline car
  (syntax-rules ()
   ((car x0)
    (let ((x x0))
      (.check! (pair? x) ,$ex.car x)
      (car:pair x)))))
   
(define-inline cdr
  (syntax-rules ()
   ((car x0)
    (let ((x x0))
      (.check! (pair? x) ,$ex.cdr x)
      (cdr:pair x)))))

(define-inline vector-length
  (syntax-rules ()
   ((vector-length v0)
    (let ((v v0))
      (.check! (vector? v) ,$ex.vlen v)
      (vector-length:vec v)))))
   
(define-inline vector-ref
  (syntax-rules ()
   ((vector-ref v0 i0)
    (let ((v v0)
          (i i0))
      (.check! (fixnum? i) ,$ex.vref v i)
      (.check! (vector? v) ,$ex.vref v i)
      (.check! (<:fix:fix i (vector-length:vec v)) ,$ex.vref v i)
      (.check! (>=:fix:fix i 0) ,$ex.vref  v i)
      (vector-ref:trusted v i)))))
   
(define-inline vector-set!
  (syntax-rules ()
   ((vector-set! v0 i0 x0)
    (let ((v v0)
          (i i0)
          (x x0))
      (.check! (fixnum? i) ,$ex.vset v i x)
      (.check! (vector? v) ,$ex.vset v i x)
      (.check! (<:fix:fix i (vector-length:vec v)) ,$ex.vset v i x)
      (.check! (>=:fix:fix i 0) ,$ex.vset v i x)
      (vector-set!:trusted v i x)))))
   
; This transformation must make sure the entire list is freshly
; allocated when an argument to LIST returns more than once.

(define-inline list
  (syntax-rules ()
   ((list)
    '())
   ((list ?e)
    (cons ?e '()))
   ((list ?e1 ?e2 ...)
    (let* ((t1 ?e1)
           (t2 (list ?e2 ...)))
      (cons t1 t2)))))

; This transformation must make sure the entire list is freshly
; allocated when an argument to VECTOR returns more than once.

(define-inline vector
  (syntax-rules ()
   ((vector)
    '#())
   ((vector ?e)
    (make-vector 1 ?e))
   ((vector ?e1 ?e2 ...)
    (letrec-syntax
      ((vector-aux1
        (... (syntax-rules ()
              ((vector-aux1 () ?n ?exps ?indexes ?temps)
               (vector-aux2 ?n ?exps ?indexes ?temps))
              ((vector-aux1 (?exp1 ?exp2 ...) ?n ?exps ?indexes ?temps)
               (vector-aux1 (?exp2 ...)
                            (+ ?n 1)
                            (?exp1 . ?exps)
                            (?n . ?indexes)
                            (t . ?temps))))))
       (vector-aux2
        (... (syntax-rules ()
              ((vector-aux2 ?n (?exp1 ?exp2 ...) (?n1 ?n2 ...) (?t1 ?t2 ...))
               (let* ((?t1 ?exp1)
                      (?t2 ?exp2)
                      ...
                      (v (make-vector ?n ?t1)))
                 (vector-set! v ?n2 ?t2)
                 ...
                 v))))))
      (vector-aux1 (?e1 ?e2 ...) 0 () () ())))))

(define-inline cadddr
  (syntax-rules ()
   ((cadddr ?e)
    (car (cdr (cdr (cdr ?e)))))))

(define-inline cddddr
  (syntax-rules ()
   ((cddddr ?e)
    (cdr (cdr (cdr (cdr ?e)))))))

(define-inline cdddr
  (syntax-rules ()
   ((cdddr ?e)
    (cdr (cdr (cdr ?e))))))

(define-inline caddr
  (syntax-rules ()
   ((caddr ?e)
    (car (cdr (cdr ?e))))))

(define-inline cddr
  (syntax-rules ()
   ((cddr ?e)
    (cdr (cdr ?e)))))

(define-inline cdar
  (syntax-rules ()
   ((cdar ?e)
    (cdr (car ?e)))))

(define-inline cadr
  (syntax-rules ()
   ((cadr ?e)
    (car (cdr ?e)))))

(define-inline caar
  (syntax-rules ()
   ((caar ?e)
    (car (car ?e)))))

(define-inline make-vector
  (syntax-rules ()
   ((make-vector ?n)
    (make-vector ?n '()))))

(define-inline make-string
  (syntax-rules ()
   ((make-string ?n)
    (make-string ?n #\space))))

(define-inline =
  (syntax-rules ()
   ((= ?e1 ?e2 ?e3 ?e4 ...)
    (let ((t ?e2))
      (and (= ?e1 t)
           (= t ?e3 ?e4 ...))))))

(define-inline <
  (syntax-rules ()
   ((< ?e1 ?e2 ?e3 ?e4 ...)
    (let ((t ?e2))
      (and (< ?e1 t)
           (< t ?e3 ?e4 ...))))))

(define-inline >
  (syntax-rules ()
   ((> ?e1 ?e2 ?e3 ?e4 ...)
    (let ((t ?e2))
      (and (> ?e1 t)
           (> t ?e3 ?e4 ...))))))

(define-inline <=
  (syntax-rules ()
   ((<= ?e1 ?e2 ?e3 ?e4 ...)
    (let ((t ?e2))
      (and (<= ?e1 t)
           (<= t ?e3 ?e4 ...))))))

(define-inline >=
  (syntax-rules ()
   ((>= ?e1 ?e2 ?e3 ?e4 ...)
    (let ((t ?e2))
      (and (>= ?e1 t)
           (>= t ?e3 ?e4 ...))))))

(define-inline +
  (syntax-rules ()
   ((+)
    0)
   ((+ ?e)
    ?e)
   ((+ ?e1 ?e2 ?e3 ?e4 ...)
    (+ (+ ?e1 ?e2) ?e3 ?e4 ...))))

(define-inline *
  (syntax-rules ()
   ((*)
    1)
   ((* ?e)
    ?e)
   ((* ?e1 ?e2 ?e3 ?e4 ...)
    (* (* ?e1 ?e2) ?e3 ?e4 ...))))

(define-inline -
  (syntax-rules ()
   ((- ?e)
    (- 0 ?e))
   ((- ?e1 ?e2 ?e3 ?e4 ...)
    (- (- ?e1 ?e2) ?e3 ?e4 ...))))

(define-inline /
  (syntax-rules ()
   ((/ ?e)
    (/ 1 ?e))
   ((/ ?e1 ?e2 ?e3 ?e4 ...)
    (/ (/ ?e1 ?e2) ?e3 ?e4 ...))))

(define-inline abs
  (syntax-rules ()
   ((abs ?z)
    (let ((temp ?z))
      (if (< temp 0)
          (-- temp)
          temp)))))

(define-inline negative?
  (syntax-rules ()
   ((negative? ?x)
    (< ?x 0))))

(define-inline positive?
  (syntax-rules ()
   ((positive? ?x)
    (> ?x 0))))

(define-inline eqv?
  (transformer
   (lambda (exp rename compare)
     (let ((arg1 (cadr exp))
           (arg2 (caddr exp)))
       (define (constant? exp)
         (or (boolean? exp)
             (char? exp)
             (and (pair? exp)
                  (= (length exp) 2)
                  (identifier? (car exp))
                  (compare (car exp) (rename 'quote))
                  (symbol? (cadr exp)))))
       (if (or (constant? arg1)
               (constant? arg2))
           (cons (rename 'eq?) (cdr exp))
           exp)))))

(define-inline memq
  (syntax-rules (quote)
   ((memq ?expr '(?datum ...))
    (letrec-syntax
      ((memq0
        (... (syntax-rules (quote)
              ((memq0 '?xx '(?d ...))
               (let ((t1 '(?d ...)))
                 (memq1 '?xx t1 (?d ...))))
              ((memq0 ?e '(?d ...))
               (let ((t0 ?e)
                     (t1 '(?d ...)))
                 (memq1 t0 t1 (?d ...)))))))
       (memq1
        (... (syntax-rules ()
              ((memq1 ?t0 ?t1 ())
               #f)
              ((memq1 ?t0 ?t1 (?d1 ?d2 ...))
               (if (eq? ?t0 '?d1)
                   ?t1
                   (let ((?t1 (cdr ?t1)))
                     (memq1 ?t0 ?t1 (?d2 ...)))))))))
      (memq0 ?expr '(?datum ...))))))

(define-inline memv
  (transformer
   (lambda (exp rename compare)
     (let ((arg1 (cadr exp))
           (arg2 (caddr exp)))
       (if (or (boolean? arg1)
               (fixnum? arg1)
               (char? arg1)
               (and (pair? arg1)
                    (= (length arg1) 2)
                    (identifier? (car arg1))
                    (compare (car arg1) (rename 'quote))
                    (symbol? (cadr arg1)))
               (and (pair? arg2)
                    (= (length arg2) 2)
                    (identifier? (car arg2))
                    (compare (car arg2) (rename 'quote))
                    (every1? (lambda (x)
                               (or (boolean? x)
                                   (fixnum? x)
                                   (char? x)
                                   (symbol? x)))
                             (cadr arg2))))
           (cons (rename 'memq) (cdr exp))
           exp)))))

(define-inline assv
  (transformer
   (lambda (exp rename compare)
     (let ((arg1 (cadr exp))
           (arg2 (caddr exp)))
       (if (or (boolean? arg1)
               (char? arg1)
               (and (pair? arg1)
                    (= (length arg1) 2)
                    (identifier? (car arg1))
                    (compare (car arg1) (rename 'quote))
                    (symbol? (cadr arg1)))
               (and (pair? arg2)
                    (= (length arg2) 2)
                    (identifier? (car arg2))
                    (compare (car arg2) (rename 'quote))
                    (every1? (lambda (y)
                               (and (pair? y)
                                    (let ((x (car y)))
                                      (or (boolean? x)
                                          (char? x)
                                          (symbol? x)))))
                             (cadr arg2))))
           (cons (rename 'assq) (cdr exp))
           exp)))))

(define-inline map
  (syntax-rules (lambda)
   ((map ?proc ?exp1 ?exp2 ...)
    (letrec-syntax
      ((loop
        (... (syntax-rules (lambda)
              ((loop 1 () (?y1 ?y2 ...) ?f ?exprs)
               (loop 2 (?y1 ?y2 ...) ?f ?exprs))
              ((loop 1 (?a1 ?a2 ...) (?y2 ...) ?f ?exprs)
               (loop 1 (?a2 ...) (y1 ?y2 ...) ?f ?exprs))
              
              ((loop 2 ?ys (lambda ?formals ?body) ?exprs)
               (loop 3 ?ys (lambda ?formals ?body) ?exprs))
              ((loop 2 ?ys (?f1 . ?f2) ?exprs)
               (let ((f (?f1 . ?f2)))
                 (loop 3 ?ys f ?exprs)))
              ; ?f must be a constant or variable.
              ((loop 2 ?ys ?f ?exprs)
               (loop 3 ?ys ?f ?exprs))
              
              ((loop 3 (?y1 ?y2 ...) ?f (?e1 ?e2 ...))
               (do ((?y1 ?e1 (cdr ?y1))
                    (?y2 ?e2 (cdr ?y2))
                    ...
                    (results '() (cons (?f (car ?y1) (car ?y2) ...)
                                       results)))
                   ((or (null? ?y1) (null? ?y2) ...)
                    (reverse results))))))))
      
      (loop 1 (?exp1 ?exp2 ...) () ?proc (?exp1 ?exp2 ...))))))

(define-inline for-each
  (syntax-rules (lambda)
   ((for-each ?proc ?exp1 ?exp2 ...)
    (letrec-syntax
      ((loop
        (... (syntax-rules (lambda)
              ((loop 1 () (?y1 ?y2 ...) ?f ?exprs)
               (loop 2 (?y1 ?y2 ...) ?f ?exprs))
              ((loop 1 (?a1 ?a2 ...) (?y2 ...) ?f ?exprs)
               (loop 1 (?a2 ...) (y1 ?y2 ...) ?f ?exprs))
              
              ((loop 2 ?ys (lambda ?formals ?body) ?exprs)
               (loop 3 ?ys (lambda ?formals ?body) ?exprs))
              ((loop 2 ?ys (?f1 . ?f2) ?exprs)
               (let ((f (?f1 . ?f2)))
                 (loop 3 ?ys f ?exprs)))
              ; ?f must be a constant or variable.
              ((loop 2 ?ys ?f ?exprs)
               (loop 3 ?ys ?f ?exprs))
              
              ((loop 3 (?y1 ?y2 ...) ?f (?e1 ?e2 ...))
               (do ((?y1 ?e1 (cdr ?y1))
                    (?y2 ?e2 (cdr ?y2))
                    ...)
                   ((or (null? ?y1) (null? ?y2) ...)
                    (if #f #f))
                   (?f (car ?y1) (car ?y2) ...)))))))
      
      (loop 1 (?exp1 ?exp2 ...) () ?proc (?exp1 ?exp2 ...))))))

))

(define extended-syntactic-environment
  (syntactic-copy global-syntactic-environment))

(define (make-extended-syntactic-environment)
  (syntactic-copy extended-syntactic-environment))

; MacScheme machine assembly instructions.

(define instruction.op car)
(define instruction.arg1 cadr)
(define instruction.arg2 caddr)
(define instruction.arg3 cadddr)

; Opcode table.

(define *mnemonic-names* '())           ; For readify-lap
(begin
 '
 (define *last-reserved-mnemonic* 32767)	; For consistency check
 '
 (define make-mnemonic
   (let ((count 0))
     (lambda (name)
       (set! count (+ count 1))
       (if (= count *last-reserved-mnemonic*)
           (error "Error in make-mnemonic: conflict: " name))
       (set! *mnemonic-names* (cons (cons count name) *mnemonic-names*))
       count)))
 '
 (define (reserved-mnemonic name value)
   (if (and (> value 0) (< value *last-reserved-mnemonic*))
       (set! *last-reserved-mnemonic* value))
   (set! *mnemonic-names* (cons (cons value name) *mnemonic-names*))
   value)
 #t)

(define make-mnemonic
   (let ((count 0))
     (lambda (name)
       (set! count (+ count 1))
       (set! *mnemonic-names* (cons (cons count name) *mnemonic-names*))
       count)))

(define (reserved-mnemonic name ignored)
  (make-mnemonic name))

(define $.linearize (reserved-mnemonic '.linearize -1))  ; unused?
(define $.label (reserved-mnemonic '.label 63))
(define $.proc (reserved-mnemonic '.proc 62))    ; proc entry point
(define $.cont (reserved-mnemonic '.cont 61))    ; return point
(define $.align (reserved-mnemonic '.align 60))  ; align code stream
(define $.asm (reserved-mnemonic '.asm 59))      ; in-line native code
(define $.proc-doc                               ; internal def proc info
  (reserved-mnemonic '.proc-doc 58))
(define $.end                                    ; end of code vector
  (reserved-mnemonic '.end 57))                  ; (asm internal)
(define $.singlestep                             ; insert singlestep point
  (reserved-mnemonic '.singlestep 56))           ; (asm internal)
(define $.entry (reserved-mnemonic '.entry 55))  ; procedure entry point 
                                                 ; (asm internal)

(define $op1 (make-mnemonic 'op1))               ; op      prim
(define $op2 (make-mnemonic 'op2))               ; op2     prim,k
(define $op3 (make-mnemonic 'op3))               ; op3     prim,k1,k2
(define $op2imm (make-mnemonic 'op2imm))         ; op2imm  prim,x
(define $const (make-mnemonic 'const))           ; const   x
(define $global (make-mnemonic 'global))         ; global  x
(define $setglbl (make-mnemonic 'setglbl))       ; setglbl x
(define $lexical (make-mnemonic 'lexical))       ; lexical m,n
(define $setlex (make-mnemonic 'setlex))         ; setlex  m,n
(define $stack (make-mnemonic 'stack))           ; stack   n
(define $setstk (make-mnemonic 'setstk))         ; setstk  n
(define $load (make-mnemonic 'load))             ; load    k,n
(define $store (make-mnemonic 'store))           ; store   k,n
(define $reg (make-mnemonic 'reg))               ; reg     k
(define $setreg (make-mnemonic 'setreg))         ; setreg  k
(define $movereg (make-mnemonic 'movereg))       ; movereg k1,k2
(define $lambda (make-mnemonic 'lambda))         ; lambda  x,n,doc
(define $lexes (make-mnemonic 'lexes))           ; lexes   n,doc
(define $args= (make-mnemonic 'args=))           ; args=   k
(define $args>= (make-mnemonic 'args>=))         ; args>=  k
(define $invoke (make-mnemonic 'invoke))         ; invoke  k
(define $save (make-mnemonic 'save))             ; save    L,k
(define $setrtn (make-mnemonic 'setrtn))         ; setrtn  L
(define $restore (make-mnemonic 'restore))       ; restore n    ; deprecated
(define $pop (make-mnemonic 'pop))               ; pop     k
(define $popstk (make-mnemonic 'popstk))         ; popstk       ; for students
(define $return (make-mnemonic 'return))         ; return
(define $mvrtn (make-mnemonic 'mvrtn))           ; mvrtn        ; NYI
(define $apply (make-mnemonic 'apply))           ; apply
(define $nop (make-mnemonic 'nop))               ; nop
(define $jump (make-mnemonic 'jump))             ; jump    m,o
(define $skip (make-mnemonic 'skip))             ; skip    L    ; forward
(define $branch (make-mnemonic 'branch))         ; branch  L
(define $branchf (make-mnemonic 'branchf))       ; branchf L
(define $check (make-mnemonic 'check))           ; check   k1,k2,k3,L
(define $trap (make-mnemonic 'trap))             ; trap    k1,k2,k3,exn

; A peephole optimizer may define more instructions in some
; target-specific file.

; eof
; Copyright 1991 William Clinger
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Larceny -- target-specific information for Twobit's SPARC backend.
;
; 11 June 1999 / wdc

; The maximum number of fixed arguments that may be followed by a rest
; argument.  This limitation is removed by the macro expander.

(define @maxargs-with-rest-arg@ 30)

; The number of MacScheme machine registers.
; (They do not necessarily correspond to hardware registers.)

(define *nregs* 32)
(define *lastreg* (- *nregs* 1))
(define *fullregs* (quotient *nregs* 2))

; The number of argument registers that are represented by hardware
; registers.

(define *nhwregs* 8)

; Variable names that indicate register targets.

(define *regnames*
  (do ((alist '() (cons (cons (string->symbol
                               (string-append ".REG" (number->string r)))
                              r)
                        alist))
       (r (- *nhwregs* 1) (- r 1)))
      ((<= r 0)
       alist)))

; A non-inclusive upper bound for the instruction encodings.

(define *number-of-mnemonics* 72)

; Integrable procedures and procedure-specific source code transformations.
; Every integrable procedure that takes a varying number of arguments must
; supply a transformation procedure to map calls into the fixed arity
; required by the MacScheme machine instructions.

; The table of integrable procedures.
; Each entry is a list of the following items:
;
;    procedure name
;    arity (or -1 for special primops like .check!)
;    procedure name to be used by the disassembler
;    predicate for immediate operands (or #f)
;    primop code in the MacScheme machine (not used by Larceny)
;    the effects that kill this primop's result
;    the effects of this primop that kill available expressions

(define (prim-entry name)
  (assq name $usual-integrable-procedures$))

(define prim-arity cadr)
(define prim-opcodename caddr)
(define prim-immediate? cadddr)
(define (prim-primcode entry)
  (car (cddddr entry)))

; This predicate returns #t iff its argument will be represented
; as a fixnum on the target machine.

(define smallint?
  (let* ((least (- (expt 2 29)))
         (greatest (- (- least) 1)))
    (lambda (x)
      (and (number? x)
           (exact? x)
           (integer? x)
           (<= least x greatest)))))

(define (sparc-imm? x)
  (and (fixnum? x)
       (<= -1024 x 1023)))

(define (sparc-eq-imm? x)
  (or (sparc-imm? x)
      (eq? x #t)
      (eq? x #f)
      (eq? x '())))

(define (valid-typetag? x)
  (and (fixnum? x)
       (<= 0 x 7)))

(define (fixnum-primitives) #t)
(define (flonum-primitives) #t)

; The table of primitives has been extended with
; kill information used for commoning.

(define (prim-lives-until entry)
  (list-ref entry 5))

(define (prim-kills entry)
  (list-ref entry 6))

(define $usual-integrable-procedures$
  (let ((:globals  available:killer:globals)
        (:car      available:killer:car)
        (:cdr      available:killer:cdr)
        (:string   available:killer:string)
        (:vector   available:killer:vector)
        (:cell     available:killer:cell)
        (:io       available:killer:io)
        (:none     available:killer:none)     ; none of the above
        (:all      available:killer:all)      ; all of the above
        (:immortal available:killer:immortal) ; never killed
        (:dead     available:killer:dead)     ; never available
        )

;    external     arity  internal    immediate    ignored  killed     kills
;    name                name        predicate             by what
;                                                          kind of
;                                                          effect

  `((break            0 break            #f             3 ,:dead     ,:all)
    (creg             0 creg             #f             7 ,:dead     ,:all)
    (unspecified      0 unspecified      #f            -1 ,:dead     ,:none)
    (undefined        0 undefined        #f             8 ,:dead     ,:none)
    (eof-object       0 eof-object       #f            -1 ,:dead     ,:none)
    (enable-interrupts 1 enable-interrupts #f          -1 ,:dead     ,:all)
    (disable-interrupts 0 disable-interrupts #f        -1 ,:dead     ,:all)

    (typetag          1 typetag          #f          #x11 ,:dead     ,:none)
    (not              1 not              #f          #x18 ,:immortal ,:none)
    (null?            1 null?            #f          #x19 ,:immortal ,:none)
    (pair?            1 pair?            #f          #x1a ,:immortal ,:none)
    (eof-object?      1 eof-object?      #f            -1 ,:immortal ,:none)
    (port?            1 port?            #f            -1 ,:dead     ,:none)
    (structure?       1 structure?       #f            -1 ,:dead     ,:none)
    (car              1 car              #f          #x1b ,:car      ,:none)
    (,name:CAR        1 car              #f          #x1b ,:car      ,:none)
    (cdr              1 cdr              #f          #x1c ,:cdr      ,:none)
    (,name:CDR        1 cdr              #f          #x1c ,:cdr      ,:none)
    (symbol?          1 symbol?          #f          #x1f ,:immortal ,:none)
    (number?          1 complex?         #f          #x20 ,:immortal ,:none)
    (complex?         1 complex?         #f          #x20 ,:immortal ,:none)
    (real?            1 rational?        #f          #x21 ,:immortal ,:none)
    (rational?        1 rational?        #f          #x21 ,:immortal ,:none)
    (integer?         1 integer?         #f          #x22 ,:immortal ,:none)
    (fixnum?          1 fixnum?          #f          #x23 ,:immortal ,:none)
    (flonum?          1 flonum?          #f            -1 ,:immortal ,:none)
    (compnum?         1 compnum?         #f            -1 ,:immortal ,:none)
    (exact?           1 exact?           #f          #x24 ,:immortal ,:none)
    (inexact?         1 inexact?         #f          #x25 ,:immortal ,:none)
    (exact->inexact   1 exact->inexact   #f          #x26 ,:immortal ,:none)
    (inexact->exact   1 inexact->exact   #f          #x27 ,:immortal ,:none)
    (round            1 round            #f          #x28 ,:immortal ,:none)
    (truncate         1 truncate         #f          #x29 ,:immortal ,:none)
    (zero?            1 zero?            #f          #x2c ,:immortal ,:none)
    (--               1 --               #f          #x2d ,:immortal ,:none)
    (lognot           1 lognot           #f          #x2f ,:immortal ,:none)
    (real-part        1 real-part        #f          #x3e ,:immortal ,:none)
    (imag-part        1 imag-part        #f          #x3f ,:immortal ,:none)
    (char?            1 char?            #f          #x40 ,:immortal ,:none)
    (char->integer    1 char->integer    #f          #x41 ,:immortal ,:none)
    (integer->char    1 integer->char    #f          #x42 ,:immortal ,:none)
    (string?          1 string?          #f          #x50 ,:immortal ,:none)
    (string-length    1 string-length    #f          #x51 ,:immortal ,:none)
    (vector?          1 vector?          #f          #x52 ,:immortal ,:none)
    (vector-length    1 vector-length    #f          #x53 ,:immortal ,:none)
    (bytevector?      1 bytevector?      #f          #x54 ,:immortal ,:none)
    (bytevector-length 1 bytevector-length #f        #x55 ,:immortal ,:none)
    (bytevector-fill! 2 bytevector-fill! #f            -1 ,:dead     ,:string)
    (make-bytevector  1 make-bytevector  #f          #x56 ,:dead     ,:none)
    (procedure?       1 procedure?       #f          #x58 ,:immortal ,:none)
    (procedure-length 1 procedure-length #f          #x59 ,:dead     ,:none)
    (make-procedure   1 make-procedure   #f          #x5a ,:dead     ,:none)
    (creg-set!        1 creg-set!        #f          #x71 ,:dead     ,:none)
    (,name:MAKE-CELL  1 make-cell        #f          #x7e ,:dead     ,:none)
    (,name:CELL-REF   1 cell-ref         #f          #x7f ,:cell     ,:none)
    (,name:CELL-SET!  2 cell-set!        #f          #xdf ,:dead     ,:cell)
    (typetag-set!     2 typetag-set! ,valid-typetag? #xa0 ,:dead     ,:all)
    (eq?              2 eq?           ,sparc-eq-imm? #xa1 ,:immortal ,:none)
    (eqv?             2 eqv?             #f          #xa2 ,:immortal ,:none)
    (cons             2 cons             #f          #xa8 ,:dead     ,:none)
    (,name:CONS       2 cons             #f          #xa8 ,:dead     ,:none)
    (set-car!         2 set-car!         #f          #xa9 ,:dead     ,:car)
    (set-cdr!         2 set-cdr!         #f          #xaa ,:dead     ,:cdr)
    (+                2 +                ,sparc-imm? #xb0 ,:immortal ,:none)
    (-                2 -                ,sparc-imm? #xb1 ,:immortal ,:none)
    (*                2 *                ,sparc-imm? #xb2 ,:immortal ,:none)
    (/                2 /                #f          #xb3 ,:immortal ,:none)
    (quotient         2 quotient         #f          #xb4 ,:immortal ,:none)
    (<                2 <                ,sparc-imm? #xb5 ,:immortal ,:none)
    (<=               2 <=               ,sparc-imm? #xb6 ,:immortal ,:none)
    (=                2 =                ,sparc-imm? #xb7 ,:immortal ,:none)
    (>                2 >                ,sparc-imm? #xb8 ,:immortal ,:none)
    (>=               2 >=               ,sparc-imm? #xb9 ,:immortal ,:none)
    (logand           2 logand           #f          #xc0 ,:immortal ,:none)
    (logior           2 logior           #f          #xc1 ,:immortal ,:none)
    (logxor           2 logxor           #f          #xc2 ,:immortal ,:none)
    (lsh              2 lsh              #f          #xc3 ,:immortal ,:none)
    (rsha             2 rsha             #f            -1 ,:immortal ,:none)
    (rshl             2 rshl             #f            -1 ,:immortal ,:none)
    (rot              2 rot              #f          #xc4 ,:immortal ,:none)
    (make-string      2 make-string      #f            -1 ,:dead     ,:none)
    (string-ref       2 string-ref       ,sparc-imm? #xd1 ,:string   ,:none)
    (string-set!      3 string-set!      ,sparc-imm?   -1 ,:dead     ,:string)
    (make-vector      2 make-vector      #f          #xd2 ,:dead     ,:none)
    (vector-ref       2 vector-ref       ,sparc-imm? #xd3 ,:vector   ,:none)
    (bytevector-ref   2 bytevector-ref   ,sparc-imm? #xd5 ,:string   ,:none)
    (procedure-ref    2 procedure-ref    #f          #xd7 ,:dead     ,:none)
    (char<?           2 char<?           ,char?      #xe0 ,:immortal ,:none)
    (char<=?          2 char<=?          ,char?      #xe1 ,:immortal ,:none)
    (char=?           2 char=?           ,char?      #xe2 ,:immortal ,:none)
    (char>?           2 char>?           ,char?      #xe3 ,:immortal ,:none)
    (char>=?          2 char>=?          ,char?      #xe4 ,:immortal ,:none)
    
    (sys$partial-list->vector 2 sys$partial-list->vector #f -1 ,:dead ,:all)
    (vector-set!      3 vector-set!      #f          #xf1 ,:dead     ,:vector)
    (bytevector-set!  3 bytevector-set!  #f          #xf2 ,:dead     ,:string)
    (procedure-set!   3 procedure-set!   #f          #xf3 ,:dead     ,:all)
    (bytevector-like? 1 bytevector-like? #f            -1 ,:immortal ,:none)
    (vector-like?     1 vector-like?     #f            -1 ,:immortal ,:none)
    (bytevector-like-ref 2 bytevector-like-ref #f      -1 ,:string   ,:none)
    (bytevector-like-set! 3 bytevector-like-set! #f    -1 ,:dead     ,:string)
    (sys$bvlcmp       2 sys$bvlcmp       #f            -1 ,:dead     ,:all)
    (vector-like-ref  2 vector-like-ref  #f            -1 ,:vector   ,:none)
    (vector-like-set! 3 vector-like-set! #f            -1 ,:dead     ,:vector)
    (vector-like-length 1 vector-like-length #f        -1 ,:immortal ,:none)
    (bytevector-like-length 1 bytevector-like-length #f -1 ,:immortal ,:none)
    (remainder        2 remainder        #f            -1 ,:immortal ,:none)
    (sys$read-char    1 sys$read-char    #f            -1 ,:dead     ,:io)
    (gc-counter       0 gc-counter       #f            -1 ,:dead     ,:none)
    ,@(if (fixnum-primitives)
	  `((most-positive-fixnum
                          0 most-positive-fixnum
                                         #f            -1 ,:immortal ,:none)
	    (most-negative-fixnum
                          0 most-negative-fixnum
                                         #f            -1 ,:immortal ,:none)
	    (fx+          2 fx+          ,sparc-imm?   -1 ,:immortal ,:none)
	    (fx-          2 fx-          ,sparc-imm?   -1 ,:immortal ,:none)
	    (fx--         1 fx--         #f            -1 ,:immortal ,:none)
	    (fx*          2 fx*          #f            -1 ,:immortal ,:none)
	    (fx=          2 fx=          ,sparc-imm?   -1 ,:immortal ,:none)
	    (fx<          2 fx<          ,sparc-imm?   -1 ,:immortal ,:none)
	    (fx<=         2 fx<=         ,sparc-imm?   -1 ,:immortal ,:none)
	    (fx>          2 fx>          ,sparc-imm?   -1 ,:immortal ,:none)
	    (fx>=         2 fx>=         ,sparc-imm?   -1 ,:immortal ,:none)
	    (fxzero?      1 fxzero?      #f            -1 ,:immortal ,:none)
	    (fxpositive?  1 fxpositive?  #f            -1 ,:immortal ,:none)
	    (fxnegative?  1 fxnegative?  #f            -1 ,:immortal ,:none))
	  '())
    ,@(if (flonum-primitives)
          `((fl+          2 +            #f            -1 ,:immortal ,:none)
	    (fl-          2 -            #f            -1 ,:immortal ,:none)
	    (fl--         1 --           #f            -1 ,:immortal ,:none)
	    (fl*          2 *            #f            -1 ,:immortal ,:none)
	    (fl=          2 =            #f            -1 ,:immortal ,:none)
	    (fl<          2 <            #f            -1 ,:immortal ,:none)
	    (fl<=         2 <=           #f            -1 ,:immortal ,:none)
	    (fl>          2 >            #f            -1 ,:immortal ,:none)
	    (fl>=         2 >=           #f            -1 ,:immortal ,:none))
          '())

    ; Added for CSE, representation analysis.

    (,name:CHECK!    -1 check!           #f            -1 ,:dead     ,:none)
    (vector-length:vec 1 vector-length:vec #f          -1 ,:immortal ,:none)
    (vector-ref:trusted 2 vector-ref:trusted ,sparc-imm? -1 ,:vector   ,:none)
    (vector-set!:trusted 3 vector-set!:trusted #f      -1 ,:dead     ,:vector)
    (car:pair         1 car:pair         #f            -1 ,:car      ,:none)
    (cdr:pair         1 cdr:pair         #f            -1 ,:cdr      ,:none)
    (=:fix:fix        2 =:fix:fix        ,sparc-imm?   -1 ,:immortal ,:none)
    (<:fix:fix        2 <:fix:fix        ,sparc-imm?   -1 ,:immortal ,:none)
    (<=:fix:fix       2 <=:fix:fix       ,sparc-imm?   -1 ,:immortal ,:none)
    (>=:fix:fix       2 >=:fix:fix       ,sparc-imm?   -1 ,:immortal ,:none)
    (>:fix:fix        2 >:fix:fix        ,sparc-imm?   -1 ,:immortal ,:none)
    
    ; Not yet implemented.

    (+:idx:idx        2 +:idx:idx        #f            -1 ,:immortal ,:none)
    (+:fix:fix        2 +:idx:idx        #f            -1 ,:immortal ,:none)
    (+:exi:exi        2 +:idx:idx        #f            -1 ,:immortal ,:none)
    (+:flo:flo        2 +:idx:idx        #f            -1 ,:immortal ,:none)
    (=:flo:flo        2 =:flo:flo        #f            -1 ,:immortal ,:none)
    (=:obj:flo        2 =:obj:flo        #f            -1 ,:immortal ,:none)
    (=:flo:obj        2 =:flo:obj        #f            -1 ,:immortal ,:none)
    )))

; Not used by the Sparc assembler; for information only.

(define $immediate-primops$
  '((typetag-set! #x80)
    (eq? #x81)
    (+ #x82)
    (- #x83)
    (< #x84)
    (<= #x85)
    (= #x86)
    (> #x87)
    (>= #x88)
    (char<? #x89)
    (char<=? #x8a)
    (char=? #x8b)
    (char>? #x8c)
    (char>=? #x8d)
    (string-ref #x90)
    (vector-ref #x91)
    (bytevector-ref #x92)
    (bytevector-like-ref -1)
    (vector-like-ref -1)
    (fx+ -1)
    (fx- -1)
    (fx-- -1)
    (fx= -1)
    (fx< -1)
    (fx<= -1)
    (fx> -1)
    (fx>= -1)))

; Operations introduced by peephole optimizer.

(define $reg/op1/branchf                  ; reg/op1/branchf    prim,k1,L
  (make-mnemonic 'reg/op1/branchf))
(define $reg/op2/branchf                  ; reg/op2/branchf    prim,k1,k2,L
  (make-mnemonic 'reg/op2/branchf))
(define $reg/op2imm/branchf               ; reg/op2imm/branchf prim,k1,x,L
  (make-mnemonic 'reg/op2imm/branchf))
(define $reg/op1/check             ; reg/op1/check      prim,k1,k2,k3,k4,exn
  (make-mnemonic 'reg/op1/check))
(define $reg/op2/check             ; reg/op2/check      prim,k1,k2,k3,k4,k5,exn
  (make-mnemonic 'reg/op2/check))
(define $reg/op2imm/check          ; reg/op2imm/check   prim,k1,x,k2,k3,k4,exn
  (make-mnemonic 'reg/op2imm/check))
(define $reg/op1/setreg                   ; reg/op1/setreg     prim,k1,kr
  (make-mnemonic 'reg/op1/setreg))
(define $reg/op2/setreg                   ; reg/op2/setreg     prim,k1,k2,kr
  (make-mnemonic 'reg/op2/setreg))
(define $reg/op2imm/setreg                ; reg/op2imm/setreg  prim,k1,x,kr
  (make-mnemonic 'reg/op2imm/setreg))
(define $reg/branchf                      ; reg/branchf        k, L
  (make-mnemonic 'reg/branchf))
(define $reg/return                       ; reg/return         k
  (make-mnemonic 'reg/return))
(define $reg/setglbl                      ; reg/setglbl        k,x
  (make-mnemonic 'reg/setglbl))
(define $reg/op3                          ; reg/op3            prim,k1,k2,k3
  (make-mnemonic 'reg/op3))
(define $const/setreg                     ; const/setreg       const,k
  (make-mnemonic 'const/setreg))
(define $const/return                     ; const/return       const
  (make-mnemonic 'const/return))
(define $global/setreg                    ; global/setreg      x,k
  (make-mnemonic 'global/setreg))
(define $setrtn/branch                    ; setrtn/branch      L,doc
  (make-mnemonic 'setrtn/branch))
(define $setrtn/invoke                    ; setrtn/invoke      L
  (make-mnemonic 'setrtn/invoke))
(define $global/invoke                    ; global/invoke      global,n
  (make-mnemonic 'global/invoke))

; misc

(define $cons     'cons)
(define $car:pair 'car)
(define $cdr:pair 'cdr)

; eof
; Target-specific representations.
;
; A few of these representation types must be specified for every target:
;     rep:object
;     rep:procedure
;     rep:true
;     rep:false
;     rep:bottom

(define-subtype 'true       'object)      ; values that count as true
(define-subtype 'eqtype     'object)      ; can use EQ? instead of EQV?
(define-subtype 'nonpointer 'eqtype)      ; can omit write barrier
(define-subtype 'eqtype1    'eqtype)      ; eqtypes excluding #f
(define-subtype 'boolean    'nonpointer)
(define-subtype 'truth      'eqtype1)     ; { #t }
(define-subtype 'truth      'boolean)
(define-subtype 'false      'boolean)     ; { #f }
(define-subtype 'eqtype1    'true)  
(define-subtype 'procedure  'true)
(define-subtype 'vector     'true)
(define-subtype 'bytevector 'true)
(define-subtype 'string     'true)
(define-subtype 'pair       'true)
(define-subtype 'emptylist  'eqtype1)
(define-subtype 'emptylist  'nonpointer)
(define-subtype 'symbol     'eqtype1)
(define-subtype 'char       'eqtype1)
(define-subtype 'char       'nonpointer)
(define-subtype 'number     'true)
(define-subtype 'inexact    'number)
(define-subtype 'flonum     'inexact)
(define-subtype 'integer    'number)
(define-subtype 'exact      'number)
(define-subtype 'exactint   'integer)
(define-subtype 'exactint   'exact)
(define-subtype 'fixnum     'exactint)
(define-subtype '!fixnum    'fixnum)      ; 0 <= n
(define-subtype 'fixnum!    'fixnum)      ; n <= largest index
(define-subtype 'index      '!fixnum)
(define-subtype 'index      'fixnum!)
(define-subtype 'zero       'index)
(define-subtype 'fixnum     'eqtype1)
(define-subtype 'fixnum     'nonpointer)

(compute-type-structure!)

; If the intersection of rep1 and rep2 is known precisely,
; but neither is a subtype of the other, then their intersection
; should be declared explicitly.
; Otherwise a conservative approximation will be used.

(define-intersection 'true 'eqtype 'eqtype1)
(define-intersection 'true 'boolean 'truth)
(define-intersection 'exact 'integer 'exactint)
(define-intersection '!fixnum 'fixnum! 'index)

;(display-unions-and-intersections)

; Parameters.

(define rep:min_fixnum (- (expt 2 29)))
(define rep:max_fixnum (- (expt 2 29) 1))
(define rep:max_index  (- (expt 2 24) 1))

; The representations we'll recognize for now.

(define rep:object       (symbol->rep 'object))
(define rep:true         (symbol->rep 'true))
(define rep:truth        (symbol->rep 'truth))
(define rep:false        (symbol->rep 'false))
(define rep:boolean      (symbol->rep 'boolean))
(define rep:pair         (symbol->rep 'pair))
(define rep:symbol       (symbol->rep 'symbol))
(define rep:number       (symbol->rep 'number))
(define rep:zero         (symbol->rep 'zero))
(define rep:index        (symbol->rep 'index))
(define rep:fixnum       (symbol->rep 'fixnum))
(define rep:exactint     (symbol->rep 'exactint))
(define rep:flonum       (symbol->rep 'flonum))
(define rep:exact        (symbol->rep 'exact))
(define rep:inexact      (symbol->rep 'inexact))
(define rep:integer      (symbol->rep 'integer))
;(define rep:real         (symbol->rep 'real))
(define rep:char         (symbol->rep 'char))
(define rep:string       (symbol->rep 'string))
(define rep:vector       (symbol->rep 'vector))
(define rep:procedure    (symbol->rep 'procedure))
(define rep:bottom       (symbol->rep 'bottom))

; Given the value of a quoted constant, return its representation.

(define (representation-of-value x)
  (cond ((boolean? x)
         (if x
             rep:truth
             rep:false))
        ((pair? x)
         rep:pair)
        ((symbol? x)
         rep:symbol)
        ((number? x)
         (cond ((and (exact? x)
                     (integer? x))
                (cond ((zero? x)
                       rep:zero)
                      ((<= 0 x rep:max_index)
                       rep:index)
                      ((<= rep:min_fixnum
                           x
                           rep:max_fixnum)
                       rep:fixnum)
                      (else
                       rep:exactint)))
               ((and (inexact? x)
                     (real? x))
                rep:flonum)
               (else
                ; We're not tracking other numbers yet.
                rep:number)))
        ((char? x)
         rep:char)
        ((string? x)
         rep:string)
        ((vector? x)
         rep:vector)
        ; Everything counts as true except for #f.
        (else
         rep:true)))

; Tables that express the representation-specific operations,
; and the information about representations that are implied
; by certain operations.
; FIXME:  Currently way incomplete, but good enough for testing.

(define rep-specific
  
  (representation-table
   
   ; When the procedure in the first column is called with
   ; arguments described in the middle column, then the procedure
   ; in the last column can be called instead.
   
   '(
    ;(+                  (index index)               +:idx:idx)
    ;(+                  (fixnum fixnum)             +:fix:fix)
    ;(-                  (index index)               -:idx:idx)
    ;(-                  (fixnum fixnum)             -:fix:fix)
     
     (=                  (fixnum fixnum)             =:fix:fix)
     (<                  (fixnum fixnum)             <:fix:fix)
     (<=                 (fixnum fixnum)             <=:fix:fix)
     (>                  (fixnum fixnum)             >:fix:fix)
     (>=                 (fixnum fixnum)             >=:fix:fix)
     
    ;(+                  (flonum flonum)             +:flo:flo)
    ;(-                  (flonum flonum)             -:flo:flo)
    ;(=                  (flonum flonum)             =:flo:flo)
    ;(<                  (flonum flonum)             <:flo:flo)
    ;(<=                 (flonum flonum)             <=:flo:flo)
    ;(>                  (flonum flonum)             >:flo:flo)
    ;(>=                 (flonum flonum)             >=:flo:flo)
     
    ;(vector-set!:trusted (vector fixnum nonpointer) vector-set!:trusted:imm)
     )))

(define rep-result
  
  (representation-table
   
   ; When the procedure in the first column is called with
   ; arguments described in the middle column, then the result
   ; is described by the last column.
   
   '((fixnum?           (fixnum)                    (truth))
     (vector?           (vector)                    (truth))
     (<=                (zero !fixnum)              (truth))
     (>=                (!fixnum zero)              (truth))
     (<=:fix:fix        (zero !fixnum)              (truth))
     (>=:fix:fix        (!fixnum zero)              (truth))
     
     (+                 (index index)               (!fixnum))
     (+                 (fixnum fixnum)             (exactint))
     (-                 (index index)               (fixnum!))
     (-                 (fixnum fixnum)             (exactint))
     
     (+                 (flonum flonum)             (flonum))
     (-                 (flonum flonum)             (flonum))
     
    ;(+:idx:idx         (index index)               (!fixnum))
    ;(-:idx:idx         (index index)               (fixnum!))
    ;(+:fix:fix         (index index)               (exactint))
    ;(+:fix:fix         (fixnum fixnum)             (exactint))
    ;(-:idx:idx         (index index)               (fixnum))
    ;(-:fix:fix         (fixnum fixnum)             (exactint))
     
     (make-vector       (object object)             (vector))
     (vector-length:vec (vector)                    (index))
     (cons              (object object)             (pair))
     
     ; Is it really all that useful to know that the result
     ; of these comparisons is a boolean?
     
     (=                 (number number)             (boolean))
     (<                 (number number)             (boolean))
     (<=                (number number)             (boolean))
     (>                 (number number)             (boolean))
     (>=                (number number)             (boolean))
     
     (=:fix:fix         (fixnum fixnum)             (boolean))
     (<:fix:fix         (fixnum fixnum)             (boolean))
     (<=:fix:fix        (fixnum fixnum)             (boolean))
     (>:fix:fix         (fixnum fixnum)             (boolean))
     (>=:fix:fix        (fixnum fixnum)             (boolean))
     )))

(define rep-informing
  
  (representation-table
   
   ; When the predicate in the first column is called in the test position
   ; of a conditional expression, on arguments described by the second
   ; column, then the arguments are described by the third column if the
   ; predicate returns true, and by the fourth column if the predicate
   ; returns false.
   
   '(
     (fixnum?     (object)           (fixnum)          (object))
     (flonum?     (object)           (flonum)          (object))
     (vector?     (object)           (vector)          (object))
     (pair?       (object)           (pair)            (object))
     
     (=           (exactint index)   (index index)     (exactint index))
     (=           (index exactint)   (index index)     (index exactint))
     (=           (exactint !fixnum) (!fixnum !fixnum) (exactint !fixnum))
     (=           (!fixnum exactint) (!fixnum !fixnum) (!fixnum exactint))
     (=           (exactint fixnum!) (fixnum! fixnum!) (exactint fixnum!))
     (=           (fixnum! exactint) (fixnum! fixnum!) (fixnum! exactint))
     
     (<           (!fixnum fixnum!)  (index index)     (!fixnum fixnum!))
     (<           (fixnum fixnum!)   (fixnum! fixnum!) (fixnum fixnum!))
     (<           (!fixnum fixnum)   (!fixnum !fixnum) (!fixnum fixnum))
     (<           (fixnum! !fixnum)  (fixnum! !fixnum) (index index))
     
     (<=          (!fixnum fixnum!)  (index index)     (!fixnum fixnum!))
     (<=          (fixnum! !fixnum)  (fixnum! !fixnum) (index index))
     (<=          (fixnum fixnum!)   (fixnum! fixnum!) (fixnum fixnum!))
     (<=          (!fixnum fixnum)   (!fixnum !fixnum) (!fixnum fixnum))
     
     (>           (!fixnum fixnum!)  (!fixnum fixnum!) (index index))
     (>           (fixnum! !fixnum)  (index index)     (fixnum! !fixnum))
     (>           (fixnum fixnum!)   (fixnum fixnum!)  (fixnum! fixnum!))
     (>           (!fixnum fixnum)   (!fixnum fixnum)  (!fixnum !fixnum))
     
     (>=          (!fixnum fixnum!)  (!fixnum fixnum!) (index index))
     (>=          (fixnum! !fixnum)  (index index)     (fixnum! !fixnum))
     (>=          (fixnum fixnum!)   (fixnum fixnum!)  (fixnum! fixnum!))
     (>=          (!fixnum fixnum)   (!fixnum fixnum)  (!fixnum !fixnum))
     
     (=:fix:fix   (exactint index)   (index index)     (exactint index))
     (=:fix:fix   (index exactint)   (index index)     (index exactint))
     (=:fix:fix   (exactint !fixnum) (!fixnum !fixnum) (exactint !fixnum))
     (=:fix:fix   (!fixnum exactint) (!fixnum !fixnum) (!fixnum exactint))
     (=:fix:fix   (exactint fixnum!) (fixnum! fixnum!) (exactint fixnum!))
     (=:fix:fix   (fixnum! exactint) (fixnum! fixnum!) (fixnum! exactint))
     
     (<:fix:fix   (!fixnum fixnum!)  (index index)     (!fixnum fixnum!))
     (<:fix:fix   (fixnum! !fixnum)  (fixnum! !fixnum) (index index))
     (<:fix:fix   (fixnum fixnum!)   (fixnum! fixnum!) (fixnum fixnum!))
     (<:fix:fix   (!fixnum fixnum)   (!fixnum !fixnum) (!fixnum fixnum))
     
     (<=:fix:fix  (!fixnum fixnum!)  (index index)     (!fixnum fixnum!))
     (<=:fix:fix  (fixnum! !fixnum)  (fixnum! !fixnum) (index index))
     (<=:fix:fix  (fixnum fixnum!)   (fixnum! fixnum!) (fixnum fixnum!))
     (<=:fix:fix  (!fixnum fixnum)   (!fixnum !fixnum) (!fixnum fixnum))
     
     (>:fix:fix   (!fixnum fixnum!)  (!fixnum fixnum!) (index index))
     (>:fix:fix   (fixnum! !fixnum)  (index index)     (fixnum! !fixnum))
     (>:fix:fix   (fixnum fixnum!)   (fixnum fixnum!)  (fixnum! fixnum!))
     (>:fix:fix   (!fixnum fixnum)   (!fixnum fixnum)  (!fixnum !fixnum))
     
     (>=:fix:fix  (!fixnum fixnum!)  (!fixnum fixnum!) (index index))
     (>=:fix:fix  (fixnum! !fixnum)  (index index)     (fixnum! !fixnum))
     (>=:fix:fix  (fixnum fixnum!)   (fixnum fixnum!)  (fixnum! fixnum!))
     (>=:fix:fix  (!fixnum fixnum)   (!fixnum fixnum)  (!fixnum !fixnum))
     )))
; Copyright 1991 William D Clinger.
;
; Permission to copy this software, in whole or in part, to use this
; software for any lawful noncommercial purpose, and to redistribute
; this software is granted subject to the restriction that all copies
; made of this software must include this copyright notice in full.
; 
; I also request that you send me a copy of any improvements that you
; make to this software so that they may be incorporated within it to
; the benefit of the Scheme community.
;
; 25 April 1999.
;
; Second pass of the Twobit compiler:
;   single assignment analysis, local source transformations,
;   assignment elimination, and lambda lifting.
; The code for assignment elimination and lambda lifting
; are in a separate file.
;
; This pass operates as a source-to-source transformation on
; expressions written in the subset of Scheme described by the
; following grammar, where the input and output expressions
; satisfy certain additional invariants described below.
;
; "X ..." means zero or more occurrences of X.
;
; L  -->  (lambda (I_1 ...)
;           (begin D ...)
;           (quote (R F G <decls> <doc>)
;           E)
;      |  (lambda (I_1 ... . I_rest)
;           (begin D ...)
;           (quote (R F G <decls> <doc>))
;           E)
; D  -->  (define I L)
; E  -->  (quote K)                        ; constants
;      |  (begin I)                        ; variable references
;      |  L                                ; lambda expressions
;      |  (E0 E1 ...)                      ; calls
;      |  (set! I E)                       ; assignments
;      |  (if E0 E1 E2)                    ; conditionals
;      |  (begin E0 E1 E2 ...)             ; sequential expressions
; I  -->  <identifier>
;
; R  -->  ((I <references> <assignments> <calls>) ...)
; F  -->  (I ...)
; G  -->  (I ...)
;
; Invariants that hold for the input only:
;   *  There are no internal definitions.
;   *  No identifier containing an upper case letter is bound anywhere.
;      (Change the "name:..." variables if upper case is preferred.)
;   *  No identifier is bound in more than one place.
;   *  Each R contains one entry for every identifier bound in the
;      formal argument list and the internal definition list that
;      precede it.  Each entry contains a list of pointers to all
;      references to the identifier, a list of pointers to all
;      assignments to the identifier, and a list of pointers to all
;      calls to the identifier.
;   *  Except for constants, the expression does not share structure
;      with the original input or itself, except that the references
;      and assignments in R are guaranteed to share structure with
;      the expression.  Thus the expression may be side effected, and
;      side effects to references or assignments obtained through R
;      are guaranteed to change the references or assignments pointed
;      to by R.
;
; Invariants that hold for the output only:
;   *  There are no assignments except to global variables.
;   *  If I is declared by an internal definition, then the right hand
;      side of the internal definition is a lambda expression and I
;      is referenced only in the procedure position of a call.
;   *  Each R contains one entry for every identifier bound in the
;      formal argument list and the internal definition list that
;      precede it.  Each entry contains a list of pointers to all
;      references to the identifier, a list of pointers to all
;      assignments to the identifier, and a list of pointers to all
;      calls to the identifier.
;   *  For each lambda expression, the associated F is a list of all
;      the identifiers that occur free in the body of that lambda
;      expression, and possibly a few extra identifiers that were
;      once free but have been removed by optimization.
;   *  For each lambda expression, the associated G is a subset of F
;      that contains every identifier that occurs free within some
;      inner lambda expression that escapes, and possibly a few that
;      don't.  (Assignment-elimination does not calculate G exactly.)
;   *  Variables named IGNORED are neither referenced nor assigned.
;   *  Except for constants, the expression does not share structure
;      with the original input or itself, except that the references
;      and assignments in R are guaranteed to share structure with
;      the expression.  Thus the expression may be side effected, and
;      side effects to references or assignments obtained through R
;      are guaranteed to change the references or assignments pointed
;      to by R.

(define (pass2 exp)
  (simplify exp (make-notepad #f)))

; Given an expression and a "notepad" data structure that conveys
; inherited attributes, performs the appropriate optimizations and
; destructively modifies the notepad to record various attributes
; that it synthesizes while traversing the expression.  In particular,
; any nested lambda expressions and any variable references will be
; noted in the notepad.

(define (simplify exp notepad)
  (case (car exp)
    ((quote)    exp)
    ((lambda)   (simplify-lambda exp notepad))
    ((set!)     (simplify-assignment exp notepad))
    ((if)       (simplify-conditional exp notepad))
    ((begin)    (if (variable? exp)
                    (begin (notepad-var-add! notepad (variable.name exp))
                           exp)
                    (simplify-sequential exp notepad)))
    (else       (simplify-call exp notepad))))

; Most optimization occurs here.
; The  right hand sides of internal definitions are simplified,
; as is the body.
; Internal definitions of enclosed lambda expressions may
; then be lifted to this one.
; Single assignment analysis creates internal definitions.
; Single assignment elimination converts single assignments
; to bindings where possible, and renames arguments whose value
; is ignored.
; Assignment elimination then replaces all remaining assigned
; variables by heap-allocated cells.

(define (simplify-lambda exp notepad)
  (notepad-lambda-add! notepad exp)
  (let ((defs (lambda.defs exp))
        (body (lambda.body exp))
        (newnotepad (make-notepad exp)))
    (for-each (lambda (def)
                (simplify-lambda (def.rhs def) newnotepad))
              defs)
    (lambda.body-set! exp (simplify body newnotepad))
    (lambda.F-set! exp (notepad-free-variables newnotepad))
    (lambda.G-set! exp (notepad-captured-variables newnotepad))
    (single-assignment-analysis exp newnotepad)
    (let ((known-lambdas (notepad.nonescaping newnotepad)))
      (for-each (lambda (L)
                  (if (memq L known-lambdas)
                      (lambda-lifting L exp)
                      (lambda-lifting L L)))
                (notepad.lambdas newnotepad))))
  (single-assignment-elimination exp notepad)
  (assignment-elimination exp)
  (if (not (notepad.parent notepad))
      ; This is an outermost lambda expression.
      (lambda-lifting exp exp))
  exp)

; SIMPLIFY-ASSIGNMENT performs this transformation:
;
;    (set! I (begin ... E))
; -> (begin ... (set! I E))

(define (simplify-assignment exp notepad)
  (notepad-var-add! notepad (assignment.lhs exp))
  (let ((rhs (simplify (assignment.rhs exp) notepad)))
    (cond ((begin? rhs)
           (let ((exprs (reverse (begin.exprs rhs))))
             (assignment.rhs-set! exp (car exprs))
             (post-simplify-begin
              (make-begin (reverse (cons exp (cdr exprs))))
              notepad)))
          (else (assignment.rhs-set! exp rhs) exp))))

(define (simplify-sequential exp notepad)
  (let ((exprs (map (lambda (exp) (simplify exp notepad))
                    (begin.exprs exp))))
    (begin.exprs-set! exp exprs)
    (post-simplify-begin exp notepad)))

; Given (BEGIN E0 E1 E2 ...) where the E_i are simplified expressions,
; flattens any nested BEGINs and removes trivial expressions that
; don't appear in the last position.  The second argument is used only
; if a lambda expression is removed.
; This procedure is careful to return E instead of (BEGIN E).
; Fairly harmless bug: a variable reference removed by this procedure
; may remain on the notepad when it shouldn't.

(define (post-simplify-begin exp notepad)
  (let ((unspecified-expression (make-unspecified)))
    ; (flatten exprs '()) returns the flattened exprs in reverse order.
    (define (flatten exprs flattened)
      (cond ((null? exprs) flattened)
            ((begin? (car exprs))
             (flatten (cdr exprs)
                      (flatten (begin.exprs (car exprs)) flattened)))
            (else (flatten (cdr exprs) (cons (car exprs) flattened)))))
    (define (filter exprs filtered)
      (if (null? exprs)
          filtered
          (let ((exp (car exprs)))
            (cond ((constant? exp) (filter (cdr exprs) filtered))
                  ((variable? exp) (filter (cdr exprs) filtered))
                  ((lambda? exp)
                   (notepad.lambdas-set!
                    notepad
                    (remq exp (notepad.lambdas notepad)))
                   (filter (cdr exprs) filtered))
                  ((equal? exp unspecified-expression)
                   (filter (cdr exprs) filtered))
                  (else (filter (cdr exprs) (cons exp filtered)))))))
    (let ((exprs (flatten (begin.exprs exp) '())))
      (begin.exprs-set! exp (filter (cdr exprs) (list (car exprs))))
      (if (null? (cdr (begin.exprs exp)))
          (car (begin.exprs exp))
          exp))))

; SIMPLIFY-CALL performs this transformation:
;
;    (... (begin ... E) ...)
; -> (begin ... (... E ...))
;
; It also takes care of LET transformations.

(define (simplify-call exp notepad)
  (define (loop args newargs exprs)
    (cond ((null? args)
           (finish newargs exprs))
          ((begin? (car args))
           (let ((newexprs (reverse (begin.exprs (car args)))))
             (loop (cdr args)
                   (cons (car newexprs) newargs)
                   (append (cdr newexprs) exprs))))
          (else (loop (cdr args) (cons (car args) newargs) exprs))))
  (define (finish newargs exprs)
    (call.args-set! exp (reverse newargs))
    (let* ((newexp
            (if (lambda? (call.proc exp))
                (simplify-let exp notepad)
                (begin
                 (call.proc-set! exp
                                 (simplify (call.proc exp) notepad))
                 exp)))
           (newexp
            (if (and (call? newexp)
                     (variable? (call.proc newexp)))
                (let* ((procname (variable.name (call.proc newexp)))
                       (args (call.args newexp))
                       (entry
                        (and (not (null? args))
                             (constant? (car args))
                             (integrate-usual-procedures)
                             (every? constant? args)
                             (let ((entry (constant-folding-entry procname)))
                               (and entry
                                    (let ((predicates
                                           (constant-folding-predicates entry)))
                                      (and (= (length args)
                                              (length predicates))
                                           (let loop ((args args)
                                                      (predicates predicates))
                                             (cond ((null? args) entry)
                                                   (((car predicates)
                                                     (constant.value
                                                      (car args)))
                                                    (loop (cdr args)
                                                          (cdr predicates)))
                                                   (else #f))))))))))
                  (if entry
                      (make-constant (apply (constant-folding-folder entry)
                                            (map constant.value args)))
                      newexp))
                newexp)))
      (cond ((and (call? newexp)
                  (begin? (call.proc newexp)))
             (let ((exprs0 (reverse (begin.exprs (call.proc newexp)))))
               (call.proc-set! newexp (car exprs0))
               (post-simplify-begin
                (make-begin (reverse
                             (cons newexp
                                   (append (cdr exprs0) exprs))))
                notepad)))
            ((null? exprs)
             newexp)
            (else
             (post-simplify-begin
              (make-begin (reverse (cons newexp exprs)))
              notepad)))))
  (call.args-set! exp (map (lambda (arg) (simplify arg notepad))
                           (call.args exp)))
  (loop (call.args exp) '() '()))

; SIMPLIFY-LET performs these transformations:
;
;    ((lambda (I_1 ... I_k . I_rest) ---) E1 ... Ek Ek+1 ...)
; -> ((lambda (I_1 ... I_k I_rest) ---) E1 ... Ek (LIST Ek+1 ...))
;
;    ((lambda (I1 I2 ...) (begin D ...) (quote ...) E) L ...)
; -> ((lambda (I2 ...) (begin (define I1 L) D ...) (quote ...) E) ...)
;
; provided I1 is not assigned and each reference to I1 is in call position.
;
;    ((lambda (I1)
;       (begin)
;       (quote ((I1 ((begin I1)) () ())))
;       (begin I1))
;     E1)
;
; -> E1
;
;    ((lambda (I1)
;       (begin)
;       (quote ((I1 ((begin I1)) () ())))
;       (if (begin I1) E2 E3))
;     E1)
;
; -> (if E1 E2 E3)
;
; (Together with SIMPLIFY-CONDITIONAL, this cleans up the output of the OR
; macro and enables certain control optimizations.)
;
;    ((lambda (I1 I2 ...)
;       (begin D ...)
;       (quote (... (I <references> () <calls>) ...) ...)
;       E)
;     K ...)
; -> ((lambda (I2 ...)
;       (begin D' ...)
;       (quote (... ...) ...)
;       E')
;     ...)
;
; where D' ... and E' ... are obtained from D ... and E ...
; by replacing all references to I1 by K.  This transformation
; applies if K is a constant that can be duplicated without changing
; its EQV? behavior.
;
;    ((lambda () (begin) (quote ...) E)) -> E
;
;    ((lambda (IGNORED I2 ...) ---) E1 E2 ...)
; -> (begin E1 ((lambda (I2 ...) ---) E2 ...))
;
; (Single assignment analysis, performed by the simplifier for lambda
; expressions, detects unused arguments and replaces them in the argument
; list by the special identifier IGNORED.)

(define (simplify-let exp notepad)
  (define proc (call.proc exp))
  
  ; Loop1 operates before simplification of the lambda body.
  
  (define (loop1 formals actuals processed-formals processed-actuals)
    (cond ((null? formals)
           (if (not (null? actuals))
               (pass2-error p2error:wna exp))
           (return1 processed-formals processed-actuals))
          ((symbol? formals)
           (return1 (cons formals processed-formals)
                    (cons (make-call-to-LIST actuals) processed-actuals)))
          ((null? actuals)
           (pass2-error p2error:wna exp)
           (return1 processed-formals
                    processed-actuals))
          ((and (lambda? (car actuals))
                (let ((Rinfo (R-lookup (lambda.R proc) (car formals))))
                  (and (null? (R-entry.assignments Rinfo))
                       (= (length (R-entry.references Rinfo))
                          (length (R-entry.calls Rinfo))))))
           (let ((I (car formals))
                 (L (car actuals)))
             (notepad-nonescaping-add! notepad L)
             (lambda.defs-set! proc
               (cons (make-definition I L)
                     (lambda.defs proc)))
             (standardize-known-calls L
                                      (R-entry.calls
                                       (R-lookup (lambda.R proc) I)))
             (lambda.F-set! proc (union (lambda.F proc)
                                        (free-variables L)))
             (lambda.G-set! proc (union (lambda.G proc) (lambda.G L))))
           (loop1 (cdr formals)
                  (cdr actuals)
                  processed-formals
                  processed-actuals))
          ((and (constant? (car actuals))
                (let ((x (constant.value (car actuals))))
                  (or (boolean? x)
                      (number? x)
                      (symbol? x)
                      (char? x))))
           (let* ((I (car formals))
                  (Rinfo (R-lookup (lambda.R proc) I)))
             (if (null? (R-entry.assignments Rinfo))
                 (begin
                  (for-each (lambda (ref)
                              (variable-set! ref (car actuals)))
                            (R-entry.references Rinfo))
                  (lambda.R-set! proc (remq Rinfo (lambda.R proc)))
                  (lambda.F-set! proc (remq I (lambda.F proc)))
                  (lambda.G-set! proc (remq I (lambda.G proc)))
                  (loop1 (cdr formals)
                         (cdr actuals)
                         processed-formals
                         processed-actuals))
                 (loop1 (cdr formals)
                        (cdr actuals)
                        (cons (car formals) processed-formals)
                        (cons (car actuals) processed-actuals)))))
          (else (if (null? actuals)
                    (pass2-error p2error:wna exp))
                (loop1 (cdr formals)
                       (cdr actuals)
                       (cons (car formals) processed-formals)
                       (cons (car actuals) processed-actuals)))))
  
  (define (return1 rev-formals rev-actuals)
    (let ((formals (reverse rev-formals))
          (actuals (reverse rev-actuals)))
      (lambda.args-set! proc formals)
      (if (and (not (null? formals))
               (null? (cdr formals))
               (let* ((x (car formals))
                      (R (lambda.R proc))
                      (refs (references R x)))
                 (and (= 1 (length refs))
                      (null? (assignments R x)))))
          (let ((x (car formals))
                (body (lambda.body proc)))
            (cond ((and (variable? body)
                        (eq? x (variable.name body)))
                   (simplify (car actuals) notepad))
                  ((and (conditional? body)
                        (let ((B0 (if.test body)))
                          (variable? B0)
                          (eq? x (variable.name B0))))
                   (if.test-set! body (car actuals))
                   (simplify body notepad))
                  (else
                   (return1-finish formals actuals))))
          (return1-finish formals actuals))))
  
  (define (return1-finish formals actuals)
    (simplify-lambda proc notepad)
    (loop2 formals actuals '() '() '()))
  
  ; Loop2 operates after simplification of the lambda body.
  
  (define (loop2 formals actuals processed-formals processed-actuals for-effect)
    (cond ((null? formals)
           (return2 processed-formals processed-actuals for-effect))
          ((ignored? (car formals))
           (loop2 (cdr formals)
                  (cdr actuals)
                  processed-formals
                  processed-actuals
                  (cons (car actuals) for-effect)))
          (else (loop2 (cdr formals)
                       (cdr actuals)
                       (cons (car formals) processed-formals)
                       (cons (car actuals) processed-actuals)
                       for-effect))))
  
  (define (return2 rev-formals rev-actuals rev-for-effect)
    (let ((formals (reverse rev-formals))
          (actuals (reverse rev-actuals))
          (for-effect (reverse rev-for-effect)))
      (lambda.args-set! proc formals)
      (call.args-set! exp actuals)
      (let ((exp (if (and (null? actuals)
                          (or (null? (lambda.defs proc))
                              (and (notepad.parent notepad)
                                   (POLICY:LIFT? proc
                                                 (notepad.parent notepad)
                                                 (map (lambda (def) '())
                                                      (lambda.defs proc))))))
                     (begin (for-each (lambda (I)
                                        (notepad-var-add! notepad I))
                                      (lambda.F proc))
                            (if (not (null? (lambda.defs proc)))
                                (let ((parent (notepad.parent notepad))
                                      (defs (lambda.defs proc))
                                      (R (lambda.R proc)))
                                  (lambda.defs-set!
                                    parent
                                    (append defs (lambda.defs parent)))
                                  (lambda.defs-set! proc '())
                                  (lambda.R-set!
                                    parent
                                    (append (map (lambda (def)
                                                   (R-lookup R (def.lhs def)))
                                                 defs)
                                            (lambda.R parent)))))
                            (lambda.body proc))
                     exp)))
        (if (null? for-effect)
            exp
            (post-simplify-begin (make-begin (append for-effect (list exp)))
                                 notepad)))))
  
  (notepad-nonescaping-add! notepad proc)
  (loop1 (lambda.args proc) (call.args exp) '() '()))

; Single assignment analysis performs the transformation
;
;    (lambda (... I ...)
;      (begin D ...)
;      (quote (... (I <references> ((set! I L)) <calls>) ...) ...)
;      (begin (set! I L) E1 ...))
; -> (lambda (... IGNORED ...)
;      (begin (define I L) D ...)
;      (quote (... (I <references> () <calls>) ...) ...)
;      (begin E1 ...))
;
; For best results, pass 1 should sort internal definitions and LETRECs so
; that procedure definitions/bindings come first.
;
; This procedure operates by side effect.

(define (single-assignment-analysis L notepad)
  (let ((formals (lambda.args L))
        (defs (lambda.defs L))
        (R (lambda.R L))
        (body (lambda.body L)))
    (define (finish! exprs escapees)
      (begin.exprs-set! body
                        (append (reverse escapees)
                                exprs))
      (lambda.body-set! L (post-simplify-begin body '())))
    (if (begin? body)
        (let loop ((exprs (begin.exprs body))
                   (escapees '()))
          (let ((first (car exprs)))
            (if (and (assignment? first)
                     (not (null? (cdr exprs))))
                (let ((I (assignment.lhs first))
                      (rhs (assignment.rhs first)))
                  (if (and (lambda? rhs)
                           (local? R I)
                           (= 1 (length (assignments R I))))
                      (if (= (length (calls R I))
                             (length (references R I)))
                          (begin (notepad-nonescaping-add! notepad rhs)
                                 (flag-as-ignored I L)
                                 (lambda.defs-set! L
                                   (cons (make-definition I rhs)
                                         (lambda.defs L)))
                                 (assignments-set! R I '())
                                 (standardize-known-calls
                                  rhs
                                  (R-entry.calls (R-lookup R I)))
                                 (loop (cdr exprs) escapees))
                          (loop (cdr exprs)
                                (cons (car exprs) escapees)))
                      (finish! exprs escapees)))
                (finish! exprs escapees)))))))

(define (standardize-known-calls L calls)
  (let ((formals (lambda.args L)))
    (cond ((not (list? formals))
           (let* ((newformals (make-null-terminated formals))
                  (n (- (length newformals) 1)))
             (lambda.args-set! L newformals)
             (for-each (lambda (call)
                         (if (>= (length (call.args call)) n)
                             (call.args-set!
                              call
                              (append (list-head (call.args call) n)
                                      (list
                                       (make-call-to-LIST
                                        (list-tail (call.args call) n)))))
                             (pass2-error p2error:wna call)))
                       calls)))
          (else (let ((n (length formals)))
                  (for-each (lambda (call)
                              (if (not (= (length (call.args call)) n))
                                  (pass2-error p2error:wna call)))
                            calls))))))
; Copyright 1991 William D Clinger.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 13 November 1998
;
; Second pass of the Twobit compiler, part 2:
;   single assignment elimination, assignment elimination,
;   and lambda lifting.
;
; See part 1 for further documentation.

; Single assignment elimination performs the transformation
;
;    (lambda (... I1 ... In ...)
;      (begin D ...)
;      (begin (set! I1 E1)
;             ...
;             (set! In En)
;             E ...))
; -> (lambda (... IGNORED ... IGNORED ...)
;      (let* ((I1 E1) ... (In En))
;        (begin D ...)
;        (begin E ...)))
;
; provided for each k:
;
;    1.  Ik does not occur in E1, ..., Ek.
;    2.  Either E1 through Ek contain no procedure calls
;        or Ik is not referenced by an escaping lambda expression.
;    3.  Ik is assigned only once.
;
; I doubt whether the third condition is really necessary, but
; dropping it would involve a more complex calculation of the
; revised referencing information.
;
; A more precise description of the transformation:
;
;    (lambda (... I1 ... In ...)
;      (begin (define F1 L1) ...)
;      (quote (... (I1 <references> ((set! I1 E1)) <calls>) ...
;                  (In <references> ((set! In En)) <calls>)
;                  (F1 <references> () <calls>) ...) ...)
;      (begin (set! I1 E1) ... (set! In En) E ...))
; -> (lambda (... IGNORED ... IGNORED ...)
;      (begin)
;      (quote (...) ...)
;      ((lambda (I1)
;         (begin)
;         (quote ((I1 <references> () <calls>)) ...)
;         ...
;           ((lambda (In)
;              (begin (define F1 L1) ...)
;              (quote (... (In <references> () <calls>)
;                          (F1 <references> () <calls>) ...) ...)
;              (begin E ...))
;            En)
;         ...)
;       E1))
;
; For best results, pass 1 should sort internal definitions and LETRECs
; so that procedure definitions/bindings come first, followed by
; definitions/bindings whose right hand side contains no calls,
; followed by definitions/bindings of variables that do not escape,
; followed by all other definitions/bindings.
;
; Pass 1 can't tell which variables escape, however.  Pass 2 can't tell
; which variables escape either until all enclosed lambda expressions
; have been simplified and the first transformation above has been
; performed.  That is why single assignment analysis precedes single
; assignment elimination.  As implemented here, an assignment that does
; not satisfy the conditions above will prevent the transformation from
; being applied to any subsequent assignments.
;
; This procedure operates by side effect.

(define (single-assignment-elimination L notepad)
  
  (if (begin? (lambda.body L))
      
      (let* ((formals (make-null-terminated (lambda.args L)))
             (defined (map def.lhs (lambda.defs L)))
             (escaping (intersection formals
                                     (notepad-captured-variables notepad)))
             (R (lambda.R L)))
        
        ; Given:
        ;    exprs that remain in the body;
        ;    assigns that will be replaced by let* variables;
        ;    call-has-occurred?, a boolean;
        ;    free variables of the assigns;
        ; Performs the transformation described above.
        
        (define (loop exprs assigns call-has-occurred? free)
          (cond ((null? (cdr exprs))
                 (return exprs assigns))
                ((assignment? (car exprs))
                 (let ((I1 (assignment.lhs (car exprs)))
                       (E1 (assignment.rhs (car exprs))))
                   (if (and (memq I1 formals)
                            (= (length (assignments R I1)) 1)
                            (not (and call-has-occurred?
                                      (memq I1 escaping))))
                       (let* ((free-in-E1 (free-variables E1))
                              (newfree (union free-in-E1 free)))
                         (if (or (memq I1 newfree)
                                 (not
                                  (empty-set?
                                   (intersection free-in-E1 defined))))
                             (return exprs assigns)
                             (loop (cdr exprs)
                                   (cons (car exprs) assigns)
                                   (or call-has-occurred?
                                       (might-return-twice? E1))
                                   newfree)))
                       (return exprs assigns))))
                (else (return exprs assigns))))
        
        (define (return exprs assigns)
          (if (not (null? assigns))
              (let ((I (assignment.lhs (car assigns)))
                    (E (assignment.rhs (car assigns)))
                    (defs (lambda.defs L))
                    (F (lambda.F L))
                    (G (lambda.G L)))
                (flag-as-ignored I L)
                (assignments-set! R I '())
                (let ((L2 (make-lambda (list I)
                                       defs
                                       (cons (R-entry R I)
                                             (map (lambda (def)
                                                    (R-entry R (def.lhs def)))
                                                  defs))
                                       F
                                       G
                                       (lambda.decls L)
                                       (lambda.doc L)
                                       (make-begin exprs))))
                  (lambda.defs-set! L '())
                  (for-each (lambda (entry)
                              (lambda.R-set! L (remq entry R)))
                            (lambda.R L2))
                  (return-loop (cdr assigns) (make-call L2 (list E)))))))
        
        (define (return-loop assigns body)
          (if (null? assigns)
              (let ((L3 (call.proc body)))
                (lambda.body-set! L body)
                (lambda-lifting L3 L))
              (let* ((I (assignment.lhs (car assigns)))
                     (E (assignment.rhs (car assigns)))
                     (L3 (call.proc body))
                     (F (remq I (lambda.F L3)))
                     (G (remq I (lambda.G L3))))
                (flag-as-ignored I L)
                (assignments-set! R I '())
                (let ((L2 (make-lambda (list I)
                                       '()
                                       (list (R-entry R I))
                                       F
                                       G
                                       (lambda.decls L)
                                       (lambda.doc L)
                                       body)))
                  (lambda.R-set! L (remq (R-entry R I) R))
                  (lambda-lifting L3 L2)
                  (return-loop (cdr assigns) (make-call L2 (list E)))))))
        
        (loop (begin.exprs (lambda.body L)) '() #f '())))
  
  L)

; Temporary definitions.

(define (free-variables exp)
  (case (car exp)
    ((quote)    '())
    ((lambda)   (difference (lambda.F exp)
                            (make-null-terminated (lambda.args exp))))
    ((set!)     (union (list (assignment.lhs exp))
                       (free-variables (assignment.rhs exp))))
    ((if)       (union (free-variables (if.test exp))
                       (free-variables (if.then exp))
                       (free-variables (if.else exp))))
    ((begin)    (if (variable? exp)
                    (list (variable.name exp))
                    (apply union (map free-variables (begin.exprs exp)))))
    (else       (apply union (map free-variables exp)))))

(define (might-return-twice? exp)
  (case (car exp)
    ((quote)    #f)
    ((lambda)   #f)
    ((set!)     (might-return-twice? (assignment.rhs exp)))
    ((if)       (or (might-return-twice? (if.test exp))
                    (might-return-twice? (if.then exp))
                    (might-return-twice? (if.else exp))))
    ((begin)    (if (variable? exp)
                    #f
                    (some? might-return-twice? (begin.exprs exp))))
    (else       #t)))


; Assignment elimination replaces variables that appear on the left
; hand side of an assignment by data structures.  This is necessary
; to avoid some nasty complications with lambda lifting.
;
; This procedure operates by side effect.

(define (assignment-elimination L)
  (let ((R (lambda.R L)))
    
    ; Given a list of entries, return those for assigned variables.
    
    (define (loop entries assigned)
      (cond ((null? entries)
             (if (not (null? assigned))
                 (eliminate assigned)))
            ((not (null? (R-entry.assignments (car entries))))
             (loop (cdr entries) (cons (car entries) assigned)))
            ((null? (R-entry.references (car entries)))
             (flag-as-ignored (R-entry.name (car entries)) L)
             (loop (cdr entries) assigned))
            (else (loop (cdr entries) assigned))))
    
    ; Given a list of entries for assigned variables I1 ...,
    ; remove the assignments by replacing the body by a LET of the form
    ; ((LAMBDA (V1 ...) ...) (MAKE-CELL I1) ...), by replacing references
    ; by calls to CELL-REF, and by replacing assignments by calls to
    ; CELL-SET!.
    
    (define (eliminate assigned)
      (let* ((oldnames (map R-entry.name assigned))
             (newnames (map generate-new-name oldnames)))
        (let ((augmented-entries (map list newnames assigned))
              (renaming-alist (map cons oldnames newnames))
              (defs (lambda.defs L)))
          (for-each cellify! augmented-entries)
          (for-each (lambda (def)
                      (do ((free (lambda.F (def.rhs def)) (cdr free)))
                          ((null? free))
                          (let ((z (assq (car free) renaming-alist)))
                            (if z
                                (set-car! free (cdr z))))))
                    defs)
          (let ((newbody
                 (make-call
                  (make-lambda (map car augmented-entries)
                               defs
                               (union (map (lambda (def)
                                             (R-entry R (def.lhs def)))
                                           defs)
                                      (map new-reference-info augmented-entries))
                               (union (list name:CELL-REF name:CELL-SET!)
                                      newnames
                                      (difference (lambda.F L) oldnames))
                               (union (list name:CELL-REF name:CELL-SET!)
                                      newnames
                                      (difference (lambda.G L) oldnames))
                               (lambda.decls L)
                               (lambda.doc L)
                               (lambda.body L))
                  (map (lambda (name)
                         (make-call (make-variable name:MAKE-CELL)
                                    (list (make-variable name))))
                       (map R-entry.name assigned)))))
            (lambda.F-set! L (union (list name:MAKE-CELL name:CELL-REF name:CELL-SET!)
                                    (difference (lambda.F L)
                                                (map def.lhs (lambda.defs L)))))
            (lambda.defs-set! L '())
            (for-each update-old-reference-info!
                      (map (lambda (arg)
                             (car (call.args arg)))
                           (call.args newbody)))
            (lambda.body-set! L newbody)
            (lambda-lifting (call.proc newbody) L)))))
    
    (define (generate-new-name name)
      (string->symbol (string-append cell-prefix (symbol->string name))))
    
    ; In addition to replacing references and assignments involving the
    ; old variable by calls to CELL-REF and CELL-SET! on the new, CELLIFY!
    ; uses the old entry to collect the referencing information for the
    ; new variable.
    
    (define (cellify! augmented-entry)
      (let ((newname (car augmented-entry))
            (entry (cadr augmented-entry)))
        (do ((refs (R-entry.references entry)
                   (cdr refs)))
            ((null? refs))
            (let* ((reference (car refs))
                   (newref (make-variable newname)))
              (set-car! reference (make-variable name:CELL-REF))
              (set-car! (cdr reference) newref)
              (set-car! refs newref)))
        (do ((assigns (R-entry.assignments entry)
                      (cdr assigns)))
            ((null? assigns))
            (let* ((assignment (car assigns))
                   (newref (make-variable newname)))
              (set-car! assignment (make-variable name:CELL-SET!))
              (set-car! (cdr assignment) newref)
              (R-entry.references-set! entry
                                       (cons newref
                                             (R-entry.references entry)))))
        (R-entry.assignments-set! entry '())))
    
    ; This procedure creates a brand new entry for a new variable, extracting
    ; the references stored in the old entry by CELLIFY!.
    
    (define (new-reference-info augmented-entry)
      (make-R-entry (car augmented-entry)
                    (R-entry.references (cadr augmented-entry))
                    '()
                    '()))
    
    ; This procedure updates the old entry to reflect the fact that it is
    ; now referenced once and never assigned.
    
    (define (update-old-reference-info! ref)
      (references-set! R (variable.name ref) (list ref))
      (assignments-set! R (variable.name ref) '())
      (calls-set! R (variable.name ref) '()))
    
    (loop R '())))

; Lambda lifting raises internal definitions to outer scopes to avoid
; having to choose between creating a closure or losing tail recursion.
; If L is not #f, then L2 is a lambda expression nested within L.
; Any internal definitions that occur within L2 may be lifted to L
; by adding extra arguments to the defined procedure and to all calls to it.
; Lambda lifting is not a clear win, because the extra arguments could
; easily become more expensive than creating a closure and referring
; to the non-local arguments through the closure.  The heuristics used
; to decide whether to lift a group of internal definitions are isolated
; within the POLICY:LIFT? procedure.

; L2 can be the same as L, so the order of side effects is critical.

(define (lambda-lifting L2 L)
  
  ; The call to sort is optional.  It gets the added arguments into
  ; the same order they appear in the formals list, which is an
  ; advantage for register targeting.
  
  (define (lift L2 L args-to-add)
    (let ((formals (make-null-terminated (lambda.args L2))))
      (do ((defs (lambda.defs L2) (cdr defs))
           (args-to-add args-to-add (cdr args-to-add)))
          ((null? defs))
          (let* ((def (car defs))
                 (entry (R-lookup (lambda.R L2) (def.lhs def)))
                 (calls (R-entry.calls entry))
                 (added (twobit-sort (lambda (x y)
                                       (let ((xx (memq x formals))
                                             (yy (memq y formals)))
                                         (if (and xx yy)
                                             (> (length xx) (length yy))
                                             #t)))
                                     (car args-to-add)))
                 (L3 (def.rhs def)))
            ; The flow equation guarantees that these added arguments
            ; will occur free by the time this round of lifting is done.
            (lambda.F-set! L3 (union added (lambda.F L3)))
            (lambda.args-set! L3 (append added (lambda.args L3)))
            (for-each (lambda (call)
                        (let ((newargs (map make-variable added)))
                          ; The referencing information is made obsolete here!
                          (call.args-set! call
                                          (append newargs (call.args call)))))
                      calls)
            (lambda.R-set! L2 (remq entry (lambda.R L2)))
            (lambda.R-set! L (cons entry (lambda.R L)))
            ))
      (if (not (eq? L2 L))
          (begin
           (lambda.defs-set! L (append (lambda.defs L2) (lambda.defs L)))
           (lambda.defs-set! L2 '())))))
  
  (if L
      (if (not (null? (lambda.defs L2)))
          (let ((args-to-add (compute-added-arguments
                              (lambda.defs L2)
                              (make-null-terminated (lambda.args L2)))))
            (if (POLICY:LIFT? L2 L args-to-add)
                (lift L2 L args-to-add))))))

; Given a list of definitions ((define f1 ...) ...) and a set of formals
; N over which the definitions may be lifted, returns a list of the
; subsets of N that need to be added to each procedure definition
; as new arguments.
;
; Algorithm: Let F_i be the variables that occur free in the body of
; the lambda expression associated with f_i.  Construct the call graph.
; Solve the flow equations
;
;     A_i = (F_i /\ N) \/ (\/ {A_j | A_i calls A_j})
;
; where /\ is intersection and \/ is union.

(define (compute-added-arguments defs formals)
  (let ((procs (map def.lhs defs))
        (freevars (map lambda.F (map def.rhs defs))))
    (let ((callgraph (map (lambda (names)
                            (map (lambda (name)
                                   (position name procs))
                                 (intersection names procs)))
                          freevars))
          (added_0 (map (lambda (names)
                          (intersection names formals))
                        freevars)))
      (vector->list
       (compute-fixedpoint
        (make-vector (length procs) '())
        (list->vector (map (lambda (term0 indexes)
                             (lambda (approximations)
                               (union term0
                                      (apply union
                                             (map (lambda (i)
                                                    (vector-ref approximations i))
                                                  indexes)))))
                           added_0
                           callgraph))
        set-equal?)))))

(define (position x l)
  (cond ((eq? x (car l)) 0)
        (else (+ 1 (position x (cdr l))))))

; Given a vector of starting approximations,
; a vector of functions that compute a next approximation
; as a function of the vector of approximations,
; and an equality predicate,
; returns a vector of fixed points.

(define (compute-fixedpoint v functions equiv?)
  (define (loop i flag)
    (if (negative? i)
        (if flag
            (loop (- (vector-length v) 1) #f)
            v)
        (let ((next_i ((vector-ref functions i) v)))
          (if (equiv? next_i (vector-ref v i))
              (loop (- i 1) flag)
              (begin (vector-set! v i next_i)
                     (loop (- i 1) #t))))))
  (loop (- (vector-length v) 1) #f))


; Given a lambda expression L2, its parent lambda expression
; L (which may be the same as L2, or #f), and a list of the
; lists of arguments that would need to be added to known
; local procedures, returns #t iff lambda lifting should be done.
;
; Here are some heuristics:
;
;   Don't lift if it means adding too many arguments.
;   Don't lift large groups of definitions.
;   In questionable cases it is better to lift to an outer
;     lambda expression that already contains internal
;     definitions than to one that doesn't.
;   It is better not to lift if the body contains a lambda
;     expression that has to be closed anyway.

(define (POLICY:LIFT? L2 L args-to-add)
  (and (lambda-optimizations)
       (not (lambda? (lambda.body L2)))
       (every? (lambda (addlist)
                 (< (length addlist) 6))
               args-to-add)))
; Copyright 1991 William D Clinger (for SIMPLIFY-CONDITIONAL)
; Copyright 1999 William D Clinger (for everything else)
;
; Permission to copy this software, in whole or in part, to use this
; software for any lawful noncommercial purpose, and to redistribute
; this software is granted subject to the restriction that all copies
; made of this software must include this copyright notice in full.
; 
; I also request that you send me a copy of any improvements that you
; make to this software so that they may be incorporated within it to
; the benefit of the Scheme community.
;
; 11 April 1999.
;
; Some source transformations on IF expressions:
;
; (if '#f E1 E2)                      E2
; (if 'K  E1 E2)                      E1                    K != #f
; (if (if B0 '#f '#f) E1 E2)          (begin B0 E2)
; (if (if B0 '#f 'K ) E1 E2)          (if B0 E2 E1)         K != #f
; (if (if B0 'K  '#f) E1 E2)          (if B0 E1 E2)         K != #f
; (if (if B0 'K1 'K2) E1 E2)          (begin B0 E1)         K1, K2 != #f
; (if (if B0 (if B1 #t #f) B2) E1 E2) (if (if B0 B1 B2) E1 E2)
; (if (if B0 B1 (if B2 #t #f)) E1 E2) (if (if B0 B1 B2) E1 E2)
; (if (if X  X   B0 ) E1 E2)          (if (if X #t B0) E1 E2)   X a variable
; (if (if X  B0  X  ) E1 E2)          (if (if X B0 #f) E1 E2)   X a variable
; (if ((lambda (X)                    (if ((lambda (X)
;        (if X X B2)) B0)                    (if X #t (if B2 #t #f))) B0)
;     E1 E2)                              E1 E2)
; (if (begin ... B0) E1 E2)           (begin ... (if B0 E1 E2))
; (if (not E0) E1 E2)                 (if E0 E2 E1)         not is integrable
;
; FIXME:  Three of the transformations above are intended to clean up
; the output of the OR macro.  It isn't yet clear how well this works.

(define (simplify-conditional exp notepad)
  (define (coercion-to-boolean? exp)
    (and (conditional? exp)
         (let ((E1 (if.then exp))
               (E2 (if.else exp)))
           (and (constant? E1)
                (eq? #t (constant.value E1))
                (constant? E2)
                (eq? #f (constant.value E2))))))
  (if (not (control-optimization))
      (begin (if.test-set! exp (simplify (if.test exp) notepad))
             (if.then-set! exp (simplify (if.then exp) notepad))
             (if.else-set! exp (simplify (if.else exp) notepad))
             exp)
      (let* ((test (if.test exp)))
        (if (and (call? test)
                 (lambda? (call.proc test))
                 (let* ((L (call.proc test))
                        (body (lambda.body L)))
                   (and (conditional? body)
                        (let ((R (lambda.R L))
                              (B0 (if.test body))
                              (B1 (if.then body)))
                          (and (variable? B0)
                               (variable? B1)
                               (let ((x (variable.name B0)))
                                 (and (eq? x (variable.name B1))
                                      (local? R x)
                                      (= 1 (length R))
                                      (= 1 (length (call.args test))))))))))
            (let* ((L (call.proc test))
                   (R (lambda.R L))
                   (body (lambda.body L))
                   (ref (if.then body))
                   (x (variable.name ref))
                   (entry (R-entry R x)))
              (if.then-set! body (make-constant #t))
              (if.else-set! body
                            (make-conditional (if.else body)
                                              (make-constant #t)
                                              (make-constant #f)))
              (R-entry.references-set! entry
                                       (remq ref
                                             (R-entry.references entry)))
              (simplify-conditional exp notepad))
            (let loop ((test (simplify (if.test exp) notepad)))
              (if.test-set! exp test)
              (cond ((constant? test)
                     (simplify (if (constant.value test)
                                   (if.then exp)
                                   (if.else exp))
                               notepad))
                    ((and (conditional? test)
                          (constant? (if.then test))
                          (constant? (if.else test)))
                     (cond ((and (constant.value (if.then test))
                                 (constant.value (if.else test)))
                            (post-simplify-begin
                             (make-begin (list (if.test test)
                                               (simplify (if.then exp)
                                                         notepad)))
                             notepad))
                           ((and (not (constant.value (if.then test)))
                                 (not (constant.value (if.else test))))
                            (post-simplify-begin
                             (make-begin (list (if.test test)
                                               (simplify (if.else exp)
                                                         notepad)))
                             notepad))
                           (else (if (not (constant.value (if.then test)))
                                     (let ((temp (if.then exp)))
                                       (if.then-set! exp (if.else exp))
                                       (if.else-set! exp temp)))
                                 (if.test-set! exp (if.test test))
                                 (loop (if.test exp)))))
                    ((and (conditional? test)
                          (or (coercion-to-boolean? (if.then test))
                              (coercion-to-boolean? (if.else test))))
                     (if (coercion-to-boolean? (if.then test))
                         (if.then-set! test (if.test (if.then test)))
                         (if.else-set! test (if.test (if.else test))))
                     (loop test))
                    ((and (conditional? test)
                          (variable? (if.test test))
                          (let ((x (variable.name (if.test test))))
                            (or (and (variable? (if.then test))
                                     (eq? x (variable.name (if.then test)))
                                     1)
                                (and (variable? (if.else test))
                                     (eq? x (variable.name (if.else test)))
                                     2))))
                     =>
                     (lambda (n)
                       (case n
                         ((1) (if.then-set! test (make-constant #t)))
                         ((2) (if.else-set! test (make-constant #f))))
                       (loop test)))
                    ((begin? test)
                     (let ((exprs (reverse (begin.exprs test))))
                       (if.test-set! exp (car exprs))
                       (post-simplify-begin
                        (make-begin (reverse (cons (loop (car exprs))
                                                   (cdr exprs))))
                        notepad)))
                    ((and (call? test)
                          (variable? (call.proc test))
                          (eq? (variable.name (call.proc test)) name:NOT)
                          (integrable? name:NOT)
                          (integrate-usual-procedures)
                          (= (length (call.args test)) 1))
                     (let ((temp (if.then exp)))
                       (if.then-set! exp (if.else exp))
                       (if.else-set! exp temp))
                     (loop (car (call.args test))))
                    (else
                     (simplify-case exp notepad))))))))

; Given a conditional expression whose test has been simplified,
; simplifies the then and else parts while applying optimizations
; for CASE expressions.
; Precondition: (control-optimization) is true.

(define (simplify-case exp notepad)
  (let ((E0 (if.test exp)))
    (if (and (call? E0)
             (variable? (call.proc E0))
             (let ((name (variable.name (call.proc E0))))
               ; FIXME: Should ensure that the name is integrable,
               ; but MEMQ and MEMV probably aren't according to the
               ; INTEGRABLE? predicate.
               (or (eq? name name:EQ?)
                   (eq? name name:EQV?)
                   (eq? name name:MEMQ)
                   (eq? name name:MEMV)))
             (integrate-usual-procedures)
             (= (length (call.args E0)) 2)
             (variable? (car (call.args E0)))
             (constant? (cadr (call.args E0))))
        (simplify-case-clauses (variable.name (car (call.args E0)))
                               exp
                               notepad)
        (begin (if.then-set! exp (simplify (if.then exp) notepad))
               (if.else-set! exp (simplify (if.else exp) notepad))
               exp))))

; Code generation for case expressions.
;
; A case expression turns into a conditional expression
; of the form
;
; CASE{I}  ::=  E  |  (if (PRED I K) E CASE{I})
; PRED  ::=  memv  |  memq  |  eqv?  |  eq?
;
; The memq and eq? predicates are used when the constant
; is a (list of) boolean, fixnum, char, empty list, or symbol.
; The constants will almost always be of these types.
;
; The first step is to remove duplicated constants and to
; collect all the case clauses, sorting them into the following
; categories based on their simplified list of constants:
;     constants are fixnums
;     constants are characters
;     constants are symbols
;     constants are of mixed or other type
; After duplicated constants have been removed, the predicates
; for these clauses can be tested in any order.

; Given the name of an arbitrary variable, an expression that
; has not yet been simplified or can safely be simplified again,
; and a notepad, returns the expression after simplification.
; If the expression is equivalent to a case expression that dispatches
; on the given variable, then case-optimization will be applied.

(define (simplify-case-clauses var0 E notepad)
  
  (define notepad2 (make-notepad (notepad.parent notepad)))
  
  (define (collect-clauses E fix chr sym other constants)
    (if (not (conditional? E))
        (analyze (simplify E notepad2)
                 fix chr sym other constants)
        (let ((test (simplify (if.test E) notepad2))
              (code (simplify (if.then E) notepad2)))
          (if.test-set! E test)
          (if.then-set! E code)
          (if (not (call? test))
              (finish E fix chr sym other constants)
              (let ((proc (call.proc test))
                    (args (call.args test)))
                (if (not (and (variable? proc)
                              (let ((name (variable.name proc)))
                                ; FIXME: See note above.
                                (or (eq? name name:EQ?)
                                    (eq? name name:EQV?)
                                    (eq? name name:MEMQ)
                                    (eq? name name:MEMV)))
                              (= (length args) 2)
                              (variable? (car args))
                              (eq? (variable.name (car args)) var0)
                              (constant? (cadr args))))
                    (finish E fix chr sym other constants)
                    (let ((pred (variable.name proc))
                          (datum (constant.value (cadr args))))
                      ; FIXME
                      (if (or (and (or (eq? pred name:MEMV)
                                       (eq? pred name:MEMQ))
                                   (not (list? datum)))
                              (and (eq? pred name:EQ?)
                                   (not (eqv-is-ok? datum)))
                              (and (eq? pred name:MEMQ)
                                   (not (every? (lambda (datum)
                                                  (eqv-is-ok? datum))
                                                datum))))
                          (finish E fix chr sym other constants)
                          (call-with-values
                           (lambda ()
                             (remove-duplicates (if (or (eq? pred name:EQV?)
                                                        (eq? pred name:EQ?))
                                                    (list datum)
                                                    datum)
                                                constants))
                           (lambda (data constants)
                             (let ((clause (list data code))
                                   (E2 (if.else E)))
                               (cond ((every? smallint? data)
                                      (collect-clauses E2
                                                       (cons clause fix)
                                                       chr
                                                       sym
                                                       other
                                                       constants))
                                     ((every? char? data)
                                      (collect-clauses E2
                                                       fix
                                                       (cons clause chr)
                                                       sym
                                                       other
                                                       constants))
                                     ((every? symbol? data)
                                      (collect-clauses E2
                                                       fix
                                                       chr
                                                       (cons clause sym)
                                                       other
                                                       constants))
                                     (else
                                      (collect-clauses E2
                                                       fix
                                                       chr
                                                       sym
                                                       (cons clause other)
                                                       constants))))))))))))))
  
  (define (remove-duplicates data set)
    (let loop ((originals data)
               (data '())
               (set set))
      (if (null? originals)
          (values data set)
          (let ((x (car originals))
                (originals (cdr originals)))
            (if (memv x set)
                (loop originals data set)
                (loop originals (cons x data) (cons x set)))))))
  
  (define (finish E fix chr sym other constants)
    (if.else-set! E (simplify (if.else E) notepad2))
    (analyze E fix chr sym other constants))
  
  (define (analyze default fix chr sym other constants)
    (notepad-var-add! notepad2 var0)
    (for-each (lambda (L)
                (notepad-lambda-add! notepad L))
              (notepad.lambdas notepad2))
    (for-each (lambda (L)
                (notepad-nonescaping-add! notepad L))
              (notepad.nonescaping notepad2))
    (for-each (lambda (var)
                (notepad-var-add! notepad var))
              (append (list name:FIXNUM?
                            name:CHAR?
                            name:SYMBOL?
                            name:FX<
                            name:FX-
                            name:CHAR->INTEGER
                            name:VECTOR-REF)
                      (notepad.vars notepad2)))
    (analyze-clauses (notepad.vars notepad2)
                     var0
                     default
                     (reverse fix)
                     (reverse chr)
                     (reverse sym)
                     (reverse other)
                     constants))
  
  (collect-clauses E '() '() '() '() '()))

; Returns true if EQ? and EQV? behave the same on x.

(define (eqv-is-ok? x)
  (or (smallint? x)
      (char? x)
      (symbol? x)
      (boolean? x)))

; Returns true if EQ? and EQV? behave the same on x.

(define (eq-is-ok? x)
  (eqv-is-ok? x))

; Any case expression that dispatches on a variable var0 and whose
; constants are disjoint can be compiled as
;
; (let ((n (cond ((eq? var0 'K1) ...)   ; miscellaneous constants
;                ...
;                ((fixnum? var0)
;                 <dispatch-on-fixnum>)
;                ((char? var0)
;                 <dispatch-on-char>)
;                ((symbol? var0)
;                 <dispatch-on-symbols>)
;                (else 0))))
;   <dispatch-on-case-number>)
;
; where the <dispatch-on-case-number> uses binary search within
; the interval [0, p+1), where p is the number of non-default cases.
;
; On the SPARC, sequential search is faster if there are fewer than
; 8 constants, and sequential search uses less than half the space
; if there are fewer than 10 constants.  Most target machines should
; similar, so I'm hard-wiring this constant.
; FIXME:  The hardwired constant is annoying.

(define (analyze-clauses F var0 default fix chr sym other constants)
  (cond ((or (and (null? fix)
                  (null? chr))
             (< (length constants) 12))
         (implement-clauses-by-sequential-search var0
                                                 default
                                                 (append fix chr sym other)))
        (else
         (implement-clauses F var0 default fix chr sym other constants))))

; Implements the general technique described above.

(define (implement-clauses F var0 default fix chr sym other constants)
  (let* ((name:n ((make-rename-procedure) 'n))
         ; Referencing information is destroyed by pass 2.
         (entry (make-R-entry name:n '() '() '()))
         (F (union (make-set (list name:n)) F))
         (L (make-lambda
             (list name:n)
             '()
             '()  ; entry
             F
             '()
             '()
             #f
             (implement-case-dispatch
              name:n
              (cons default
                    (map cadr
                         ; The order here must match the order
                         ; used by IMPLEMENT-DISPATCH.
                         (append other fix chr sym)))))))
    (make-call L
               (list (implement-dispatch 0
                                         var0
                                         (map car other)
                                         (map car fix)
                                         (map car chr)
                                         (map car sym))))))

(define (implement-case-dispatch var0 exprs)
  (implement-intervals var0
                       (map (lambda (n code)
                              (list n (+ n 1) code))
                            (iota (length exprs))
                            exprs)))

; Given the number of prior clauses,
; the variable on which to dispatch,
; a list of constant lists for mixed or miscellaneous clauses,
; a list of constant lists for the fixnum clauses,
; a list of constant lists for the character clauses, and
; a list of constant lists for the symbol clauses,
; returns code that computes the index of the selected clause.
; The mixed/miscellaneous clauses must be tested first because
; Twobit's SMALLINT? predicate might not be true of all fixnums
; on the target machine, which means that Twobit might classify
; some fixnums as miscellaneous.

(define (implement-dispatch prior var0 other fix chr sym)
  (cond ((not (null? other))
         (implement-dispatch-other
          (implement-dispatch (+ prior (length other))
                              var0 fix chr sym '())
          prior var other))
        ((not (null? fix))
         (make-conditional (make-call (make-variable name:FIXNUM?)
                                      (list (make-variable var0)))
                           (implement-dispatch-fixnum prior var0 fix)
                           (implement-dispatch (+ prior (length fix))
                                               var0 '() chr sym other)))
        ((not (null? chr))
         (make-conditional (make-call (make-variable name:CHAR?)
                                      (list (make-variable var0)))
                           (implement-dispatch-char prior var0 chr)
                           (implement-dispatch (+ prior (length chr))
                                               var0 fix '() sym other)))
        ((not (null? sym))
         (make-conditional (make-call (make-variable name:SYMBOL?)
                                      (list (make-variable var0)))
                           (implement-dispatch-symbol prior var0 sym)
                           (implement-dispatch (+ prior (length sym))
                                               var0 fix chr '() other)))
        (else
         (make-constant 0))))

; The value of var0 will be known to be a fixnum.
; Can use table lookup, binary search, or sequential search.
; FIXME: Never uses sequential search, which is best when
; there are only a few constants, with gaps between them.

(define (implement-dispatch-fixnum prior var0 lists)
  
  (define (calculate-intervals n lists)
    (define (loop n lists intervals)
      (if (null? lists)
          (twobit-sort (lambda (interval1 interval2)
                         (< (car interval1) (car interval2)))
                       intervals)
          (let ((constants (twobit-sort < (car lists))))
            (loop (+ n 1)
                  (cdr lists)
                  (append (extract-intervals n constants)
                          intervals)))))
    (loop n lists '()))
  
  (define (extract-intervals n constants)
    (if (null? constants)
        '()
        (let ((k0 (car constants)))
          (do ((constants (cdr constants) (cdr constants))
               (k1 (+ k0 1) (+ k1 1)))
              ((or (null? constants)
                   (not (= k1 (car constants))))
               (cons (list k0 k1 (make-constant n))
                     (extract-intervals n constants)))))))
  
  (define (complete-intervals intervals)
    (cond ((null? intervals)
           intervals)
          ((null? (cdr intervals))
           intervals)
          (else
           (let* ((i1 (car intervals))
                  (i2 (cadr intervals))
                  (end1 (cadr i1))
                  (start2 (car i2))
                  (intervals (complete-intervals (cdr intervals))))
             (if (= end1 start2)
                 (cons i1 intervals)
                 (cons i1
                       (cons (list end1 start2 (make-constant 0))
                             intervals)))))))
  
  (let* ((intervals (complete-intervals
                     (calculate-intervals (+ prior 1) lists)))
         (lo (car (car intervals)))
         (hi (car (car (reverse intervals))))
         (p (length intervals)))
    (make-conditional
     (make-call (make-variable name:FX<)
                (list (make-variable var0)
                      (make-constant lo)))
     (make-constant 0)
     (make-conditional
      (make-call (make-variable name:FX<)
                 (list (make-variable var0)
                       (make-constant (+ hi 1))))
      ; The static cost of table lookup is about hi - lo words.
      ; The static cost of binary search is about 5 SPARC instructions
      ; per interval.
      (if (< (- hi lo) (* 5 p))
          (implement-table-lookup var0 (+ prior 1) lists lo hi)
          (implement-intervals var0 intervals))
      (make-constant 0)))))

(define (implement-dispatch-char prior var0 lists)
  (let* ((lists (map (lambda (constants)
                       (map compat:char->integer constants))
                     lists))
         (name:n ((make-rename-procedure) 'n))
         ; Referencing information is destroyed by pass 2.
         ;(entry (make-R-entry name:n '() '() '()))
         (F (list name:n name:EQ? name:FX< name:FX- name:VECTOR-REF))
         (L (make-lambda
             (list name:n)
             '()
             '()  ; entry
             F
             '()
             '()
             #f
             (implement-dispatch-fixnum prior name:n lists))))
    (make-call L
               (make-call (make-variable name:CHAR->INTEGER)
                          (list (make-variable var0))))))

(define (implement-dispatch-symbol prior var0 lists)
  (implement-dispatch-other (make-constant 0) prior var0 lists))

(define (implement-dispatch-other default prior var0 lists)
  (if (null? lists)
      default
      (let* ((constants (car lists))
             (lists (cdr lists))
             (n (+ prior 1)))
      (make-conditional (make-call-to-memv var0 constants)
                        (make-constant n)
                        (implement-dispatch-other default n var0 lists)))))

(define (make-call-to-memv var0 constants)
  (cond ((null? constants)
         (make-constant #f))
        ((null? (cdr constants))
         (make-call-to-eqv var0 (car constants)))
        (else
         (make-conditional (make-call-to-eqv var0 (car constants))
                           (make-constant #t)
                           (make-call-to-memv var0 (cdr constants))))))

(define (make-call-to-eqv var0 constant)
  (make-call (make-variable
              (if (eq-is-ok? constant)
                  name:EQ?
                  name:EQV?))
             (list (make-variable var0)
                   (make-constant constant))))

; Given a variable whose value is known to be a fixnum,
; the clause index for the first fixnum clause,
; an ordered list of lists of constants for fixnum-only clauses,
; and the least and greatest constants in those lists,
; returns code for a table lookup.

(define (implement-table-lookup var0 index lists lo hi)
  (let ((v (make-vector (+ 1 (- hi lo)) 0)))
    (do ((index index (+ index 1))
         (lists lists (cdr lists)))
        ((null? lists))
        (for-each (lambda (k)
                    (vector-set! v (- k lo) index))
                  (car lists)))
    (make-call (make-variable name:VECTOR-REF)
               (list (make-constant v)
                     (make-call (make-variable name:FX-)
                                (list (make-variable var0)
                                      (make-constant lo)))))))

; Given a variable whose value is known to lie within the
; half-open interval [m0, mk), and an ordered complete
; list of intervals of the form
;
;     ((m0 m1 code0)
;      (m1 m2 code1)
;      ...
;      (m{k-1} mk code{k-1})
;     )
;
; returns an expression that finds the unique i such that
; var0 lies within [mi, m{i+1}), and then executes code{i}.

(define (implement-intervals var0 intervals)
  (if (null? (cdr intervals))
      (caddr (car intervals))
      (let ((n (quotient (length intervals) 2)))
        (do ((n n (- n 1))
             (intervals1 '() (cons (car intervals2) intervals1))
             (intervals2 intervals (cdr intervals2)))
            ((zero? n)
             (let ((intervals1 (reverse intervals1))
                   (m (car (car intervals2))))
               (make-conditional (make-call (make-variable name:FX<)
                                            (list
                                             (make-variable var0)
                                             (make-constant m)))
                                 (implement-intervals var0 intervals1)
                                 (implement-intervals var0 intervals2))))))))

; The brute force approach.
; Given the variable on which the dispatch is being performed, and
; actual (simplified) code for the default clause and
; for all other clauses,
; returns code to perform the dispatch by sequential search.

(define *memq-threshold* 20)
(define *memv-threshold* 4)

(define (implement-clauses-by-sequential-search var0 default clauses)
  (if (null? clauses)
      default
      (let* ((case1 (car clauses))
             (clauses (cdr clauses))
             (constants1 (car case1))
             (code1 (cadr case1)))
        (make-conditional (make-call-to-memv var0 constants1)
                          code1
                          (implement-clauses-by-sequential-search
                           var0 default clauses)))))
; Copyright 1999 William D Clinger.
;
; Permission to copy this software, in whole or in part, to use this
; software for any lawful noncommercial purpose, and to redistribute
; this software is granted subject to the restriction that all copies
; made of this software must include this copyright notice in full.
;
; I also request that you send me a copy of any improvements that you
; make to this software so that they may be incorporated within it to
; the benefit of the Scheme community.
;
; 13 April 1999.
;
; The tail and non-tail call graphs of known and unknown procedures.
;
; Given an expression E returned by pass 2 of Twobit,
; returns a list of the following form:
;
; ((#t     L ()     <tailcalls> <nontailcalls> <size> #f)
;  (<name> L <vars> <tailcalls> <nontailcalls> <size> #f)
;  ...)
;
; where
;
; Each L is a lambda expression that occurs within E
; as either an escaping lambda expression or as a known
; procedure.  If L is a known procedure, then <name> is
; its name; otherwise <name> is #f.
;
; <vars> is a list of the non-global variables within whose
; scope L occurs.
;
; <tailcalls> is a complete list of names of known local procedures
; that L calls tail-recursively, disregarding calls from other known
; procedures or escaping lambda expressions that occur within L.
;
; <nontailcalls> is a complete list of names of known local procedures
; that L calls non-tail-recursively, disregarding calls from other
; known procedures or escaping lambda expressions that occur within L.
;
; <size> is a measure of the size of L, including known procedures
; and escaping lambda expressions that occur within L.

(define (callgraphnode.name x) (car x))
(define (callgraphnode.code x) (cadr x))
(define (callgraphnode.vars x) (caddr x))
(define (callgraphnode.tailcalls x) (cadddr x))
(define (callgraphnode.nontailcalls x) (car (cddddr x)))
(define (callgraphnode.size x) (cadr (cddddr x)))
(define (callgraphnode.info x) (caddr (cddddr x)))

(define (callgraphnode.size! x v) (set-car! (cdr (cddddr x)) v) #f)
(define (callgraphnode.info! x v) (set-car! (cddr (cddddr x)) v) #f)

(define (callgraph exp)
  
  ; Returns (union (list x) z).
  
  (define (adjoin x z)
    (if (memq x z)
        z
        (cons x z)))
  
  (let ((result '()))
    
    ; Given a <name> as described above, a lambda expression, a list
    ; of variables that are in scope, and a list of names of known
    ; local procedure that are in scope, computes an entry for L and
    ; entries for any nested known procedures or escaping lambda
    ; expressions, and adds them to the result.
    
    (define (add-vertex! name L vars known)
      
      (let ((tailcalls '())
            (nontailcalls '())
            (size 0))
        
        ; Given an expression, a list of variables that are in scope,
        ; a list of names of known local procedures that are in scope,
        ; and a boolean indicating whether the expression occurs in a
        ; tail context, adds any tail or non-tail calls to known
        ; procedures that occur within the expression to the list
        ; variables declared above.
        
        (define (graph! exp vars known tail?)
          (set! size (+ size 1))
          (case (car exp)
            
            ((quote)    #f)
            
            ((lambda)   (add-vertex! #f exp vars known)
                        (set! size
                              (+ size
                                 (callgraphnode.size (car result)))))
            
            ((set!)     (graph! (assignment.rhs exp) vars known #f))
            
            ((if)       (graph! (if.test exp) vars known #f)
                        (graph! (if.then exp) vars known tail?)
                        (graph! (if.else exp) vars known tail?))
            
            ((begin)    (if (not (variable? exp))
                            (do ((exprs (begin.exprs exp) (cdr exprs)))
                                ((null? (cdr exprs))
                                 (graph! (car exprs) vars known tail?))
                                (graph! (car exprs) vars known #f))))
            
            (else       (let ((proc (call.proc exp)))
                          (cond ((variable? proc)
                                 (let ((name (variable.name proc)))
                                   (if (memq name known)
                                       (if tail?
                                           (set! tailcalls
                                                 (adjoin name tailcalls))
                                           (set! nontailcalls
                                                 (adjoin name nontailcalls))))))
                                 ((lambda? proc)
                                  (graph-lambda! proc vars known tail?))
                                 (else
                                  (graph! proc vars known #f)))
                          (for-each (lambda (exp)
                                      (graph! exp vars known #f))
                                    (call.args exp))))))
        
        (define (graph-lambda! L vars known tail?)
          (let* ((defs (lambda.defs L))
                 (newknown (map def.lhs defs))
                 (vars (append newknown
                               (make-null-terminated
                                (lambda.args L))
                               vars))
                 (known (append newknown known)))
            (for-each (lambda (def)
                        (add-vertex! (def.lhs def)
                                     (def.rhs def)
                                     vars
                                     known)
                        (set! size
                              (+ size
                                 (callgraphnode.size (car result)))))
                      defs)
            (graph! (lambda.body L) vars known tail?)))
        
        (graph-lambda! L vars known #t)
        
        (set! result
              (cons (list name L vars tailcalls nontailcalls size #f)
                    result))))
    
    (add-vertex! #t
                 (make-lambda '() '() '() '() '() '() '() exp)
                 '()
                 '())
    result))

; Displays the callgraph, for debugging.

(define (view-callgraph g)
  (for-each (lambda (entry)
              (let ((name (callgraphnode.name entry))
                    (exp  (callgraphnode.code entry))
                    (vars (callgraphnode.vars entry))
                    (tail (callgraphnode.tailcalls entry))
                    (nt   (callgraphnode.nontailcalls entry))
                    (size (callgraphnode.size entry)))
                (cond ((symbol? name)
                       (write name))
                      (name
                       (display "TOP LEVEL EXPRESSION"))
                      (else
                       (display "ESCAPING LAMBDA EXPRESSION")))
                (display ":")
                (newline)
                (display "Size: ")
                (write size)
                (newline)
                ;(newline)
                ;(display "Variables in scope: ")
                ;(write vars)
                ;(newline)
                (display "Tail calls:     ")
                (write tail)
                (newline)
                (display "Non-tail calls: ")
                (write nt)
                (newline)
                ;(newline)
                ;(pretty-print (make-readable exp))
                ;(newline)
                ;(newline)
                (newline)))
            g))
; Copyright 1999 William D Clinger.
;
; Permission to copy this software, in whole or in part, to use this
; software for any lawful noncommercial purpose, and to redistribute
; this software is granted subject to the restriction that all copies
; made of this software must include this copyright notice in full.
;
; I also request that you send me a copy of any improvements that you
; make to this software so that they may be incorporated within it to
; the benefit of the Scheme community.
;
; 14 April 1999.
;
; Inlining of known local procedures.
;
; First find the known and escaping procedures and compute the call graph.
;
; If a known local procedure is not called at all, then delete its code.
;
; If a known local procedure is called exactly once,
; then inline its code at the call site and delete the
; known local procedure.  Change the size of the code
; at the call site by adding the size of the inlined code.
;
; Divide the remaining known and escaping procedures into categories:
;     1.  makes no calls to known local procedures
;     2.  known procedures that call known procedures;
;         within this category, try to sort so that procedures do not
;         call procedures that come later in the sequence; or sort by
;         number of calls and/or size
;     3.  escaping procedures that call known procedures
;
; Approve each procedure in category 1 for inlining if its code size
; is less than some threshold.
;
; For each procedure in categories 2 and 3, traverse its code, inlining
; where it seems like a good idea.  The compiler should be more aggressive
; about inlining non-tail calls than tail calls because:
;
;     Inlining a non-tail call can eliminate a stack frame
;     or expose the inlined code to loop optimizations.
;
;     The main reason for inlining a tail call is to enable
;     intraprocedural optimizations or to unroll a loop.
;
; After inlining has been performed on a known local procedure,
; then approve it for inlining if its size is less than some threshold.
;
; FIXME:
; This strategy avoids infinite unrolling, but it also avoids finite
; unrolling of loops.

; Parameters to control inlining.
; These can be tuned later.

(define *tail-threshold* 10)
(define *nontail-threshold* 20)
(define *multiplier* 300)

; Given a callgraph, performs inlining of known local procedures
; by side effect.  The original expression must then be copied to
; reinstate Twobit's invariants.

; FIXME:  This code doesn't yet do the right thing with known local
; procedures that aren't called or are called in exactly one place.

(define (inline-using-callgraph! g)
  (let ((known (make-hashtable))
        (category2 '())
        (category3 '()))
    (for-each (lambda (node)
                (let ((name (callgraphnode.name node))
                      (tcalls (callgraphnode.tailcalls node))
                      (ncalls (callgraphnode.nontailcalls node)))
                  (if (symbol? name)
                      (hashtable-put! known name node))
                  (if (and (null? tcalls)
                           (null? ncalls))
                      (if (< (callgraphnode.size node)
                             *nontail-threshold*)
                          (callgraphnode.info! node #t))
                      (if (symbol? name)
                          (set! category2 (cons node category2))
                          (set! category3 (cons node category3))))))
              g)
    (set! category2 (twobit-sort (lambda (x y)
                                   (< (callgraphnode.size x)
                                      (callgraphnode.size y)))
                                 category2))
    (for-each (lambda (node)
                (inline-node! node known))
              category2)
    (for-each (lambda (node)
                (inline-node! node known))
              category3)
    ; FIXME:
    ; Inlining destroys the callgraph, so maybe this cleanup is useless.
    (hashtable-for-each (lambda (name node) (callgraphnode.info! node #f))
                        known)))

; Given a node of the callgraph and a hash table of nodes for
; known local procedures, performs inlining by side effect.

(define (inline-node! node known)
  (let* ((debugging? #f)
         (name (callgraphnode.name node))
         (exp (callgraphnode.code node))
         (size0 (callgraphnode.size node))
         (budget (quotient (* (- *multiplier* 100) size0) 100))
         (tail-threshold *tail-threshold*)
         (nontail-threshold *nontail-threshold*))
    
    ; Given an expression,
    ; a boolean indicating whether the expression is in a tail context,
    ; a list of procedures that should not be inlined,
    ; and a size budget,
    ; performs inlining by side effect and returns the unused budget.
    
    (define (inline exp tail? budget)
        (if (positive? budget)
            
            (case (car exp)
              
              ((quote lambda)
               budget)
              
              ((set!)
               (inline (assignment.rhs exp) #f budget))
              
              ((if)
               (let* ((budget (inline (if.test exp) #f budget))
                      (budget (inline (if.then exp) tail? budget))
                      (budget (inline (if.else exp) tail? budget)))
                 budget))
              
              ((begin)
               (if (variable? exp)
                   budget
                   (do ((exprs (begin.exprs exp) (cdr exprs))
                        (budget budget
                                (inline (car exprs) #f budget)))
                       ((null? (cdr exprs))
                        (inline (car exprs) tail? budget)))))
              
              (else
               (let ((budget (do ((exprs (call.args exp) (cdr exprs))
                                  (budget budget
                                          (inline (car exprs) #f budget)))
                                 ((null? exprs)
                                  budget))))
                 (let ((proc (call.proc exp)))
                   (cond ((variable? proc)
                          (let* ((procname (variable.name proc))
                                 (procnode (hashtable-get known procname)))
                            (if procnode
                                (let ((size (callgraphnode.size procnode))
                                      (info (callgraphnode.info procnode)))
                                  (if (and info
                                           (<= size budget)
                                           (<= size
                                               (if tail?
                                                   tail-threshold
                                                   nontail-threshold)))
                                      (begin
                                       (if debugging?
                                           (begin
                                            (display "    Inlining ")
                                            (write (variable.name proc))
                                            (newline)))
                                       (call.proc-set!
                                        exp
                                        (copy-exp
                                         (callgraphnode.code procnode)))
                                       (callgraphnode.size!
                                        node
                                        (+ (callgraphnode.size node) size))
                                       (- budget size))
                                      (begin
                                       (if (and #f debugging?)
                                           (begin
                                            (display "    Declining to inline ")
                                            (write (variable.name proc))
                                            (newline)))
                                       budget)))
                                budget)))
                         ((lambda? proc)
                          (inline (lambda.body proc) tail? budget))
                         (else
                          (inline proc #f budget)))))))
            -1))
    
    (if (and #f debugging?)
        (begin
         (display "Processing ")
         (write name)
         (newline)))
    
    (let ((budget (inline (if (lambda? exp)
                              (lambda.body exp)
                              exp)
                          #t
                          budget)))
      (if (and (negative? budget)
               debugging?)
          ; This shouldn't happen very often.
          (begin (display "Ran out of inlining budget for ")
                 (write (callgraphnode.name node))
                 (newline)))
      (if (<= (callgraphnode.size node) nontail-threshold)
          (callgraphnode.info! node #t))
      #f)))

; For testing.

(define (test-inlining test0)
  (begin (define exp0 (begin (display "Compiling...")
                             (newline)
                             (pass2 (pass1 test0))))
         (define g0 (begin (display "Computing call graph...")
                           (newline)
                           (callgraph exp0))))
  (display "Inlining...")
  (newline)
  (inline-using-callgraph! g0)
  (pretty-print (make-readable (copy-exp exp0))))
; Copyright 1999 William D Clinger.
;
; Permission to copy this software, in whole or in part, to use this
; software for any lawful noncommercial purpose, and to redistribute
; this software is granted subject to the restriction that all copies
; made of this software must include this copyright notice in full.
;
; I also request that you send me a copy of any improvements that you
; make to this software so that they may be incorporated within it to
; the benefit of the Scheme community.
;
; 14 April 1999.
;
; Interprocedural constant propagation and folding.
;
; Constant propagation must converge before constant folding can be
; performed.  Constant folding creates more constants that can be
; propagated, so these two optimizations must be iterated, but it
; is safe to stop at any time.
;
; Abstract interpretation for constant folding.
;
; The abstract values are
;     bottom    (represented here by #f)
;     constants (represented by quoted literals)
;     top       (represented here by #t)
;
; Let [[ E ]] be the abstract interpretation of E over that domain
; of abstract values, with respect to some arbitrary set of abstract
; values for local variables.
;
; If a is a global variable or a formal parameter of an escaping
; lambda expression, then [[ a ]] = #t.
;
; If x is the ith formal parameter of a known local procedure f,
; then [[ x ]] = \join_{(f E1 ... En)} [[ Ei ]].
;
; [[ K ]] = K
; [[ L ]] = #t
; [[ (begin E1 ... En) ]] = [[ En ]]
; [[ (set! I E) ]] = #f
;
; If [[ E0 ]] = #t, then [[ (if E0 E1 E2) ]] = [[ E1 ]] \join [[ E2 ]]
; else if [[ E0 ]] = K, then [[ (if E0 E1 E2) ]] = [[ E1 ]]
;                         or [[ (if E0 E1 E2) ]] = [[ E2 ]]
;                       depending upon K
; else [[ (if E0 E1 E2) ]] = #f
;
; If f is a known local procedure with body E,
;     then [[ (f E1 ... En) ]] = [[ E ]]
;
; If g is a foldable integrable procedure, then:
; if there is some i for which [[ Ei ]] = #t,
;     then [[ (g E1 ... En) ]] = #t
; else if [[ E1 ]] = K1, ..., [[ En ]] = Kn,
;     then [[ (g E1 ... En) ]] = (g K1 ... Kn)
; else [[ (g E1 ... En) ]] = #f
;
; Symbolic representations of abstract values.
; (Can be thought of as mappings from abstract environments to
; abstract values.)
;
; <symbolic>     ::=  #t  |  ( <expressions> )
; <expressions>  ::=  <empty>  |  <expression> <expressions>

; Parameter to limit constant propagation and folding.
; This parameter can be tuned later.

(define *constant-propagation-limit* 5)

; Given an expression as output by pass 2, performs constant
; propagation and folding.

(define (constant-propagation exp)
  (define (constant-propagation exp i)
    (if (< i *constant-propagation-limit*)
        (begin
         ;(display "Performing constant propagation and folding...")
         ;(newline)
         (let* ((g (callgraph exp))
                (L (callgraphnode.code (car g)))
                (variables (constant-propagation-using-callgraph g))
                (changed? (constant-folding! L variables)))
           (if changed?
               (constant-propagation (lambda.body L) (+ i 1))
               (lambda.body L))))))
  (constant-propagation exp 0))

; Given a callgraph, returns a hashtable of abstract values for
; all local variables.

(define (constant-propagation-using-callgraph g)
  (let ((debugging? #f)
        (folding? (integrate-usual-procedures))
        (known (make-hashtable))
        (variables (make-hashtable))
        (counter 0))
    
    ; Computes joins of abstract values.
    
    (define (join x y)
      (cond ((boolean? x)
             (if x #t y))
            ((boolean? y)
             (join y x))
            ((equal? x y)
             x)
            (else #t)))
    
    ; Given a <symbolic> and a vector of abstract values,
    ; evaluates the <symbolic> and returns its abstract value.
    
    (define (aeval rep env)
      (cond ((eq? rep #t)
             #t)
            ((null? rep)
             #f)
            ((null? (cdr rep))
             (aeval1 (car rep) env))
            (else
             (join (aeval1 (car rep) env)
                   (aeval (cdr rep) env)))))
    
    (define (aeval1 exp env)
      
      (case (car exp)
        
        ((quote)
         exp)
        
        ((lambda)
         #t)
        
        ((set!)
         #f)
        
        ((begin)
         (if (variable? exp)
             (let* ((name (variable.name exp))
                    (i (hashtable-get variables name)))
               (if i
                   (vector-ref env i)
                   #t))
             (aeval1-error)))
        
        ((if)
         (let* ((val0 (aeval1 (if.test exp) env))
                (val1 (aeval1 (if.then exp) env))
                (val2 (aeval1 (if.else exp) env)))
           (cond ((eq? val0 #t)
                  (join val1 val2))
                 ((pair? val0)
                  (if (constant.value val0)
                      val1
                      val2))
                 (else
                  #f))))
        
        (else
         (do ((exprs (reverse (call.args exp)) (cdr exprs))
              (vals '() (cons (aeval1 (car exprs) env) vals)))
             ((null? exprs)
              (let ((proc (call.proc exp)))
                (cond ((variable? proc)
                       (let* ((procname (variable.name proc))
                              (procnode (hashtable-get known procname))
                              (entry (if folding?
                                         (constant-folding-entry procname)
                                         #f)))
                         (cond (procnode
                                (vector-ref env
                                            (hashtable-get variables
                                                           procname)))
                               (entry
                                ; FIXME: No constant folding
                                #t)
                               (else (aeval1-error)))))
                      (else
                       (aeval1-error)))))))))
    
    (define (aeval1-error)
      (error "Compiler bug: constant propagation (aeval1)"))
    
    ; Combines two <symbolic>s.
    
    (define (combine-symbolic rep1 rep2)
      (cond ((eq? rep1 #t) #t)
            ((eq? rep2 #t) #t)
            (else
             (append rep1 rep2))))
    
    ; Given an expression, returns a <symbolic> that represents
    ; a list of expressions whose abstract values can be joined
    ; to obtain the abstract value of the given expression.
    ; As a side effect, enters local variables into variables.
    
    (define (collect! exp)
      
      (case (car exp)
        
        ((quote)
         (list exp))
        
        ((lambda)
         #t)
        
        ((set!)
         (collect! (assignment.rhs exp))
         '())
        
        ((begin)
         (if (variable? exp)
             (list exp)
             (do ((exprs (begin.exprs exp) (cdr exprs)))
                 ((null? (cdr exprs))
                  (collect! (car exprs)))
                 (collect! (car exprs)))))
        
        ((if)
         (collect! (if.test exp))
         (collect! (if.then exp))
         (collect! (if.else exp))
         #t)
        
        (else
         (do ((exprs (reverse (call.args exp)) (cdr exprs))
              (reps '() (cons (collect! (car exprs)) reps)))
             ((null? exprs)
              (let ((proc (call.proc exp)))
                (define (put-args! args reps)
                  (cond ((pair? args)
                         (let ((v (car args))
                               (rep (car reps)))
                           (hashtable-put! variables v rep)
                           (put-args! (cdr args) (cdr reps))))
                        ((symbol? args)
                         (hashtable-put! variables args #t))
                        (else #f)))
                (cond ((variable? proc)
                       (let* ((procname (variable.name proc))
                              (procnode (hashtable-get known procname))
                              (entry (if folding?
                                         (constant-folding-entry procname)
                                         #f)))
                         (cond (procnode
                                (for-each (lambda (v rep)
                                            (hashtable-put!
                                             variables
                                             v
                                             (combine-symbolic
                                              rep (hashtable-get variables v))))
                                          (lambda.args
                                            (callgraphnode.code procnode))
                                          reps)
                                (list (make-variable procname)))
                               (entry
                                ; FIXME: No constant folding
                                #t)
                               (else #t))))
                      ((lambda? proc)
                       (put-args! (lambda.args proc) reps)
                       (collect! (lambda.body proc)))
                      (else
                       (collect! proc)
                       #t))))))))
    
    (for-each (lambda (node)
                (let* ((name (callgraphnode.name node))
                       (code (callgraphnode.code node))
                       (known? (symbol? name))
                       (rep (if known? '() #t)))
                  (if known?
                      (hashtable-put! known name node))
                  (if (lambda? code)
                      (for-each (lambda (var)
                                  (hashtable-put! variables var rep))
                                (make-null-terminated (lambda.args code))))))
              g)
    
    (for-each (lambda (node)
                (let ((name (callgraphnode.name node))
                      (code (callgraphnode.code node)))
                  (cond ((symbol? name)
                         (hashtable-put! variables
                                         name
                                         (collect! (lambda.body code))))
                        (else
                         (collect! (lambda.body code))))))
              g)
    
    (if (and #f debugging?)
        (begin
         (hashtable-for-each (lambda (v rep)
                               (write v)
                               (display ": ")
                               (write rep)
                               (newline))
                             variables)
         
         (display "----------------------------------------")
         (newline)))
    
    ;(trace aeval aeval1)
    
    (let* ((n (hashtable-size variables))
           (vars (hashtable-map (lambda (v rep) v) variables))
           (reps (map (lambda (v) (hashtable-get variables v)) vars))
           (init (make-vector n #f))
           (next (make-vector n)))
      (do ((i 0 (+ i 1))
           (vars vars (cdr vars))
           (reps reps (cdr reps)))
          ((= i n))
          (hashtable-put! variables (car vars) i)
          (vector-set! next
                       i
                       (let ((rep (car reps)))
                         (lambda (env)
                           (aeval rep env)))))
      (compute-fixedpoint init next equal?)
      (for-each (lambda (v)
                  (let* ((i (hashtable-get variables v))
                         (aval (vector-ref init i)))
                    (hashtable-put! variables v aval)
                    (if (and debugging?
                             (not (eq? aval #t)))
                        (begin (write v)
                               (display ": ")
                               (write aval)
                               (newline)))))
                vars)
      variables)))

; Given a lambda expression, performs constant propagation, folding,
; and simplifications by side effect, using the abstract values in the
; hash table of variables.
; Returns #t if any new constants were created by constant folding,
; otherwise returns #f.

(define (constant-folding! L variables)
  (let ((debugging? #f)
        (msg1 "    Propagating constant value for ")
        (msg2 "    Folding: ")
        (msg3 " ==> ")
        (folding? (integrate-usual-procedures))
        (changed? #f))
    
    ; Given a known lambda expression L, its original formal parameters,
    ; and a list of all calls to L, deletes arguments that are now
    ; ignored because of constant propagation.
    
    (define (delete-ignored-args! L formals0 calls)
      (let ((formals1 (lambda.args L)))
        (for-each (lambda (call)
                    (do ((formals0 formals0 (cdr formals0))
                         (formals1 formals1 (cdr formals1))
                         (args (call.args call)
                               (cdr args))
                         (newargs '()
                                  (if (and (eq? (car formals1) name:IGNORED)
                                           (pair?
                                            (hashtable-get variables
                                                           (car formals0))))
                                      newargs
                                      (cons (car args) newargs))))
                        ((null? formals0)
                         (call.args-set! call (reverse newargs)))))
                  calls)
        (do ((formals0 formals0 (cdr formals0))
             (formals1 formals1 (cdr formals1))
             (formals2 '()
                       (if (and (not (eq? (car formals0)
                                          (car formals1)))
                                (eq? (car formals1) name:IGNORED)
                                (pair?
                                 (hashtable-get variables
                                                (car formals0))))
                           formals2
                           (cons (car formals1) formals2))))
            ((null? formals0)
             (lambda.args-set! L (reverse formals2))))))
    
    (define (fold! exp)
      
      (case (car exp)
        
        ((quote) exp)
        
        ((lambda)
         (let ((Rinfo (lambda.R exp))
               (known (map def.lhs (lambda.defs exp))))
           (for-each (lambda (entry)
                       (let* ((v (R-entry.name entry))
                              (aval (hashtable-fetch variables v #t)))
                         (if (and (pair? aval)
                                  (not (memq v known)))
                             (let ((x (constant.value aval)))
                               (if (or (boolean? x)
                                       (null? x)
                                       (symbol? x)
                                       (number? x)
                                       (char? x)
                                       (and (vector? x)
                                            (zero? (vector-length x))))
                                   (let ((refs (R-entry.references entry)))
                                     (for-each (lambda (ref)
                                                 (variable-set! ref aval))
                                               refs)
                                     ; Do not try to use Rinfo in place of
                                     ; (lambda.R exp) below!
                                     (lambda.R-set!
                                       exp
                                       (remq entry (lambda.R exp)))
                                     (flag-as-ignored v exp)
                                     (if debugging?
                                         (begin (display msg1)
                                                (write v)
                                                (display ": ")
                                                (write aval)
                                                (newline)))))))))
                     Rinfo)
           (for-each (lambda (def)
                       (let* ((name (def.lhs def))
                              (rhs (def.rhs def))
                              (entry (R-lookup Rinfo name))
                              (calls (R-entry.calls entry)))
                         (if (null? calls)
                             (begin (lambda.defs-set!
                                      exp
                                      (remq def (lambda.defs exp)))
                                    ; Do not try to use Rinfo in place of
                                    ; (lambda.R exp) below!
                                    (lambda.R-set!
                                      exp
                                      (remq entry (lambda.R exp))))
                             (let* ((formals0 (append (lambda.args rhs) '()))
                                    (L (fold! rhs))
                                    (formals1 (lambda.args L)))
                               (if (not (equal? formals0 formals1))
                                   (delete-ignored-args! L formals0 calls))))))
                     (lambda.defs exp))
           (lambda.body-set!
             exp
             (fold! (lambda.body exp)))
           exp))
        
        ((set!)
         (assignment.rhs-set! exp (fold! (assignment.rhs exp)))
         exp)
        
        ((begin)
         (if (variable? exp)
             exp
             (post-simplify-begin (make-begin (map fold! (begin.exprs exp)))
                                  (make-notepad #f))))
        
        ((if)
         (let ((exp0 (fold! (if.test exp)))
               (exp1 (fold! (if.then exp)))
               (exp2 (fold! (if.else exp))))
           (if (constant? exp0)
               (let ((newexp (if (constant.value exp0)
                                 exp1
                                 exp2)))
                 (if debugging?
                     (begin (display msg2)
                            (write (make-readable exp))
                            (display msg3)
                            (write (make-readable newexp))
                            (newline)))
                 (set! changed? #t)
                 newexp)
               (make-conditional exp0 exp1 exp2))))
        
        (else
         (let ((args (map fold! (call.args exp)))
               (proc (fold! (call.proc exp))))
           (cond ((and folding?
                       (variable? proc)
                       (every? constant? args)
                       (let ((entry
                              (constant-folding-entry (variable.name proc))))
                         (and entry
                              (let ((preds
                                     (constant-folding-predicates entry)))
                                (and (= (length args) (length preds))
                                     (every?
                                      (lambda (x) x)
                                      (map (lambda (f v) (f v))
                                           (constant-folding-predicates entry)
                                           (map constant.value args))))))))
                  (set! changed? #t)
                  (let ((result
                         (make-constant
                          (apply (constant-folding-folder
                                  (constant-folding-entry
                                   (variable.name proc)))
                                 (map constant.value args)))))
                    (if debugging?
                        (begin (display msg2)
                               (write (make-readable (make-call proc args)))
                               (display msg3)
                               (write result)
                               (newline)))
                    result))
                 ((and (lambda? proc)
                       (list? (lambda.args proc)))
                  ; FIXME: Folding should be done even if there is
                  ; a rest argument.
                  (let loop ((formals (reverse (lambda.args proc)))
                             (actuals (reverse args))
                             (processed-formals '())
                             (processed-actuals '())
                             (for-effect '()))
                    (cond ((null? formals)
                           (lambda.args-set! proc processed-formals)
                           (call.args-set! exp processed-actuals)
                           (let ((call (if (and (null? processed-formals)
                                                (null? (lambda.defs proc)))
                                           (lambda.body proc)
                                           exp)))
                             (if (null? for-effect)
                                 call
                                 (post-simplify-begin
                                  (make-begin
                                   (reverse (cons call for-effect)))
                                  (make-notepad #f)))))
                          ((ignored? (car formals))
                           (loop (cdr formals)
                                 (cdr actuals)
                                 processed-formals
                                 processed-actuals
                                 (cons (car actuals) for-effect)))
                          (else
                           (loop (cdr formals)
                                 (cdr actuals)
                                 (cons (car formals) processed-formals)
                                 (cons (car actuals) processed-actuals)
                                 for-effect)))))
                 (else
                  (call.proc-set! exp proc)
                  (call.args-set! exp args)
                  exp))))))
    
    (fold! L)
    changed?))
; Copyright 1998 William D Clinger.
;
; Permission to copy this software, in whole or in part, to use this
; software for any lawful noncommercial purpose, and to redistribute
; this software is granted subject to the restriction that all copies
; made of this software must include this copyright notice in full.
; 
; I also request that you send me a copy of any improvements that you
; make to this software so that they may be incorporated within it to
; the benefit of the Scheme community.
;
; 7 June 1999.
;
; Conversion to A-normal form, with heuristics for
; choosing a good order of evaluation.
;
; This pass operates as a source-to-source transformation on
; expressions written in the subset of Scheme described by the
; following grammar, where the input and output expressions
; satisfy certain additional invariants described below.
;
; "X ..." means zero or more occurrences of X.
;
; L  -->  (lambda (I_1 ...)
;           (begin D ...)
;           (quote (R F G <decls> <doc>)
;           E)
;      |  (lambda (I_1 ... . I_rest)
;           (begin D ...)
;           (quote (R F G <decls> <doc>))
;           E)
; D  -->  (define I L)
; E  -->  (quote K)                        ; constants
;      |  (begin I)                        ; variable references
;      |  L                                ; lambda expressions
;      |  (E0 E1 ...)                      ; calls
;      |  (set! I E)                       ; assignments
;      |  (if E0 E1 E2)                    ; conditionals
;      |  (begin E0 E1 E2 ...)             ; sequential expressions
; I  -->  <identifier>
;
; R  -->  ((I <references> <assignments> <calls>) ...)
; F  -->  (I ...)
; G  -->  (I ...)
;
; Invariants that hold for the input only:
;   *  There are no assignments except to global variables.
;   *  If I is declared by an internal definition, then the right hand
;      side of the internal definition is a lambda expression and I
;      is referenced only in the procedure position of a call.
;   *  For each lambda expression, the associated F is a list of all
;      the identifiers that occur free in the body of that lambda
;      expression, and possibly a few extra identifiers that were
;      once free but have been removed by optimization.
;   *  For each lambda expression, the associated G is a subset of F
;      that contains every identifier that occurs free within some
;      inner lambda expression that escapes, and possibly a few that
;      don't.  (Assignment-elimination does not calculate G exactly.)
;   *  Variables named IGNORED are neither referenced nor assigned.
;
; Invariants that hold for the output only:
;   *  There are no assignments except to global variables.
;   *  If I is declared by an internal definition, then the right hand
;      side of the internal definition is a lambda expression and I
;      is referenced only in the procedure position of a call.
;   *  R, F, and G are garbage.
;   *  There are no sequential expressions.
;   *  The output is an expression E with syntax
;
; E  -->  A
;      |  (L)
;      |  (L A)
;
; A  -->  W
;      |  L
;      |  (W_0 W_1 ...)
;      |  (set! I W)
;      |  (if W E1 E2)
;
; W  -->  (quote K)
;      |  (begin I)
;
; In other words:
; An expression is a LET* such that the rhs of every binding is
;     a conditional with the test already evaluated, or
;     an expression that can be evaluated in one step
;         (treating function calls as a single step)
;
; A-normal form corresponds to the control flow graph for a lambda
; expression.

; Algorithm: repeated use of these rules:
;
; (E0 E1 ...)                              ((lambda (T0 T1 ...) (T0 T1 ...))
;                                           E0 E1 ...)
; (set! I E)                               ((lambda (T) (set! I T)) E)
; (if E0 E1 E2)                            ((lambda (T) (if T E1 E2)) E0)
; (begin E0 E1 E2 ...)                     ((lambda (T) (begin E1 E2 ...)) E0)
;
; ((lambda (I1 I2 I3 ...) E)               ((lambda (I1)
;  E1 E2 E3)                                  ((lambda (I2 I3 ...) E)
;                                              E2 E3))
;                                           E1)
;
; ((lambda (I2) E)                         ((lambda (I1)
;  ((lambda (I1) E2)                          ((lambda (I2) E)
;   E1))                                       E2)
;                                           E1)
;
; In other words:
; Introduce a temporary name for every expression except:
;     tail expressions
;     the alternatives of a non-tail conditional
; Convert every LET into a LET*.
; Get rid of LET* on the right hand side of a binding.

; Given an expression E in the representation output by pass 2,
; returns an A-normal form for E in that representation.
; Except for quoted values, the A-normal form does not share
; mutable structure with the original expression E.
;
; KNOWN BUG:
;
; If you call A-normal on a form that has already been converted
; to A-normal form, then the same temporaries will be generated
; twice.  An optional argument lets you specify a different prefix
; for temporaries the second time around.  Example:
;
; (A-normal-form (A-normal-form E ".T")
;                ".U")

; This is the declaration that is used to indicate A-normal form.

(define A-normal-form-declaration (list 'anf))

(define (A-normal-form E . rest)
  
  (define (A-normal-form E)
    (anf-make-let* (anf E '() '())))
  
  ; New temporaries.
  
  (define temp-counter 0)
  
  (define temp-prefix
    (if (or (null? rest)
            (not (string? (car rest))))
        (string-append renaming-prefix "T")
        (car rest)))
  
  (define (newtemp)
    (set! temp-counter (+ temp-counter 1))
    (string->symbol
     (string-append temp-prefix
                    (number->string temp-counter))))
  
  ; Given an expression E as output by pass 2,
  ; a list of surrounding LET* bindings,
  ; and an ordered list of likely register variables,
  ; return a non-empty list of LET* bindings
  ; whose first binding associates a dummy variable
  ; with an A-expression giving the value for E.
  
  (define (anf E bindings regvars)
    (case (car E)
      ((quote)    (anf-bind-dummy E bindings))
      ((begin)    (if (variable? E)
                      (anf-bind-dummy E bindings)
                      (anf-sequential E bindings regvars)))
      ((lambda)   (anf-lambda E bindings regvars))
      ((set!)     (anf-assignment E bindings regvars))
      ((if)       (anf-conditional E bindings regvars))
      (else       (anf-call E bindings regvars))))
  
  (define anf:dummy (string->symbol "RESULT"))
  
  (define (anf-bind-dummy E bindings)
    (cons (list anf:dummy E)
          bindings))
  
  ; Unlike anf-bind-dummy, anf-bind-name and anf-bind convert
  ; their expression argument to A-normal form.
  ; Don't change anf-bind to call anf-bind-name, because that
  ; would name the temporaries in an aesthetically bad order.
  
  (define (anf-bind-name name E bindings regvars)
    (let ((bindings (anf E bindings regvars)))
      (cons (list name (cadr (car bindings)))
            (cdr bindings))))
  
  (define (anf-bind E bindings regvars)
    (let ((bindings (anf E bindings regvars)))
      (cons (list (newtemp) (cadr (car bindings)))
            (cdr bindings))))
  
  (define (anf-result bindings)
    (make-variable (car (car bindings))))
  
  (define (anf-make-let* bindings)
    (define (loop bindings body)
      (if (null? bindings)
          body
          (let ((T1 (car (car bindings)))
                (E1 (cadr (car bindings))))
            (loop (cdr bindings)
                  (make-call (make-lambda (list T1)
                                          '()
                                          '()
                                          '()
                                          '()
                                          (list A-normal-form-declaration)
                                          '()
                                          body)
                             (list E1))))))
    (loop (cdr bindings)
          (cadr (car bindings))))                                  
  
  (define (anf-sequential E bindings regvars)
    (do ((bindings bindings
                   (anf-bind (car exprs) bindings regvars))
         (exprs (begin.exprs E)
                (cdr exprs)))
        ((null? (cdr exprs))
         (anf (car exprs) bindings regvars))))
  
  ; Heuristic: the formal parameters of an escaping lambda or
  ; known local procedure are kept in REG1, REG2, et cetera.
  
  (define (anf-lambda L bindings regvars)
    (anf-bind-dummy
     (make-lambda (lambda.args L)
                  (map (lambda (def)
                         (make-definition
                          (def.lhs def)
                          (A-normal-form (def.rhs def))))
                       (lambda.defs L))
                  '()
                  '()
                  '()
                  (cons A-normal-form-declaration
                        (lambda.decls L))
                  (lambda.doc L)
                  (anf-make-let*
                   (anf (lambda.body L)
                        '()
                        (make-null-terminated (lambda.args L)))))
     bindings))
  
  (define (anf-assignment E bindings regvars)
    (let ((I (assignment.lhs E))
          (E1 (assignment.rhs E)))
      (if (variable? E1)
          (anf-bind-dummy E bindings)
          (let* ((bindings (anf-bind E1 bindings regvars))
                 (T1 (anf-result bindings)))
            (anf-bind-dummy (make-assignment I T1) bindings)))))
  
  (define (anf-conditional E bindings regvars)
    (let ((E0 (if.test E))
          (E1 (if.then E))
          (E2 (if.else E)))
      (if (variable? E0)
          (let ((E1 (anf-make-let* (anf E1 '() regvars)))
                (E2 (anf-make-let* (anf E2 '() regvars))))
            (anf-bind-dummy
             (make-conditional E0 E1 E2)
             bindings))
          (let* ((bindings (anf-bind E0 bindings regvars))
                 (E1 (anf-make-let* (anf E1 '() regvars)))
                 (E2 (anf-make-let* (anf E2 '() regvars))))
            (anf-bind-dummy
             (make-conditional (anf-result bindings) E1 E2)
             bindings)))))
  
  (define (anf-call E bindings regvars)
    (let* ((proc (call.proc E))
           (args (call.args E)))
      
      ; Evaluates the exprs and returns both a list of bindings and
      ; a list of the temporaries that name the results of the exprs.
      ; If rename-always? is true, then temporaries are generated even
      ; for constants and temporaries.
      
      (define (loop exprs bindings names rename-always?)
        (if (null? exprs)
            (values bindings (reverse names))
            (let ((E (car exprs)))
              (if (or rename-always?
                      (not (or (constant? E)
                               (variable? E))))
                  (let* ((bindings
                          (anf-bind (car exprs) bindings regvars)))
                    (loop (cdr exprs)
                          bindings
                          (cons (anf-result bindings) names)
                          rename-always?))
                  (loop (cdr exprs)
                        bindings
                        (cons E names)
                        rename-always?)))))
      
      ; Evaluates the exprs, binding them to the vars, and returns
      ; a list of bindings.
      ;
      ; Although LET variables are likely to be kept in registers,
      ; trying to guess which register will be allocated is likely
      ; to do more harm than good.
      
      (define (let-loop exprs bindings regvars vars)
        (if (null? exprs)
            (if (null? (lambda.defs proc))
                (anf (lambda.body proc)
                     bindings
                     regvars)
                (let ((bindings
                       (anf-bind
                        (make-lambda '()
                                     (lambda.defs proc)
                                     '()
                                     '()
                                     '()
                                     (cons A-normal-form-declaration
                                           (lambda.decls proc))
                                     (lambda.doc proc)
                                     (lambda.body proc))
                        bindings
                        '())))
                  (anf-bind-dummy
                   (make-call (anf-result bindings) '())
                   bindings)))
            (let-loop (cdr exprs)
              (anf-bind-name (car vars)
                             (car exprs)
                             bindings
                             regvars)
              regvars
              (cdr vars))))
      
      (cond ((lambda? proc)
             (let ((formals (lambda.args proc)))
               (if (list? formals)
                   (let* ((pi (anf-order-of-evaluation args regvars #f))
                          (exprs (permute args pi))
                          (names (permute (lambda.args proc) pi)))
                     (let-loop (reverse exprs) bindings regvars (reverse names)))
                   (anf-call (normalize-let E) bindings regvars))))
            
            ((not (variable? proc))
             (let ((pi (anf-order-of-evaluation args regvars #f)))
               (call-with-values
                (lambda () (loop (permute args pi) bindings '() #t))
                (lambda (bindings names)
                  (let ((bindings (anf-bind proc bindings regvars)))
                    (anf-bind-dummy
                     (make-call (anf-result bindings)
                                (unpermute names pi))
                     bindings))))))
            
            ((and (integrate-usual-procedures)
                  (prim-entry (variable.name proc)))
             (let ((pi (anf-order-of-evaluation args regvars #t)))
               (call-with-values
                (lambda () (loop (permute args pi) bindings '() #t))
                (lambda (bindings names)
                  (anf-bind-dummy
                   (make-call proc (unpermute names pi))
                   bindings)))))
            
            ((memq (variable.name proc) regvars)
             (let* ((exprs (cons proc args))
                    (pi (anf-order-of-evaluation
                         exprs
                         (cons name:IGNORED regvars)
                         #f)))
               (call-with-values
                (lambda () (loop (permute exprs pi) bindings '() #t))
                (lambda (bindings names)
                  (let ((names (unpermute names pi)))
                    (anf-bind-dummy
                     (make-call (car names) (cdr names))
                     bindings))))))
            
            (else
             (let ((pi (anf-order-of-evaluation args regvars #f)))
               (call-with-values
                (lambda () (loop (permute args pi) bindings '() #t))
                (lambda (bindings names)
                  (anf-bind-dummy
                   (make-call proc (unpermute names pi))
                   bindings))))))))
  
  ; Given a list of expressions, a list of likely register contents,
  ; and a switch telling whether these are arguments for a primop
  ; or something else (such as the arguments for a real call),
  ; try to choose a good order in which to evaluate the expressions.
  ;
  ; Heuristic:  If none of the expressions is a call to a non-primop,
  ; then parallel assignment optimization gives a good order if the
  ; regvars are right, and should do no worse than a random order if
  ; the regvars are wrong.
  ;
  ; Heuristic:  If the expressions are arguments to a primop, and
  ; none are a call to a non-primop, then the register contents
  ; are irrelevant, and the first argument should be evaluated last.
  ;
  ; Heuristic:  If one or more of the expressions is a call to a
  ; non-primop, then the following should be a good order:
  ;
  ;     expressions that are neither a constant, variable, or a call
  ;     calls to non-primops
  ;     constants and variables
  
  (define (anf-order-of-evaluation exprs regvars for-primop?)
    (define (ordering targets exprs alist)
      (let ((para
             (parallel-assignment targets alist exprs)))
        (or para
            ; Evaluate left to right until a parallel assignment is found.
            (cons (car targets)
                  (ordering (cdr targets)
                            (cdr exprs)
                            alist)))))
    (if (parallel-assignment-optimization)
        (cond ((null? exprs) '())
              ((null? (cdr exprs)) '(0))
              (else
               (let* ((contains-call? #f)
                      (vexprs (list->vector exprs))
                      (vindexes (list->vector
                                 (iota (vector-length vexprs))))
                      (contains-call? #f)
                      (categories
                       (list->vector
                        (map (lambda (E)
                               (cond ((constant? E)
                                      2)
                                     ((variable? E)
                                      2)
                                     ((complicated? E)
                                      (set! contains-call? #t)
                                      1)
                                     (else
                                      0)))
                             exprs))))
                 (cond (contains-call?
                        (twobit-sort (lambda (i j)
                                       (< (vector-ref categories i)
                                          (vector-ref categories j)))
                                     (iota (length exprs))))
                       (for-primop?
                        (reverse (iota (length exprs))))
                       (else
                        (let ((targets (iota (length exprs))))
                          (define (pairup regvars targets)
                            (if (or (null? targets)
                                    (null? regvars))
                                '()
                                (cons (cons (car regvars)
                                            (car targets))
                                      (pairup (cdr regvars)
                                              (cdr targets)))))
                          (ordering targets
                                    exprs
                                    (pairup regvars targets))))))))
        (iota (length exprs))))
  
  (define (permute things pi)
    (let ((v (list->vector things)))
      (map (lambda (i) (vector-ref v i))
           pi)))
  
  (define (unpermute things pi)
    (let* ((v0 (list->vector things))
           (v1 (make-vector (vector-length v0))))
      (do ((pi pi (cdr pi))
           (k 0 (+ k 1)))
          ((null? pi)
           (vector->list v1))
          (vector-set! v1 (car pi) (vector-ref v0 k)))))
  
  ; Given a call whose procedure is a lambda expression that has
  ; a rest argument, return a genuine let expression.
  
  (define (normalize-let-error exp)
    (if (issue-warnings)
        (begin (display "WARNING from compiler: ")
               (display "Wrong number of arguments ")
               (display "to lambda expression")
               (newline)
               (pretty-print (make-readable exp) #t)
               (newline))))
  
  (define (normalize-let exp)
    (let* ((L (call.proc exp)))
      (let loop ((formals (lambda.args L))
                 (args (call.args exp))
                 (newformals '())
                 (newargs '()))
        (cond ((null? formals)
               (if (null? args)
                   (begin (lambda.args-set! L (reverse newformals))
                          (call.args-set! exp (reverse newargs)))
                   (begin (normalize-let-error exp)
                          (loop (list (newtemp))
                                args
                                newformals
                                newargs))))
              ((pair? formals)
               (if (pair? args)
                   (loop (cdr formals)
                         (cdr args)
                         (cons (car formals) newformals)
                         (cons (car args) newargs))
                   (begin (normalize-let-error exp)
                          (loop formals
                                (cons (make-constant 0)
                                      args)
                                newformals
                                newargs))))
              (else
               (loop (list formals)
                     (list (make-call-to-list args))
                     newformals
                     newargs))))))
  
  ; For heuristic use only.
  ; An expression is complicated unless it can probably be evaluated
  ; without saving and restoring any registers, even if it occurs in
  ; a non-tail position.
  
  (define (complicated? exp)
    ; Let's not spend all day on this.
    (let ((budget 10))
      (define (complicated? exp)
        (set! budget (- budget 1))
        (if (zero? budget)
            #t
            (case (car exp)
              ((quote)    #f)
              ((lambda)   #f)
              ((set!)     (complicated? (assignment.rhs exp)))
              ((if)       (or (complicated? (if.test exp))
                              (complicated? (if.then exp))
                              (complicated? (if.else exp))))
              ((begin)    (if (variable? exp)
                              #f
                              (some? complicated?
                                     (begin.exprs exp))))
              (else       (let ((proc (call.proc exp)))
                            (if (and (variable? proc)
                                     (integrate-usual-procedures)
                                     (prim-entry (variable.name proc)))
                                (some? complicated?
                                       (call.args exp))
                                #t))))))
      (complicated? exp)))
  
  (A-normal-form E))
(define (post-simplify-anf L0 T1 E0 E1 free regbindings L2)
  
  (define (return-normally)
    (values (make-call L0 (list E1))
            free
            regbindings))
  
  (return-normally))
; Copyright 1999 William D Clinger.
;
; Permission to copy this software, in whole or in part, to use this
; software for any lawful noncommercial purpose, and to redistribute
; this software is granted subject to the restriction that all copies
; made of this software must include this copyright notice in full.
;
; I also request that you send me a copy of any improvements that you
; make to this software so that they may be incorporated within it to
; the benefit of the Scheme community.
;
; 7 June 1999.
;
; Intraprocedural common subexpression elimination, constant propagation,
; copy propagation, dead code elimination, and register targeting.
;
; (intraprocedural-commoning E 'commoning)
;
;     Given an A-normal form E (alpha-converted, with correct free
;     variables and referencing information), returns an optimized
;     A-normal form with correct free variables but incorrect referencing
;     information.
;
; (intraprocedural-commoning E 'target-registers)
;
;     Given an A-normal form E (alpha-converted, with correct free
;     variables and referencing information), returns an A-normal form
;     with correct free variables but incorrect referencing information,
;     and in which MacScheme machine register names are used as temporary
;     variables.  The result is alpha-converted except for register names.
;
; (intraprocedural-commoning E 'commoning 'target-registers)
; (intraprocedural-commoning E)
;
;     Given an A-normal form as described above, returns an optimized
;     form in which register names are used as temporary variables.

; Semantics of .check!:
;
; (.check! b exn x ...) faults with code exn and arguments x ...
; if b is #f.

; The list of argument registers.
; This can't go in pass3commoning.aux.sch because that file must be
; loaded before the target-specific file that defines *nregs*.

(define argument-registers
  (do ((n (- *nregs* 2) (- n 1))
       (regs '()
             (cons (string->symbol
                    (string-append ".REG" (number->string n)))
                   regs)))
      ((zero? n)
       regs)))

(define (intraprocedural-commoning E . flags)
  
  (define target-registers? (or (null? flags) (memq 'target-registers flags)))
  (define commoning? (or (null? flags) (memq 'commoning flags)))
  
  (define debugging? #f)
  
  (call-with-current-continuation
   (lambda (return)
     
     (define (error . stuff)
       (display "Bug detected during intraprocedural optimization")
       (newline)
       (for-each (lambda (s)
                   (display s) (newline))
                 stuff)
       (return (make-constant #f)))
     
     ; Given an expression, an environment, the available expressions,
     ; and an ordered list of likely register variables (used heuristically),
     ; returns the transformed expression and its set of free variables.
     
     (define (scan-body E env available regvars)
       
       ; The local variables are those that are bound by a LET within
       ; this procedure.  The formals of a lambda expression and the
       ; known local procedures are counted as non-global, not local,
       ; because there is no let-binding for a formal that can be
       ; renamed during register targeting.
       ; For each local variable, we keep track of how many times it
       ; is referenced.  This information is not accurate until we
       ; are backing out of the recursion, and does not have to be.
       
       (define local-variables (make-hashtable symbol-hash assq))
       
       (define (local-variable? sym)
         (hashtable-get local-variables sym))
       
       (define (local-variable-not-used? sym)
         (= 0 (hashtable-fetch local-variables sym -1)))
       
       (define (local-variable-used-once? sym)
         (= 1 (hashtable-fetch local-variables sym 0)))
       
       (define (record-local-variable! sym)
         (hashtable-put! local-variables sym 0))
       
       (define (used-local-variable! sym)
         (adjust-local-variable! sym 1))
       
       (define (adjust-local-variable! sym n)
         (let ((m (hashtable-get local-variables sym)))
           (if debugging?
               (if (and m (> m 0))
                   (begin (write (list sym (+ m n)))
                          (newline))))
           (if m
               (hashtable-put! local-variables
                               sym
                               (+ m n)))))
       
       (define (closed-over-local-variable! sym)
         ; Set its reference count to infinity so it won't be optimized away.
         ; FIXME:  One million isn't infinity.
         (hashtable-put! local-variables sym 1000000))
       
       (define (used-variable! sym)
         (used-local-variable! sym))
       
       (define (abandon-expression! E)
         (cond ((variable? E)
                (adjust-local-variable! (variable.name E) -1))
               ((conditional? E)
                (abandon-expression! (if.test E))
                (abandon-expression! (if.then E))
                (abandon-expression! (if.else E)))
               ((call? E)
                (for-each (lambda (exp)
                            (if (variable? exp)
                                (let ((name (variable.name exp)))
                                  (if (local-variable? name)
                                      (adjust-local-variable! name -1)))))
                          (cons (call.proc E)
                                (call.args E))))))
       
       ; Environments are represented as hashtrees.
       
       (define (make-empty-environment)
         (make-hashtree symbol-hash assq))
       
       (define (environment-extend env sym)
         (hashtree-put env sym #t))
       
       (define (environment-extend* env symbols)
         (if (null? symbols)
             env
             (environment-extend* (hashtree-put env (car symbols) #t)
                                  (cdr symbols))))
       
       (define (environment-lookup env sym)
         (hashtree-get env sym))
       
       (define (global? x)
         (cond ((local-variable? x)
                #f)
               ((environment-lookup env x)
                #f)
               (else
                #t)))
       
       ;
       
       (define (available-add! available T E)
         (cond ((constant? E)
                (available-extend! available T E available:killer:immortal))
               ((variable? E)
                (available-extend! available
                                   T
                                   E
                                   (if (global? (variable.name E))
                                       available:killer:globals
                                       available:killer:immortal)))
               (else
                (let ((entry (prim-call E)))
                  (if entry
                      (let ((killer (prim-lives-until entry)))
                        (if (not (eq? killer available:killer:dead))
                            (do ((args (call.args E) (cdr args))
                                 (k killer
                                    (let ((arg (car args)))
                                      (if (and (variable? arg)
                                               (global? (variable.name arg)))
                                          available:killer:globals
                                          k))))
                                ((null? args)
                                 (available-extend!
                                  available
                                  T
                                  E
                                  (logior killer k)))))))))))
       
       ; Given an expression E,
       ; an environment containing all variables that are in scope,
       ; and a table of available expressions,
       ; returns multiple values:
       ;   the transformed E
       ;   the free variables of E
       ;   the register bindings to be inserted; each binding has the form
       ;     (R x (begin R)), where (begin R) is a reference to R.
       ; 
       ; Side effects E.
       
       (define (scan E env available)
         (if (not (call? E))
             (scan-rhs E env available)
             (let ((proc (call.proc E)))
               (if (not (lambda? proc))
                   (scan-rhs E env available)
                   (let ((vars (lambda.args proc)))
                     (cond ((null? vars)
                            (scan-let0 E env available))
                           ((null? (cdr vars))
                            (scan-binding E env available))
                           (else
                            (error (make-readable E)))))))))
       
       ; E has the form of (let ((T1 E1)) E0).
       
       (define (scan-binding E env available)
         (let* ((L (call.proc E))
                (T1 (car (lambda.args L)))
                (E1 (car (call.args E)))
                (E0 (lambda.body L)))
           (record-local-variable! T1)
           (call-with-values
            (lambda () (scan-rhs E1 env available))
            (lambda (E1 F1 regbindings1)
              (available-add! available T1 E1)
              (let* ((env (let ((formals
                                 (make-null-terminated (lambda.args L))))
                            (environment-extend*
                             (environment-extend* env formals)
                             (map def.lhs (lambda.defs L)))))
                     (Fdefs (scan-defs L env available)))
                (call-with-values
                 (lambda () (scan E0 env available))
                 (lambda (E0 F0 regbindings0)
                   (lambda.body-set! L E0)
                   (if target-registers?
                       (scan-binding-phase2
                        L T1 E0 E1 F0 F1 Fdefs regbindings0 regbindings1)
                       (scan-binding-phase3
                        L E0 E1 (union F0 Fdefs)
                                F1 regbindings0 regbindings1)))))))))
       
       ; Given the lambda expression for a let expression that binds
       ; a single variable T1, the transformed body E0 and right hand side E1,
       ; their sets of free variables F0 and F1, the set of free variables
       ; for the internal definitions of L, and the sets of register
       ; bindings that need to be wrapped around E0 and E1, returns the
       ; transformed let expression, its free variables, and register
       ; bindings.
       ;
       ; This phase is concerned exclusively with register bindings,
       ; and is bypassed unless the target-registers flag is specified.
       
       (define (scan-binding-phase2
                L T1 E0 E1 F0 F1 Fdefs regbindings0 regbindings1)
         
         ; T1 can't be a register because we haven't
         ; yet inserted register bindings that high up.
         
         ; Classify the register bindings that need to wrapped around E0:
         ;     1.  those that have T1 as their rhs
         ;     2.  those whose lhs is a register that is likely to hold
         ;         a variable that occurs free in E1
         ;     3.  all others
         
         (define (phase2a)
           (do ((rvars regvars (cdr rvars))
                (regs argument-registers (cdr regs))
                (regs1 '() (if (memq (car rvars) F1)
                               (cons (car regs) regs1)
                               regs1)))
               ((or (null? rvars)
                    (null? regs))
                ; regs1 is the set of registers that are live for E1
                
                (let loop ((regbindings regbindings0)
                           (rb1 '())
                           (rb2 '())
                           (rb3 '()))
                  (if (null? regbindings)
                      (phase2b rb1 rb2 rb3)
                      (let* ((binding (car regbindings))
                             (regbindings (cdr regbindings))
                             (lhs (regbinding.lhs binding))
                             (rhs (regbinding.rhs binding)))
                        (cond ((eq? rhs T1)
                               (loop regbindings
                                     (cons binding rb1)
                                     rb2
                                     rb3))
                              ((memq lhs regs1)
                               (loop regbindings
                                     rb1
                                     (cons binding rb2)
                                     rb3))
                              (else
                               (loop regbindings
                                     rb1
                                     rb2
                                     (cons binding rb3))))))))))
         
         ; Determine which categories of register bindings should be
         ; wrapped around E0.
         ; Always wrap the register bindings in category 2.
         ; If E1 is a conditional or a real call, then wrap category 3.
         ; If T1 might be used more than once, then wrap category 1.
         
         (define (phase2b rb1 rb2 rb3)
           (if (or (conditional? E1)
                   (real-call? E1))
               (phase2c (append rb2 rb3) rb1 '())
               (phase2c rb2 rb1 rb3)))
         
         (define (phase2c towrap rb1 regbindings0)
           (cond ((and (not (null? rb1))
                       (local-variable-used-once? T1))
                  (phase2d towrap rb1 regbindings0))
                 (else
                  (phase2e (append rb1 towrap) regbindings0))))
         
         ; T1 is used only once, and there is a register binding (R T1).
         ; Change T1 to R.
         
         (define (phase2d towrap regbindings-T1 regbindings0)
           (if (not (null? (cdr regbindings-T1)))
               (error "incorrect number of uses" T1))
           (let* ((regbinding (car regbindings-T1))
                  (R (regbinding.lhs regbinding)))
             (lambda.args-set! L (list R))
             (phase2e towrap regbindings0)))
         
         ; Wrap the selected register bindings around E0.
         
         (define (phase2e towrap regbindings0)
           (call-with-values
            (lambda ()
              (wrap-with-register-bindings towrap E0 F0))
            (lambda (E0 F0)
              (let ((F (union Fdefs F0)))
                (scan-binding-phase3
                 L E0 E1 F F1 regbindings0 regbindings1)))))
         
         (phase2a))
       
       ; This phase, with arguments as above, constructs the result.
       
       (define (scan-binding-phase3 L E0 E1 F F1 regbindings0 regbindings1)
         (let* ((args (lambda.args L))
                (T1 (car args))
                (free (union F1 (difference F args)))
                (simple-let? (simple-lambda? L))
                (regbindings 
                 
                 ; At least one of regbindings0 and regbindings1
                 ; is the empty list.
                 
                 (cond ((null? regbindings0)
                        regbindings1)
                       ((null? regbindings1)
                        regbindings0)
                       (else
                        (error 'scan-binding 'regbindings)))))
           (lambda.body-set! L E0)
           (lambda.F-set! L F)
           (lambda.G-set! L F)
           (cond ((and simple-let?
                       (not (memq T1 F))
                       (no-side-effects? E1))
                  (abandon-expression! E1)
                  (values E0 F regbindings0))
                 ((and target-registers?
                       simple-let?
                       (local-variable-used-once? T1))
                  (post-simplify-anf L T1 E0 E1 free regbindings #f))
                 (else
                  (values (make-call L (list E1))
                          free
                          regbindings)))))
       
       (define (scan-let0 E env available)
         (let ((L (call.proc E)))
           (if (simple-lambda? L)
               (scan (lambda.body L) env available)
               (let ((T1 (make-variable name:IGNORED)))
                 (lambda.args-set! L (list T1))
                 (call-with-values
                  (lambda () (scan (make-call L (list (make-constant 0)))
                                   env
                                   available))
                  (lambda (E F regbindings)
                    (lambda.args-set! L '())
                    (values (make-call L '())
                            F
                            regbindings)))))))
       
       ; Optimizes the internal definitions of L and returns their
       ; free variables.
       
       (define (scan-defs L env available)
         (let loop ((defs (lambda.defs L))
                    (newdefs '())
                    (Fdefs '()))
           (if (null? defs)
               (begin (lambda.defs-set! L (reverse newdefs))
                      Fdefs)
               (let ((def (car defs)))
                 (call-with-values
                  (lambda ()
                    (let* ((Ldef (def.rhs def))
                           (Lformals (make-null-terminated (lambda.args Ldef)))
                           (Lenv (environment-extend*
                                  (environment-extend* env Lformals)
                                  (map def.lhs (lambda.defs Ldef)))))
                      (scan Ldef Lenv available)))
                  (lambda (rhs Frhs empty)
                    (if (not (null? empty))
                        (error 'scan-binding 'def))
                    (loop (cdr defs)
                          (cons (make-definition (def.lhs def) rhs)
                                newdefs)
                          (union Frhs Fdefs))))))))
       
       ; Given the right-hand side of a let-binding, an environment,
       ; and a table of available expressions, returns the transformed
       ; expression, its free variables, and the register bindings that
       ; need to be wrapped around it.
       
       (define (scan-rhs E env available)
         
         (cond
          ((constant? E)
           (values E (empty-set) '()))
          
          ((variable? E)
           (let* ((name (variable.name E))
                  (Enew (and commoning?
                             (if (global? name)
                                 (let ((T (available-expression
                                           available E)))
                                   (if T
                                       (make-variable T)
                                       #f))
                                 (available-variable available name)))))
             (if Enew
                 (scan-rhs Enew env available)
                 (begin (used-variable! name)
                        (values E (list name) '())))))
          
          ((lambda? E)
           (let* ((formals (make-null-terminated (lambda.args E)))
                  (env (environment-extend*
                        (environment-extend* env formals)
                        (map def.lhs (lambda.defs E))))
                  (Fdefs (scan-defs E env available)))
             (call-with-values
              (lambda ()
                (let ((available (copy-available-table available)))
                  (available-kill! available available:killer:all)
                  (scan-body (lambda.body E)
                             env
                             available
                             formals)))
              (lambda (E0 F0 regbindings0)
                (call-with-values
                 (lambda ()
                   (wrap-with-register-bindings regbindings0 E0 F0))
                 (lambda (E0 F0)
                   (lambda.body-set! E E0)
                   (let ((F (union Fdefs F0)))
                     (for-each (lambda (x)
                                 (closed-over-local-variable! x))
                               F)
                     (lambda.F-set! E F)
                     (lambda.G-set! E F)
                     (values E
                             (difference F
                                         (make-null-terminated
                                          (lambda.args E)))
                             '()))))))))
          
          ((conditional? E)
           (let ((E0 (if.test E))
                 (E1 (if.then E))
                 (E2 (if.else E)))
             (if (constant? E0)
                 ; FIXME: E1 and E2 might not be a legal rhs,
                 ; so we can't just return the simplified E1 or E2.
                 (let ((E1 (if (constant.value E0) E1 E2)))
                   (call-with-values
                    (lambda () (scan E1 env available))
                    (lambda (E1 F1 regbindings1)
                      (cond ((or (not (call? E1))
                                 (not (lambda? (call.proc E1))))
                             (values E1 F1 regbindings1))
                            (else
                             ; FIXME: Must return a valid rhs.
                             (values (make-conditional
                                      (make-constant #t)
                                      E1
                                      (make-constant 0))
                                     F1
                                     regbindings1))))))
                 (call-with-values
                  (lambda () (scan E0 env available))
                  (lambda (E0 F0 regbindings0)
                    (if (not (null? regbindings0))
                        (error 'scan-rhs 'if))
                    (if (not (eq? E0 (if.test E)))
                        (scan-rhs (make-conditional E0 E1 E2)
                                  env available)
                        (let ((available1
                               (copy-available-table available))
                              (available2
                               (copy-available-table available)))
                          (if (variable? E0)
                              (let ((T0 (variable.name E0)))
                                (available-add!
                                 available2 T0 (make-constant #f)))
                              (error (make-readable E #t)))
                          (call-with-values
                           (lambda () (scan E1 env available1))
                           (lambda (E1 F1 regbindings1)
                             (call-with-values
                              (lambda ()
                                (wrap-with-register-bindings
                                 regbindings1 E1 F1))
                              (lambda (E1 F1)
                                (call-with-values
                                 (lambda () (scan E2 env available2))
                                 (lambda (E2 F2 regbindings2)
                                   (call-with-values
                                    (lambda ()
                                      (wrap-with-register-bindings
                                       regbindings2 E2 F2))
                                    (lambda (E2 F2)
                                      (let ((E (make-conditional
                                                E0 E1 E2))
                                            (F (union F0 F1 F2)))
                                        (available-intersect!
                                         available
                                         available1
                                         available2)
                                        (values E F '())))))))))))))))))
          
          
          ((assignment? E)
           (call-with-values
            (lambda () (scan-rhs (assignment.rhs E) env available))
            (lambda (E1 F1 regbindings1)
              (if (not (null? regbindings1))
                  (error 'scan-rhs 'set!))
              (available-kill! available available:killer:globals)
              (values (make-assignment (assignment.lhs E) E1)
                      (union (list (assignment.lhs E)) F1)
                      '()))))
          
          ((begin? E)
           ; Shouldn't occur in A-normal form.
           (error 'scan-rhs 'begin))
          
          ((real-call? E)
           (let* ((E0 (call.proc E))
                  (args (call.args E))
                  (regcontents (append regvars
                                       (map (lambda (x) #f) args))))
             (let loop ((args args)
                        (regs argument-registers)
                        (regcontents regcontents)
                        (newargs '())
                        (regbindings '())
                        (F (if (variable? E0)
                               (let ((f (variable.name E0)))
                                 (used-variable! f)
                                 (list f))
                               (empty-set))))
               (cond ((null? args)
                      (available-kill! available available:killer:all)
                      (values (make-call E0 (reverse newargs))
                              F
                              regbindings))
                     ((null? regs)
                      (let ((arg (car args)))
                        (loop (cdr args)
                              '()
                              (cdr regcontents)
                              (cons arg newargs)
                              regbindings
                              (if (variable? arg)
                                  (let ((name (variable.name arg)))
                                    (used-variable! name)
                                    (union (list name) F))
                                  F))))
                     ((and commoning?
                           (variable? (car args))
                           (available-variable
                            available
                            (variable.name (car args))))
                      (let* ((name (variable.name (car args)))
                             (Enew (available-variable available name)))
                        (loop (cons Enew (cdr args))
                              regs regcontents newargs regbindings F)))
                     ((and target-registers?
                           (variable? (car args))
                           (let ((x (variable.name (car args))))
                             ; We haven't yet recorded this use.
                             (or (local-variable-not-used? x)
                                 (and (memq x regvars)
                                      (not (eq? x (car regcontents)))))))
                      (let* ((x (variable.name (car args)))
                             (R (car regs))
                             (newarg (make-variable R)))
                        (used-variable! x)
                        (loop (cdr args)
                              (cdr regs)
                              (cdr regcontents)
                              (cons newarg newargs)
                              (cons (make-regbinding R x newarg)
                                    regbindings)
                              (union (list R) F))))
                     (else
                      (let ((E1 (car args)))
                        (loop (cdr args)
                              (cdr regs)
                              (cdr regcontents)
                              (cons E1 newargs)
                              regbindings
                              (if (variable? E1)
                                  (let ((name (variable.name E1)))
                                    (used-variable! name)
                                    (union (list name) F))
                                  F))))))))
          
          ((call? E)
           ; Must be a call to a primop.
           (let* ((E0 (call.proc E))
                  (f0 (variable.name E0)))
             (let loop ((args (call.args E))
                        (newargs '())
                        (F (list f0)))
               (cond ((null? args)
                      (let* ((E (make-call E0 (reverse newargs)))
                             (T (and commoning?
                                     (available-expression
                                      available E))))
                        (if T
                            (begin (abandon-expression! E)
                                   (scan-rhs (make-variable T) env available))
                            (begin
                             (available-kill!
                              available
                              (prim-kills (prim-entry f0)))
                             (cond ((eq? f0 name:check!)
                                    (let ((x (car (call.args E))))
                                      (cond ((not (runtime-safety-checking))
                                             (abandon-expression! E)
                                             ;(values x '() '())
                                             (scan-rhs x env available))
                                            ((variable? x)
                                             (available-add!
                                              available
                                              (variable.name x)
                                              (make-constant #t))
                                             (values E F '()))
                                            ((constant.value x)
                                             (abandon-expression! E)
                                             (values x '() '()))
                                            (else
                                             (declaration-error E)
                                             (values E F '())))))
                                   (else
                                    (values E F '())))))))
                     ((variable? (car args))
                      (let* ((E1 (car args))
                             (x (variable.name E1))
                             (Enew
                              (and commoning?
                                   (available-variable available x))))
                        (if Enew
                            ; All of the arguments are constants or
                            ; variables, so if the variable is replaced
                            ; here it will be replaced throughout the call.
                            (loop (cons Enew (cdr args))
                                  newargs
                                  (remq x F))
                            (begin
                             (used-variable! x)
                             (loop (cdr args)
                                   (cons (car args) newargs)
                                   (union (list x) F))))))
                     (else
                      (loop (cdr args)
                            (cons (car args) newargs)
                            F))))))
          
          (else
           (error 'scan-rhs (make-readable E)))))
       
       (call-with-values
        (lambda () (scan E env available))
        (lambda (E F regbindings)
          (call-with-values
           (lambda () (wrap-with-register-bindings regbindings E F))
           (lambda (E F)
             (values E F '()))))))
     
     (call-with-values
      (lambda ()
        (scan-body E
                   (make-hashtree symbol-hash assq)
                   (make-available-table)
                   '()))
      (lambda (E F regbindings)
        (if (not (null? regbindings))
            (error 'scan-body))
        E)))))
; Copyright 1999 William D Clinger.
;
; Permission to copy this software, in whole or in part, to use this
; software for any lawful noncommercial purpose, and to redistribute
; this software is granted subject to the restriction that all copies
; made of this software must include this copyright notice in full.
;
; I also request that you send me a copy of any improvements that you
; make to this software so that they may be incorporated within it to
; the benefit of the Scheme community.
;
; 16 June 1999.
;
; Intraprocedural representation inference.

(define (representation-analysis exp)
  (let* ((debugging? #f)
         (integrate-usual? (integrate-usual-procedures))
         (known (make-hashtable symbol-hash assq))
         (types (make-hashtable symbol-hash assq))
         (g (callgraph exp))
         (schedule (list (callgraphnode.code (car g))))
         (changed? #f)
         (mutate? #f))
    
    ; known is a hashtable that maps the name of a known local procedure
    ; to a list of the form (tv1 ... tvN), where tv1, ..., tvN
    ; are type variables that stand for the representation types of its
    ; arguments.  The type variable that stands for the representation
    ; type of the result of the procedure has the same name as the
    ; procedure itself.
    
    ; types is a hashtable that maps local variables and the names
    ; of known local procedures to an approximation of their
    ; representation type.
    ; For a known local procedure, the representation type is for the
    ; result of the procedure, not the procedure itself.
    
    ; schedule is a stack of work that needs to be done.
    ; Each entry in the stack is either an escaping lambda expression
    ; or the name of a known local procedure.
    
    (define (schedule! job)
      (if (not (memq job schedule))
          (begin (set! schedule (cons job schedule))
                 (if (not (symbol? job))
                     (callgraphnode.info! (lookup-node job) #t)))))
    
    ; Schedules a known local procedure.
    
    (define (schedule-known-procedure! name)
      ; Mark every known procedure that can actually be called.
      (callgraphnode.info! (assq name g) #t)
      (schedule! name))
    
    ; Schedule all code that calls the given known local procedure.
    
    (define (schedule-callers! name)
      (for-each (lambda (node)
                  (if (and (callgraphnode.info node)
                           (or (memq name (callgraphnode.tailcalls node))
                               (memq name (callgraphnode.nontailcalls node))))
                      (let ((caller (callgraphnode.name node)))
                        (if caller
                            (schedule! caller)
                            (schedule! (callgraphnode.code node))))))
                g))
    
    ; Schedules local procedures of a lambda expression.
    
    (define (schedule-local-procedures! L)
      (for-each (lambda (def)
                  (let ((name (def.lhs def)))
                    (if (known-procedure-is-callable? name)
                        (schedule! name))))
                (lambda.defs L)))
    
    ; Returns true iff the given known procedure is known to be callable.
    
    (define (known-procedure-is-callable? name)
      (callgraphnode.info (assq name g)))
    
    ; Sets CHANGED? to #t and returns #t if the type variable's
    ; approximation has changed; otherwise returns #f.
    
    (define (update-typevar! tv type)
      (let* ((type0 (hashtable-get types tv))
             (type0 (or type0
                        (begin (hashtable-put! types tv rep:bottom)
                               rep:bottom)))
             (type1 (representation-union type0 type)))
        (if (eq? type0 type1)
            #f
            (begin (hashtable-put! types tv type1)
                   (set! changed? #t)
                   (if (and debugging? mutate?)
                       (begin (display "******** Changing type of ")
                              (display tv)
                              (display " from ")
                              (display (rep->symbol type0))
                              (display " to ")
                              (display (rep->symbol type1))
                              (newline)))
                   #t))))
    
    ; GIven the name of a known local procedure, returns its code.
    
    (define (lookup-code name)
      (callgraphnode.code (assq name g)))
    
    ; Given a lambda expression, either escaping or the code for
    ; a known local procedure, returns its node in the call graph.
    
    (define (lookup-node L)
      (let loop ((g g))
        (cond ((null? g)
               (error "Unknown lambda expression" (make-readable L #t)))
              ((eq? L (callgraphnode.code (car g)))
               (car g))
              (else
               (loop (cdr g))))))
    
    ; Given: a type variable, expression, and a set of constraints.
    ; Side effects:
    ;     Update the representation types of all variables that are
    ;         bound within the expression.
    ;     Update the representation types of all arguments to known
    ;         local procedures that are called within the expression.
    ;     If the representation type of an argument to a known local
    ;         procedure changes, then schedule that procedure's code
    ;         for analysis.
    ;     Update the constraint set to reflect the constraints that
    ;         hold following execution of the expression.
    ;     If mutate? is true, then transform the expression to rely
    ;         on the representation types that have been inferred.
    ; Return: type of the expression under the current assumptions
    ;     and constraints.
    
    (define (analyze exp constraints)
      
      (if (and #f debugging?)
          (begin (display "Analyzing: ")
                 (newline)
                 (pretty-print (make-readable exp #t))
                 (newline)))
      
      (case (car exp)
        
        ((quote)
         (representation-of-value (constant.value exp)))
        
        ((begin)
         (let* ((name (variable.name exp)))
           (representation-typeof name types constraints)))
        
        ((lambda)
         (schedule! exp)
         rep:procedure)
        
        ((set!)
         (analyze (assignment.rhs exp) constraints)
         (constraints-kill! constraints available:killer:globals)
         rep:object)
        
        ((if)
         (let* ((E0 (if.test exp))
                (E1 (if.then exp))
                (E2 (if.else exp))
                (type0 (analyze E0 constraints)))
           (if mutate?
               (cond ((representation-subtype? type0 rep:true)
                      (if.test-set! exp (make-constant #t)))
                     ((representation-subtype? type0 rep:false)
                      (if.test-set! exp (make-constant #f)))))
           (cond ((representation-subtype? type0 rep:true)
                  (analyze E1 constraints))
                 ((representation-subtype? type0 rep:false)
                  (analyze E2 constraints))
                 ((variable? E0)
                  (let* ((T0 (variable.name E0))
                         (ignored (analyze E0 constraints))
                         (constraints1 (copy-constraints-table constraints))
                         (constraints2 (copy-constraints-table constraints)))
                    (constraints-add! types
                                      constraints1
                                      (make-type-constraint
                                       T0 rep:true available:killer:immortal))
                    (constraints-add! types
                                      constraints2
                                      (make-type-constraint
                                       T0 rep:false available:killer:immortal))
                    (let* ((type1 (analyze E1 constraints1))
                           (type2 (analyze E2 constraints2))
                           (type (representation-union type1 type2)))
                      (constraints-intersect! constraints
                                              constraints1
                                              constraints2)
                      type)))
                 (else
                  (representation-error "Bad ANF" (make-readable exp #t))))))
        
        (else
         (let ((proc (call.proc exp))
               (args (call.args exp)))
           (cond ((lambda? proc)
                  (cond ((null? args)
                         (analyze-let0 exp constraints))
                        ((null? (cdr args))
                         (analyze-let1 exp constraints))
                        (else
                         (error "Compiler bug: pass3rep"))))
                 ((variable? proc)
                  (let* ((procname (variable.name proc)))
                    (cond ((hashtable-get known procname)
                           =>
                           (lambda (vars)
                             (analyze-known-call exp constraints vars)))
                          (integrate-usual?
                           (let ((entry (prim-entry procname)))
                             (if entry
                                 (analyze-primop-call exp constraints entry)
                                 (analyze-unknown-call exp constraints))))
                          (else
                           (analyze-unknown-call exp constraints)))))
                 (else
                  (analyze-unknown-call exp constraints)))))))
    
    (define (analyze-let0 exp constraints)
      (let ((proc (call.proc exp)))
        (schedule-local-procedures! proc)
        (if (null? (lambda.args proc))
            (analyze (lambda.body exp) constraints)
            (analyze-unknown-call exp constraints))))
    
    (define (analyze-let1 exp constraints)
      (let* ((proc (call.proc exp))
             (vars (lambda.args proc)))
        (schedule-local-procedures! proc)
        (if (and (pair? vars)
                 (null? (cdr vars)))
            (let* ((T1 (car vars))
                   (E1 (car (call.args exp))))
              (if (and integrate-usual? (call? E1))
                  (let ((proc (call.proc E1))
                        (args (call.args E1)))
                    (if (variable? proc)
                        (let* ((op (variable.name proc))
                               (entry (prim-entry op))
                               (K1 (if entry
                                       (prim-lives-until entry)
                                       available:killer:dead)))
                          (if (not (= K1 available:killer:dead))
                              ; Must copy the call to avoid problems
                              ; with side effects when mutate? is true.
                              (constraints-add!
                               types
                               constraints
                               (make-constraint T1
                                                (make-call proc args)
                                                K1)))))))
              (update-typevar! T1 (analyze E1 constraints))
              (analyze (lambda.body proc) constraints))
            (analyze-unknown-call exp constraints))))
    
    (define (analyze-primop-call exp constraints entry)
      (let* ((op (prim-opcodename entry))
             (args (call.args exp))
             (argtypes (map (lambda (arg) (analyze arg constraints))
                            args))
             (type (rep-result? op argtypes)))
        (constraints-kill! constraints (prim-kills entry))
        (cond ((and (eq? op 'check!)
                    (variable? (car args)))
               (let ((varname (variable.name (car args))))
                 (if (and mutate?
                          (representation-subtype? (car argtypes) rep:true))
                     (call.args-set! exp
                                     (cons (make-constant #t) (cdr args))))
                 (constraints-add! types
                                   constraints
                                   (make-type-constraint
                                    varname
                                    rep:true
                                    available:killer:immortal))))
              ((and mutate? (rep-specific? op argtypes))
               =>
               (lambda (newop)
                 (call.proc-set! exp (make-variable newop)))))
        (or type rep:object)))
    
    (define (analyze-known-call exp constraints vars)
      (let* ((procname (variable.name (call.proc exp)))
             (args (call.args exp))
             (argtypes (map (lambda (arg) (analyze arg constraints))
                            args)))
        (if (not (known-procedure-is-callable? procname))
            (schedule-known-procedure! procname))
        (for-each (lambda (var type)
                    (if (update-typevar! var type)
                        (schedule-known-procedure! procname)))
                  vars
                  argtypes)
        ; FIXME: We aren't analyzing the effects of known local procedures.
        (constraints-kill! constraints available:killer:all)
        (hashtable-get types procname)))
    
    (define (analyze-unknown-call exp constraints)
      (analyze (call.proc exp) constraints)
      (for-each (lambda (arg) (analyze arg constraints))
                (call.args exp))
      (constraints-kill! constraints available:killer:all)
      rep:object)
    
    (define (analyze-known-local-procedure name)
      (if debugging?
          (begin (display "Analyzing ")
                 (display name)
                 (newline)))
      (let ((L (lookup-code name))
            (constraints (make-constraints-table)))
        (schedule-local-procedures! L)
        (let ((type (analyze (lambda.body L) constraints)))
          (if (update-typevar! name type)
              (schedule-callers! name))
          type)))
    
    (define (analyze-unknown-lambda L)
      (if debugging?
          (begin (display "Analyzing escaping lambda expression")
                 (newline)))
      (schedule-local-procedures! L)
      (let ((vars (make-null-terminated (lambda.args L))))
        (for-each (lambda (var)
                    (hashtable-put! types var rep:object))
                  vars)
        (analyze (lambda.body L)
                 (make-constraints-table))))
    
    ; For debugging.
    
    (define (display-types)
      (hashtable-for-each (lambda (f vars)
                            (write f)
                            (display " : returns ")
                            (write (rep->symbol (hashtable-get types f)))
                            (newline)
                            (for-each (lambda (x)
                                        (display "  ")
                                        (write x)
                                        (display ": ")
                                        (write (rep->symbol
                                                (hashtable-get types x)))
                                        (newline))
                                      vars))
                          known))
    
    (define (display-all-types)
      (let* ((vars (hashtable-map (lambda (x type) x) types))
             (vars (twobit-sort (lambda (var1 var2)
                                  (string<=? (symbol->string var1)
                                             (symbol->string var2)))
                                vars)))
        (for-each (lambda (x)
                    (write x)
                    (display ": ")
                    (write (rep->symbol
                            (hashtable-get types x)))
                    (newline))
                  vars)))
    '
    (if debugging?
        (begin (pretty-print (make-readable (car schedule) #t))
               (newline)))
    (if debugging?
        (view-callgraph g))
    
    (for-each (lambda (node)
                (let* ((name (callgraphnode.name node))
                       (code (callgraphnode.code node))
                       (vars (make-null-terminated (lambda.args code)))
                       (known? (symbol? name))
                       (rep (if known? rep:bottom rep:object)))
                  (callgraphnode.info! node #f)
                  (if known?
                      (begin (hashtable-put! known name vars)
                             (hashtable-put! types name rep)))
                  (for-each (lambda (var)
                              (hashtable-put! types var rep))
                            vars)))
              g)
    
    (let loop ()
      (cond ((not (null? schedule))
             (let ((job (car schedule)))
               (set! schedule (cdr schedule))
               (if (symbol? job)
                   (analyze-known-local-procedure job)
                   (analyze-unknown-lambda job))
               (loop)))
            (changed?
             (set! changed? #f)
             (set! schedule (list (callgraphnode.code (car g))))
             (if debugging?
                 (begin (display-all-types) (newline)))
             (loop))))
    
    (if debugging?
        (display-types))
    
    (set! mutate? #t)
    
    ; We don't want to analyze known procedures that are never called.
    
    (set! schedule
          (cons (callgraphnode.code (car g))
                (map callgraphnode.name
                     (filter (lambda (node)
                               (let* ((name (callgraphnode.name node))
                                      (known? (symbol? name))
                                      (marked?
                                       (known-procedure-is-callable? name)))
                                 (callgraphnode.info! node #f)
                                 (and known? marked?)))
                             g))))
    (let loop ()
      (if (not (null? schedule))
          (let ((job (car schedule)))
            (set! schedule (cdr schedule))
            (if (symbol? job)
                (analyze-known-local-procedure job)
                (analyze-unknown-lambda job))
            (loop))))
    
    (if changed?
        (error "Compiler bug in representation inference"))
    
    (if debugging?
        (pretty-print (make-readable (callgraphnode.code (car g)) #t)))
    
    exp))
; Copyright 1999 William D Clinger.
;
; Permission to copy this software, in whole or in part, to use this
; software for any lawful noncommercial purpose, and to redistribute
; this software is granted subject to the restriction that all copies
; made of this software must include this copyright notice in full.
; 
; I also request that you send me a copy of any improvements that you
; make to this software so that they may be incorporated within it to
; the benefit of the Scheme community.
;
; 11 June 1999.
;
; The third "pass" of the Twobit compiler actually consists of several
; passes, which are related by the common theme of flow analysis:
;   interprocedural inlining of known local procedures
;   interprocedural constant propagation and folding
;   intraprocedural commoning, copy propagation, and dead code elimination
;   representation inference (not yet implemented)
;   register targeting
;
; This pass operates as source-to-source transformations on
; expressions written in the subset of Scheme described by the
; following grammar:
;
; "X ..." means zero or more occurrences of X.
;
; L  -->  (lambda (I_1 ...)
;           (begin D ...)
;           (quote (R F G <decls> <doc>)
;           E)
;      |  (lambda (I_1 ... . I_rest)
;           (begin D ...)
;           (quote (R F G <decls> <doc>))
;           E)
; D  -->  (define I L)
; E  -->  (quote K)                        ; constants
;      |  (begin I)                        ; variable references
;      |  L                                ; lambda expressions
;      |  (E0 E1 ...)                      ; calls
;      |  (set! I E)                       ; assignments
;      |  (if E0 E1 E2)                    ; conditionals
;      |  (begin E0 E1 E2 ...)             ; sequential expressions
; I  -->  <identifier>
;
; R  -->  ((I <references> <assignments> <calls>) ...)
; F  -->  (I ...)
; G  -->  (I ...)
;
; Invariants that hold for the input only:
;   *  There are no assignments except to global variables.
;   *  If I is declared by an internal definition, then the right hand
;      side of the internal definition is a lambda expression and I
;      is referenced only in the procedure position of a call.
;   *  R, F, and G are garbage.
;   *  Variables named IGNORED are neither referenced nor assigned.
;   *  The expression does not share structure with the original input,
;      but might share structure with itself.
;
; Invariants that hold for the output only:
;   *  There are no assignments except to global variables.
;   *  If I is declared by an internal definition, then the right hand
;      side of the internal definition is a lambda expression and I
;      is referenced only in the procedure position of a call.
;   *  R is garbage.
;   *  For each lambda expression, the associated F is a list of all
;      the identifiers that occur free in the body of that lambda
;      expression, and possibly a few extra identifiers that were
;      once free but have been removed by optimization.
;   *  If a lambda expression is declared to be in A-normal form (see
;      pass3anormal.sch), then it really is in A-normal form.
;
; The phases of pass 3 interact with the referencing information R
; and the free variables F as follows:
;
; Inlining               ignores R,   ignores F,  destroys R,  destroys F.
; Constant propagation      uses R,   ignores F, preserves R, preserves F.
; Conversion to ANF      ignores R,   ignores F,  destroys R,  destroys F.
; Commoning              ignores R,   ignores F,  destroys R,  computes F.
; Register targeting     ignores R,   ignores F,  destroys R,  computes F.

(define (pass3 exp)
  
  (define (phase1 exp)
    (if (interprocedural-inlining)
        (let ((g (callgraph exp)))
          (inline-using-callgraph! g)
          exp)
        exp))
  
  (define (phase2 exp)
    (if (interprocedural-constant-propagation)
        (constant-propagation (copy-exp exp))
        exp))
  
  (define (phase3 exp)
    (if (common-subexpression-elimination)
        (let* ((exp (if (interprocedural-constant-propagation)
                        exp
                        ; alpha-conversion
                        (copy-exp exp)))
               (exp (a-normal-form exp)))
          (if (representation-inference)
              (intraprocedural-commoning exp 'commoning)
              (intraprocedural-commoning exp)))
        exp))
  
  (define (phase4 exp)
    (if (representation-inference)
        (let ((exp (cond ((common-subexpression-elimination)
                          exp)
                         ((interprocedural-constant-propagation)
                          (a-normal-form exp))
                         (else
                          ; alpha-conversion
                          (a-normal-form (copy-exp exp))))))
          (intraprocedural-commoning
           (representation-analysis exp)))
        exp))
  
  (define (finish exp)
    (if (and (not (interprocedural-constant-propagation))
             (not (common-subexpression-elimination)))
        (begin (compute-free-variables! exp)
               exp)
        ;(make-begin (list (make-constant 'anf) exp))))
        exp))
  
  (define (verify exp)
    (check-referencing-invariants exp 'free)
    exp)
  
  (if (global-optimization)
      (verify (finish (phase4 (phase3 (phase2 (phase1 exp))))))
      (begin (compute-free-variables! exp)
             (verify exp))))
; Copyright 1991 Lightship Software, Incorporated.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 4 June 1999

; Implements the following abstract data types.
;
; labels
;     (init-labels)
;     (make-label)
;     cg-label-counter
;
; assembly streams
;     (make-assembly-stream)
;     (assembly-stream-code as)
;     (gen! as . instruction)
;     (gen-instruction! as instruction)
;     (gen-save! as frame)
;     (gen-restore! as frame)
;     (gen-pop! as frame)
;     (gen-setstk! as frame v)
;     (gen-store! as frame r v)
;     (gen-load! as frame r v)
;     (gen-stack! as frame v)
;
; temporaries
;     (init-temps)
;     (newtemp)
;     (newtemps)
;     newtemp-counter
;
; register environments
;     (cgreg-initial)
;     (cgreg-copy regs)
;     (cgreg-tos regs)
;     (cgreg-liveregs regs)
;     (cgreg-live regs r)
;     (cgreg-vars regs)
;     (cgreg-bind! regs r v)
;     (cgreg-bindregs! regs vars)
;     (cgreg-rename! regs alist)
;     (cgreg-release! regs r)
;     (cgreg-clear! regs)
;     (cgreg-lookup regs var)
;     (cgreg-lookup-reg regs r)
;     (cgreg-join! regs1 regs2)
;
; stack frame environments
;     (cgframe-initial)
;     (cgframe-size-cell frame)
;     (cgframe-size frame)
;     (cgframe-copy frame)
;     (cgframe-join! frame1 frame2)
;     (cgframe-update-stale! frame)
;     (cgframe-used! frame)
;     (cgframe-bind! frame n v instruction)
;     (cgframe-touch! frame v)
;     (cgframe-rename! frame alist)
;     (cgframe-release! frame v)
;     (cgframe-lookup frame v)
;     (cgframe-spilled? frame v)
;
; environments
;     (entry.name entry)
;     (entry.kind entry)
;     (entry.rib entry)
;     (entry.offset entry)
;     (entry.label entry)
;     (entry.regnum entry)
;     (entry.arity entry)
;     (entry.op entry)
;     (entry.imm entry)
;     (cgenv-initial)
;     (cgenv-lookup env id)
;     (cgenv-extend env vars procs)
;     (cgenv-bindprocs env procs)
;     (var-lookup var regs frame env)

; Labels.

(define (init-labels)
  (set! cg-label-counter 1000))

(define (make-label)
  (set! cg-label-counter (+ cg-label-counter 1))
  cg-label-counter)

(define cg-label-counter 1000)

;    an assembly stream into which instructions should be emitted
;    an expression
;    the desired target register ('result, a register number, or '#f)
;    a register environment [cgreg]
;    a stack-frame environment [cgframe]
;      contains size of frame, current top of frame
;    a compile-time environment [cgenv]
;    a flag indicating whether the expression is in tail position

; Assembly streams, into which instructions are emitted by side effect.
; Represented as a list of two things:
;
;     Assembly code, represented as a pair whose car is a nonempty list
;     whose cdr is a possibly empty list of MacScheme machine assembly
;     instructions, and whose cdr is the last pair of the car.
;
;     Any Scheme object that the code generator wants to associate with
;     this code.

(define (make-assembly-stream)
  (let ((code (list (list 0))))
    (set-cdr! code (car code))
    (list code #f)))

(define (assembly-stream-code output)
  (if (local-optimizations)
      (filter-basic-blocks (cdar (car output)))
      (cdar (car output))))

(define (assembly-stream-info output)
  (cadr output))

(define (assembly-stream-info! output x)
  (set-car! (cdr output) x)
  #f)

(define (gen-instruction! output instruction)
  (let ((pair (list instruction))
        (code (car output)))
    (set-cdr! (cdr code) pair)
    (set-cdr! code pair)
    output))

;

(define (gen! output . instruction)
  (gen-instruction! output instruction))

(define (gen-save! output frame t0)
  (let ((size (cgframe-size-cell frame)))
    (gen-instruction! output (cons $save size))
    (gen-store! output frame 0 t0)
    (cgframe:stale-set! frame '())))

(define (gen-restore! output frame)
  (let ((size (cgframe-size-cell frame)))
    (gen-instruction! output (cons $restore size))))

(define (gen-pop! output frame)
  (let ((size (cgframe-size-cell frame)))
    (gen-instruction! output (cons $pop size))))

(define (gen-setstk! output frame tempname)
  (let ((instruction (list $nop $setstk -1)))
    (cgframe-bind! frame tempname instruction)
    (gen-instruction! output instruction)))

(define (gen-store! output frame r tempname)
  (let ((instruction (list $nop $store r -1)))
    (cgframe-bind! frame tempname instruction)
    (gen-instruction! output instruction)))

(define (gen-load! output frame r tempname)
  (cgframe-touch! frame tempname)
  (let ((n (entry.slotnum (cgframe-lookup frame tempname))))
    (gen! output $load r n)))

(define (gen-stack! output frame tempname)
  (cgframe-touch! frame tempname)
  (let ((n (entry.slotnum (cgframe-lookup frame tempname))))
    (gen! output $stack n)))

; Returns a temporary name.
; Temporaries are compared using EQ?, so the use of small
; exact integers as temporary names is implementation-dependent.

(define (init-temps)
  (set! newtemp-counter 5000))

(define (newtemp)
  (set! newtemp-counter
        (+ newtemp-counter 1))
  newtemp-counter)

(define newtemp-counter 5000)

(define (newtemps n)
  (if (zero? n)
      '()
      (cons (newtemp)
            (newtemps (- n 1)))))

; New representation of
; Register environments.
; Represented as a list of three items:
;     an exact integer, one more than the highest index of a live register
;     a mutable vector with *nregs* elements of the form
;         #f        (the register is dead)
;         #t        (the register is live)
;         v         (the register contains variable v)
;         t         (the register contains temporary variable t)
;     a mutable vector of booleans: true if the register might be stale

(define (cgreg-makeregs n v1 v2) (list n v1 v2))

(define (cgreg-liveregs regs)
  (car regs))

(define (cgreg-contents regs)
  (cadr regs))

(define (cgreg-stale regs)
  (caddr regs))

(define (cgreg-liveregs-set! regs n)
  (set-car! regs n)
  regs)

(define (cgreg-initial)
  (let ((v1 (make-vector *nregs* #f))
        (v2 (make-vector *nregs* #f)))
    (cgreg-makeregs 0 v1 v2)))

(define (cgreg-copy regs)
  (let* ((newregs (cgreg-initial))
         (v1a (cgreg-contents regs))
         (v2a (cgreg-stale regs))
         (v1 (cgreg-contents newregs))
         (v2 (cgreg-stale newregs))
         (n (vector-length v1a)))
    (cgreg-liveregs-set! newregs (cgreg-liveregs regs))
    (do ((i 0 (+ i 1)))
        ((= i n)
         newregs)
        (vector-set! v1 i (vector-ref v1a i))
        (vector-set! v2 i (vector-ref v2a i)))))

(define (cgreg-tos regs)
  (- (cgreg-liveregs regs) 1))

(define (cgreg-live regs r)
  (if (eq? r 'result)
      (cgreg-tos regs)
      (max r (cgreg-tos regs))))

(define (cgreg-vars regs)
  (let ((m (cgreg-liveregs regs))
        (v (cgreg-contents regs)))
    (do ((i (- m 1) (- i 1))
         (vars '()
               (cons (vector-ref v i)
                     vars)))
        ((< i 0)
         vars))))

(define (cgreg-bind! regs r t)
  (let ((m (cgreg-liveregs regs))
        (v (cgreg-contents regs)))
    (vector-set! v r t)
    (if (>= r m)
        (cgreg-liveregs-set! regs (+ r 1)))))

(define (cgreg-bindregs! regs vars)
  (do ((m (cgreg-liveregs regs) (+ m 1))
       (v (cgreg-contents regs))
       (vars vars (cdr vars)))
      ((null? vars)
       (cgreg-liveregs-set! regs m)
       regs)
      (vector-set! v m (car vars))))

(define (cgreg-rename! regs alist)
  (do ((i (- (cgreg-liveregs regs) 1) (- i 1))
       (v (cgreg-contents regs)))
      ((negative? i))
      (let ((var (vector-ref v i)))
        (if var
            (let ((probe (assv var alist)))
              (if probe
                  (vector-set! v i (cdr probe))))))))

(define (cgreg-release! regs r)
  (let ((m (cgreg-liveregs regs))
        (v (cgreg-contents regs)))
    (vector-set! v r #f)
    (vector-set! (cgreg-stale regs) r #t)
    (if (= r (- m 1))
        (do ((m r (- m 1)))
            ((or (negative? m)
                 (vector-ref v m))
             (cgreg-liveregs-set! regs (+ m 1)))))))

(define (cgreg-release-except! regs vars)
  (do ((i (- (cgreg-liveregs regs) 1) (- i 1))
       (v (cgreg-contents regs)))
      ((negative? i))
      (let ((var (vector-ref v i)))
        (if (and var (not (memq var vars)))
            (cgreg-release! regs i)))))

(define (cgreg-clear! regs)
  (let ((m (cgreg-liveregs regs))
        (v1 (cgreg-contents regs))
        (v2 (cgreg-stale regs)))
    (do ((r 0 (+ r 1)))
        ((= r m)
         (cgreg-liveregs-set! regs 0))
        (vector-set! v1 r #f)
        (vector-set! v2 r #t))))

(define (cgreg-lookup regs var)
  (let ((m (cgreg-liveregs regs))
        (v (cgreg-contents regs)))
    (define (loop i)
      (cond ((< i 0)
             #f)
            ((eq? var (vector-ref v i))
             (list var 'register i '(object)))
            (else
             (loop (- i 1)))))
    (loop (- m 1))))

(define (cgreg-lookup-reg regs r)
  (let ((m (cgreg-liveregs regs))
        (v (cgreg-contents regs)))
    (if (<= m r)
        #f
        (vector-ref v r))))

(define (cgreg-join! regs1 regs2)
  (let ((m1 (cgreg-liveregs regs1))
        (m2 (cgreg-liveregs regs2))
        (v1 (cgreg-contents regs1))
        (v2 (cgreg-contents regs2))
        (stale1 (cgreg-stale regs1)))
    (do ((i (- (max m1 m2) 1) (- i 1)))
        ((< i 0)
         (cgreg-liveregs-set! regs1 (min m1 m2)))
        (let ((x1 (vector-ref v1 i))
              (x2 (vector-ref v2 i)))
          (cond ((eq? x1 x2)
                 #t)
                ((not x1)
                 (if x2
                     (vector-set! stale1 i #t)))
                (else
                 (vector-set! v1 i #f)
                 (vector-set! stale1 i #t)))))))

; New representation of
; Stack-frame environments.
; Represented as a three-element list.
;
; Its car is a list whose car is a list of slot entries, each
; of the form
;    (v n instruction stale)
; where
;    v is the name of a variable or temporary,
;    n is #f or a slot number,
;    instruction is a possibly phantom store or setstk instruction
;       that stores v into slot n, and
;    stale is a list of stale slot entries, each of the form
;          (#t . n)
;       or (#f . -1)
;       where slot n had been allocated, initialized, and released
;       before the store or setstk instruction was generated.
; Slot entries are updated by side effect.
;
; Its cadr is the list of currently stale slots.
;
; Its caddr is a list of variables that are free in the continuation,
; or #f if that information is unknown.
; This information allows a direct-style code generator to know when
; a slot becomes stale.
;
; Its cadddr is the size of the stack frame, which can be
; increased but not decreased.  The cdddr of the stack frame
; environment is shared with the save instruction that
; created the frame.  What a horrible crock!

; This stuff is private to the implementation of stack-frame
; environments.

(define cgframe:slots car)
(define cgframe:stale cadr)
(define cgframe:livevars caddr)
(define cgframe:slot.name car)
(define cgframe:slot.offset cadr)
(define cgframe:slot.instruction caddr)
(define cgframe:slot.stale cadddr)

(define cgframe:slots-set! set-car!)
(define (cgframe:stale-set! frame stale)
  (set-car! (cdr frame) stale))
(define (cgframe:livevars-set! frame vars)
  (set-car! (cddr frame) vars))

(define cgframe:slot.name-set! set-car!)

(define (cgframe:slot.offset-set! entry n)
  (let ((instruction (caddr entry)))
    (if (or (not (eq? #f (cadr entry)))
            (not (eq? $nop (car instruction))))
        (error "Compiler bug: cgframe" entry)
        (begin
         (set-car! (cdr entry) n)
         (set-car! instruction (cadr instruction))
         (set-cdr! instruction (cddr instruction))
         (if (eq? $setstk (car instruction))
             (set-car! (cdr instruction) n)
             (set-car! (cddr instruction) n))))))

; Reserves a slot offset that was unused where the instruction
; of the slot entry was generated, and returns that offset.

(define (cgframe:unused-slot frame entry)
  (let* ((stale (cgframe:slot.stale entry))
         (probe (assq #t stale)))
    (if probe
        (let ((n (cdr probe)))
          (if (zero? n)
              (cgframe-used! frame))
          (set-car! probe #f)
          n)
        (let* ((cell (cgframe-size-cell frame))
               (n (+ 1 (car cell))))
          (set-car! cell n)
          (if (zero? n)
              (cgframe:unused-slot frame entry)
              n)))))

; Public entry points.

; The runtime system requires slot 0 of a frame to contain
; a closure whose code pointer contains the return address
; of the frame.
; To prevent slot 0 from being used for some other purpose,
; we rely on a complex trick:  Slot 0 is initially stale.
; Gen-save! generates a store instruction for register 0,
; with slot 0 as the only stale slot for that instruction;
; then gen-save! clears the frame's set of stale slots, which
; prevents other store instructions from using slot 0.

(define (cgframe-initial)
  (list '()
        (list (cons #t 0))
        '#f
        -1))

(define cgframe-livevars cgframe:livevars)
(define cgframe-livevars-set! cgframe:livevars-set!)

(define (cgframe-size-cell frame)
  (cdddr frame))

(define (cgframe-size frame)
  (car (cgframe-size-cell frame)))

(define (cgframe-used! frame)
  (if (negative? (cgframe-size frame))
      (set-car! (cgframe-size-cell frame) 0)))

; Called only by gen-store!, gen-setstk!

(define (cgframe-bind! frame var instruction)
  (cgframe:slots-set! frame
                      (cons (list var #f instruction (cgframe:stale frame))
                            (cgframe:slots frame))))

; Called only by gen-load!, gen-stack!

(define (cgframe-touch! frame var)
  (let ((entry (assq var (cgframe:slots frame))))
    (if entry
        (let ((n (cgframe:slot.offset entry)))
          (if (eq? #f n)
              (let ((n (cgframe:unused-slot frame entry)))
                (cgframe:slot.offset-set! entry n))))
        (error "Compiler bug: cgframe-touch!" frame var))))

(define (cgframe-rename! frame alist)
  (for-each (lambda (entry)
              (let ((probe (assq (cgframe:slot.name entry) alist)))
                (if probe
                    (cgframe:slot.name-set! entry (cdr probe)))))
            (cgframe:slots frame)))

(define (cgframe-release! frame var)
  (let* ((slots (cgframe:slots frame))
         (entry (assq var slots)))
    (if entry
        (begin (cgframe:slots-set! frame (remq entry slots))
               (let ((n (cgframe:slot.offset entry)))
                 (if (and (not (eq? #f n))
                          (not (zero? n)))
                     (cgframe:stale-set!
                      frame
                      (cons (cons #t n)
                            (cgframe:stale frame)))))))))

(define (cgframe-release-except! frame vars)
  (let loop ((slots (reverse (cgframe:slots frame)))
             (newslots '())
             (stale (cgframe:stale frame)))
    (if (null? slots)
        (begin (cgframe:slots-set! frame newslots)
               (cgframe:stale-set! frame stale))
        (let ((slot (car slots)))
          (if (memq (cgframe:slot.name slot) vars)
              (loop (cdr slots)
                    (cons slot newslots)
                    stale)
              (let ((n (cgframe:slot.offset slot)))
                (cond ((eq? n #f)
                       (loop (cdr slots)
                             newslots
                             stale))
                      ((zero? n)
                       (loop (cdr slots)
                             (cons slot newslots)
                             stale))
                      (else
                       (loop (cdr slots)
                             newslots
                             (cons (cons #t n) stale))))))))))

(define (cgframe-lookup frame var)
  (let ((entry (assq var (cgframe:slots frame))))
    (if entry
        (let ((n (cgframe:slot.offset entry)))
          (if (eq? #f n)
              (cgframe-touch! frame var))
          (list var 'frame (cgframe:slot.offset entry) '(object)))
        #f)))

(define (cgframe-spilled? frame var)
  (let ((entry (assq var (cgframe:slots frame))))
    (if entry
        (let ((n (cgframe:slot.offset entry)))
          (not (eq? #f n)))
        #f)))

; For a conditional expression, the then and else parts must be
; evaluated using separate copies of the frame environment,
; and those copies must be resolved at the join point.  The
; nature of the resolution depends upon whether the conditional
; expression is in a tail position.
;
; Critical invariant:
; Any store instructions that are generated within either arm of the
; conditional involve variables and temporaries that are local to the
; conditional.
;
; If the conditional expression is in a tail position, then a slot
; that is stale after the test can be allocated independently by the
; two arms of the conditional.  If the conditional expression is in a
; non-tail position, then the slot can be allocated independently
; provided it is not a candidate destination for any previous emitted
; store instruction.

(define (cgframe-copy frame)
  (cons (car frame)
        (cons (cadr frame)
              (cons (caddr frame)
                    (cdddr frame)))))

(define (cgframe-update-stale! frame)
  (let* ((n (cgframe-size frame))
         (v (make-vector (+ 1 n) #t))
         (stale (cgframe:stale frame)))
    (for-each (lambda (x)
                (if (car x)
                    (let ((i (cdr x)))
                      (if (<= i n)
                          (vector-set! v i #f)))))
              stale)
    (for-each (lambda (slot)
                (let ((offset (cgframe:slot.offset slot)))
                  (if offset
                      (vector-set! v offset #f)
                      (for-each (lambda (stale)
                                  (if (car stale)
                                      (let ((i (cdr stale)))
                                        (if (< i n)
                                            (vector-set! v i #f)))))
                                (cgframe:slot.stale slot)))))
              (cgframe:slots frame))
    (do ((i n (- i 1))
         (stale (filter car stale)
                (if (vector-ref v i)
                    (cons (cons #t i) stale)
                    stale)))
        ((<= i 0)
         (cgframe:stale-set! frame stale)))))

(define (cgframe-join! frame1 frame2)
  (let* ((slots1 (cgframe:slots frame1))
         (slots2 (cgframe:slots frame2))
         (slots (intersection slots1 slots2))
         (deadslots (append (difference slots1 slots)
                            (difference slots2 slots)))
         (deadoffsets (make-set
                       (filter (lambda (x) (not (eq? x #f)))
                               (map cgframe:slot.offset deadslots))))
         (stale1 (cgframe:stale frame1))
         (stale2 (cgframe:stale frame2))
         (stale (intersection stale1 stale2))
         (stale (append (map (lambda (n) (cons #t n))
                             deadoffsets)
                        stale)))
    (cgframe:slots-set! frame1 slots)
    (cgframe:stale-set! frame1 stale)))

; Environments.
;
; Each identifier has one of the following kinds of entry.
;
;    (<name> register   <number>                (object))
;    (<name> frame      <slot>                  (object))
;    (<name> lexical    <rib>    <offset>       (object))
;    (<name> procedure  <rib>    <label>        (object))
;    (<name> integrable <arity>  <op>     <imm> (object))
;    (<name> global                             (object))
;
; Implementation.
;
; An environment is represented as a list of the form
;
;    ((<entry> ...)                          ; lexical rib
;     ...)
;
; where each <entry> has one of the forms
;
;    (<name> lexical <offset> (object))
;    (<name> procedure <rib> <label> (object))
;    (<name> integrable <arity> <op> <imm> (object))

(define entry.name car)
(define entry.kind cadr)
(define entry.rib caddr)
(define entry.offset cadddr)
(define entry.label cadddr)
(define entry.regnum caddr)
(define entry.slotnum caddr)
(define entry.arity caddr)
(define entry.op cadddr)
(define (entry.imm entry) (car (cddddr entry)))

(define (cgenv-initial integrable)
  (list (map (lambda (x)
               (list (car x)
                     'integrable
                     (cadr x)
                     (caddr x)
                     (cadddr x)
                     '(object)))
             integrable)))

(define (cgenv-lookup env id)
  (define (loop ribs m)
    (if (null? ribs)
        (cons id '(global (object)))
        (let ((x (assq id (car ribs))))
          (if x
              (case (cadr x)
                ((lexical)
                 (cons id
                       (cons (cadr x)
                             (cons m (cddr x)))))
                ((procedure)
                 (cons id
                       (cons (cadr x)
                             (cons m (cddr x)))))
                ((integrable)
                 (if (integrate-usual-procedures)
                     x
                     (loop '() m)))
                (else ???))
              (loop (cdr ribs) (+ m 1))))))
  (loop env 0))

(define (cgenv-extend env vars procs)
  (cons (do ((n 0 (+ n 1))
             (vars vars (cdr vars))
             (rib (map (lambda (id)
                         (list id 'procedure (make-label) '(object)))
                       procs)
                  (cons (list (car vars) 'lexical n '(object)) rib)))
            ((null? vars) rib))
        env))

(define (cgenv-bindprocs env procs)
  (cons (append (map (lambda (id)
                       (list id 'procedure (make-label) '(object)))
                     procs)
                (car env))
        (cdr env)))

(define (var-lookup var regs frame env)
  (or (cgreg-lookup regs var)
      (cgframe-lookup frame var)
      (cgenv-lookup env var)))

; Compositions.

(define compile
  (lambda (x)
    (pass4 (pass3 (pass2 (pass1 x))) $usual-integrable-procedures$)))

(define compile-block
  (lambda (x)
    (pass4 (pass3 (pass2 (pass1-block x))) $usual-integrable-procedures$)))

; For testing.

(define foo
  (lambda (x)
    (pretty-print (compile x))))

; Find the smallest number of registers such that
; adding more registers does not affect the code
; generated for x (from 4 to 32 registers).

(define (minregs x)
  (define (defregs R)
    (set! *nregs* R)
    (set! *lastreg* (- *nregs* 1))
    (set! *fullregs* (quotient *nregs* 2)))
  (defregs 32)
  (let ((code (assemble (compile x))))
    (define (binary-search m1 m2)
      (if (= (+ m1 1) m2)
          m2
          (let ((midpt (quotient (+ m1 m2) 2)))
            (defregs midpt)
            (if (equal? code (assemble (compile x)))
                (binary-search m1 midpt)
                (binary-search midpt m2)))))
    (defregs 4)
    (let ((newcode (assemble (compile x))))
      (if (equal? code newcode)
          4
          (binary-search 4 32)))))

; Minimums:
;  browse     10
;  triangle    5
;  traverse   10
;  destruct    6
;  puzzle      8,8,10,7
;  tak         6
;  fft        28   (changing the named lets to macros didn't matter)
; Copyright 1991 William Clinger
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 7 June 1999.
;
; Fourth pass of the Twobit compiler:
;   code generation for the MacScheme machine.
;
; This pass operates on input expressions described by the
; following grammar and the invariants that follow it.
;
; "X ..." means zero or more occurrences of X.
;
; L  -->  (lambda (I_1 ...)
;           (begin D ...)
;           (quote (R F G <decls> <doc>)
;           E)
;      |  (lambda (I_1 ... . I_rest)
;           (begin D ...)
;           (quote (R F G <decls> <doc>))
;           E)
; D  -->  (define I L)
; E  -->  (quote K)                        ; constants
;      |  (begin I)                        ; variable references
;      |  L                                ; lambda expressions
;      |  (E0 E1 ...)                      ; calls
;      |  (set! I E)                       ; assignments
;      |  (if E0 E1 E2)                    ; conditionals
;      |  (begin E0 E1 E2 ...)             ; sequential expressions
; I  -->  <identifier>
;
; R  -->  ((I <references> <assignments> <calls>) ...)
; F  -->  (I ...)
; G  -->  (I ...)
;
; Invariants that hold for the input
;   *  There are no assignments except to global variables.
;   *  If I is declared by an internal definition, then the right hand
;      side of the internal definition is a lambda expression and I
;      is referenced only in the procedure position of a call.
;   *  Every procedure defined by an internal definition takes a
;      fixed number of arguments.
;   *  Every call to a procedure defined by an internal definition
;      passes the correct number of arguments.
;   *  For each lambda expression, the associated F is a list of all
;      the identifiers that occur free in the body of that lambda
;      expression, and possibly a few extra identifiers that were
;      once free but have been removed by optimization.
;   *  For each lambda expression, the associated G is a subset of F
;      that contains every identifier that occurs free within some
;      inner lambda expression that escapes, and possibly a few that
;      don't.  (Assignment-elimination does not calculate G exactly.)
;   *  Variables named IGNORED are neither referenced nor assigned.
;   *  Any lambda expression that is declared to be in A-normal form
;      really is in A-normal form.
;
; 
; Stack frames are created by "save" instructions.
; A save instruction is generated
; 
;     *  at the beginning of each lambda body
;     *  at the beginning of the code for each arm of a conditional,
;        provided:
;          the conditional is in a tail position
;          the frames that were allocated by the save instructions
;            that dominate the arms of the conditional have not been
;            used (those save instructions will be eliminated during
;            assembly)
;
; The operand of a save instruction, and of its matching pop instructions,
; increases automatically as frame slots are allocated.
; 
; The code generated to return from a procedure is
; 
;         pop     n
;         return
; 
; The code generated for a tail call is
; 
;         pop     n
;         invoke  ...
;
; Invariant:  When the code generator reserves an argument register
; to hold a value, that value is named, and is stored into the current
; stack frame.  These store instructions are eliminated during assembly
; unless there is a matching load instruction.  If all of the instructions
; that store into a stack frame are eliminated, then the stack frame
; itself is eliminated.
; Exception:  An argument register may be used without naming or storing
; its value provided the register is not in use and no expressions are
; evaluated while it contains the unnamed and unstored value.


(define (pass4 exp integrable)
  (init-labels)
  (init-temps)
  (let ((output (make-assembly-stream))
        (frame (cgframe-initial))
        (regs (cgreg-initial))
        (t0 (newtemp)))
    (assembly-stream-info! output (make-hashtable equal-hash assoc))
    (cgreg-bind! regs 0 t0)
    (gen-save! output frame t0)
    (cg0 output
         exp
         'result
         regs
         frame
         (cgenv-initial integrable)
         #t)
    (pass4-code output)))

(define (pass4-code output)
  (hashtable-for-each (lambda (situation label)
                        (cg-trap output situation label))
                      (assembly-stream-info output))
  (assembly-stream-code output))

; Given:
;    an assembly stream into which instructions should be emitted
;    an expression
;    the target register
;      ('result, a register number, or '#f; tail position implies 'result)
;    a register environment [cgreg]
;    a stack-frame environment [cgframe]
;    a compile-time environment [cgenv]
;    a flag indicating whether the expression is in tail position
; Returns:
;    the target register ('result or a register number)
; Side effects:
;    may change the register and stack-frame environments
;    may increase the size of the stack frame, which changes previously
;       emitted instructions
;    writes instructions to the assembly stream

(define (cg0 output exp target regs frame env tail?)
  (case (car exp)
    ((quote)    (gen! output $const (constant.value exp))
                (if tail?
                    (begin (gen-pop! output frame)
                           (gen! output $return)
                           'result)
                    (cg-move output frame regs 'result target)))
    ((lambda)   (cg-lambda output exp regs frame env)
                (if tail?
                    (begin (gen-pop! output frame)
                           (gen! output $return)
                           'result)
                    (cg-move output frame regs 'result target)))
    ((set!)     (cg0 output (assignment.rhs exp) 'result regs frame env #f)
                (cg-assignment-result output exp target regs frame env tail?))
    ((if)       (cg-if output exp target regs frame env tail?))
    ((begin)    (if (variable? exp)
                    (cg-variable output exp target regs frame env tail?)
                    (cg-sequential output exp target regs frame env tail?)))
    (else       (cg-call output exp target regs frame env tail?))))

; Lambda expressions that evaluate to closures.
; This is hard because the MacScheme machine's lambda instruction
; closes over the values that are in argument registers 0 through r
; (where r can be larger than *nregs*).
; The set of free variables is calculated and then sorted to minimize
; register shuffling.
;
; Returns: nothing.

(define (cg-lambda output exp regs frame env)
  (let* ((args (lambda.args exp))
         (vars (make-null-terminated args))
         (free (difference (lambda.F exp) vars))
         (free (cg-sort-vars free regs frame env))
         (newenv (cgenv-extend env (cons #t free) '()))
         (newoutput (make-assembly-stream)))
    (assembly-stream-info! newoutput (make-hashtable equal-hash assoc))
    (gen! newoutput $.proc)
    (if (list? args)
        (gen! newoutput $args= (length args))
        (gen! newoutput $args>= (- (length vars) 1)))
    (cg-known-lambda newoutput exp newenv)
    (cg-eval-vars output free regs frame env)
    ; FIXME
    '
    (if (not (ignore-space-leaks))
        ; FIXME: Is this the right constant?
        (begin (gen! output $const #f)
               (gen! output $setreg 0)))
    (gen! output
          $lambda
          (pass4-code newoutput)
          (length free)
          (lambda.doc exp))
    ; FIXME
    '
    (if (not (ignore-space-leaks))
        ; FIXME: This load forces a stack frame to be allocated.
        (gen-load! output frame 0 (cgreg-lookup-reg regs 0)))))

; Given a list of free variables, filters out the ones that
; need to be copied into a closure, and sorts them into an order
; that reduces register shuffling.  Returns a sorted version of
; the list in which the first element (element 0) should go
; into register 1, the second into register 2, and so on.

(define (cg-sort-vars free regs frame env)
  (let* ((free (filter (lambda (var)
                         (case (entry.kind
                                (var-lookup var regs frame env))
                           ((register frame)
                            #t)
                           ((lexical)
                            (not (ignore-space-leaks)))
                           (else #f)))
                       free))
         (n (length free))
         (m (min n (- *nregs* 1)))
         (vec (make-vector m #f)))
    (define (loop1 free free-notregister)
      (if (null? free)
          (loop2 0 free-notregister)
          (let* ((var (car free))
                 (entry (cgreg-lookup regs var)))
            (if entry
                (let ((r (entry.regnum entry)))
                  (if (<= r n)
                      (begin (vector-set! vec (- r 1) var)
                             (loop1 (cdr free)
                                    free-notregister))
                      (loop1 (cdr free)
                             (cons var free-notregister))))
                (loop1 (cdr free)
                       (cons var free-notregister))))))
    (define (loop2 i free)
      (cond ((null? free)
             (vector->list vec))
            ((= i m)
             (append (vector->list vec) free))
            ((vector-ref vec i)
             (loop2 (+ i 1) free))
            (else
             (vector-set! vec i (car free))
             (loop2 (+ i 1) (cdr free)))))
    (loop1 free '())))

; Fetches the given list of free variables into the corresponding
; registers in preparation for a $lambda or $lexes instruction.

(define (cg-eval-vars output free regs frame env)
  (let ((n (length free))
        (R-1 (- *nregs* 1)))
    (if (>= n R-1)
        (begin (gen! output $const '())
               (gen! output $setreg R-1)
               (cgreg-release! regs R-1)))
    (do ((r n (- r 1))
         (vars (reverse free) (cdr vars)))
        ((zero? r))
        (let* ((v (car vars))
               (entry (var-lookup v regs frame env)))
          (case (entry.kind entry)
            ((register)
             (let ((r1 (entry.regnum entry)))
               (if (not (eqv? r r1))
                   (if (< r R-1)
                       (begin (gen! output $movereg r1 r)
                              (cgreg-bind! regs r v))
                       (gen! output $reg r1 v)))))
            ((frame)
             (if (< r R-1)
                 (begin (gen-load! output frame r v)
                        (cgreg-bind! regs r v))
                 (gen-stack! output frame v)))
            ((lexical)
             (gen! output $lexical
                          (entry.rib entry)
                          (entry.offset entry)
                          v)
             (if (< r R-1)
                 (begin (gen! output $setreg r)
                        (cgreg-bind! regs r v)
                        (gen-store! output frame r v))))
            (else
             (error "Bug in cg-close-lambda")))
          (if (>= r R-1)
              (begin (gen! output $op2 $cons R-1)
                     (gen! output $setreg R-1)))))))

; Lambda expressions that appear on the rhs of a definition are
; compiled here.  They don't need an args= instruction at their head.
;
; Returns: nothing.

(define (cg-known-lambda output exp env)
  (let* ((vars (make-null-terminated (lambda.args exp)))
         (regs (cgreg-initial))
         (frame (cgframe-initial))
         (t0 (newtemp)))
    (if (member A-normal-form-declaration (lambda.decls exp))
        (cgframe-livevars-set! frame '()))
    (cgreg-bind! regs 0 t0)
    (gen-save! output frame t0)
    (do ((r 1 (+ r 1))
         (vars vars (cdr vars)))
        ((or (null? vars)
             (= r *lastreg*))
         (if (not (null? vars))
             (begin (gen! output $movereg *lastreg* 1)
                    (cgreg-release! regs 1)
                    (do ((vars vars (cdr vars)))
                        ((null? vars))
                        (gen! output $reg 1)
                        (gen! output $op1 $car:pair)
                        (gen-setstk! output frame (car vars))
                        (gen! output $reg 1)
                        (gen! output $op1 $cdr:pair)
                        (gen! output $setreg 1)))))
        (cgreg-bind! regs r (car vars))
        (gen-store! output frame r (car vars)))
    (cg-body output
             exp
             'result
             regs
             frame
             env
             #t)))

; Compiles a let or lambda body.
; The arguments of the lambda expression L are already in
; registers or the stack frame, as specified by regs and frame.
;
; The problem here is that the free variables of an internal
; definition must be in a heap-allocated environment, so any
; such variables in registers must be copied to the heap.
;
; Returns: destination register.

(define (cg-body output L target regs frame env tail?)
  (let* ((exp (lambda.body L))
         (defs (lambda.defs L))
         (free (apply-union
                      (map (lambda (def)
                             (let ((L (def.rhs def)))
                               (difference (lambda.F L)
                                           (lambda.args L))))
                           defs))))
    (cond ((or (null? defs) (constant? exp) (variable? exp))
           (cg0 output exp target regs frame env tail?))
          ((lambda? exp)
           (let* ((free (cg-sort-vars
                         (union free
                                (difference
                                 (lambda.F exp)
                                 (make-null-terminated (lambda.args exp))))
                         regs frame env))
                  (newenv1 (cgenv-extend env
                                         (cons #t free)
                                         (map def.lhs defs)))
                  (args (lambda.args exp))
                  (vars (make-null-terminated args))
                  (newoutput (make-assembly-stream)))
             (assembly-stream-info! newoutput (make-hashtable equal-hash assoc))
             (gen! newoutput $.proc)
             (if (list? args)
                 (gen! newoutput $args= (length args))
                 (gen! newoutput $args>= (- (length vars) 1)))
             (cg-known-lambda newoutput exp newenv1)
             (cg-defs newoutput defs newenv1)
             (cg-eval-vars output free regs frame env)
             (gen! output
                   $lambda
                   (pass4-code newoutput)
                   (length free)
                   (lambda.doc exp))
             (if tail?
                 (begin (gen-pop! output frame)
                        (gen! output $return)
                        'result)
                 (cg-move output frame regs 'result target))))
          ((every? (lambda (def)
                     (every? (lambda (v)
                               (case (entry.kind
                                      (var-lookup v regs frame env))
                                 ((register frame) #f)
                                 (else #t)))
                             (let ((Ldef (def.rhs def)))
                               (difference (lambda.F Ldef)
                                           (lambda.args Ldef)))))
                   defs)
           (let* ((newenv (cgenv-bindprocs env (map def.lhs defs)))
                  (L (make-label))
                  (r (cg0 output exp target regs frame newenv tail?)))
             (if (not tail?)
                 (gen! output $skip L (cgreg-live regs r)))
             (cg-defs output defs newenv)
             (if (not tail?)
                 (gen! output $.label L))
             r))
          (else
           (let ((free (cg-sort-vars free regs frame env)))
             (cg-eval-vars output free regs frame env)
             ; FIXME: Have to restore it too!
             '
             (if (not (ignore-space-leaks))
                 ; FIXME: Is this constant the right one?
                 (begin (gen! output $const #f)
                        (gen! output $setreg 0)))
             (let ((t0 (cgreg-lookup-reg regs 0))
                   (t1 (newtemp))
                   (newenv (cgenv-extend env
                                         (cons #t free)
                                         (map def.lhs defs)))
                   (L (make-label)))
               (gen! output $lexes (length free) free)
               (gen! output $setreg 0)
               (cgreg-bind! regs 0 t1)
               (if tail?
                   (begin (cgframe-release! frame t0)
                          (gen-store! output frame 0 t1)
                          (cg0 output exp 'result regs frame newenv #t)
                          (cg-defs output defs newenv)
                          'result)
                   (begin (gen-store! output frame 0 t1)
                          (cg0 output exp 'result regs frame newenv #f)
                          (gen! output $skip L (cgreg-tos regs))
                          (cg-defs output defs newenv)
                          (gen! output $.label L)
                          (gen-load! output frame 0 t0)
                          (cgreg-bind! regs 0 t0)
                          (cgframe-release! frame t1)
                          (cg-move output frame regs 'result target)))))))))

(define (cg-defs output defs env)
  (for-each (lambda (def)
              (gen! output $.align 4)
              (gen! output $.label
                           (entry.label
                            (cgenv-lookup env (def.lhs def))))
              (gen! output $.proc)
              (gen! output $.proc-doc (lambda.doc (def.rhs def)))
              (cg-known-lambda output
                               (def.rhs def)
                               env))
            defs))

; The right hand side has already been evaluated into the result register.

(define (cg-assignment-result output exp target regs frame env tail?)
  (gen! output $setglbl (assignment.lhs exp))
  (if tail?
      (begin (gen-pop! output frame)
             (gen! output $return)
             'result)
      (cg-move output frame regs 'result target)))

(define (cg-if output exp target regs frame env tail?)
  ; The test can be a constant, because it is awkward
  ; to remove constant tests from an A-normal form.
  (if (constant? (if.test exp))
      (cg0 output
           (if (constant.value (if.test exp))
               (if.then exp)
               (if.else exp))
           target regs frame env tail?)
      (begin
       (cg0 output (if.test exp) 'result regs frame env #f)
       (cg-if-result output exp target regs frame env tail?))))

; The test expression has already been evaluated into the result register.

(define (cg-if-result output exp target regs frame env tail?)
  (let ((L1 (make-label))
        (L2 (make-label)))
    (gen! output $branchf L1 (cgreg-tos regs))
    (let* ((regs2 (cgreg-copy regs))
           (frame1 (if (and tail?
                            (negative? (cgframe-size frame)))
                       (cgframe-initial)
                       frame))
           (frame2 (if (eq? frame frame1)
                       (cgframe-copy frame1)
                       (cgframe-initial)))
           (t0 (cgreg-lookup-reg regs 0)))
      (if (not (eq? frame frame1))
          (let ((live (cgframe-livevars frame)))
            (cgframe-livevars-set! frame1 live)
            (cgframe-livevars-set! frame2 live)
            (gen-save! output frame1 t0)
            (cg-saveregs output regs frame1)))
      (let ((r (cg0 output (if.then exp) target regs frame1 env tail?)))
        (if (not tail?)
            (gen! output $skip L2 (cgreg-live regs r)))
        (gen! output $.label L1)
        (if (not (eq? frame frame1))
            (begin (gen-save! output frame2 t0)
                   (cg-saveregs output regs2 frame2))
            (cgframe-update-stale! frame2))
        (cg0 output (if.else exp) r regs2 frame2 env tail?)
        (if (not tail?)
            (begin (gen! output $.label L2)
                   (cgreg-join! regs regs2)
                   (cgframe-join! frame1 frame2)))
        (if (and (not target)
                 (not (eq? r 'result))
                 (not (cgreg-lookup-reg regs r)))
            (cg-move output frame regs r 'result)
            r)))))

(define (cg-variable output exp target regs frame env tail?)
  (define (return id)
    (if tail?
        (begin (gen-pop! output frame)
               (gen! output $return)
               'result)
        (if (and target
                 (not (eq? 'result target)))
            (begin (gen! output $setreg target)
                   (cgreg-bind! regs target id)
                   (gen-store! output frame target id)
                   target)
            'result)))
  ; Same as return, but doesn't emit a store instruction.
  (define (return-nostore id)
    (if tail?
        (begin (gen-pop! output frame)
               (gen! output $return)
               'result)
        (if (and target
                 (not (eq? 'result target)))
            (begin (gen! output $setreg target)
                   (cgreg-bind! regs target id)
                   target)
            'result)))
  (let* ((id (variable.name exp))
         (entry (var-lookup id regs frame env)))
    (case (entry.kind entry)
      ((global integrable)
       (gen! output $global id)
       (return (newtemp)))
      ((lexical)
       (let ((m (entry.rib entry))
             (n (entry.offset entry)))
         (gen! output $lexical m n id)
         (if (or (zero? m)
                 (negative? (cgframe-size frame)))
             (return-nostore id)
             (return id))))
      ((procedure) (error "Bug in cg-variable" exp))
      ((register)
       (let ((r (entry.regnum entry)))
         (if (or tail?
                 (and target (not (eqv? target r))))
             (begin (gen! output $reg (entry.regnum entry) id)
                    (return-nostore id))
             r)))
      ((frame)
       (cond ((eq? target 'result)
              (gen-stack! output frame id)
              (return id))
             (target
              ; Must be non-tail.
              (gen-load! output frame target id)
              (cgreg-bind! regs target id)
              target)
             (else
              ; Must be non-tail.
              (let ((r (choose-register regs frame)))
                (gen-load! output frame r id)
                (cgreg-bind! regs r id)
                r))))
      (else (error "Bug in cg-variable" exp)))))

(define (cg-sequential output exp target regs frame env tail?)
  (cg-sequential-loop output (begin.exprs exp) target regs frame env tail?))

(define (cg-sequential-loop output exprs target regs frame env tail?)
  (cond ((null? exprs)
         (gen! output $const unspecified)
         (if tail?
             (begin (gen-pop! output frame)
                    (gen! output $return)
                    'result)
             (cg-move output frame regs 'result target)))
        ((null? (cdr exprs))
         (cg0 output (car exprs) target regs frame env tail?))
        (else (cg0 output (car exprs) #f regs frame env #f)
              (cg-sequential-loop output
                                  (cdr exprs)
                                  target regs frame env tail?))))

(define (cg-saveregs output regs frame)
  (do ((i 1 (+ i 1))
       (vars (cdr (cgreg-vars regs)) (cdr vars)))
      ((null? vars))
      (let ((t (car vars)))
        (if t
            (gen-store! output frame i t)))))

(define (cg-move output frame regs src dst)
  (define (bind dst)
    (let ((temp (newtemp)))
      (cgreg-bind! regs dst temp)
      (gen-store! output frame dst temp)
      dst))
  (cond ((not dst)
         src)
        ((eqv? src dst)
         dst)
        ((eq? dst 'result)
         (gen! output $reg src)
         dst)
        ((eq? src 'result)
         (gen! output $setreg dst)
         (bind dst))
        ((and (not (zero? src))
              (not (zero? dst)))
         (gen! output $movereg src dst)
         (bind dst))
        (else
         (gen! output $reg src)
         (gen! output $setreg dst)
         (bind dst))))

; On-the-fly register allocator.
; Tries to allocate:
;    a hardware register that isn't being used
;    a hardware register whose contents have already been spilled
;    a software register that isn't being used, unless a stack
;       frame has already been created, in which case it is better to use
;    a hardware register that is in use and hasn't yet been spilled
;
; All else equal, it is better to allocate a higher-numbered register
; because the lower-numbered registers are targets when arguments
; are being evaluated.
;
; Invariant:  Every register that is returned by this allocator
; is either not in use or has been spilled.

(define (choose-register regs frame)
  (car (choose-registers regs frame 1)))

(define (choose-registers regs frame n)
  
  ; Find unused hardware registers.
  (define (loop1 i n good)
    (cond ((zero? n)
           good)
          ((zero? i)
           (if (negative? (cgframe-size frame))
               (hardcase)
               (loop2 (- *nhwregs* 1) n good)))
          (else
           (if (cgreg-lookup-reg regs i)
               (loop1 (- i 1) n good)
               (loop1 (- i 1)
                      (- n 1)
                      (cons i good))))))
  
  ; Find already spilled hardware registers.
  (define (loop2 i n good)
    (cond ((zero? n)
           good)
          ((zero? i)
           (hardcase))
          (else
           (let ((t (cgreg-lookup-reg regs i)))
             (if (and t (cgframe-spilled? frame t))
                 (loop2 (- i 1)
                        (- n 1)
                        (cons i good))
                 (loop2 (- i 1) n good))))))
  
  ; This is ridiculous.
  ; Fortunately the correctness of the compiler is independent
  ; of the predicate used for this sort.
  
  (define (hardcase)
    (let* ((frame-exists? (not (negative? (cgframe-size frame))))
           (stufftosort
            (map (lambda (r)
                   (let* ((t (cgreg-lookup-reg regs r))
                          (spilled?
                           (and t
                                (cgframe-spilled? frame t))))
                     (list r t spilled?)))
                 (cdr (iota *nregs*))))
           (registers
            (twobit-sort
             (lambda (x1 x2)
               (let ((r1 (car x1))
                     (r2 (car x2))
                     (t1 (cadr x1))
                     (t2 (cadr x2)))
                 (cond ((< r1 *nhwregs*)
                        (cond ((not t1)                     #t)
                              ((< r2 *nhwregs*)
                               (cond ((not t2)              #f)
                                     ((caddr x1)            #t)
                                     ((caddr x2)            #f)
                                     (else                  #t)))
                              (frame-exists?                #t)
                              (t2                           #t)
                              (else                         #f)))
                       ((< r2 *nhwregs*)
                        (cond (frame-exists?                #f)
                              (t1                           #f)
                              (t2                           #t)
                              (else                         #f)))
                       (t1
                        (if (and (caddr x1)
                                 t2
                                 (not (caddr x2)))
                            #t
                            #f))
                       (else #t))))
             stufftosort)))
      ; FIXME: What was this for?
      '
      (for-each (lambda (register)
                  (let ((t (cadr register))
                        (spilled? (caddr register)))
                    (if (and t (not spilled?))
                        (cgframe-touch! frame t))))
                registers)
      (do ((sorted (map car registers) (cdr sorted))
           (rs '() (cons (car sorted) rs))
           (n n (- n 1)))
          ((zero? n)
           (reverse rs)))))
  
  (if (< n *nregs*)
      (loop1 (- *nhwregs* 1) n '())
      (error (string-append "Compiler bug: can't allocate "
                            (number->string n)
                            " registers on this target."))))
; Copyright 1991 William Clinger
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 21 May 1999.

; Procedure calls.

(define (cg-call output exp target regs frame env tail?)
  (let ((proc (call.proc exp)))
    (cond ((and (lambda? proc)
                (list? (lambda.args proc)))
           (cg-let output exp target regs frame env tail?))
          ((not (variable? proc))
           (cg-unknown-call output exp target regs frame env tail?))
          (else (let ((entry
                       (var-lookup (variable.name proc) regs frame env)))
                  (case (entry.kind entry)
                    ((global lexical frame register)
                     (cg-unknown-call output
                                      exp
                                      target regs frame env tail?))
                    ((integrable)
                     (cg-integrable-call output
                                         exp
                                         target regs frame env tail?))
                    ((procedure)
                     (cg-known-call output
                                    exp
                                    target regs frame env tail?))
                    (else (error "Bug in cg-call" exp))))))))

(define (cg-unknown-call output exp target regs frame env tail?)
  (let* ((proc (call.proc exp))
         (args (call.args exp))
         (n (length args))
         (L (make-label)))
    (cond ((>= (+ n 1) *lastreg*)
           (cg-big-call output exp target regs frame env tail?))
          (else
           (let ((r0 (cgreg-lookup-reg regs 0)))
             (if (variable? proc)
                 (let ((entry (cgreg-lookup regs (variable.name proc))))
                   (if (and entry
                            (<= (entry.regnum entry) n))
                       (begin (cg-arguments output
                                            (iota1 (+ n 1))
                                            (append args (list proc))
                                            regs frame env)
                              (gen! output $reg (+ n 1)))
                       (begin (cg-arguments output
                                            (iota1 n)
                                            args
                                            regs frame env)
                              (cg0 output proc 'result regs frame env #f)))
                   (if tail?
                       (gen-pop! output frame)
                       (begin (cgframe-used! frame)
                              (gen! output $setrtn L)))
                   (gen! output $invoke n))
                 (begin (cg-arguments output
                                      (iota1 (+ n 1))
                                      (append args (list proc))
                                      regs frame env)
                        (gen! output $reg (+ n 1))
                        (if tail?
                            (gen-pop! output frame)
                            (begin (cgframe-used! frame)
                                   (gen! output $setrtn L)))
                        (gen! output $invoke n)))
             (if tail?
                 'result
                 (begin (gen! output $.align 4)
                        (gen! output $.label L)
                        (gen! output $.cont)
                        (cgreg-clear! regs)
                        (cgreg-bind! regs 0 r0)
                        (gen-load! output frame 0 r0)
                        (cg-move output frame regs 'result target))))))))

(define (cg-known-call output exp target regs frame env tail?)
  (let* ((args (call.args exp))
         (n (length args))
         (L (make-label)))
    (cond ((>= (+ n 1) *lastreg*)
           (cg-big-call output exp target regs frame env tail?))
          (else
           (let ((r0 (cgreg-lookup-reg regs 0)))
             (cg-arguments output (iota1 n) args regs frame env)
             (if tail?
                 (gen-pop! output frame)
                 (begin (cgframe-used! frame)
                        (gen! output $setrtn L)))
             (let* ((entry (cgenv-lookup env (variable.name (call.proc exp))))
                    (label (entry.label entry))
                    (m (entry.rib entry)))
               (if (zero? m)
                   (gen! output $branch label n)
                   (gen! output $jump m label n)))
             (if tail?
                 'result
                 (begin (gen! output $.align 4)
                        (gen! output $.label L)
                        (gen! output $.cont)
                        (cgreg-clear! regs)
                        (cgreg-bind! regs 0 r0)
                        (gen-load! output frame 0 r0)
                        (cg-move output frame regs 'result target))))))))

; Any call can be compiled as follows, even if there are no free registers.
;
; Let T0, T1, ..., Tn be newly allocated stack temporaries.
;
;     <arg0>
;     setstk  T0
;     <arg1>             -|
;     setstk  T1          |
;     ...                 |- evaluate args into stack frame
;     <argn>              |
;     setstk  Tn         -|
;     const   ()
;     setreg  R-1
;     stack   Tn         -|
;     op2     cons,R-1    |
;     setreg  R-1         |
;     ...                 |- cons up overflow args
;     stack   T_{R-1}     |
;     op2     cons,R-1    |
;     setreg  R-1        -|
;     stack   T_{R-2}      -|
;     setreg  R-2           |
;     ...                   |- pop remaining args into registers
;     stack   T1            |
;     setreg  1            -|
;     stack   T0
;     invoke  n

(define (cg-big-call output exp target regs frame env tail?)
  (let* ((proc (call.proc exp))
         (args (call.args exp))
         (n (length args))
         (argslots (newtemps n))
         (procslot (newtemp))
         (r0 (cgreg-lookup-reg regs 0))
         (R-1 (- *nregs* 1))
         (entry (if (variable? proc)
                    (let ((entry
                           (var-lookup (variable.name proc)
                                       regs frame env)))
                      (if (eq? (entry.kind entry) 'procedure)
                          entry
                          #f))
                    #f))
         (L (make-label)))
    (if (not entry)
        (begin
         (cg0 output proc 'result regs frame env #f)
         (gen-setstk! output frame procslot)))
    (for-each (lambda (arg argslot)
                (cg0 output arg 'result regs frame env #f)
                (gen-setstk! output frame argslot))
              args
              argslots)
    (cgreg-clear! regs)
    (gen! output $const '())
    (gen! output $setreg R-1)
    (do ((i n (- i 1))
         (slots (reverse argslots) (cdr slots)))
        ((zero? i))
        (if (< i R-1)
            (gen-load! output frame i (car slots))
            (begin (gen-stack! output frame (car slots))
                   (gen! output $op2 $cons R-1)
                   (gen! output $setreg R-1))))
    (if (not entry)
        (gen-stack! output frame procslot))
    (if tail?
        (gen-pop! output frame)
        (begin (cgframe-used! frame)
               (gen! output $setrtn L)))
    (if entry
        (let ((label (entry.label entry))
              (m (entry.rib entry)))
          (if (zero? m)
              (gen! output $branch label n)
              (gen! output $jump m label n)))
        (gen! output $invoke n))
    (if tail?
        'result
        (begin (gen! output $.align 4)
               (gen! output $.label L)
               (gen! output $.cont)
               (cgreg-clear! regs) ; redundant, see above
               (cgreg-bind! regs 0 r0)
               (gen-load! output frame 0 r0)
               (cg-move output frame regs 'result target)))))

(define (cg-integrable-call output exp target regs frame env tail?)
  (let ((args (call.args exp))
        (entry (var-lookup (variable.name (call.proc exp)) regs frame env)))
    (if (= (entry.arity entry) (length args))
        (begin (case (entry.arity entry)
                 ((0) (gen! output $op1 (entry.op entry)))
                 ((1) (cg0 output (car args) 'result regs frame env #f)
                      (gen! output $op1 (entry.op entry)))
                 ((2) (cg-integrable-call2 output
                                           entry
                                           args
                                           regs frame env))
                 ((3) (cg-integrable-call3 output
                                           entry
                                           args
                                           regs frame env))
                 (else (error "Bug detected by cg-integrable-call"
                              (make-readable exp))))
               (if tail?
                   (begin (gen-pop! output frame)
                          (gen! output $return)
                          'result)
                   (cg-move output frame regs 'result target)))
        (if (negative? (entry.arity entry))
            (cg-special output exp target regs frame env tail?)
            (error "Wrong number of arguments to integrable procedure"
                   (make-readable exp))))))

(define (cg-integrable-call2 output entry args regs frame env)
  (let ((op (entry.op entry)))
    (if (and (entry.imm entry)
             (constant? (cadr args))
             ((entry.imm entry) (constant.value (cadr args))))
        (begin (cg0 output (car args) 'result regs frame env #f)
               (gen! output $op2imm
                            op
                            (constant.value (cadr args))))
        (let* ((reg2 (cg0 output (cadr args) #f regs frame env #f))
               (r2 (choose-register regs frame))
               (t2 (if (eq? reg2 'result)
                       (let ((t2 (newtemp)))
                         (gen! output $setreg r2)
                         (cgreg-bind! regs r2 t2)
                         (gen-store! output frame r2 t2)
                         t2)
                       (cgreg-lookup-reg regs reg2))))
          (cg0 output (car args) 'result regs frame env #f)
          (let* ((r2 (or (let ((entry (cgreg-lookup regs t2)))
                           (if entry
                               (entry.regnum entry)
                               #f))
                         (let ((r2 (choose-register regs frame)))
                           (cgreg-bind! regs r2 t2)
                           (gen-load! output frame r2 t2)
                           r2))))
            (gen! output $op2 (entry.op entry) r2)
            (if (eq? reg2 'result)
                (begin (cgreg-release! regs r2)
                       (cgframe-release! frame t2)))))))
  'result)

(define (cg-integrable-call3 output entry args regs frame env)
  (let* ((reg2 (cg0 output (cadr args) #f regs frame env #f))
         (r2 (choose-register regs frame))
         (t2 (if (eq? reg2 'result)
                 (let ((t2 (newtemp)))
                   (gen! output $setreg r2)
                   (cgreg-bind! regs r2 t2)
                   (gen-store! output frame r2 t2)
                   t2)
                 (cgreg-lookup-reg regs reg2)))
         (reg3 (cg0 output (caddr args) #f regs frame env #f))
         (spillregs (choose-registers regs frame 2))
         (t3 (if (eq? reg3 'result)
                 (let ((t3 (newtemp))
                       (r3 (if (eq? t2 (cgreg-lookup-reg
                                        regs (car spillregs)))
                               (cadr spillregs)
                               (car spillregs))))
                   (gen! output $setreg r3)
                   (cgreg-bind! regs r3 t3)
                   (gen-store! output frame r3 t3)
                   t3)
                 (cgreg-lookup-reg regs reg3))))
    (cg0 output (car args) 'result regs frame env #f)
    (let* ((spillregs (choose-registers regs frame 2))
           (r2 (or (let ((entry (cgreg-lookup regs t2)))
                           (if entry
                               (entry.regnum entry)
                               #f))
                   (let ((r2 (car spillregs)))
                     (cgreg-bind! regs r2 t2)
                     (gen-load! output frame r2 t2)
                     r2)))
           (r3 (or (let ((entry (cgreg-lookup regs t3)))
                           (if entry
                               (entry.regnum entry)
                               #f))
                   (let ((r3 (if (eq? r2 (car spillregs))
                                 (cadr spillregs)
                                 (car spillregs))))
                     (cgreg-bind! regs r3 t3)
                     (gen-load! output frame r3 t3)
                     r3))))
      (gen! output $op3 (entry.op entry) r2 r3)
      (if (eq? reg2 'result)
          (begin (cgreg-release! regs r2)
                 (cgframe-release! frame t2)))
      (if (eq? reg3 'result)
          (begin (cgreg-release! regs r3)
                 (cgframe-release! frame t3)))))
  'result)

; Given a short list of expressions that can be evaluated in any order,
; evaluates the first into the result register and the others into any
; register, and returns an ordered list of the registers that contain
; the arguments that follow the first.
; The number of expressions must be less than the number of argument
; registers.

(define (cg-primop-args output args regs frame env)
  
  ; Given a list of expressions to evaluate, a list of variables
  ; and temporary names for arguments that have already been
  ; evaluated, in reverse order, and a mask of booleans that
  ; indicate which temporaries should be released before returning,
  ; returns the correct result.
  
  (define (eval-loop args temps mask)
    (if (null? args)
        (eval-first-into-result temps mask)
        (let ((reg (cg0 output (car args) #f regs frame env #f)))
          (if (eq? reg 'result)
              (let* ((r (choose-register regs frame))
                     (t (newtemp)))
                (gen! output $setreg r)
                (cgreg-bind! regs r t)
                (gen-store! output frame r t)
                (eval-loop (cdr args)
                           (cons t temps)
                           (cons #t mask)))
              (eval-loop (cdr args)
                         (cons (cgreg-lookup-reg regs reg) temps)
                         (cons #f mask))))))
  
  (define (eval-first-into-result temps mask)
    (cg0 output (car args) 'result regs frame env #f)
    (finish-loop (choose-registers regs frame (length temps))
                 temps
                 mask
                 '()))
  
  ; Given a sufficient number of disjoint registers, a list of
  ; variable and temporary names that may need to be loaded into
  ; registers, a mask of booleans that indicates which temporaries
  ; should be released, and a list of registers in forward order,
  ; returns the correct result.
  
  (define (finish-loop disjoint temps mask registers)
    (if (null? temps)
        registers
        (let* ((t (car temps))
               (entry (cgreg-lookup regs t)))
          (if entry
              (let ((r (entry.regnum entry)))
                (if (car mask)
                    (begin (cgreg-release! regs r)
                           (cgframe-release! frame t)))
                (finish-loop disjoint
                             (cdr temps)
                             (cdr mask)
                             (cons r registers)))
              (let ((r (car disjoint)))
                (if (memv r registers)
                    (finish-loop (cdr disjoint) temps mask registers)
                    (begin (gen-load! output frame r t)
                           (cgreg-bind! regs r t)
                           (if (car mask)
                               (begin (cgreg-release! regs r)
                                      (cgframe-release! frame t)))
                           (finish-loop disjoint
                                        (cdr temps)
                                        (cdr mask)
                                        (cons r registers)))))))))
  
  (if (< (length args) *nregs*)
      (eval-loop (cdr args) '() '())
      (error "Bug detected by cg-primop-args" args)))


; Parallel assignment.

; Given a list of target registers, a list of expressions, and a
; compile-time environment, generates code to evaluate the expressions
; into the registers.
;
; Argument evaluation proceeds as follows:
;
; 1.  Evaluate all but one of the complicated arguments.
; 2.  Evaluate remaining arguments.
; 3.  Load spilled arguments from stack.

(define (cg-arguments output targets args regs frame env)
  
  ; Sorts the args and their targets into complicated and
  ; uncomplicated args and targets.
  ; Then it calls evalargs.
  
  (define (sortargs targets args targets1 args1 targets2 args2)
    (if (null? args)
        (evalargs targets1 args1 targets2 args2)
        (let ((target (car targets))
              (arg (car args))
              (targets (cdr targets))
              (args (cdr args)))
          (if (complicated? arg env)
              (sortargs targets
                        args
                        (cons target targets1)
                        (cons arg args1)
                        targets2
                        args2)
              (sortargs targets
                        args
                        targets1
                        args1
                        (cons target targets2)
                        (cons arg args2))))))
  
  ; Given the complicated args1 and their targets1,
  ; and the uncomplicated args2 and their targets2,
  ; evaluates all the arguments into their target registers.
  
  (define (evalargs targets1 args1 targets2 args2)
    (let* ((temps1 (newtemps (length targets1)))
           (temps2 (newtemps (length targets2))))
      (if (not (null? args1))
          (for-each (lambda (arg temp)
                      (cg0 output arg 'result regs frame env #f)
                      (gen-setstk! output frame temp))
                    (cdr args1)
                    (cdr temps1)))
      (if (not (null? args1))
          (evalargs0 (cons (car targets1) targets2)
                     (cons (car args1) args2)
                     (cons (car temps1) temps2))
          (evalargs0 targets2 args2 temps2))
      (for-each (lambda (r t)
                  (let ((temp (cgreg-lookup-reg regs r)))
                    (if (not (eq? temp t))
                        (let ((entry (var-lookup t regs frame env)))
                          (case (entry.kind entry)
                            ((register)
                             (gen! output $movereg (entry.regnum entry) r))
                            ((frame)
                             (gen-load! output frame r t)))
                          (cgreg-bind! regs r t)))
                    (cgframe-release! frame t)))
                (append targets1 targets2)
                (append temps1 temps2))))
  
  (define (evalargs0 targets args temps)
    (if (not (null? targets))
        (let ((para (let* ((regvars (map (lambda (reg)
                                           (cgreg-lookup-reg regs reg))
                                         targets)))
                      (parallel-assignment targets
                                           (map cons regvars targets)
                                           args))))
          (if para
              (let ((targets para)
                    (args (cg-permute args targets para))
                    (temps (cg-permute temps targets para)))
                (for-each (lambda (arg r t)
                            (cg0 output arg r regs frame env #f)
                            (cgreg-bind! regs r t)
                            (gen-store! output frame r t))
                          args
                          para
                          temps))
              (let ((r (choose-register regs frame))
                    (t (car temps)))
                (cg0 output (car args) r regs frame env #f)
                (cgreg-bind! regs r t)
                (gen-store! output frame r t)
                (evalargs0 (cdr targets)
                           (cdr args)
                           (cdr temps)))))))
  
  (if (parallel-assignment-optimization)
      (sortargs (reverse targets) (reverse args) '() '() '() '())
      (cg-evalargs output targets args regs frame env)))

; Left-to-right evaluation of arguments directly into targets.

(define (cg-evalargs output targets args regs frame env)
  (let ((temps (newtemps (length targets))))
    (for-each (lambda (arg r t)
                (cg0 output arg r regs frame env #f)
                (cgreg-bind! regs r t)
                (gen-store! output frame r t))
              args
              targets
              temps)
    (for-each (lambda (r t)
                (let ((temp (cgreg-lookup-reg regs r)))
                  (if (not (eq? temp t))
                      (begin (gen-load! output frame r t)
                             (cgreg-bind! regs r t)))
                  (cgframe-release! frame t)))
              targets
              temps)))

; For heuristic use only.
; An expression is complicated unless it can probably be evaluated
; without saving and restoring any registers, even if it occurs in
; a non-tail position.

(define (complicated? exp env)
  (case (car exp)
    ((quote)    #f)
    ((lambda)   #t)
    ((set!)     (complicated? (assignment.rhs exp) env))
    ((if)       (or (complicated? (if.test exp) env)
                    (complicated? (if.then exp) env)
                    (complicated? (if.else exp) env)))
    ((begin)    (if (variable? exp)
                    #f
                    (some? (lambda (exp)
                             (complicated? exp env))
                           (begin.exprs exp))))
    (else       (let ((proc (call.proc exp)))
                  (if (and (variable? proc)
                           (let ((entry
                                  (cgenv-lookup env (variable.name proc))))
                             (eq? (entry.kind entry) 'integrable)))
                      (some? (lambda (exp)
                               (complicated? exp env))
                             (call.args exp))
                      #t)))))

; Returns a permutation of the src list, permuted the same way the
; key list was permuted to obtain newkey.

(define (cg-permute src key newkey)
  (let ((alist (map cons key (iota (length key)))))
    (do ((newkey newkey (cdr newkey))
         (dest '()
               (cons (list-ref src (cdr (assq (car newkey) alist)))
                     dest)))
        ((null? newkey) (reverse dest)))))

; Given a list of register numbers,
; an association list with entries of the form (name . regnum) giving
; the variable names by which those registers are known in code,
; and a list of expressions giving new values for those registers,
; returns an ordering of the register assignments that implements a
; parallel assignment if one can be found, otherwise returns #f.

(define parallel-assignment
 (lambda (regnums alist exps)
   (if (null? regnums)
       #t
       (let ((x (toposort (dependency-graph regnums alist exps))))
         (if x (reverse x) #f)))))

(define dependency-graph
 (lambda (regnums alist exps)
   (let ((names (map car alist)))
     (do ((regnums regnums (cdr regnums))
          (exps exps (cdr exps))
          (l '() (cons (cons (car regnums)
                             (map (lambda (var) (cdr (assq var alist)))
                                  (intersection (freevariables (car exps))
                                                names)))
                       l)))
         ((null? regnums) l)))))

; Given a nonempty graph represented as a list of the form
;     ((node1 . <list of nodes that node1 is less than or equal to>)
;      (node2 . <list of nodes that node2 is less than or equal to>)
;      ...)
; returns a topological sort of the nodes if one can be found,
; otherwise returns #f.

(define toposort
 (lambda (graph)
   (cond ((null? (cdr graph)) (list (caar graph)))
         (else (toposort2 graph '())))))

(define toposort2
 (lambda (totry tried)
   (cond ((null? totry) #f)
         ((or (null? (cdr (car totry)))
              (and (null? (cddr (car totry)))
                   (eq? (cadr (car totry))
                        (car (car totry)))))
          (if (and (null? (cdr totry)) (null? tried))
              (list (caar totry))
              (let* ((node (caar totry))
                     (x (toposort2 (map (lambda (y)
                                          (cons (car y) (remove node (cdr y))))
                                        (append (cdr totry) tried))
                                   '())))
                (if x
                    (cons node x)
                    #f))))
         (else (toposort2 (cdr totry) (cons (car totry) tried))))))

(define iota (lambda (n) (iota2 n '())))

(define iota1 (lambda (n) (cdr (iota2 (+ n 1) '()))))

(define iota2
 (lambda (n l)
   (if (zero? n)
       l
       (let ((n (- n 1)))
         (iota2 n (cons n l))))))

(define (freevariables exp)
  (freevars2 exp '()))

(define (freevars2 exp env)
  (cond ((symbol? exp)
         (if (memq exp env) '() (list exp)))
        ((not (pair? exp)) '())
        (else (let ((keyword (car exp)))
                (cond ((eq? keyword 'quote) '())
                      ((eq? keyword 'lambda)
                       (let ((env (append (make-null-terminated (cadr exp))
                                          env)))
                         (apply-union
                          (map (lambda (x) (freevars2 x env))
                               (cddr exp)))))
                      ((memq keyword '(if set! begin))
                       (apply-union
                        (map (lambda (x) (freevars2 x env))
                             (cdr exp))))
                      (else (apply-union
                             (map (lambda (x) (freevars2 x env))
                                  exp))))))))
; Copyright 1991 William Clinger (cg-let and cg-let-body)
; Copyright 1999 William Clinger (everything else)
;
; 10 June 1999.

; Generates code for a let expression.

(define (cg-let output exp target regs frame env tail?)
  (let* ((proc (call.proc exp))
         (vars (lambda.args proc))
         (n (length vars))
         (free (lambda.F proc))
         (live (cgframe-livevars frame)))
    (if (and (null? (lambda.defs proc))
             (= n 1))
        (cg-let1 output exp target regs frame env tail?)
        (let* ((args (call.args exp))
               (temps (newtemps n))
               (alist (map cons temps vars)))
          (for-each (lambda (arg t)
                      (let ((r (choose-register regs frame)))
                        (cg0 output arg r regs frame env #f)
                        (cgreg-bind! regs r t)
                        (gen-store! output frame r t)))
                    args
                    temps)
          (cgreg-rename! regs alist)
          (cgframe-rename! frame alist)
          (cg-let-release! free live regs frame tail?)
          (cg-let-body output proc target regs frame env tail?)))))

; Given the free variables of a let body, and the variables that are
; live after the let expression, and the usual regs, frame, and tail?
; arguments, releases any registers and frame slots that don't need
; to be preserved across the body of the let.

(define (cg-let-release! free live regs frame tail?)
  ; The tail case is easy because there are no live temporaries,
  ; and there are no free variables in the context.
  ; The non-tail case assumes A-normal form.
  (cond (tail?
         (let ((keepers (cons (cgreg-lookup-reg regs 0) free)))
           (cgreg-release-except! regs keepers)
           (cgframe-release-except! frame keepers)))
        (live
         (let ((keepers (cons (cgreg-lookup-reg regs 0)
                              (union live free))))
           (cgreg-release-except! regs keepers)
           (cgframe-release-except! frame keepers)))))

; Generates code for the body of a let.

(define (cg-let-body output L target regs frame env tail?)
  (let ((vars (lambda.args L))
        (free (lambda.F L))
        (live (cgframe-livevars frame)))
    (let ((r (cg-body output L target regs frame env tail?)))
      (for-each (lambda (v)
                  (let ((entry (cgreg-lookup regs v)))
                    (if entry
                        (cgreg-release! regs (entry.regnum entry)))
                    (cgframe-release! frame v)))
                vars)
      (if (and (not target)
               (not (eq? r 'result))
               (not (cgreg-lookup-reg regs r)))
          (cg-move output frame regs r 'result)
          r))))

; Generates code for a let expression that binds exactly one variable
; and has no internal definitions.  These let expressions are very
; common in A-normal form, and there are many special cases with
; respect to register allocation and order of evaluation.

(define (cg-let1 output exp target regs frame env tail?)
  (let* ((proc (call.proc exp))
         (v (car (lambda.args proc)))
         (arg (car (call.args exp)))
         (free (lambda.F proc))
         (live (cgframe-livevars frame))
         (body (lambda.body proc)))
    
    (define (evaluate-into-register r)
      (cg0 output arg r regs frame env #f)
      (cgreg-bind! regs r v)
      (gen-store! output frame r v)
      r)
    
    (define (release-registers!)
      (cgframe-livevars-set! frame live)
      (cg-let-release! free live regs frame tail?))
    
    (define (finish)
      (release-registers!)
      (cg-let-body output proc target regs frame env tail?))
    
    (if live
        (cgframe-livevars-set! frame (union live free)))
    
    (cond ((assq v *regnames*)
           (evaluate-into-register (cdr (assq v *regnames*)))
           (finish))
          ((not (memq v free))
           (cg0 output arg #f regs frame env #f)
           (finish))
          (live
           (cg0 output arg 'result regs frame env #f)
           (release-registers!)
           (cg-let1-result output exp target regs frame env tail?))
          (else
           (evaluate-into-register (choose-register regs frame))
           (finish)))))

; Given a let expression that binds one variable whose value has already
; been evaluated into the result register, generates code for the rest
; of the let expression.
; The main difficulty is an unfortunate interaction between A-normal
; form and the MacScheme machine architecture:  We don't want to move
; a value from the result register into a general register if it has
; only one use and can remain in the result register until that use.

(define (cg-let1-result output exp target regs frame env tail?)
  (let* ((proc (call.proc exp))
         (v (car (lambda.args proc)))
         (free (lambda.F proc))
         (live (cgframe-livevars frame))
         (body (lambda.body proc))
         (pattern (cg-let-used-once v body)))
    
    (define (move-to-register r)
      (gen! output $setreg r)
      (cgreg-bind! regs r v)
      (gen-store! output frame r v)
      r)
    
    (define (release-registers!)
      (cgframe-livevars-set! frame live)
      (cg-let-release! free live regs frame tail?))
    
    ; FIXME: The live variables must be correct in the frame.
    
    (case pattern
      ((if)
       (cg-if-result output body target regs frame env tail?))
      ((let-if)
       (if live
           (cgframe-livevars-set! frame (union live free)))
       (cg-if-result output
                     (car (call.args body))
                     'result regs frame env #f)
       (release-registers!)
       (cg-let1-result output body target regs frame env tail?))
      ((set!)
       (cg-assignment-result output
                             body target regs frame env tail?))
      ((let-set!)
       (cg-assignment-result output
                             (car (call.args body))
                             'result regs frame env #f)
       (cg-let1-result output body target regs frame env tail?))
      ((primop)
       (cg-primop-result output body target regs frame env tail?))
      ((let-primop)
       (cg-primop-result output
                         (car (call.args body))
                         'result regs frame env #f)
       (cg-let1-result output body target regs frame env tail?))
      ; FIXME
      ((_called)
       (cg-call-result output body target regs frame env tail?))
      ; FIXME
      ((_let-called)
       (cg-call-result output
                       (car (call.args body))
                       'result regs frame env #f)
       (cg-let1-result output body target regs frame env tail?))
      (else
       ; FIXME:  The first case was handled by cg-let1.
       (cond ((assq v *regnames*)
              (move-to-register (cdr (assq v *regnames*))))
             ((memq v free)
              (move-to-register (choose-register regs frame))))
       (cg-let-body output proc target regs frame env tail?)))))

; Given a call to a primop whose first argument has already been
; evaluated into the result register and whose remaining arguments
; consist of constants and variable references, generates code for
; the call.

(define (cg-primop-result output exp target regs frame env tail?)
  (let ((args (call.args exp))
        (entry (var-lookup (variable.name (call.proc exp)) regs frame env)))
    (if (= (entry.arity entry) (length args))
        (begin (case (entry.arity entry)
                 ((0) (gen! output $op1 (entry.op entry)))
                 ((1) (gen! output $op1 (entry.op entry)))
                 ((2) (cg-primop2-result! output entry args regs frame env))
                 ((3) (let ((rs (cg-result-args output args regs frame env)))
                        (gen! output
                              $op3 (entry.op entry) (car rs) (cadr rs))))
                 (else (error "Bug detected by cg-primop-result"
                              (make-readable exp))))
               (if tail?
                   (begin (gen-pop! output frame)
                          (gen! output $return)
                          'result)
                   (cg-move output frame regs 'result target)))
        (if (negative? (entry.arity entry))
            (cg-special-result output exp target regs frame env tail?)
            (error "Wrong number of arguments to integrable procedure"
                   (make-readable exp))))))

(define (cg-primop2-result! output entry args regs frame env)
  (let ((op (entry.op entry))
        (arg2 (cadr args)))
    (if (and (constant? arg2)
             (entry.imm entry)
             ((entry.imm entry) (constant.value arg2)))
        (gen! output $op2imm op (constant.value arg2))
        (let ((rs (cg-result-args output args regs frame env)))
          (gen! output $op2 op (car rs))))))

; Given a short list of constants and variable references to be evaluated
; into arbitrary general registers, evaluates them into registers without
; disturbing the result register and returns a list of the registers into
; which they are evaluated.  Before returning, any registers that were
; allocated by this routine are released.

(define (cg-result-args output args regs frame env)
  
  ; Given a list of unevaluated arguments,
  ; a longer list of disjoint general registers,
  ; the register that holds the first evaluated argument,
  ; a list of registers in reverse order that hold other arguments,
  ; and a list of registers to be released afterwards,
  ; generates code to evaluate the arguments,
  ; deallocates any registers that were evaluated to hold the arguments,
  ; and returns the list of registers that contain the arguments.
  
  (define (loop args registers rr rs temps)
    (if (null? args)
        (begin (if (not (eq? rr 'result))
                   (gen! output $reg rr))
               (for-each (lambda (r) (cgreg-release! regs r))
                         temps)
               (reverse rs))
        (let ((arg (car args)))
          (cond ((constant? arg)
                 (let ((r (car registers)))
                   (gen! output $const/setreg (constant.value arg) r)
                   (cgreg-bind! regs r #t)
                   (loop (cdr args)
                         (cdr registers)
                         rr
                         (cons r rs)
                         (cons r temps))))
                ((variable? arg)
                 (let* ((id (variable.name arg))
                        (entry (var-lookup id regs frame env)))
                   (case (entry.kind entry)
                     ((global integrable)
                      (if (eq? rr 'result)
                          (save-result! args registers rr rs temps)
                          (let ((r (car registers)))
                            (gen! output $global id)
                            (gen! output $setreg r)
                            (cgreg-bind! regs r id)
                            (loop (cdr args)
                                  (cdr registers)
                                  rr
                                  (cons r rs)
                                  (cons r temps)))))
                     ((lexical)
                      (if (eq? rr 'result)
                          (save-result! args registers rr rs temps)
                          (let ((m (entry.rib entry))
                                (n (entry.offset entry))
                                (r (car registers)))
                            (gen! output $lexical m n id)
                            (gen! output $setreg r)
                            (cgreg-bind! regs r id)
                            (loop (cdr args)
                                  (cdr registers)
                                  rr
                                  (cons r rs)
                                  (cons r temps)))))
                     ((procedure) (error "Bug in cg-variable" arg))
                     ((register)
                      (let ((r (entry.regnum entry)))
                        (loop (cdr args)
                              registers
                              rr
                              (cons r rs)
                              temps)))
                     ((frame)
                      (let ((r (car registers)))
                        (gen-load! output frame r id)
                        (cgreg-bind! regs r id)
                        (loop (cdr args)
                              (cdr registers)
                              rr
                              (cons r rs)
                              (cons r temps))))
                     (else (error "Bug in cg-result-args" arg)))))
                (else
                 (error "Bug in cg-result-args"))))))
  
  (define (save-result! args registers rr rs temps)
    (let ((r (car registers)))
      (gen! output $setreg r)
      (loop args
            (cdr registers)
            r
            rs
            temps)))
  
  (loop (cdr args)
        (choose-registers regs frame (length args))
        'result '() '()))

; Given a local variable T1 and an expression in A-normal form,
; cg-let-used-once returns a symbol if the local variable is used
; exactly once in the expression and the expression matches one of
; the patterns below.  Otherwise returns #f.  The symbol that is
; returned is the name of the pattern that is matched.
;
;     pattern                         symbol returned
; 
;     (if T1 ... ...)                 if
; 
;     (<primop> T1 ...)               primop
; 
;     (T1 ...)                        called
; 
;     (set! ... T1)                   set!
; 
;     (let ((T2 (if T1 ... ...)))     let-if
;       E3)
; 
;     (let ((T2 (<primop> T1 ...)))   let-primop
;       E3)
; 
;     (let ((T2 (T1 ...)))            let-called
;       E3)
; 
;     (let ((T2 (set! ... T1)))       let-set!
;       E3)
;
; This implementation sometimes returns #f incorrectly, but it always
; returns an answer in constant time (assuming A-normal form).

(define (cg-let-used-once T1 exp)
  (define budget 20)
  (define (cg-let-used-once T1 exp)
    (define (used? T1 exp)
      (set! budget (- budget 1))
      (cond ((negative? budget) #t)
            ((constant? exp) #f)
            ((variable? exp)
             (eq? T1 (variable.name exp)))
            ((lambda? exp)
             (memq T1 (lambda.F exp)))
            ((assignment? exp)
             (used? T1 (assignment.rhs exp)))
            ((call? exp)
             (or (used? T1 (call.proc exp))
                 (used-in-args? T1 (call.args exp))))
            ((conditional? exp)
             (or (used? T1 (if.test exp))
                 (used? T1 (if.then exp))
                 (used? T1 (if.else exp))))
            (else #t)))
    (define (used-in-args? T1 args)
      (if (null? args)
          #f
          (or (used? T1 (car args))
              (used-in-args? T1 (cdr args)))))
    (set! budget (- budget 1))
    (cond ((negative? budget) #f)
          ((call? exp)
           (let ((proc (call.proc exp))
                 (args (call.args exp)))
             (cond ((variable? proc)
                    (let ((f (variable.name proc)))
                      (cond ((eq? f T1)
                             (and (not (used-in-args? T1 args))
                                  'called))
                            ((and (integrable? f)
                                  (not (null? args))
                                  (variable? (car args))
                                  (eq? T1 (variable.name (car args))))
                             (and (not (used-in-args? T1 (cdr args)))
                                  'primop))
                            (else #f))))
                   ((lambda? proc)
                    (and (not (memq T1 (lambda.F proc)))
                         (not (null? args))
                         (null? (cdr args))
                         (case (cg-let-used-once T1 (car args))
                           ((if)       'let-if)
                           ((primop)   'let-primop)
                           ((called)   'let-called)
                           ((set!)     'let-set!)
                           (else       #f))))
                   (else #f))))
          ((conditional? exp)
           (let ((E0 (if.test exp)))
             (and (variable? E0)
                  (eq? T1 (variable.name E0))
                  (not (used? T1 (if.then exp)))
                  (not (used? T1 (if.else exp)))
                  'if)))
          ((assignment? exp)
           (let ((rhs (assignment.rhs exp)))
             (and (variable? rhs)
                  (eq? T1 (variable.name rhs))
                  'set!)))
          (else #f)))
  (cg-let-used-once T1 exp))

; Given the name of a let-body pattern, an expression that matches that
; pattern, and an expression to be substituted for the let variable,
; returns the transformed expression.

; FIXME: No longer used.

(define (cg-let-transform pattern exp E1)
  (case pattern
    ((if)
     (make-conditional E1 (if.then exp) (if.else exp)))
    ((primop)
     (make-call (call.proc exp)
                (cons E1 (cdr (call.args exp)))))
    ((called)
     (make-call E1 (call.args exp)))
    ((set!)
     (make-assignment (assignment.lhs exp) E1))
    ((let-if let-primop let-called let-set!)
     (make-call (call.proc exp)
                (list (cg-let-transform (case pattern
                                          ((let-if)     'if)
                                          ((let-primop) 'primop)
                                          ((let-called) 'called)
                                          ((let-set!)   'set!))
                                        (car (call.args exp))
                                        E1))))
    (else
     (error "Unrecognized pattern in cg-let-transform" pattern)))); Copyright 1999 William Clinger
;
; Code for special primitives, used to generate runtime safety checks,
; efficient code for call-with-values, and other weird things.
;
; 4 June 1999.

(define (cg-special output exp target regs frame env tail?)
  (let ((name (variable.name (call.proc exp))))
    (cond ((eq? name name:CHECK!)
           (if (runtime-safety-checking)
               (cg-check output exp target regs frame env tail?)))
          (else
           (error "Compiler bug: cg-special" (make-readable exp))))))

(define (cg-special-result output exp target regs frame env tail?)
  (let ((name (variable.name (call.proc exp))))
    (cond ((eq? name name:CHECK!)
           (if (runtime-safety-checking)
               (cg-check-result output exp target regs frame env tail?)))
          (else
           (error "Compiler bug: cg-special" (make-readable exp))))))

(define (cg-check output exp target regs frame env tail?)
  (cg0 output (car (call.args exp)) 'result regs frame env #f)
  (cg-check-result output exp target regs frame env tail?))

(define (cg-check-result output exp target regs frame env tail?)
  (let* ((args (call.args exp))
         (nargs (length args))
         (valexps (cddr args)))
    (if (and (<= 2 nargs 5)
             (constant? (cadr args))
             (every? (lambda (exp)
                       (or (constant? exp)
                           (variable? exp)))
                     valexps))
        (let* ((exn (constant.value (cadr args)))
               (vars (filter variable? valexps))
               (rs (cg-result-args output
                                   (cons (car args) vars)
                                   regs frame env)))
          
          ; Construct the trap situation:
          ; the exception number followed by an ordered list of
          ; register numbers and constant expressions.
          
          (let loop ((registers rs)
                     (exps valexps)
                     (operands '()))
            (cond ((null? exps)
                   (let* ((situation (cons exn (reverse operands)))
                          (ht (assembly-stream-info output))
                          (L1 (or (hashtable-get ht situation)
                                  (let ((L1 (make-label)))
                                    (hashtable-put! ht situation L1)
                                    L1))))
                     (define (translate r)
                       (if (number? r) r 0))
                     (case (length operands)
                       ((0) (gen! output $check 0 0 0 L1))
                       ((1) (gen! output $check
                                         (translate (car operands))
                                         0 0 L1))
                       ((2) (gen! output $check
                                         (translate (car operands))
                                         (translate (cadr operands))
                                         0 L1))
                       ((3) (gen! output $check
                                         (translate (car operands))
                                         (translate (cadr operands))
                                         (translate (caddr operands))
                                         L1)))))
                  ((constant? (car exps))
                   (loop registers
                         (cdr exps)
                         (cons (car exps) operands)))
                  (else
                   (loop (cdr registers)
                         (cdr exps)
                         (cons (car registers) operands))))))
        (error "Compiler bug: runtime check" (make-readable exp)))))

; Given an assembly stream and the description of a trap as recorded
; by cg-check above, generates a non-continuable trap at that label for
; that trap, passing the operands to the exception handler.

(define (cg-trap output situation L1)
  (let* ((exn (car situation))
         (operands (cdr situation)))
    (gen! output $.label L1)
    (let ((liveregs (filter number? operands)))
      (define (loop operands registers r)
        (cond ((null? operands)
               (case (length registers)
                 ((0) (gen! output $trap 0 0 0 exn))
                 ((1) (gen! output $trap (car registers) 0 0 exn))
                 ((2) (gen! output $trap
                                   (car registers)
                                   (cadr registers)
                                   0
                                   exn))
                 ((3) (gen! output $trap
                                   (car registers)
                                   (cadr registers)
                                   (caddr registers)
                                   exn))
                 (else "Compiler bug: trap")))
              ((number? (car operands))
               (loop (cdr operands)
                     (cons (car operands) registers)
                     r))
              ((memv r liveregs)
               (loop operands registers (+ r 1)))
              (else
               (gen! output $const (constant.value (car operands)))
               (gen! output $setreg r)
               (loop (cdr operands)
                     (cons r registers)
                     (+ r 1)))))
      (loop (reverse operands) '() 1))))

; Given a short list of expressions that can be evaluated in any order,
; evaluates the first into the result register and the others into any
; register, and returns an ordered list of the registers that contain
; the arguments that follow the first.
; The number of expressions must be less than the number of argument
; registers.

; FIXME: No longer used.

(define (cg-check-args output args regs frame env)
  
  ; Given a list of expressions to evaluate, a list of variables
  ; and temporary names for arguments that have already been
  ; evaluated, in reverse order, and a mask of booleans that
  ; indicate which temporaries should be released before returning,
  ; returns the correct result.
  
  (define (eval-loop args temps mask)
    (if (null? args)
        (eval-first-into-result temps mask)
        (let ((reg (cg0 output (car args) #f regs frame env #f)))
          (if (eq? reg 'result)
              (let* ((r (choose-register regs frame))
                     (t (newtemp)))
                (gen! output $setreg r)
                (cgreg-bind! regs r t)
                (gen-store! output frame r t)
                (eval-loop (cdr args)
                           (cons t temps)
                           (cons #t mask)))
              (eval-loop (cdr args)
                         (cons (cgreg-lookup-reg regs reg) temps)
                         (cons #f mask))))))
  
  (define (eval-first-into-result temps mask)
    (cg0 output (car args) 'result regs frame env #f)
    (finish-loop (choose-registers regs frame (length temps))
                 temps
                 mask
                 '()))
  
  ; Given a sufficient number of disjoint registers, a list of
  ; variable and temporary names that may need to be loaded into
  ; registers, a mask of booleans that indicates which temporaries
  ; should be released, and a list of registers in forward order,
  ; returns the correct result.
  
  (define (finish-loop disjoint temps mask registers)
    (if (null? temps)
        registers
        (let* ((t (car temps))
               (entry (cgreg-lookup regs t)))
          (if entry
              (let ((r (entry.regnum entry)))
                (if (car mask)
                    (begin (cgreg-release! regs r)
                           (cgframe-release! frame t)))
                (finish-loop disjoint
                             (cdr temps)
                             (cdr mask)
                             (cons r registers)))
              (let ((r (car disjoint)))
                (if (memv r registers)
                    (finish-loop (cdr disjoint) temps mask registers)
                    (begin (gen-load! output frame r t)
                           (cgreg-bind! regs r t)
                           (if (car mask)
                               (begin (cgreg-release! regs r)
                                      (cgframe-release! frame t)))
                           (finish-loop disjoint
                                        (cdr temps)
                                        (cdr mask)
                                        (cons r registers)))))))))
  
  (if (< (length args) *nregs*)
      (eval-loop (cdr args) '() '())
      (error "Bug detected by cg-primop-args" args)))
; Copyright 1998 William Clinger.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 5 June 1999.
;
; Local optimizations for MacScheme machine assembly code.
;
; Branch tensioning.
; Suppress nop instructions.
; Suppress save, restore, and pop instructions whose operand is -1.
; Suppress redundant stores.
; Suppress definitions (primarily loads) of dead registers.
;
; Note:  Twobit never generates a locally redundant load or store,
; so this code must be tested with a different code generator.
;
; To perform these optimizations, the basic block must be traversed
; both forwards and backwards.
; The forward traversal keeps track of registers that were defined
; by a load.
; The backward traversal keeps track of live registers.

(define filter-basic-blocks
  
  (let* ((suppression-message
          "Local optimization detected a useless instruction.")
         
         ; Each instruction is mapping to an encoding of the actions
         ; to be performed when it is encountered during the forward
         ; or backward traversal.
         
         (forward:normal                   0)
         (forward:nop                      1)
         (forward:ends-block               2)
         (forward:interesting              3)
         (forward:kills-all-registers      4)
         (forward:nop-if-arg1-is-negative  5)
         
         (backward:normal                  0)
         (backward:ends-block              1)
         (backward:begins-block            2)
         (backward:uses-arg1               4)
         (backward:uses-arg2               8)
         (backward:uses-arg3              16)
         (backward:kills-arg1             32)
         (backward:kills-arg2             64)
         (backward:uses-many             128)
         
         ; largest mnemonic + 1
         
         (dispatch-table-size *number-of-mnemonics*)
         
         ; Dispatch table for the forwards traversal.
         
         (forward-table (make-bytevector dispatch-table-size))
         
         ; Dispatch table for the backwards traversal.
         
         (backward-table (make-bytevector dispatch-table-size)))
    
    (do ((i 0 (+ i 1)))
        ((= i dispatch-table-size))
        (bytevector-set! forward-table i forward:normal)
        (bytevector-set! backward-table i backward:normal))
    
    (bytevector-set! forward-table $nop     forward:nop)
    
    (bytevector-set! forward-table $invoke  forward:ends-block)
    (bytevector-set! forward-table $return  forward:ends-block)
    (bytevector-set! forward-table $skip    forward:ends-block)
    (bytevector-set! forward-table $branch  forward:ends-block)
    (bytevector-set! forward-table $branchf forward:ends-block)
    (bytevector-set! forward-table $jump    forward:ends-block)
    (bytevector-set! forward-table $.align  forward:ends-block)
    (bytevector-set! forward-table $.proc   forward:ends-block)
    (bytevector-set! forward-table $.cont   forward:ends-block)
    (bytevector-set! forward-table $.label  forward:ends-block)
    
    (bytevector-set! forward-table $store   forward:interesting)
    (bytevector-set! forward-table $load    forward:interesting)
    (bytevector-set! forward-table $setstk  forward:interesting)
    (bytevector-set! forward-table $setreg  forward:interesting)
    (bytevector-set! forward-table $movereg forward:interesting)
    (bytevector-set! forward-table $const/setreg
                                            forward:interesting)
    
    (bytevector-set! forward-table $args>=  forward:kills-all-registers)
    (bytevector-set! forward-table $popstk  forward:kills-all-registers)
    
    ; These instructions also kill all registers.
    
    (bytevector-set! forward-table $save    forward:nop-if-arg1-is-negative)
    (bytevector-set! forward-table $restore forward:nop-if-arg1-is-negative)
    (bytevector-set! forward-table $pop     forward:nop-if-arg1-is-negative)
  
    (bytevector-set! backward-table $invoke  backward:ends-block)
    (bytevector-set! backward-table $return  backward:ends-block)
    (bytevector-set! backward-table $skip    backward:ends-block)
    (bytevector-set! backward-table $branch  backward:ends-block)
    (bytevector-set! backward-table $branchf backward:ends-block)
    
    (bytevector-set! backward-table $jump    backward:begins-block) ; [sic]
    (bytevector-set! backward-table $.align  backward:begins-block)
    (bytevector-set! backward-table $.proc   backward:begins-block)
    (bytevector-set! backward-table $.cont   backward:begins-block)
    (bytevector-set! backward-table $.label  backward:begins-block)
    
    (bytevector-set! backward-table $op2     backward:uses-arg2)
    (bytevector-set! backward-table $op3     (logior backward:uses-arg2
                                                     backward:uses-arg3))
    (bytevector-set! backward-table $check   (logior
                                              backward:uses-arg1
                                              (logior backward:uses-arg2
                                                      backward:uses-arg3)))
    (bytevector-set! backward-table $trap    (logior
                                              backward:uses-arg1
                                              (logior backward:uses-arg2
                                                      backward:uses-arg3)))
    (bytevector-set! backward-table $store   backward:uses-arg1)
    (bytevector-set! backward-table $reg     backward:uses-arg1)
    (bytevector-set! backward-table $load    backward:kills-arg1)
    (bytevector-set! backward-table $setreg  backward:kills-arg1)
    (bytevector-set! backward-table $movereg (logior backward:uses-arg1
                                                     backward:kills-arg2))
    (bytevector-set! backward-table $const/setreg
                                             backward:kills-arg2)
    (bytevector-set! backward-table $lambda  backward:uses-many)
    (bytevector-set! backward-table $lexes   backward:uses-many)
    (bytevector-set! backward-table $args>=  backward:uses-many)
    
    (lambda (instructions)
      
      (let* ((*nregs* *nregs*) ; locals might be faster than globals
             
             ; During the forwards traversal:
             ;    (vector-ref registers i) = #f
             ;        means the content of register i is unknown
             ;    (vector-ref registers i) = j
             ;        means register was defined by load i,j
             ;
             ; During the backwards traversal:
             ;    (vector-ref registers i) = #f means register i is dead
             ;    (vector-ref registers i) = #t means register i is live
             
             (registers (make-vector *nregs* #f))
             
             ; During the forwards traversal, the label of a block that
             ; falls through into another block or consists of a skip
             ; to another block is mapped to another label.
             ; This mapping is implemented by a hash table.
             ; Before the backwards traversal, the transitive closure
             ; is computed.  The graph has no cycles, and the maximum
             ; out-degree is 1, so this is easy.
             
             (label-table (make-hashtable (lambda (n) n) assv)))
        
        (define (compute-transitive-closure!)
          (define (lookup x)
            (let ((y (hashtable-get label-table x)))
              (if y
                  (lookup y)
                  x)))
          (hashtable-for-each (lambda (x y)
                                (hashtable-put! label-table x (lookup y)))
                              label-table))
        
        ; Don't use this procedure until the preceding procedure
        ; has been called.
        
        (define (lookup-label x)
          (hashtable-fetch label-table x x))
        
        (define (vector-fill! v x)
          (subvector-fill! v 0 (vector-length v) x))
        
        (define (subvector-fill! v i j x)
          (if (< i j)
              (begin (vector-set! v i x)
                     (subvector-fill! v (+ i 1) j x))))
        
        (define (kill-stack! j)
          (do ((i 0 (+ i 1)))
              ((= i *nregs*))
              (let ((x (vector-ref registers i)))
                (if (and x (= x j))
                    (vector-set! registers i #f)))))
        
        ; Dispatch procedure for the forwards traversal.
        
        (define (forwards instructions filtered)
          (if (null? instructions)
              (begin (vector-fill! registers #f)
                     (vector-set! registers 0 #t)
                     (compute-transitive-closure!)
                     (backwards0 filtered '()))
              (let* ((instruction (car instructions))
                     (instructions (cdr instructions))
                     (op (instruction.op instruction))
                     (flags (bytevector-ref forward-table op)))
                (cond ((eqv? flags forward:normal)
                       (forwards instructions (cons instruction filtered)))
                      ((eqv? flags forward:nop)
                       (forwards instructions filtered))
                      ((eqv? flags forward:nop-if-arg1-is-negative)
                       (if (negative? (instruction.arg1 instruction))
                           (forwards instructions filtered)
                           (begin (vector-fill! registers #f)
                                  (forwards instructions
                                            (cons instruction filtered)))))
                      ((eqv? flags forward:kills-all-registers)
                       (vector-fill! registers #f)
                       (forwards instructions
                                 (cons instruction filtered)))
                      ((eqv? flags forward:ends-block)
                       (vector-fill! registers #f)
                       (if (eqv? op $.label)
                           (forwards-label instruction
                                           instructions
                                           filtered)
                           (forwards instructions
                                     (cons instruction filtered))))
                      ((eqv? flags forward:interesting)
                       (cond ((eqv? op $setreg)
                              (vector-set! registers
                                           (instruction.arg1 instruction)
                                           #f)
                              (forwards instructions
                                        (cons instruction filtered)))
                             ((eqv? op $const/setreg)
                              (vector-set! registers
                                           (instruction.arg2 instruction)
                                           #f)
                              (forwards instructions
                                        (cons instruction filtered)))
                             ((eqv? op $movereg)
                              (vector-set! registers
                                           (instruction.arg2 instruction)
                                           #f)
                              (forwards instructions
                                        (cons instruction filtered)))
                             ((eqv? op $setstk)
                              (kill-stack! (instruction.arg1 instruction))
                              (forwards instructions
                                        (cons instruction filtered)))
                             ((eqv? op $load)
                              (let ((i (instruction.arg1 instruction))
                                    (j (instruction.arg2 instruction)))
                                (if (eqv? (vector-ref registers i) j)
                                    ; Suppress redundant load.
                                    ; Should never happen with Twobit.
                                    (suppress-forwards instruction
                                                       instructions
                                                       filtered)
                                    (begin (vector-set! registers i j)
                                           (forwards instructions
                                                     (cons instruction
                                                           filtered))))))
                             ((eqv? op $store)
                              (let ((i (instruction.arg1 instruction))
                                    (j (instruction.arg2 instruction)))
                                (if (eqv? (vector-ref registers i) j)
                                    ; Suppress redundant store.
                                    ; Should never happen with Twobit.
                                    (suppress-forwards instruction
                                                       instructions
                                                       filtered)
                                    (begin (kill-stack! j)
                                           (forwards instructions
                                                     (cons instruction
                                                           filtered))))))
                             (else
                              (local-optimization-error op))))
                      (else
                       (local-optimization-error op))))))
        
        ; Enters labels into a table for branch tensioning.
        
        (define (forwards-label instruction1 instructions filtered)
          (let ((label1 (instruction.arg1 instruction1)))
            (if (null? instructions)
                ; This is ok provided the label is unreachable.
                (forwards instructions (cdr filtered))
                (let loop ((instructions instructions)
                           (filtered (cons instruction1 filtered)))
                  (let* ((instruction (car instructions))
                         (op (instruction.op instruction))
                         (flags (bytevector-ref forward-table op)))
                    (cond ((eqv? flags forward:nop)
                           (loop (cdr instructions) filtered))
                          ((and (eqv? flags forward:nop-if-arg1-is-negative)
                                (negative? (instruction.arg1 instruction)))
                           (loop (cdr instructions) filtered))
                          ((eqv? op $.label)
                           (let ((label2 (instruction.arg1 instruction)))
                             (hashtable-put! label-table label1 label2)
                             (forwards-label instruction
                                             (cdr instructions)
                                             (cdr filtered))))
                          ((eqv? op $skip)
                           (let ((label2 (instruction.arg1 instruction)))
                             (hashtable-put! label-table label1 label2)
                             ; We can't get rid of the skip instruction
                             ; because control might fall into this block,
                             ; but we can get rid of the label.
                             (forwards instructions (cdr filtered))))
                          (else
                           (forwards instructions filtered))))))))
        
        ; Dispatch procedure for the backwards traversal.
        
        (define (backwards instructions filtered)
          (if (null? instructions)
              filtered
              (let* ((instruction (car instructions))
                     (instructions (cdr instructions))
                     (op (instruction.op instruction))
                     (flags (bytevector-ref backward-table op)))
                (cond ((eqv? flags backward:normal)
                       (backwards instructions (cons instruction filtered)))
                      ((eqv? flags backward:ends-block)
                       (backwards0 (cons instruction instructions)
                                   filtered))
                      ((eqv? flags backward:begins-block)
                       (backwards0 instructions
                                   (cons instruction filtered)))
                      ((eqv? flags backward:uses-many)
                       (cond ((or (eqv? op $lambda)
                                  (eqv? op $lexes))
                              (let ((live
                                     (if (eqv? op $lexes)
                                         (instruction.arg1 instruction)
                                         (instruction.arg2 instruction))))
                                (subvector-fill! registers
                                                 0
                                                 (min *nregs* (+ 1 live))
                                                 #t)
                                (backwards instructions
                                           (cons instruction filtered))))
                             ((eqv? op $args>=)
                              (vector-fill! registers #t)
                              (backwards instructions
                                         (cons instruction filtered)))
                             (else
                              (local-optimization-error op))))
                      ((and (eqv? (logand flags backward:kills-arg1)
                                  backward:kills-arg1)
                            (not (vector-ref registers
                                             (instruction.arg1 instruction))))
                       ; Suppress initialization of dead register.
                       (suppress-backwards instruction
                                           instructions
                                           filtered))
                      ((and (eqv? (logand flags backward:kills-arg2)
                                  backward:kills-arg2)
                            (not (vector-ref registers
                                             (instruction.arg2 instruction))))
                       ; Suppress initialization of dead register.
                       (suppress-backwards instruction
                                           instructions
                                           filtered))
                      ((and (eqv? op $movereg)
                            (= (instruction.arg1 instruction)
                               (instruction.arg2 instruction)))
                       (backwards instructions filtered))
                      (else
                       (let ((filtered (cons instruction filtered)))
                         (if (eqv? (logand flags backward:kills-arg1)
                                   backward:kills-arg1)
                             (vector-set! registers
                                          (instruction.arg1 instruction)
                                          #f))
                         (if (eqv? (logand flags backward:kills-arg2)
                                   backward:kills-arg2)
                             (vector-set! registers
                                          (instruction.arg2 instruction)
                                          #f))
                         (if (eqv? (logand flags backward:uses-arg1)
                                   backward:uses-arg1)
                             (vector-set! registers
                                          (instruction.arg1 instruction)
                                          #t))
                         (if (eqv? (logand flags backward:uses-arg2)
                                   backward:uses-arg2)
                             (vector-set! registers
                                          (instruction.arg2 instruction)
                                          #t))
                         (if (eqv? (logand flags backward:uses-arg3)
                                   backward:uses-arg3)
                             (vector-set! registers
                                          (instruction.arg3 instruction)
                                          #t))
                         (backwards instructions filtered)))))))
        
        ; Given a list of instructions in reverse order, whose first
        ; element is the last instruction of a basic block,
        ; and a filtered list of instructions in forward order,
        ; returns a filtered list of instructions in the correct order.
        
        (define (backwards0 instructions filtered)
          (if (null? instructions)
              filtered
              (let* ((instruction (car instructions))
                     (mnemonic (instruction.op instruction)))
                (cond ((or (eqv? mnemonic $.label)
                           (eqv? mnemonic $.proc)
                           (eqv? mnemonic $.cont)
                           (eqv? mnemonic $.align))
                       (backwards0 (cdr instructions)
                                   (cons instruction filtered)))
                      ; all registers are dead at a $return
                      ((eqv? mnemonic $return)
                       (vector-fill! registers #f)
                       (vector-set! registers 0 #t)
                       (backwards (cdr instructions)
                                  (cons instruction filtered)))
                      ; all but the argument registers are dead at an $invoke
                      ((eqv? mnemonic $invoke)
                       (let ((n+1 (min *nregs*
                                       (+ (instruction.arg1 instruction) 1))))
                         (subvector-fill! registers 0 n+1 #t)
                         (subvector-fill! registers n+1 *nregs* #f)
                         (backwards (cdr instructions)
                                    (cons instruction filtered))))
                      ; the compiler says which registers are live at the
                      ; target of $skip, $branch, $branchf, or $jump
                      ((or (eqv? mnemonic $skip)
                           (eqv? mnemonic $branch))
                       (let* ((live (instruction.arg2 instruction))
                              (n+1 (min *nregs* (+ live 1))))
                         (subvector-fill! registers 0 n+1 #t)
                         (subvector-fill! registers n+1 *nregs* #f)
                         (let ((instruction
                                ; FIXME
                                (list mnemonic
                                      (lookup-label
                                       (instruction.arg1 instruction))
                                      live)))
                           (backwards (cdr instructions)
                                      (cons instruction filtered)))))
                      ((eqv? mnemonic $jump)
                       (let ((n+1 (min *nregs*
                                       (+ (instruction.arg3 instruction) 1))))
                         (subvector-fill! registers 0 n+1 #t)
                         (subvector-fill! registers n+1 *nregs* #f)
                         (backwards (cdr instructions)
                                    (cons instruction filtered))))
                      ; the live registers at the target of a $branchf must be
                      ; combined with the live registers at the $branchf
                      ((eqv? mnemonic $branchf)
                       (let* ((live (instruction.arg2 instruction))
                              (n+1 (min *nregs* (+ live 1))))
                         (subvector-fill! registers 0 n+1 #t)
                         (let ((instruction
                                ; FIXME
                                (list mnemonic
                                      (lookup-label
                                       (instruction.arg1 instruction))
                                      live)))
                           (backwards (cdr instructions)
                                      (cons instruction filtered)))))
                      (else (backwards instructions filtered))))))
        
        (define (suppress-forwards instruction instructions filtered)
          (if (issue-warnings)
              '(begin (display suppression-message)
                      (newline)))
          (forwards instructions filtered))
        
        (define (suppress-backwards instruction instructions filtered)
          (if (issue-warnings)
              '(begin (display suppression-message)
                      (newline)))
          (backwards instructions filtered))
        
        (define (local-optimization-error op)
          (error "Compiler bug: local optimization" op))
        
        (vector-fill! registers #f)
        (forwards instructions '())))))
; Copyright 1998 Lars T Hansen.
; 
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 28 April 1999
;
; compile313 -- compilation parameters and driver procedures.


; File types -- these may differ between operating systems.

(define *scheme-file-types* '(".sch" ".scm"))
(define *lap-file-type*     ".lap")
(define *mal-file-type*     ".mal")
(define *lop-file-type*     ".lop")
(define *fasl-file-type*    ".fasl")

; Compile and assemble a scheme source file and produce a fastload file.

(define (compile-file infilename . rest)

  (define (doit)
    (let ((outfilename
           (if (not (null? rest))
               (car rest)
               (rewrite-file-type infilename
                                  *scheme-file-types*
                                  *fasl-file-type*)))
          (user
           (assembly-user-data)))
      (if (and (not (integrate-usual-procedures))
               (issue-warnings))
          (begin 
            (display "WARNING from compiler: ")
            (display "integrate-usual-procedures is turned off")
            (newline)
            (display "Performance is likely to be poor.")
            (newline)))
      (if (benchmark-block-mode)
          (process-file-block infilename
                              outfilename
                              dump-fasl-segment-to-port
                              (lambda (forms)
                                (assemble (compile-block forms) user)))
          (process-file infilename
                        outfilename
                        dump-fasl-segment-to-port
                        (lambda (expr)
                          (assemble (compile expr) user))))
      (unspecified)))

  (if (eq? (nbuild-parameter 'target-machine) 'standard-c)
      (error "Compile-file not supported on this target architecture.")
      (doit)))


; Assemble a MAL or LOP file and produce a FASL file.

(define (assemble-file infilename . rest)
  (define (doit)
    (let ((outfilename
           (if (not (null? rest))
               (car rest)
               (rewrite-file-type infilename 
                                  (list *lap-file-type* *mal-file-type*)
                                  *fasl-file-type*)))
          (malfile?
           (file-type=? infilename *mal-file-type*))
          (user
           (assembly-user-data)))
      (process-file infilename
                    outfilename
                    dump-fasl-segment-to-port
                    (lambda (x) (assemble (if malfile? (eval x) x) user)))
      (unspecified)))
  
  (if (eq? (nbuild-parameter 'target-machine) 'standard-c)
      (error "Assemble-file not supported on this target architecture.")
      (doit)))


; Compile and assemble a single expression; return the LOP segment.

(define compile-expression
  (let ()
    
    (define (compile-expression expr env)
      (let ((syntax-env
             (case (environment-tag env)
               ((0 1) (make-standard-syntactic-environment))
               ((2)   global-syntactic-environment)
               (else  
                (error "Invalid environment for compile-expression: " env)
                #t))))
        (let ((current-env global-syntactic-environment))
          (dynamic-wind
           (lambda ()
             (set! global-syntactic-environment syntax-env))
           (lambda ()
             (assemble (compile expr)))
           (lambda ()
             (set! global-syntactic-environment current-env))))))
    
    compile-expression))


(define macro-expand-expression
  (let ()
    
    (define (macro-expand-expression expr env)
      (let ((syntax-env
             (case (environment-tag env)
               ((0 1) (make-standard-syntactic-environment))
               ((2)   global-syntactic-environment)
               (else  
                (error "Invalid environment for compile-expression: " env)
                #t))))
        (let ((current-env global-syntactic-environment))
          (dynamic-wind
           (lambda ()
             (set! global-syntactic-environment syntax-env))
           (lambda ()
             (make-readable
              (macro-expand expr)))
           (lambda ()
             (set! global-syntactic-environment current-env))))))
    
    macro-expand-expression))


; Compile a scheme source file to a LAP file.

(define (compile313 infilename . rest)
  (let ((outfilename
         (if (not (null? rest))
             (car rest)
             (rewrite-file-type infilename
                                *scheme-file-types* 
                                *lap-file-type*)))
        (write-lap
         (lambda (item port)
           (write item port)
           (newline port)
           (newline port))))
    (if (benchmark-block-mode)
        (process-file-block infilename outfilename write-lap compile-block)
        (process-file infilename outfilename write-lap compile))
    (unspecified)))


; Assemble a LAP or MAL file to a LOP file.

(define (assemble313 file . rest)
  (let ((outputfile
         (if (not (null? rest))
             (car rest)
             (rewrite-file-type file 
                                (list *lap-file-type* *mal-file-type*)
                                *lop-file-type*)))
        (malfile?
         (file-type=? file *mal-file-type*))
        (user
         (assembly-user-data)))
    (process-file file
                  outputfile
                  write-lop
                  (lambda (x) (assemble (if malfile? (eval x) x) user)))
    (unspecified)))


; Compile and assemble a Scheme source file to a LOP file.

(define (compile-and-assemble313 input-file . rest)
  (let ((output-file
         (if (not (null? rest))
             (car rest)
             (rewrite-file-type input-file 
                                *scheme-file-types*
                                *lop-file-type*)))
        (user
         (assembly-user-data)))
    (if (benchmark-block-mode)
        (process-file-block input-file
                            output-file
                            write-lop
                            (lambda (x) (assemble (compile-block x) user)))
        (process-file input-file
                      output-file
                      write-lop
                      (lambda (x) (assemble (compile x) user))))
    (unspecified)))


; Convert a LOP file to a FASL file.

(define (make-fasl infilename . rest)
  (define (doit)
    (let ((outfilename
           (if (not (null? rest))
               (car rest)
               (rewrite-file-type infilename
                                  *lop-file-type*
                                  *fasl-file-type*))))
      (process-file infilename
                    outfilename
                    dump-fasl-segment-to-port
                    (lambda (x) x))
      (unspecified)))

  (if (eq? (nbuild-parameter 'target-machine) 'standard-c)
      (error "Make-fasl not supported on this target architecture.")
      (doit)))


; Disassemble a procedure's code vector.

(define (disassemble item . rest)
  (let ((output-port (if (null? rest)
                         (current-output-port)
                         (car rest))))
    (disassemble-item item #f output-port)
    (unspecified)))


; The item can be either a procedure or a pair (assumed to be a segment).

(define (disassemble-item item segment-no port)
  
  (define (print . rest)
    (for-each (lambda (x) (display x port)) rest)
    (newline port))
  
  (define (print-constvector cv)
    (do ((i 0 (+ i 1)))
        ((= i (vector-length cv)))
        (print "------------------------------------------")
        (print "Constant vector element # " i)
        (case (car (vector-ref cv i))
          ((codevector)
           (print "Code vector")
           (print-instructions (disassemble-codevector
                                (cadr (vector-ref cv i)))
                               port))
          ((constantvector)	
           (print "Constant vector")
           (print-constvector (cadr (vector-ref cv i))))
          ((global)
           (print "Global: " (cadr (vector-ref cv i))))
          ((data)
           (print "Data: " (cadr (vector-ref cv i)))))))
  
  (define (print-segment segment)
    (print "Segment # " segment-no)
    (print-instructions (disassemble-codevector (car segment)) port)
    (print-constvector (cdr segment))
    (print "========================================"))
  
  (cond ((procedure? item)
         (print-instructions (disassemble-codevector (procedure-ref item 0))
                             port))
        ((and (pair? item)
              (bytevector? (car item))
              (vector? (cdr item)))
         (print-segment item))
        (else
         (error "disassemble-item: " item " is not disassemblable."))))


; Disassemble a ".lop" or ".fasl" file; dump output to screen or 
; other (optional) file.

(define (disassemble-file file . rest)
  
  (define (doit input-port output-port)
    (display "; From " output-port)
    (display file output-port)
    (newline output-port)
    (do ((segment-no 0 (+ segment-no 1))
         (segment (read input-port) (read input-port)))
        ((eof-object? segment))
        (disassemble-item segment segment-no output-port)))

  ; disassemble313

  (call-with-input-file
   file
   (lambda (input-port)
     (if (null? rest)
         (doit input-port (current-output-port))
         (begin
          (delete-file (car rest))
          (call-with-output-file
           (car rest)
           (lambda (output-port) (doit input-port output-port)))))))
  (unspecified))


; Display and manipulate the compiler switches.

(define (compiler-switches . rest)

  (define (slow-code)
    (set-compiler-flags! 'no-optimization)
    (set-assembler-flags! 'no-optimization))

  (define (standard-code)
    (set-compiler-flags! 'standard)
    (set-assembler-flags! 'standard))

  (define (fast-safe-code)
    (set-compiler-flags! 'fast-safe)
    (set-assembler-flags! 'fast-safe))

  (define (fast-unsafe-code)
    (set-compiler-flags! 'fast-unsafe)
    (set-assembler-flags! 'fast-unsafe))

  (cond ((null? rest)
         (display "Debugging:")
         (newline)
         (display-twobit-flags 'debugging)
         (display-assembler-flags 'debugging)
         (newline)
         (display "Safety:")
         (newline)
         (display-twobit-flags 'safety)
         (display-assembler-flags 'safety)
         (newline)
         (display "Speed:")
         (newline)
         (display-twobit-flags 'optimization)
         (display-assembler-flags 'optimization)
         (if #f #f))
        ((null? (cdr rest))
         (case (car rest)
           ((0 slow)             (slow-code))
           ((1 standard)         (standard-code))
           ((2 fast-safe)        (fast-safe-code))
           ((3 fast-unsafe)      (fast-unsafe-code))
           ((default
             factory-settings)   (fast-safe-code)
                                 (include-source-code #t)
                                 (benchmark-mode #f)
                                 (benchmark-block-mode #f)
                                 (common-subexpression-elimination #f)
                                 (representation-inference #f))
           (else 
            (error "Unrecognized flag " (car rest) " to compiler-switches.")))
         (unspecified))
        (else
         (error "Too many arguments to compiler-switches."))))

; Read and process one file, producing another.
; Preserves the global syntactic environment.

(define (process-file infilename outfilename writer processer)
  (define (doit)
    (delete-file outfilename)
    (call-with-output-file
     outfilename
     (lambda (outport)
       (call-with-input-file
        infilename
        (lambda (inport)
          (let loop ((x (read inport)))
            (if (eof-object? x)
                #t
                (begin (writer (processer x) outport)
                       (loop (read inport))))))))))
  (let ((current-syntactic-environment
         (syntactic-copy global-syntactic-environment)))
    (dynamic-wind
     (lambda () #t)
     (lambda () (doit))
     (lambda ()
       (set! global-syntactic-environment
             current-syntactic-environment)))))

; Same as above, but passes a list of the entire file's contents
; to the processer.
; FIXME:  Both versions of PROCESS-FILE always delete the output file.
; Shouldn't it be left alone if the input file can't be opened?

(define (process-file-block infilename outfilename writer processer)
  (define (doit)
    (delete-file outfilename)
    (call-with-output-file
     outfilename
     (lambda (outport)
       (call-with-input-file
        infilename
        (lambda (inport)
          (do ((x (read inport) (read inport))
               (forms '() (cons x forms)))
              ((eof-object? x)
               (writer (processer (reverse forms)) outport))))))))
  (let ((current-syntactic-environment
         (syntactic-copy global-syntactic-environment)))
    (dynamic-wind
     (lambda () #t)
     (lambda () (doit))
     (lambda ()
       (set! global-syntactic-environment
             current-syntactic-environment)))))


; Given a file name with some type, produce another with some other type.

(define (rewrite-file-type filename matches new)
  (if (not (pair? matches))
      (rewrite-file-type filename (list matches) new)
      (let ((j (string-length filename)))
        (let loop ((m matches))
          (cond ((null? m)
                 (string-append filename new))
                (else
                 (let* ((n (car m))
                        (l (string-length n)))
                   (if (file-type=? filename n)
                       (string-append (substring filename 0 (- j l)) new)
                       (loop (cdr m))))))))))

(define (file-type=? file-name type-name)
  (let ((fl (string-length file-name))
        (tl (string-length type-name)))
    (and (>= fl tl)
         (string-ci=? type-name
                      (substring file-name (- fl tl) fl)))))

; eof
; Copyright 1998 William Clinger.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Procedures that make .LAP structures human-readable

(define (readify-lap code)
  (map (lambda (x)
	 (let ((iname (cdr (assv (car x) *mnemonic-names*))))
	   (if (not (= (car x) $lambda))
	       (cons iname (cdr x))
	       (list iname (readify-lap (cadr x)) (caddr x)))))
       code))

(define (readify-file f . o)

  (define (doit)
    (let ((i (open-input-file f)))
      (let loop ((x (read i)))
	(if (not (eof-object? x))
	    (begin (pretty-print (readify-lap x))
		   (loop (read i)))))))

  (if (null? o)
      (doit)
      (begin (delete-file (car o))
	     (with-output-to-file (car o) doit))))

; eof
; Copyright 1991 Lightship Software, Incorporated.
; 
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Target-independent part of the assembler.
;
; This is a simple, table-driven, one-pass assembler.
; Part of it assumes a big-endian target machine.
;
; The input to this pass is a list of symbolic MacScheme machine
; instructions and pseudo-instructions.  Each symbolic MacScheme 
; machine instruction or pseudo-instruction is a list whose car
; is a small non-negative fixnum that acts as the mnemonic for the
; instruction.  The rest of the list is interpreted as indicated
; by the mnemonic.
;
; The output is a pair consisting of machine code (a bytevector or 
; string) and a constant vector.
;
; This assembler is table-driven, and may be customized to emit
; machine code for different target machines.  The table consists
; of a vector of procedures indexed by mnemonics.  Each procedure
; in the table should take two arguments: an assembly structure
; and a source instruction.  The procedure should just assemble
; the instruction using the operations defined below.
;
; The table and target can be changed by redefining the following 
; five procedures.

(define (assembly-table) (error "No assembly table defined."))
(define (assembly-start as) #t)
(define (assembly-end as segment) segment)
(define (assembly-user-data) #f)

; The main entry point.

(define (assemble source . rest)
  (let* ((user (if (null? rest) (assembly-user-data) (car rest)))
	 (as   (make-assembly-structure source (assembly-table) user)))
    (assembly-start as)
    (assemble1 as
	       (lambda (as)
		 (let ((segment (assemble-pasteup as)))
		   (assemble-finalize! as)
		   (assembly-end as segment)))
	       #f)))

; The following procedures are to be called by table routines.
;
; The assembly source for nested lambda expressions should be
; assembled by calling this procedure.  This allows an inner
; lambda to refer to labels defined by outer lambdas.
;
; We delay the assembly of the nested lambda until after the outer lambda
; has been finalized so that all labels in the outer lambda are known
; to the inner lambda.
;
; The continuation procedure k is called to backpatch the constant
; vector of the outer lambda after the inner lambda has been
; finalized.  This is necessary because of the delayed evaluation: the
; outer lambda holds code and constants for the inner lambda in its
; constant vector.

(define (assemble-nested-lambda as source doc k . rest)
  (let* ((user (if (null? rest) #f (car rest)))
	 (nested-as (make-assembly-structure source (as-table as) user)))
    (as-parent! nested-as as)
    (as-nested! as (cons (lambda ()
			   (assemble1 nested-as 
				      (lambda (nested-as)
					(let ((segment
					       (assemble-pasteup nested-as)))
					  (assemble-finalize! nested-as)
					  (k nested-as segment)))
				      doc))
			 (as-nested as)))))

(define operand0 car)      ; the mnemonic
(define operand1 cadr)
(define operand2 caddr)
(define operand3 cadddr)
(define (operand4 i) (car (cddddr i)))

; Emits the bits contained in the bytevector bv.

(define (emit! as bv)
  (as-code! as (cons bv (as-code as)))
  (as-lc! as (+ (as-lc as) (bytevector-length bv))))

; Emits the characters contained in the string s as code (for C generation).

(define (emit-string! as s)
  (as-code! as (cons s (as-code as)))
  (as-lc! as (+ (as-lc as) (string-length s))))

; Given any Scheme object that may legally be quoted, returns an
; index into the constant vector for that constant.

(define (emit-constant as x)
  (do ((i 0 (+ i 1))
       (y (as-constants as) (cdr y)))
      ((or (null? y) (equal? x (car y)))
       (if (null? y)
	   (as-constants! as (append! (as-constants as) (list x))))
       i)))

(define (emit-datum as x)
  (emit-constant as (list 'data x)))

(define (emit-global as x)
  (emit-constant as (list 'global x)))

(define (emit-codevector as x)
  (emit-constants as (list 'codevector x)))

(define (emit-constantvector as x)
  (emit-constants as (list 'constantvector x)))

; Set-constant changes the datum stored, without affecting the tag.
; It can operate on the list form because the pair stored in the list
; is shared between the list and any vector created from the list.

(define (set-constant! as n datum)
  (let ((pair (list-ref (as-constants as) n)))
    (set-car! (cdr pair) datum)))

; Guarantees that the constants will not share structure
; with any others, and will occupy consecutive positions
; in the constant vector.  Returns the index of the first
; constant.

(define (emit-constants as x . rest)
  (let* ((constants (as-constants as))
         (i         (length constants)))
    (as-constants! as (append! constants (cons x rest)))
    i))

; Defines the given label using the current location counter.

(define (emit-label! as L)
  (set-cdr! L (as-lc as)))

; Adds the integer n to the size code bytes beginning at the
; given byte offset from the current value of the location counter.

(define (emit-fixup! as offset size n)
  (as-fixups! as (cons (list (+ offset (as-lc as)) size n)
		       (as-fixups as))))

; Adds the value of the label L to the size code bytes beginning
; at the given byte offset from the current location counter.

(define (emit-fixup-label! as offset size L)
  (as-fixups! as (cons (list (+ offset (as-lc as)) size (list L))
		       (as-fixups as))))

; Allows the procedure proc of two arguments (code vector and current
; location counter) to modify the code vector at will, at fixup time.

(define (emit-fixup-proc! as proc)
  (as-fixups! as (cons (list (as-lc as) 0 proc)
		       (as-fixups as))))

; Labels.

; The current value of the location counter.

(define (here as) (as-lc as))

; Given a MAL label (a number), create an assembler label.

(define (make-asm-label as label)
  (let ((probe (find-label as label)))
    (if probe
	probe
	(let ((l (cons label #f)))
	  (as-labels! as (cons l (as-labels as)))
	  l))))

; This can use hashed lookup.

(define (find-label as L)

  (define (lookup-label-loop x labels parent)
    (let ((entry (assq x labels)))
      (cond (entry)
	    ((not parent) #f)
	    (else 
	     (lookup-label-loop x (as-labels parent) (as-parent parent))))))
    
  (lookup-label-loop L (as-labels as) (as-parent as)))

; Create a new assembler label, distinguishable from a MAL label.

(define new-label
  (let ((n 0))
    (lambda ()
      (set! n (- n 1))
      (cons n #f))))

; Given a value name (a number), return the label value or #f.

(define (label-value as L) (cdr L))

; For peephole optimization.

(define (next-instruction as)
  (let ((source (as-source as)))
    (if (null? source)
        '(-1)
        (car source))))

(define (consume-next-instruction! as)
  (as-source! as (cdr (as-source as))))

(define (push-instruction as instruction)
  (as-source! as (cons instruction (as-source as))))

; For use by the machine assembler: assoc lists connected to as structure.

(define (assembler-value as key)
  (let ((probe (assq key (as-values as))))
    (if probe
	(cdr probe)
	#f)))

(define (assembler-value! as key value)
  (let ((probe (assq key (as-values as))))
    (if probe
	(set-cdr! probe value)
	(as-values! as (cons (cons key value) (as-values as))))))

; For documentation.
;
; The value must be a documentation structure (a vector).

(define (add-documentation as doc)
  (let* ((existing-constants (cadr (car (as-constants as))))
	 (new-constants 
	  (twobit-sort (lambda (a b)
			 (< (car a) (car b)))
		       (cond ((not existing-constants)
			      (list (cons (here as) doc)))
			     ((pair? existing-constants)
			      (cons (cons (here as) doc)
				    existing-constants))
			     (else
			      (list (cons (here as) doc)
				    (cons 0 existing-constants)))))))
    (set-car! (cdar (as-constants as)) new-constants)))

; This is called when a value is too large to be handled by the assembler.
; Info is a string, expr an assembler expression, and val the resulting
; value.  The default behavior is to signal an error.

(define (asm-value-too-large as info expr val)
  (if (as-retry as)
      ((as-retry as))
      (asm-error info ": Value too large: " expr " = " val)))

; The implementations of asm-error and disasm-error depend on the host
; system. Sigh.

(define (asm-error msg . rest)
  (cond ((eq? host-system 'chez)
	 (error 'assembler "~a" (list msg rest)))
	(else
	 (apply error msg rest))))

(define (disasm-error msg . rest)
  (cond ((eq? host-system 'chez)
	 (error 'disassembler "~a" (list msg rest)))
	(else
	 (apply error msg rest))))

; The remaining procedures in this file are local to the assembler.

; An assembly structure is a vector consisting of
;
;    table          (a table of assembly routines)
;    source         (a list of symbolic instructions)
;    lc             (location counter; an integer)
;    code           (a list of bytevectors)
;    constants      (a list)
;    labels         (an alist of labels and values)
;    fixups         (an alist of locations, sizes, and labels or fixnums)
;    nested         (a list of assembly procedures for nested lambdas)
;    values         (an assoc list)
;    parent         (an assembly structure or #f)
;    retry          (a thunk or #f)
;    user-data      (anything)
;
; In fixups, labels are of the form (<L>) to distinguish them from fixnums.

(define (label? x) (and (pair? x) (fixnum? (car x))))
(define label.ident car)

(define (make-assembly-structure source table user-data)
  (vector table
          source
          0
          '()
          '()
          '()
          '()
          '()
	  '()
	  #f
	  #f
	  user-data))

(define (as-reset! as source)
  (as-source! as source)
  (as-lc! as 0)
  (as-code! as '())
  (as-constants! as '())
  (as-labels! as '())
  (as-fixups! as '())
  (as-nested! as '())
  (as-values! as '())
  (as-retry! as #f))

(define (as-table as)     (vector-ref as 0))
(define (as-source as)    (vector-ref as 1))
(define (as-lc as)        (vector-ref as 2))
(define (as-code as)      (vector-ref as 3))
(define (as-constants as) (vector-ref as 4))
(define (as-labels as)    (vector-ref as 5))
(define (as-fixups as)    (vector-ref as 6))
(define (as-nested as)    (vector-ref as 7))
(define (as-values as)    (vector-ref as 8))
(define (as-parent as)    (vector-ref as 9))
(define (as-retry as)     (vector-ref as 10))
(define (as-user as)      (vector-ref as 11))

(define (as-source! as x)    (vector-set! as 1 x))
(define (as-lc! as x)        (vector-set! as 2 x))
(define (as-code! as x)      (vector-set! as 3 x))
(define (as-constants! as x) (vector-set! as 4 x))
(define (as-labels! as x)    (vector-set! as 5 x))
(define (as-fixups! as x)    (vector-set! as 6 x))
(define (as-nested! as x)    (vector-set! as 7 x))
(define (as-values! as x)    (vector-set! as 8 x))
(define (as-parent! as x)    (vector-set! as 9 x))
(define (as-retry! as x)     (vector-set! as 10 x))
(define (as-user! as x)      (vector-set! as 11 x))

; The guts of the assembler.

(define (assemble1 as finalize doc)
  (let ((assembly-table (as-table as))
	(peep? (peephole-optimization))
	(step? (single-stepping))
	(step-instr (list $.singlestep))
	(end-instr (list $.end)))

    (define (loop)
      (let ((source (as-source as)))
        (if (null? source)
	    (begin ((vector-ref assembly-table $.end) end-instr as)
		   (finalize as))
            (begin (if step?
		       ((vector-ref assembly-table $.singlestep)
			step-instr
			as))
		   (if peep?
		       (let peeploop ((src1 source))
			 (peep as)
			 (let ((src2 (as-source as)))
			   (if (not (eq? src1 src2))
			       (peeploop src2)))))
		   (let ((source (as-source as)))
		     (as-source! as (cdr source))
		     ((vector-ref assembly-table (caar source))
		      (car source)
		      as)
		     (loop))))))

    (define (doit)
      (emit-datum as doc)
      (loop))

    (let* ((source (as-source as))
	   (r (call-with-current-continuation
	       (lambda (k)
		 (as-retry! as (lambda () (k 'retry)))
		 (doit)))))
      (if (eq? r 'retry)
	  (let ((old (short-effective-addresses)))
	    (as-reset! as source)
	    (dynamic-wind
	     (lambda ()
	       (short-effective-addresses #f))
	     doit
	     (lambda ()
	       (short-effective-addresses old))))
	  r))))

(define (assemble-pasteup as)

  (define (pasteup-code)
    (let ((code      (make-bytevector (as-lc as)))
	  (constants (list->vector (as-constants as))))
    
      ; The bytevectors: byte 0 is most significant.

      (define (paste-code! bvs i)
	(if (not (null? bvs))
	    (let* ((bv (car bvs))
		   (n  (bytevector-length bv)))
	      (do ((i i (- i 1))
		   (j (- n 1) (- j 1)))	; (j 0 (+ j 1))
		  ((< j 0)		; (= j n)
		   (paste-code! (cdr bvs) i))
                (bytevector-set! code i (bytevector-ref bv j))))))
    
      (paste-code! (as-code as) (- (as-lc as) 1))
      (as-code! as (list code))
      (cons code constants)))

  (define (pasteup-strings)
    (let ((code      (make-string (as-lc as)))
	  (constants (list->vector (as-constants as))))

      (define (paste-code! strs i)
	(if (not (null? strs))
	    (let* ((s (car strs))
		   (n (string-length s)))
	      (do ((i i (- i 1))
		   (j (- n 1) (- j 1)))	; (j 0 (+ j 1))
		  ((< j 0)		; (= j n)
		   (paste-code! (cdr strs) i))
                (string-set! code i (string-ref s j))))))

      (paste-code! (as-code as) (- (as-lc as) 1))
      (as-code! as (list code))
      (cons code constants)))

  (if (bytevector? (car (as-code as)))
      (pasteup-code)
      (pasteup-strings)))

(define (assemble-finalize! as)
  (let ((code (car (as-code as))))

    (define (apply-fixups! fixups)
      (if (not (null? fixups))
          (let* ((fixup      (car fixups))
                 (i          (car fixup))
                 (size       (cadr fixup))
                 (adjustment (caddr fixup))  ; may be procedure
                 (n          (if (label? adjustment)
				 (lookup-label adjustment)
				 adjustment)))
            (case size
	      ((0) (fixup-proc code i n))
              ((1) (fixup1 code i n))
              ((2) (fixup2 code i n))
              ((3) (fixup3 code i n))
              ((4) (fixup4 code i n))
              (else ???))
            (apply-fixups! (cdr fixups)))))

    (define (lookup-label L)
      (or (label-value as (label.ident L))
	  (asm-error "Assembler error -- undefined label " L)))

    (apply-fixups! (reverse! (as-fixups as)))

    (for-each (lambda (nested-as-proc)
		(nested-as-proc))
	      (as-nested as))))


; These fixup routines assume a big-endian target machine.

(define (fixup1 code i n)
  (bytevector-set! code i (+ n (bytevector-ref code i))))

(define (fixup2 code i n)
  (let* ((x  (+ (* 256 (bytevector-ref code i))
                (bytevector-ref code (+ i 1))))
         (y  (+ x n))
         (y0 (modulo y 256))
         (y1 (modulo (quotient (- y y0) 256) 256)))
    (bytevector-set! code i y1)
    (bytevector-set! code (+ i 1) y0)))

(define (fixup3 code i n)
  (let* ((x  (+ (* 65536 (bytevector-ref code i))
		(* 256 (bytevector-ref code (+ i 1)))
                (bytevector-ref code (+ i 2))))
         (y  (+ x n))
         (y0 (modulo y 256))
         (y1 (modulo (quotient (- y y0) 256) 256))
         (y2 (modulo (quotient (- y (* 256 y1) y0) 256) 256)))
    (bytevector-set! code i y2)
    (bytevector-set! code (+ i 1) y1)
    (bytevector-set! code (+ i 2) y0)))

(define (fixup4 code i n)
  (let* ((x  (+ (* 16777216 (bytevector-ref code i))
		(* 65536 (bytevector-ref code (+ i 1)))
		(* 256 (bytevector-ref code (+ i 2)))
		(bytevector-ref code (+ i 3))))
         (y  (+ x n))
         (y0 (modulo y 256))
         (y1 (modulo (quotient (- y y0) 256) 256))
         (y2 (modulo (quotient (- y (* 256 y1) y0) 256) 256))
         (y3 (modulo (quotient (- y (* 65536 y2)
                                    (* 256 y1)
                                    y0)
                               256)
                     256)))
    (bytevector-set! code i y3)
    (bytevector-set! code (+ i 1) y2)
    (bytevector-set! code (+ i 2) y1)
    (bytevector-set! code (+ i 3) y0)))

(define (fixup-proc code i p)
  (p code i))

; For testing.

(define (view-segment segment)
  (define (display-bytevector bv)
    (let ((n (bytevector-length bv)))
      (do ((i 0 (+ i 1)))
          ((= i n))
          (if (zero? (remainder i 4))
              (write-char #\space))
          (if (zero? (remainder i 8))
              (write-char #\space))
          (if (zero? (remainder i 32))
              (newline))
          (let ((byte (bytevector-ref bv i)))
            (write-char
	     (string-ref (number->string (quotient byte 16) 16) 0))
            (write-char
	     (string-ref (number->string (remainder byte 16) 16) 0))))))
  (if (and (pair? segment)
           (bytevector? (car segment))
           (vector? (cdr segment)))
      (begin (display-bytevector (car segment))
             (newline)
             (write (cdr segment))
             (newline)
             (do ((constants (vector->list (cdr segment))
                             (cdr constants)))
                 ((or (null? constants)
                      (null? (cdr constants))))
                 (if (and (bytevector? (car constants))
                          (vector? (cadr constants)))
                     (view-segment (cons (car constants)
                                         (cadr constants))))))))

; emit is a procedure that takes an as and emits instructions into it.

(define (test-asm emit)
  (let ((as (make-assembly-structure #f #f #f)))
    (emit as)
    (let ((segment (assemble-pasteup as)))
      (assemble-finalize! as)
      (disassemble segment))))

(define (compile&assemble x)
  (view-segment (assemble (compile x))))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Common assembler -- miscellaneous utility procedures.

; Given any Scheme object, return its printable representation as a string.
; This code is largely portable (see comments).

(define (format-object x)

  (define (format-list x)
    (define (loop x)
      (cond ((null? x)
	     '(")"))
	    ((null? (cdr x))
	     (list (format-object (car x)) ")"))
	    (else
	     (cons (format-object (car x))
		   (cons " " 
			 (loop (cdr x)))))))
    (apply string-append (cons "(" (loop x))))

  (define (format-improper-list x)
    (define (loop x)
      (if (pair? (cdr x))
	  (cons (format-object (car x))
		(cons " "
		      (loop (cdr x))))
	  (list (format-object (car x))
		" . "
		(format-object (cdr x))
		")")))
    (apply string-append (cons "(" (loop x))))

  (cond ((null? x)             "()")
	((not x)               "#f")
	((eq? x #t)            "#t")
	((symbol? x)           (symbol->string x))
	((number? x)           (number->string x))
	((char? x)             (string x))
	((string? x)           x)
	((procedure? x)        "#<procedure>")
	((bytevector? x)       "#<bytevector>")     ; Larceny
	((eof-object? x)       "#<eof>")
	((port? x)             "#<port>")
	((eq? x (unspecified)) "#!unspecified")     ; Larceny
	((eq? x (undefined))   "#!undefined")       ; Larceny
	((vector? x)
	 (string-append "#" (format-list (vector->list x))))
	((list? x)
	 (format-list x))
	((pair? x)
	 (format-improper-list x))
	(else                  "#<weird>")))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Larceny assembler -- 32-bit big-endian utility procedures.
;
; 32-bit numbers are represented as 4-byte bytevectors where byte 3
; is the least significant and byte 0 is the most significant.
;
; Logically, the 'big' end is on the left and the 'little' end
; is on the right, so a left shift shifts towards the 'big' end.
;
; Performance: poor, for good reasons.  See asmutil32.sch.

; Identifies the code loaded.

(define asm:endianness 'big)


; Given four bytes, create a length-4 bytevector. 
; N1 is the most significant byte, n4 the least significant.

(define (asm:bv n1 n2 n3 n4)
  (let ((bv (make-bytevector 4)))
    (bytevector-set! bv 0 n1)
    (bytevector-set! bv 1 n2)
    (bytevector-set! bv 2 n3)
    (bytevector-set! bv 3 n4)
    bv))


; Given a length-4 bytevector, convert it to an integer.

(define (asm:bv->int bv)
  (let ((i (+ (* (+ (* (+ (* (bytevector-ref bv 0) 256)
			  (bytevector-ref bv 1))
		       256)
		    (bytevector-ref bv 2))
		 256)
	      (bytevector-ref bv 3))))
    (if (> (bytevector-ref bv 0) 127)
	(- i)
	i)))


; Shift the bits of m left by n bits, shifting in zeroes at the right end.
; Returns a length-4 bytevector.
;
; M may be an exact integer or a length-4 bytevector.
; N must be an exact nonnegative integer; it's interpreted modulo 33.

(define (asm:lsh m n)
  (if (not (bytevector? m))
      (asm:lsh (asm:int->bv m) n)
      (let ((m (bytevector-copy m))
	    (n (remainder n 33)))
	(if (>= n 8)
	    (let ((k (quotient n 8)))
	      (do ((i 0 (+ i 1)))
		  ((= (+ i k) 4)
		   (do ((i i (+ i 1)))
		       ((= i 4))
		     (bytevector-set! m i 0)))
		(bytevector-set! m i (bytevector-ref m (+ i k))))))
	(let* ((d0 (bytevector-ref m 0))
	       (d1 (bytevector-ref m 1))
	       (d2 (bytevector-ref m 2))
	       (d3 (bytevector-ref m 3))
	       (n  (remainder n 8))
	       (n- (- 8 n)))
	  (asm:bv (logand (logior (lsh d0 n) (rshl d1 n-)) 255)
		  (logand (logior (lsh d1 n) (rshl d2 n-)) 255)
		  (logand (logior (lsh d2 n) (rshl d3 n-)) 255)
		  (logand (lsh d3 n) 255))))))


; Shift the bits of m right by n bits, shifting in zeroes at the high end.
; Returns a length-4 bytevector.
;
; M may be an exact integer or a length-4 bytevector.
; N must be an exact nonnegative integer; it's interpreted modulo 33.

(define (asm:rshl m n)
  (if (not (bytevector? m))
      (asm:rshl (asm:int->bv m) n)
      (let ((m (bytevector-copy m))
	    (n (remainder n 33)))
	(if (>= n 8)
	    (let ((k (quotient n 8)))
	      (do ((i 3 (- i 1)))
		  ((< (- i k) 0)
		   (do ((i i (- i 1)))
		       ((< i 0))
		     (bytevector-set! m i 0)))
		(bytevector-set! m i (bytevector-ref m (- i k))))))
	(let* ((d0 (bytevector-ref m 0))
	       (d1 (bytevector-ref m 1))
	       (d2 (bytevector-ref m 2))
	       (d3 (bytevector-ref m 3))
	       (n  (remainder n 8))
	       (n- (- 8 n)))
	  (asm:bv (rshl d0 n)
		  (logand (logior (rshl d1 n) (lsh d0 n-)) 255)
		  (logand (logior (rshl d2 n) (lsh d1 n-)) 255)
		  (logand (logior (rshl d3 n) (lsh d2 n-)) 255))))))


; Shift the bits of m right by n bits, shifting in the sign bit at the
; high end.  Returns a length-4 bytevector.
;
; M may be an exact integer or a length-4 bytevector.
; N must be an exact nonnegative integer; it's interpreted modulo 33.

(define asm:rsha
  (let ((ones (asm:bv #xff #xff #xff #xff)))
    (lambda (m n)
      (let* ((m (if (bytevector? m) m (asm:int->bv m)))
	     (n (remainder n 33))
	     (h (rshl (bytevector-ref m 0) 7))
	     (k (asm:rshl m n)))
;	(format #t "~a ~a ~a~%" h (bytevector-ref m 0) n)
;	(prnx (asm:lsh ones (- 32 n))) (newline)
	(if (zero? h)
	    k
	    (asm:logior k (asm:lsh ones (- 32 n))))))))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Larceny assembler -- 32-bit endianness-independent utility procedures.
;
; 32-bit numbers are represented as 4-byte bytevectors where the
; exact layout depends on whether the little-endian or big-endian
; module has been loaded.  One of them must be loaded prior to loading
; this module.
;
; Logically, the 'big' end is on the left and the 'little' end
; is on the right, so a left shift shifts towards the big end.
;
; Generally, performance is not a major issue in this module.  The 
; assemblers should use more specialized code for truly good performance.
; These procedures are mainly suitable for one-time construction of 
; instruction templates, and during development.
;
; Endian-ness specific operations are in asmutil32be.sch and asmutil32le.sch:
;
;   (asm:bv n0 n1 n2 n3)    ; Construct bytevector
;   (asm:bv->int bv)        ; Convert bytevector to integer
;   (asm:lsh m k)           ; Shift left logical k bits
;   (asm:rshl m k)          ; Shift right logical k bits
;   (asm:rsha m k)          ; Shirt right arithmetic k bits


; Convert an integer to a length-4 bytevector using two's complement 
; representation for negative numbers.
; Returns length-4 bytevector.
;
; The procedure handles numbers in the range -2^31..2^32-1 [sic].
; It is an error for the number to be outside this range.
;
; FIXME: quotient/remainder may be slow; we could have special fixnum
;        case that uses shifts (that could be in-lined as macro).  It could
;        work for negative numbers too.
; FIXME: should probably check that the number is within range.

(define asm:int->bv
  (let ((two^32 (expt 2 32)))
    (lambda (m)
      (let* ((m  (if (< m 0) (+ two^32 m) m))
	     (b0 (remainder m 256))
	     (m  (quotient m 256))
	     (b1 (remainder m 256))
	     (m  (quotient m 256))
	     (b2 (remainder m 256))
	     (m  (quotient m 256))
	     (b3 (remainder m 256)))
	(asm:bv b3 b2 b1 b0)))))


; `Or' the bits of multiple operands together. 
; Each operand may be an exact integer or a length-4 bytevector.
; Returns a length-4 bytevector.

(define (asm:logior . ops)
  (let ((r (asm:bv 0 0 0 0)))
    (do ((ops ops (cdr ops)))
	((null? ops) r)
      (let* ((op (car ops))
	     (op (if (bytevector? op) op (asm:int->bv op))))
	(bytevector-set! r 0 (logior (bytevector-ref r 0)
				     (bytevector-ref op 0)))
	(bytevector-set! r 1 (logior (bytevector-ref r 1)
				     (bytevector-ref op 1)))
	(bytevector-set! r 2 (logior (bytevector-ref r 2)
				     (bytevector-ref op 2)))
	(bytevector-set! r 3 (logior (bytevector-ref r 3)
				     (bytevector-ref op 3)))))))


; `And' the bits of two operands together.
; Either may be an exact integer or length-4 bytevector.
; Returns length-4 bytevector.

(define (asm:logand op1 op2)
  (let ((op1 (if (bytevector? op1) op1 (asm:int->bv op1)))
	(op2 (if (bytevector? op2) op2 (asm:int->bv op2)))
	(bv  (make-bytevector 4)))
    (bytevector-set! bv 0 (logand (bytevector-ref op1 0)
				  (bytevector-ref op2 0)))
    (bytevector-set! bv 1 (logand (bytevector-ref op1 1)
				  (bytevector-ref op2 1)))
    (bytevector-set! bv 2 (logand (bytevector-ref op1 2)
				  (bytevector-ref op2 2)))
    (bytevector-set! bv 3 (logand (bytevector-ref op1 3)
				  (bytevector-ref op2 3)))
    bv))


; Extract the n low-order bits of m.
; m may be an exact integer or a length-4 bytevector.
; n must be an exact nonnegative integer, interpreted modulo 32.
; Returns length-4 bytevector.
;
; Does not depend on endian-ness.

(define asm:lobits 
  (let ((v (make-vector 33)))
    (do ((i 0 (+ i 1)))
	((= i 33))
      (vector-set! v i (asm:int->bv (- (expt 2 i) 1))))
    (lambda (m n)
      (asm:logand m (vector-ref v (remainder n 33))))))

; Extract the n high-order bits of m.
; m may be an exact integer or a length-4 bytevector.
; n must be an exact nonnegative integer, interpreted modulo 33.
; Returns length-4 bytevector with the high-order bits of m at low end.
;
; Does not depend on endian-ness.

(define (asm:hibits m n)
  (asm:rshl m (- 32 (remainder n 33))))

; Test that the given number (not! bytevector) m fits in an n-bit 
; signed slot.
;
; Does not depend on endian-ness.

(define asm:fits?
  (let ((v (make-vector 33)))
    (do ((i 0 (+ i 1)))
	((= i 33))
      (vector-set! v i (expt 2 i)))
    (lambda (m n)
      (<= (- (vector-ref v (- n 1))) m (- (vector-ref v (- n 1)) 1)))))

; Test that the given number (not! bytevector) m fits in an n-bit 
; unsigned slot.
;
; Does not depend on endian-ness.

(define asm:fits-unsigned?
  (let ((v (make-vector 33)))
    (do ((i 0 (+ i 1)))
	((= i 33))
      (vector-set! v i (expt 2 i)))
    (lambda (m n)
      (<= 0 m (- (vector-ref v n) 1)))))

; Add two operands (numbers or bytevectors).
;
; Does not depend on endian-ness.

(define (asm:add a b)
  (asm:int->bv (+ (if (bytevector? a) (asm:bv->int a) a)
		  (if (bytevector? b) (asm:bv->int b) b))))

; Given an unsigned 32-bit number, return it as a signed number
; as appropriate.
;
; Does not depend on endian-ness.

(define (asm:signed n)
  (if (< n 2147483647)
      n
      (- n 4294967296)))


(define (asm:print-bv bv)

  (define hex "0123456789abcdef")

  (define (pdig k)
    (display (string-ref hex (quotient k 16)))
    (display (string-ref hex (remainder k 16)))
    (display " "))
  
  (if (eq? asm:endianness 'little)
      (do ((i 3 (- i 1)))
	  ((< i 0))
	(pdig (bytevector-ref bv i)))
      (do ((i 0 (+ i 1)))
	  ((= i 4))
	(pdig (bytevector-ref bv i)))))


; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Procedure that writes fastload segment.
;
; The procedure 'dump-fasl-segment-to-port' takes a segment and an output
; port as arguments and dumps the segment in fastload format on that port.
; The port must be a binary (untranslated) port.
;
; A fastload segment looks like a Scheme expression, and in fact, 
; fastload files can mix compiled and uncompiled expressions.  A compiled
; expression (as created by dump-fasl-segment-to-port) is a list with
; a literal procedure in the operator position and no arguments.
;
; A literal procedure is a three-element list prefixed by #^P.  The three
; elements are code (a bytevector), constants (a regular vector), and
; R0/static link slot (always #f).  
;
; A bytevector is a string prefixed by #^B. The string may contain 
; control characters; \ and " must be quoted as usual.
;
; A global variable reference in the constant vector is a symbol prefixed
; by #^G.  On reading, the reference is replaced by (a pointer to) the 
; actual cell.
;
; This code is highly bummed.  The procedure write-bytevector-like has the
; same meaning as display, but in Larceny, the former is currently much
; faster than the latter.

(define (dump-fasl-segment-to-port segment outp . rest)
  (let* ((omit-code? (not (null? rest)))
         (controllify
	  (lambda (char)
	    (integer->char (- (char->integer char) (char->integer #\@)))))
	 (CTRLP       (controllify #\P))
	 (CTRLB       (controllify #\B))
	 (CTRLG       (controllify #\G))
	 (DOUBLEQUOTE (char->integer #\"))
	 (BACKSLASH   (char->integer #\\))
	 (len         1024))

    (define buffer (make-string len #\&))
    (define ptr 0)

    (define (flush)
      (if (< ptr len)
	  (write-bytevector-like (substring buffer 0 ptr) outp)
	  (write-bytevector-like buffer outp))
      (set! ptr 0))

    (define (putc c)
      (if (= ptr len) (flush))
      (string-set! buffer ptr c)
      (set! ptr (+ ptr 1)))

    (define (putb b)
      (if (= ptr len) (flush))
      (string-set! buffer ptr (integer->char b))
      (set! ptr (+ ptr 1)))

    (define (puts s)
      (let ((ls (string-length s)))
	(if (>= (+ ptr ls) len)
	    (begin (flush)
		   (write-bytevector-like s outp))
	    (do ((i (- ls 1) (- i 1))
		 (p (+ ptr ls -1) (- p 1)))
		((< i 0)
		 (set! ptr (+ ptr ls)))
	      (string-set! buffer p (string-ref s i))))))

    (define (putd d)
      (flush)
      (write-fasl-datum d outp))

    (define (dump-codevec bv)
      (if omit-code?
          (puts "#f")
          (begin
            (putc #\#)
            (putc CTRLB)
            (putc #\")
            (let ((limit (bytevector-length bv)))
              (do ((i 0 (+ i 1)))
                  ((= i limit) (putc #\")
                               (putc #\newline))
                (let ((c (bytevector-ref bv i)))
                  (cond ((= c DOUBLEQUOTE) (putc #\\))
                        ((= c BACKSLASH)   (putc #\\)))
                  (putb c)))))))

    (define (dump-constvec cv)
      (puts "#(")
      (for-each (lambda (const)
		  (putc #\space)
		  (case (car const)
		    ((data)
		     (putd (cadr const)))
		    ((constantvector)
		     (dump-constvec (cadr const)))
		    ((codevector)
		     (dump-codevec (cadr const)))
		    ((global)
		     (putc #\#)
		     (putc CTRLG)
		     (putd (cadr const)))
		    ((bits)
		     (error "BITS attribute is not supported in fasl files."))
		    (else
		     (error "Faulty .lop file."))))
		(vector->list cv))
      (puts ")")
      (putc #\newline))

    (define (dump-fasl-segment segment)
      (if (not omit-code?) (putc #\())
      (putc #\#)
      (putc CTRLP)
      (putc #\()
      (dump-codevec (car segment))
      (putc #\space)
      (dump-constvec (cdr segment))
      (puts " #f)")
      (if (not omit-code?) (putc #\)))
      (putc #\newline))

    (dump-fasl-segment segment)
    (flush)))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Bootstrap heap dumper.
;
; Usage: (build-heap-image outputfile inputfile-list)
;
; Each input file is a sequence of segments, the structure of which 
; depends on the target architecture, but at least segment.code and 
; segment.constants exist as accessors.
;
; The code is a bytevector.  The constant vector contains tagged 
; entries (represented using length-2 lists), where the tags are
; `data', `codevector', `constantvector', `global', or `bits'.
;
; `build-heap-image' reads its file arguments into the heap, creates 
; thunks from the segments, and creates a list of the thunks.  It also 
; creates a list of all symbols present in the loaded files.  Finally, 
; it generates an initialization procedure (the LAP of which is hardcoded
; into this file; see below).  A pointer to this procedure is installed 
; in the SCHEME_ENTRY root pointer; hence, this procedure (a thunk, as 
; it were) is called when the heap image is loaded.
;
; The initialization procedure calls each procedure in the thunk list in 
; order.  It then invokes the procedure `go', which takes one argument:
; the list of symbols.  Typically, `go' will initialize the symbol table
; and other system tables and then call `main', but this is by no means
; required.
;
; The Scheme assembler must be co-resident, since it is used by 
; `build-heap-image' procedure to assemble the final startup code.  This
; could be avoided by pre-assembling the code and patching it here, but 
; the way it is now, this procedure is entirely portable -- no target
; dependencies.
;
; The code is structured to allow most procedures to be overridden for
; target architectures with more complex needs (notably the C backend).

(define generate-global-symbols
  (make-twobit-flag 'generate-global-symbols))
(generate-global-symbols #t)

(define heap.version-number 9)		; Heap version number

(define heap.root-names			; Roots in heap version 9
  '(result argreg2 argreg3 
    reg0 reg1 reg2 reg3 reg3 reg5 reg6 reg7 reg8 reg9 reg10 reg11 reg12
    reg13 reg14 reg15 reg16 reg17 reg18 reg19 reg20 reg21 reg22 reg23
    reg24 reg25 reg26 reg27 reg28 reg29 reg30 reg31 
    cont startup callouts schcall-arg4 alloci-tmp))
    
(define (build-heap-image output-file input-files)

  (define tmp-file "HEAPDATA.dat")

  (define (process-input-files heap)
    (let loop ((files input-files) (inits '()))
      (cond ((null? files)
	     (heap.thunks! heap (apply append inits)))
	    (else
	     (let ((filename (car files)))
	       (display "Loading ")
	       (display filename)
	       (newline)
	       (loop (cdr files)
		     (append inits (list (dump-file! heap filename)))))))))

  (delete-file tmp-file)
  (let ((heap  (make-heap #f (open-output-file tmp-file))))
    (before-all-files heap output-file input-files)
    (process-input-files heap)
    (heap.set-root! heap
		    'startup
		    (dump-startup-procedure! heap))
    (heap.set-root! heap
		    'callouts
		    (dump-global! heap 'millicode-support))
    (write-header heap output-file)
    (after-all-files heap output-file input-files)
    (close-output-port (heap.output-port heap))
    (append-file-shell-command tmp-file output-file)
    (load-map heap)
    (unspecified)))

(define (before-all-files heap output-file-name input-file-names) #t)
(define (after-all-files heap output-file-name input-file-names) #t)

; Public
;
; A 'heap' is a data structure with the following public fields; none
; of them are constant unless so annotated:
;
;  version          a fixnum (constant) - heap type version number
;  roots            an assoc list that maps root names to values
;  top              an exact nonnegative integer: the address of the 
;                   next byte to be emitted
;  symbol-table     a symbol table abstract data type
;  extra            any value - a client-extension field
;  output-port      an output port (for the data stream)
;  thunks           a list of codevector addresses
;
; Bytes are emitted with the heap.byte! and heap.word! procedures,
; which emit a byte and a 4-byte word respectively.  These update
; the top field.

(define (make-heap extra output-port)
  (vector heap.version-number        ; version
	  '()                        ; roots
	  0                          ; top
	  (make-heap-symbol-table)   ; symtab
	  extra                      ; extra
	  output-port                ; output port
	  '()			     ; thunks
	  ))

(define (heap.version h) (vector-ref h 0))
(define (heap.roots h) (vector-ref h 1))
(define (heap.top h) (vector-ref h 2))
(define (heap.symbol-table h) (vector-ref h 3))
(define (heap.extra h) (vector-ref h 4))
(define (heap.output-port h) (vector-ref h 5))
(define (heap.thunks h) (vector-ref h 6))

(define (heap.roots! h x) (vector-set! h 1 x))
(define (heap.top! h x) (vector-set! h 2 x))
(define (heap.thunks! h x) (vector-set! h 6 x))


; Symbol table.
;
; The symbol table maps names to symbol structures, and a symbol 
; structure contains information about that symbol.
;
; The structure has four fields:
;   name      a symbol - the print name
;   symloc    a fixnum or null - if fixnum, the location in the
;             heap of the symbol structure.
;   valloc    a fixnum or null - if fixnum, the location in the
;             heap of the global variable cell that has this
;             symbol for its name.
;   valno     a fixnum or null - if fixnum, the serial number of
;             the global variable cell (largely obsolete).
;
; Note therefore that the symbol table maintains information about
; whether the symbol is used as a symbol (in a datum), as a global
; variable, or both.

(define (make-heap-symbol-table)
  (vector '() 0))

(define (symtab.symbols st) (vector-ref st 0))
(define (symtab.cell-no st) (vector-ref st 1))

(define (symtab.symbols! st x) (vector-set! st 0 x))
(define (symtab.cell-no! st x) (vector-set! st 1 x))

(define (make-symcell name)
  (vector name '() '() '()))

(define (symcell.name sc) (vector-ref sc 0))    ; name
(define (symcell.symloc sc) (vector-ref sc 1))  ; symbol location (if any)
(define (symcell.valloc sc) (vector-ref sc 2))  ; value cell location (ditto)
(define (symcell.valno sc) (vector-ref sc 3))   ; value cell number (ditto)

(define (symcell.symloc! sc x) (vector-set! sc 1 x))
(define (symcell.valloc! sc x) (vector-set! sc 2 x))
(define (symcell.valno! sc x) (vector-set! sc 3 x))

; Find a symcell in the table, or make a new one if there's none.

(define (symbol-cell h name)
  (let ((symtab (heap.symbol-table h)))
    (let loop ((symbols (symtab.symbols symtab)))
      (cond ((null? symbols)
	     (let ((new-sym (make-symcell name)))
	       (symtab.symbols! symtab (cons new-sym
					     (symtab.symbols symtab)))
	       new-sym))
	    ((eq? name (symcell.name (car symbols)))
	     (car symbols))
	    (else
	     (loop (cdr symbols)))))))


; Fundamental data emitters

(define twofiftysix^3 (* 256 256 256))
(define twofiftysix^2 (* 256 256))
(define twofiftysix   256)

(define (heap.word-be! h w)
  (heap.byte! h (quotient w twofiftysix^3))
  (heap.byte! h (quotient (remainder w twofiftysix^3) twofiftysix^2))
  (heap.byte! h (quotient (remainder w twofiftysix^2) twofiftysix))
  (heap.byte! h (remainder w twofiftysix)))

(define (heap.word-el! h w)
  (heap.byte! h (remainder w twofiftysix))
  (heap.byte! h (quotient (remainder w twofiftysix^2) twofiftysix))
  (heap.byte! h (quotient (remainder w twofiftysix^3) twofiftysix^2))
  (heap.byte! h (quotient w twofiftysix^3)))

(define heap.word! heap.word-be!)

(define (dumpheap.set-endianness! which)
  (case which
    ((big) (set! heap.word! heap.word-be!))
    ((little) (set! heap.word! heap.word-el!))
    (else ???)))

(define (heap.byte! h b)
  (write-char (integer->char b) (heap.output-port h))
  (heap.top! h (+ 1 (heap.top h))))


; Useful abstractions and constants.

(define (heap.header-word! h immediate length)
  (heap.word! h (+ (* length 256) immediate)))

(define (heap.adjust! h)
  (let ((p (heap.top h)))
    (let loop ((i (- (* 8 (quotient (+ p 7) 8)) p)))
      (if (zero? i)
	  '()
	  (begin (heap.byte! h 0)
		 (loop (- i 1)))))))
  
(define heap.largest-fixnum (- (expt 2 29) 1))
(define heap.smallest-fixnum (- (expt 2 29)))

(define (heap.set-root! h name value)
  (heap.roots! h (cons (cons name value) (heap.roots h))))


;;; The segment.* procedures may be overridden by custom code.

(define segment.code car)
(define segment.constants cdr)

;;; The dump-*! procedures may be overridden by custom code.

; Load a LOP file into the heap, create a thunk in the heap to hold the
; code and constant vector, and return the list of thunk addresses in
; the order dumped.

(define (dump-file! h filename)
  (before-dump-file h filename)
  (call-with-input-file filename
    (lambda (in)
      (do ((segment (read in) (read in))
	   (thunks  '() (cons (dump-segment! h segment) thunks)))
	  ((eof-object? segment)
	   (after-dump-file h filename)
	   (reverse thunks))))))

(define (before-dump-file h filename) #t)
(define (after-dump-file h filename) #t)

; Dump a segment and return the heap address of the resulting thunk.

(define (dump-segment! h segment)
  (let* ((the-code   (dump-codevector! h (segment.code segment)))
	 (the-consts (dump-constantvector! h (segment.constants segment))))
    (dump-thunk! h the-code the-consts)))

(define (dump-tagged-item! h item)
  (case (car item)
    ((codevector)
     (dump-codevector! h (cadr item)))
    ((constantvector)
     (dump-constantvector! h (cadr item)))
    ((data)
     (dump-datum! h (cadr item)))
    ((global)
     (dump-global! h (cadr item)))
    ((bits)
     (cadr item))
    (else
     (error 'dump-tagged-item! "Unknown item ~a" item))))

(define (dump-datum! h datum)

  (define (fixnum? x)
    (and (integer? x)
	 (exact? x)
	 (<= heap.smallest-fixnum x heap.largest-fixnum)))

  (define (bignum? x)
    (and (integer? x)
	 (exact? x)
	 (or (> x heap.largest-fixnum)
	     (< x heap.smallest-fixnum))))

  (define (ratnum? x)
    (and (rational? x) (exact? x) (not (integer? x))))

  (define (flonum? x)
    (and (real? x) (inexact? x)))

  (define (compnum? x)
    (and (complex? x) (inexact? x) (not (real? x))))

  (define (rectnum? x)
    (and (complex? x) (exact? x) (not (real? x))))

  (cond ((fixnum? datum)
	 (dump-fixnum! h datum))
	((bignum? datum)
	 (dump-bignum! h datum))
	((ratnum? datum)
	 (dump-ratnum! h datum))
	((flonum? datum)
	 (dump-flonum! h datum))
	((compnum? datum)
	 (dump-compnum! h datum))
	((rectnum? datum)
	 (dump-rectnum! h datum))
	((char? datum)
	 (dump-char! h datum))
	((null? datum)
	 $imm.null)
	((eq? datum #t)
	 $imm.true)
	((eq? datum #f)
	 $imm.false)
	((equal? datum (unspecified))
	 $imm.unspecified)
	((equal? datum (undefined))
	 $imm.undefined)
	((vector? datum)
	 (dump-vector! h datum $tag.vector-typetag))
	((bytevector? datum)
	 (dump-bytevector! h datum $tag.bytevector-typetag))
	((pair? datum)
	 (dump-pair! h datum))
	((string? datum)
	 (dump-string! h datum))
	((symbol? datum)
	 (dump-symbol! h datum))
	(else
	 (error 'dump-datum! "Unsupported type of datum ~a" datum))))

; Returns the two's complement representation as a positive number.

(define (dump-fixnum! h f)
  (if (negative? f)
      (- #x100000000 (* (abs f) 4))
      (* 4 f)))

(define (dump-char! h c)
  (+ (* (char->integer c) twofiftysix^2) $imm.character))

(define (dump-bignum! h b)
  (dump-bytevector! h (bignum->bytevector b) $tag.bignum-typetag))

(define (dump-ratnum! h r)
  (dump-vector! h 
		(vector (numerator r) (denominator r)) 
		$tag.ratnum-typetag))

(define (dump-flonum! h f)
  (dump-bytevector! h (flonum->bytevector f) $tag.flonum-typetag))

(define (dump-compnum! h c)
  (dump-bytevector! h (compnum->bytevector c) $tag.compnum-typetag))

(define (dump-rectnum! h r)
  (dump-vector! h
		(vector (real-part r) (imag-part r))
		$tag.rectnum-typetag))

(define (dump-string! h s)
  (dump-bytevector! h (string->bytevector s) $tag.string-typetag))

(define (dump-pair! h p)
  (let ((the-car (dump-datum! h (car p)))
	(the-cdr (dump-datum! h (cdr p))))
    (let ((base (heap.top h)))
      (heap.word! h the-car)
      (heap.word! h the-cdr)
      (+ base $tag.pair-tag))))

(define (dump-bytevector! h bv variation)
  (let ((base (heap.top h))
	(l    (bytevector-length bv)))
    (heap.header-word! h (+ $imm.bytevector-header variation) l)
    (let loop ((i 0))
      (if (< i l)
	  (begin (heap.byte! h (bytevector-ref bv i))
		 (loop (+ i 1)))
	  (begin (heap.adjust! h)
		 (+ base $tag.bytevector-tag))))))

(define (dump-vector! h v variation)
  (dump-vector-like! h v dump-datum! variation))

(define (dump-vector-like! h cv recur! variation)
  (let* ((l (vector-length cv))
	 (v (make-vector l '())))
    (let loop ((i 0))
      (if (< i l)
	  (begin (vector-set! v i (recur! h (vector-ref cv i)))
		 (loop (+ i 1)))
	  (let ((base (heap.top h)))
	    (heap.header-word! h (+ $imm.vector-header variation) (* l 4))
	    (let loop ((i 0))
	      (if (< i l)
		  (begin (heap.word! h (vector-ref v i))
			 (loop (+ i 1)))
		  (begin (heap.adjust! h)
			 (+ base $tag.vector-tag)))))))))

(define (dump-codevector! h cv)
  (dump-bytevector! h cv $tag.bytevector-typetag))

(define (dump-constantvector! h cv)
  (dump-vector-like! h cv dump-tagged-item! $tag.vector-typetag))

(define (dump-symbol! h s)
  (let ((x (symbol-cell h s)))
    (if (null? (symcell.symloc x))
	(symcell.symloc! x (create-symbol! h s)))
    (symcell.symloc x)))

(define (dump-global! h g)
  (let ((x (symbol-cell h g)))
    (if (null? (symcell.valloc x))
	(let ((cell (create-cell! h g)))
	  (symcell.valloc! x (car cell))
	  (symcell.valno! x (cdr cell))))
    (symcell.valloc x)))

(define (dump-thunk! h code constants)
  (let ((base (heap.top h)))
    (heap.header-word! h $imm.procedure-header 8)
    (heap.word! h code)
    (heap.word! h constants)
    (heap.adjust! h)
    (+ base $tag.procedure-tag)))

; The car's are all heap pointers, so they should not be messed with.
; The cdr must be dumped, and then the pair.

(define (dump-list-spine! h l)
  (if (null? l)
      $imm.null
      (let ((the-car (car l))
	    (the-cdr (dump-list-spine! h (cdr l))))
	(let ((base (heap.top h)))
	  (heap.word! h the-car)
	  (heap.word! h the-cdr)
	  (+ base $tag.pair-tag)))))

(define (dump-startup-procedure! h)
  (let ((thunks  (dump-list-spine! h (heap.thunks h)))
	(symbols (dump-list-spine! h (symbol-locations h))))
    (dump-segment! h (construct-startup-procedure symbols thunks))))

; The initialization procedure. The lists are magically patched into
; the constant vector after the procedure has been assembled but before
; it is dumped into the heap. See below.
;
; (define (init-proc argv)
;   (let loop ((l <list-of-thunks>))
;     (if (null? l)
;         (go <list-of-symbols> argv)
;         (begin ((car l))
;                (loop (cdr l))))))

(define init-proc
  `((,$.proc)
    (,$args= 1)
    (,$reg 1)				; argv into
    (,$setreg 2)			;   register 2
    (,$const (thunks))			; dummy list of thunks.
    (,$setreg 1)
    (,$.label 0)
    (,$reg 1)
    (,$op1 null?)			; (null? l)
    (,$branchf 2)
    (,$const (symbols))			; dummy list of symbols
    (,$setreg 1)
    (,$global go)
    ;(,$op1 break)
    (,$invoke 2)			; (go <list of symbols> argv)
    (,$.label 2)
    (,$save 2)
    (,$store 0 0)
    (,$store 1 1)
    (,$store 2 2)
    (,$setrtn 3)
    (,$reg 1)
    (,$op1 car)
    (,$invoke 0)			; ((car l))
    (,$.label 3)
    (,$.cont)
    (,$restore 2)
    (,$pop 2)
    (,$reg 1)
    (,$op1 cdr)
    (,$setreg 1)
    (,$branch 0)))			; (loop (cdr l))


;;; Non-overridable code beyond this point

; Stuff a new symbol into the heap, return its location.

(define (create-symbol! h s)
  (dump-vector-like!
   h 
   (vector `(bits ,(dump-string! h (symbol->string s)))
	   '(data 0)
	   '(data ()))
   dump-tagged-item!
   $tag.symbol-typetag))


; Stuff a value cell into the heap, return a pair of its location
; and its cell number.

(define (create-cell! h s)
  (let* ((symtab (heap.symbol-table h))
	 (n (symtab.cell-no symtab))
	 (p (dump-pair! h (cons (undefined)
				(if (generate-global-symbols)
				    s
				    n)))))
    (symtab.cell-no! symtab (+ n 1))
    (cons p n)))


(define (construct-startup-procedure symbol-list-addr init-list-addr)

  ; Given some value which might appear in the constant vector, 
  ; replace the entries matching that value with a new value.

  (define (patch-constant-vector! v old new)
    (let loop ((i (- (vector-length v) 1)))
      (if (>= i 0)
	  (begin (if (equal? (vector-ref v i) old)
		     (vector-set! v i new))
		 (loop (- i 1))))))

  ; Assemble the startup thunk, patch it, and return it.

  (display "Assembling final procedure") (newline)
  (let ((e (single-stepping)))
    (single-stepping #f)
    (let ((segment (assemble init-proc)))
      (single-stepping e)
      (patch-constant-vector! (segment.constants segment)
			      '(data (thunks))
			      `(bits ,init-list-addr))
      (patch-constant-vector! (segment.constants segment)
			      '(data (symbols))
			      `(bits ,symbol-list-addr))
      segment)))


; Return a list of symbol locations for symbols in the heap, in order.

(define (symbol-locations h)
  (let loop ((symbols (symtab.symbols (heap.symbol-table h))) (res '()))
    (cond ((null? symbols)
	   (reverse res))
	  ((not (null? (symcell.symloc (car symbols))))
	   (loop (cdr symbols)
		 (cons (symcell.symloc (car symbols)) res)))
	  (else
	   (loop (cdr symbols) res)))))

; Return list of variable name to cell number mappings for global vars.

(define (load-map h)
  (let loop ((symbols (symtab.symbols (heap.symbol-table h))) (res '()))
    (cond ((null? symbols)
	   (reverse res))
	  ((not (null? (symcell.valloc (car symbols))))
	   (loop (cdr symbols)
		 (cons (cons (symcell.name (car symbols))
			     (symcell.valno (car symbols)))
		       res)))
	  (else
	   (loop (cdr symbols) res)))))


(define (write-header h output-file)
  (delete-file output-file)
  (call-with-output-file output-file
    (lambda (out)

      (define (write-word w)
	(display (integer->char (quotient w twofiftysix^3)) out)
	(display (integer->char (quotient (remainder w twofiftysix^3) 
					  twofiftysix^2))
		 out)
	(display (integer->char (quotient (remainder w twofiftysix^2) 
					  twofiftysix))
		 out)
	(display (integer->char (remainder w twofiftysix)) out))

      (define (write-roots)
	(let ((assigned-roots (heap.roots h)))
	  (for-each (lambda (root-name)
		      (let ((probe (assq root-name assigned-roots)))
			(if probe
			    (write-word (cdr probe))
			    (write-word $imm.false))))
		    heap.root-names)))

      (write-word heap.version-number)
      (write-roots)
      (write-word (quotient (heap.top h) 4)))))


; This is a gross hack that happens to work very well.

(define (append-file-shell-command file-to-append file-to-append-to)

  (define (message)
    (display "You must execute the command") (newline)
    (display "   cat ") (display file-to-append) 
    (display " >> ") (display file-to-append-to) (newline)
    (display "to create the final heap image.") (newline))

  (case host-system
    ((chez larceny)
     (display "Creating final image in \"")
     (display file-to-append-to) (display "\"...") (newline)
     (if (zero? (system (string-append "cat " file-to-append " >> " 
				       file-to-append-to)))
	 (delete-file file-to-append)
	 (begin (display "Failed to create image!")
		(newline))))
    (else
     (message))))

; eof
; Copyright 1991 Lightship Software, Incorporated.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 11 June 1999 / wdc
;
; Asm/Sparc/pass5p2.sch -- Sparc machine assembler, top level

; Overrides the procedure of the same name in Asm/Common/pass5p1.sch.

(define (assembly-table) $sparc-assembly-table$)

; Controls listing of instructions during assembly.

(define listify? #f)

; Table of assembler procedures.

(define $sparc-assembly-table$
  (make-vector
   *number-of-mnemonics*
   (lambda (instruction as)
     (asm-error "Unrecognized mnemonic " instruction))))

(define (define-instruction i proc)
  (vector-set! $sparc-assembly-table$ i proc)
  #t)

(define (list-instruction name instruction)
  (if listify?
      (begin (display list-indentation)
             (display "        ")
             (display name)
             (display (make-string (max (- 12 (string-length name)) 1)
                                   #\space))
             (if (not (null? (cdr instruction)))
                 (begin (write (cadr instruction))
                        (do ((operands (cddr instruction)
                                       (cdr operands)))
                            ((null? operands))
                            (write-char #\,)
                            (write (car operands)))))
             (newline)
             (flush-output-port))))

(define (list-label instruction)
  (if listify?
      (begin (display list-indentation)
             (write-char #\L)
             (write (cadr instruction))
             (newline))))

(define (list-lambda-start instruction)
  (list-instruction "lambda" (list $lambda '* (operand2 instruction)))
  (set! list-indentation (string-append list-indentation "|   ")))

(define (list-lambda-end)
  (set! list-indentation
        (substring list-indentation
                   0
                   (- (string-length list-indentation) 4))))

(define list-indentation "")

; Utilities

; Pseudo-instructions.

(define-instruction $.label
  (lambda (instruction as)
    (list-label instruction)
    (sparc.label as (make-asm-label as (operand1 instruction)))))

(define-instruction $.proc
  (lambda (instruction as)
    (list-instruction ".proc" instruction)
    #t))

(define-instruction $.proc-doc
  (lambda (instruction as)
    (list-instruction ".proc-doc" instruction)
    (add-documentation as (operand1 instruction))
    #t))

(define-instruction $.cont
  (lambda (instruction as)
    (list-instruction ".cont" instruction)
    #t))

(define-instruction $.align
  (lambda (instruction as)
    (list-instruction ".align" instruction)
    #t))

(define-instruction $.end
  (lambda (instruction as)
    #t))

(define-instruction $.singlestep
  (lambda (instruction as)
    (let ((instr (car (as-source as))))
      
      (define (special?)
        (let ((op (operand0 instr)))
          (or (= op $.label)
              (= op $.proc)
              (= op $.cont)
              (= op $.align)
              (and (= op $load) (= 0 (operand1 instr))))))
      
      (define (readify-instr)
        (if (= (operand0 instr) $lambda)
            (list 'lambda '(...) (caddr instr) (cadddr instr))
            (car (readify-lap (list instr)))))
      
      (if (not (special?))
          (let ((repr   (format-object (readify-instr)))
                (funky? (= (operand0 instr) $restore)))
            (let ((o (emit-datum as repr)))
              (emit-singlestep-instr! as funky? 0 o)))))))


; Instructions.

(define-instruction $op1
  (lambda (instruction as)
    (list-instruction "op1" instruction)
    (emit-primop.1arg! as (operand1 instruction))))

(define-instruction $op2
  (lambda (instruction as)
    (list-instruction "op2" instruction)
    (emit-primop.2arg! as
                       (operand1 instruction)
                       (regname (operand2 instruction)))))

(define-instruction $op3
  (lambda (instruction as)
    (list-instruction "op3" instruction)
    (emit-primop.3arg! as
                       (operand1 instruction)
                       (regname (operand2 instruction))
                       (regname (operand3 instruction)))))

(define-instruction $op2imm
  (lambda (instruction as)
    (list-instruction "op2imm" instruction)
    (let ((op (case (operand1 instruction)
                ((+)    'internal:+/imm)
                ((-)    'internal:-/imm)
                ((fx+)  'internal:fx+/imm)
                ((fx-)  'internal:fx-/imm)
                ((fx=)  'internal:fx=/imm)
                ((fx<)  'internal:fx</imm)
                ((fx<=) 'internal:fx<=/imm)
                ((fx>)  'internal:fx>/imm)
                ((fx>=) 'internal:fx>=/imm)
                ((=:fix:fix)  'internal:=:fix:fix/imm)
                ((<:fix:fix)  'internal:<:fix:fix/imm)
                ((<=:fix:fix) 'internal:<=:fix:fix/imm)
                ((>:fix:fix)  'internal:>:fix:fix/imm)
                ((>=:fix:fix) 'internal:>=:fix:fix/imm)
                (else #f))))
      (if op
          (emit-primop.4arg! as op $r.result (operand2 instruction) $r.result)
          (begin
           (emit-constant->register as (operand2 instruction) $r.argreg2)
           (emit-primop.2arg! as
                              (operand1 instruction)
                              $r.argreg2))))))

(define-instruction $const
  (lambda (instruction as)
    (list-instruction "const" instruction)
    (emit-constant->register as (operand1 instruction) $r.result)))

(define-instruction $global
  (lambda (instruction as)
    (list-instruction "global" instruction)
    (emit-global->register! as
                            (emit-global as (operand1 instruction))
                            $r.result)))

(define-instruction $setglbl
  (lambda (instruction as)
    (list-instruction "setglbl" instruction)
    (emit-register->global! as
                            $r.result
                            (emit-global as (operand1 instruction)))))

; FIXME: A problem is that the listing is messed up because of the delayed
; assembly; somehow we should fix this by putting an identifying label
; in the listing and emitting this label later, with the code.

(define-instruction $lambda
  (lambda (instruction as)
    (let ((code-offset  #f)
          (const-offset #f))
      (list-lambda-start instruction)
      (assemble-nested-lambda as
                              (operand1 instruction)
                              (operand3 instruction)   ; documentation
                              (lambda (nested-as segment)
                                (set-constant! as code-offset (car segment))
                                (set-constant! as const-offset (cdr segment))))
      (list-lambda-end)
      (set! code-offset  (emit-codevector as 0))
      (set! const-offset (emit-constantvector as 0))
      (emit-lambda! as
                    code-offset
                    const-offset
                    (operand2 instruction)))))

(define-instruction $lexes
  (lambda (instruction as)
    (list-instruction "lexes" instruction)
    (emit-lexes! as (operand1 instruction))))

(define-instruction $args=
  (lambda (instruction as)
    (list-instruction "args=" instruction)
    (emit-args=! as (operand1 instruction))))

(define-instruction $args>=
  (lambda (instruction as)
    (list-instruction "args>=" instruction)
    (emit-args>=! as (operand1 instruction))))

(define-instruction $invoke
  (lambda (instruction as)
    (list-instruction "invoke" instruction)
    (emit-invoke as (operand1 instruction) #f $m.invoke-ex)))

(define-instruction $restore
  (lambda (instruction as)
    (if (not (negative? (operand1 instruction)))
        (begin
         (list-instruction "restore" instruction)
         (emit-restore! as (operand1 instruction))))))

(define-instruction $pop
  (lambda (instruction as)
    (if (not (negative? (operand1 instruction)))
        (begin
         (list-instruction "pop" instruction)
         (let ((next (next-instruction as)))
           (if (and (peephole-optimization)
                    (eqv? $return (operand0 next)))
               (begin (list-instruction "return" next)
                      (consume-next-instruction! as)
                      (emit-pop! as (operand1 instruction) #t))
               (emit-pop! as (operand1 instruction) #f)))))))

(define-instruction $stack
  (lambda (instruction as)
    (list-instruction "stack" instruction)
    (emit-load! as (operand1 instruction) $r.result)))

(define-instruction $setstk
  (lambda (instruction as)
    (list-instruction "setstk" instruction)
    (emit-store! as $r.result (operand1 instruction))))

(define-instruction $load
  (lambda (instruction as)
    (list-instruction "load" instruction)
    (emit-load! as (operand2 instruction) (regname (operand1 instruction)))))

(define-instruction $store
  (lambda (instruction as)
    (list-instruction "store" instruction)
    (emit-store! as (regname (operand1 instruction)) (operand2 instruction))))

(define-instruction $lexical
  (lambda (instruction as)
    (list-instruction "lexical" instruction)
    (emit-lexical! as (operand1 instruction) (operand2 instruction))))

(define-instruction $setlex
  (lambda (instruction as)
    (list-instruction "setlex" instruction)
    (emit-setlex! as (operand1 instruction) (operand2 instruction))))

(define-instruction $reg
  (lambda (instruction as)
    (list-instruction "reg" instruction)
    (emit-register->register! as (regname (operand1 instruction)) $r.result)))

(define-instruction $setreg
  (lambda (instruction as)
    (list-instruction "setreg" instruction)
    (emit-register->register! as $r.result (regname (operand1 instruction)))))

(define-instruction $movereg
  (lambda (instruction as)
    (list-instruction "movereg" instruction)
    (emit-register->register! as 
                              (regname (operand1 instruction))
                              (regname (operand2 instruction)))))

(define-instruction $return
  (lambda (instruction as)
    (list-instruction "return" instruction)
    (emit-return! as)))

(define-instruction $reg/return
  (lambda (instruction as)
    (list-instruction "reg/return" instruction)
    (emit-return-reg! as (regname (operand1 instruction)))))

(define-instruction $const/return
  (lambda (instruction as)
    (list-instruction "const/return" instruction)
    (emit-return-const! as (operand1 instruction))))

(define-instruction $nop
  (lambda (instruction as)
    (list-instruction "nop" instruction)))

(define-instruction $save
  (lambda (instruction as)
    (if (not (negative? (operand1 instruction)))
        (begin
         (list-instruction "save" instruction)
         (let* ((n (operand1 instruction))
                (v (make-vector (+ n 1) #t)))
           (emit-save0! as n)
           (if (peephole-optimization)
               (let loop ((instruction (next-instruction as)))
                 (if (eqv? $store (operand0 instruction))
                     (begin (list-instruction "store" instruction)
                            (emit-store! as
                                         (regname (operand1 instruction))
                                         (operand2 instruction))
                            (consume-next-instruction! as)
                            (vector-set! v (operand2 instruction) #f)
                            (loop (next-instruction as))))))
           (emit-save1! as v))))))

(define-instruction $setrtn
  (lambda (instruction as)
    (list-instruction "setrtn" instruction)
    (emit-setrtn! as (make-asm-label as (operand1 instruction)))))

(define-instruction $apply
  (lambda (instruction as)
    (list-instruction "apply" instruction)
    (emit-apply! as
                 (regname (operand1 instruction))
                 (regname (operand2 instruction)))))

(define-instruction $jump
  (lambda (instruction as)
    (list-instruction "jump" instruction)
    (emit-jump! as
                (operand1 instruction)
                (make-asm-label as (operand2 instruction)))))

(define-instruction $skip
  (lambda (instruction as)
    (list-instruction "skip" instruction)
    (emit-branch! as #f (make-asm-label as (operand1 instruction)))))

(define-instruction $branch
  (lambda (instruction as)
    (list-instruction "branch" instruction)
    (emit-branch! as #t (make-asm-label as (operand1 instruction)))))

(define-instruction $branchf
  (lambda (instruction as)
    (list-instruction "branchf" instruction)
    (emit-branchf! as (make-asm-label as (operand1 instruction)))))

(define-instruction $check
  (lambda (instruction as)
    (list-instruction "check" instruction)
    (if (not (unsafe-code))
        (emit-check! as $r.result
                        (make-asm-label as (operand4 instruction))
                        (list (regname (operand1 instruction))
                              (regname (operand2 instruction))
                              (regname (operand3 instruction)))))))

(define-instruction $trap
  (lambda (instruction as)
    (list-instruction "trap" instruction)
    (emit-trap! as
                (regname (operand1 instruction))
                (regname (operand2 instruction))
                (regname (operand3 instruction))
                (operand4 instruction))))

(define-instruction $const/setreg
  (lambda (instruction as)
    (list-instruction "const/setreg" instruction)
    (let ((x (operand1 instruction))
          (r (operand2 instruction)))
      (if (hwreg? r)
          (emit-constant->register as x (regname r))
          (begin (emit-constant->register as x $r.tmp0)
                 (emit-register->register! as $r.tmp0 (regname r)))))))

; Operations introduced by the peephole optimizer.

(define (peep-regname r)
  (if (eq? r 'RESULT) $r.result (regname r)))

(define-instruction $reg/op1/branchf
  (lambda (instruction as)
    (list-instruction "reg/op1/branchf" instruction)
    (emit-primop.3arg! as
                       (operand1 instruction)
                       (peep-regname (operand2 instruction))
                       (make-asm-label as (operand3 instruction)))))

(define-instruction $reg/op2/branchf
  (lambda (instruction as)
    (list-instruction "reg/op2/branchf" instruction)
    (emit-primop.4arg! as
                       (operand1 instruction)
                       (peep-regname (operand2 instruction))
                       (peep-regname (operand3 instruction))
                       (make-asm-label as (operand4 instruction)))))

(define-instruction $reg/op2imm/branchf
  (lambda (instruction as)
    (list-instruction "reg/op2imm/branchf" instruction)
    (emit-primop.4arg! as
                       (operand1 instruction)
                       (peep-regname (operand2 instruction))
                       (operand3 instruction)
                       (make-asm-label as (operand4 instruction)))))

; These three are like the corresponding branchf sequences except that
; there is a strong prediction that the branch will not be taken.

(define-instruction $reg/op1/check
  (lambda (instruction as)
    (list-instruction "reg/op1/check" instruction)
    (emit-primop.4arg! as
                       (operand1 instruction)
                       (peep-regname (operand2 instruction))
                       (make-asm-label as (operand3 instruction))
                       (map peep-regname (operand4 instruction)))))

(define-instruction $reg/op2/check
  (lambda (instruction as)
    (list-instruction "reg/op2/check" instruction)
    (emit-primop.5arg! as
                       (operand1 instruction)
                       (peep-regname (operand2 instruction))
                       (peep-regname (operand3 instruction))
                       (make-asm-label as (operand4 instruction))
                       (map peep-regname (operand5 instruction)))))

(define-instruction $reg/op2imm/check
  (lambda (instruction as)
    (list-instruction "reg/op2imm/check" instruction)
    (emit-primop.5arg! as
                       (operand1 instruction)
                       (peep-regname (operand2 instruction))
                       (operand3 instruction)
                       (make-asm-label as (operand4 instruction))
                       (map peep-regname (operand5 instruction)))))

;

(define-instruction $reg/op1/setreg
  (lambda (instruction as)
    (list-instruction "reg/op1/setreg" instruction)
    (emit-primop.3arg! as
                       (operand1 instruction)
                       (peep-regname (operand2 instruction))
                       (peep-regname (operand3 instruction)))))

(define-instruction $reg/op2/setreg
  (lambda (instruction as)
    (list-instruction "reg/op2/setreg" instruction)
    (emit-primop.4arg! as
                       (operand1 instruction)
                       (peep-regname (operand2 instruction))
                       (peep-regname (operand3 instruction))
                       (peep-regname (operand4 instruction)))))

(define-instruction $reg/op2imm/setreg
  (lambda (instruction as)
    (list-instruction "reg/op2imm/setreg" instruction)
    (emit-primop.4arg! as
                       (operand1 instruction)
                       (peep-regname (operand2 instruction))
                       (operand3 instruction)
                       (peep-regname (operand4 instruction)))))

(define-instruction $reg/op3 
  (lambda (instruction as)
    (list-instruction "reg/op3" instruction)
    (emit-primop.4arg! as
                       (operand1 instruction)
                       (peep-regname (operand2 instruction))
                       (peep-regname (operand3 instruction))
                       (peep-regname (operand4 instruction)))))

(define-instruction $reg/branchf
  (lambda (instruction as)
    (list-instruction "reg/branchf" instruction)
    (emit-branchfreg! as 
                      (regname (operand1 instruction))
                      (make-asm-label as (operand2 instruction)))))

(define-instruction $setrtn/branch
  (lambda (instruction as)
    (list-instruction "setrtn/branch" instruction)
    (emit-branch-with-setrtn! as (make-asm-label as (operand1 instruction)))))

(define-instruction $setrtn/invoke
  (lambda (instruction as)
    (list-instruction "setrtn/invoke" instruction)
    (emit-invoke as (operand1 instruction) #t $m.invoke-ex)))

(define-instruction $global/setreg
  (lambda (instruction as)
    (list-instruction "global/setreg" instruction)
    (emit-global->register! as
                            (emit-global as (operand1 instruction))
                            (regname (operand2 instruction)))))

(define-instruction $global/invoke
  (lambda (instruction as)
    (list-instruction "global/invoke" instruction)
    (emit-load-global as
                      (emit-global as (operand1 instruction))
                      $r.result
                      #f)
    (emit-invoke as (operand2 instruction) #f $m.global-invoke-ex)))

(define-instruction $reg/setglbl
  (lambda (instruction as)
    (list-instruction "reg/setglbl" instruction)
    (emit-register->global! as
                            (regname (operand1 instruction))
                            (emit-global as (operand2 instruction)))))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 9 May 1999.
;
; Asm/Sparc/peepopt.sch -- MAL peephole optimizer, for the SPARC assembler.
;
; The procedure `peep' is called on the as structure before every
; instruction is assembled.  It may replace the prefix of the instruction
; stream by some other instruction sequence.
;
; Invariant: if the peephole optimizer doesn't change anything, then 
;
;  (let ((x (as-source as)))
;    (peep as)
;    (eq? x (as-source as)))     => #t
;
; Note this still isn't right -- it should be integrated with pass5p2 --
; but it's a step in the right direction.

(define *peephole-table* (make-vector *number-of-mnemonics* #f))

(define (define-peephole n p)
  (vector-set! *peephole-table* n p)
  (unspecified))

(define (peep as)
  (let ((t0 (as-source as)))
    (if (not (null? t0))
        (let ((i1 (car t0)))
          (let ((p (vector-ref *peephole-table* (car i1))))
            (if p
                (let* ((t1 (if (null? t0) t0 (cdr t0)))
                       (i2 (if (null? t1) '(-1 0 0 0) (car t1)))
                       (t2 (if (null? t1) t1 (cdr t1)))
                       (i3 (if (null? t2) '(-1 0 0 0) (car t2)))
                       (t3 (if (null? t2) t2 (cdr t2))))
                  (p as i1 i2 i3 t1 t2 t3))))))))

(define-peephole $reg
  (lambda (as i1 i2 i3 t1 t2 t3)
    (cond ((= (car i2) $return)
           (reg-return as i1 i2 t2))
          ((= (car i2) $setglbl)
           (reg-setglbl as i1 i2 t2))
          ((= (car i2) $op1)
           (cond ((= (car i3) $setreg)
                  (reg-op1-setreg as i1 i2 i3 t2 t3))
                 ((= (car i3) $branchf)
                  (reg-op1-branchf as i1 i2 i3 t3))
                 ((= (car i3) $check)
                  (reg-op1-check as i1 i2 i3 t3))
                 (else
                  (reg-op1 as i1 i2 t2))))
          ((= (car i2) $op2)
           (cond ((= (car i3) $setreg)
                  (reg-op2-setreg as i1 i2 i3 t2 t3))
                 ((= (car i3) $branchf)
                  (reg-op2-branchf as i1 i2 i3 t3))
                 ((= (car i3) $check)
                  (reg-op2-check as i1 i2 i3 t3))
                 (else
                  (reg-op2 as i1 i2 t2))))
          ((= (car i2) $op2imm)
           (cond ((= (car i3) $setreg)
                  (reg-op2imm-setreg as i1 i2 i3 t2 t3))
                 ((= (car i3) $branchf)
                  (reg-op2imm-branchf as i1 i2 i3 t3))
                 ((= (car i3) $check)
                  (reg-op2imm-check as i1 i2 i3 t3))
                 (else
                  (reg-op2imm as i1 i2 t2))))
          ((= (car i2) $op3)
           (reg-op3 as i1 i2 t2))
          ((= (car i2) $setreg)
           (reg-setreg as i1 i2 t2))
          ((= (car i2) $branchf)
           (reg-branchf as i1 i2 t2)))))

(define-peephole $op1
  (lambda (as i1 i2 i3 t1 t2 t3)
    (cond ((= (car i2) $branchf)
           (op1-branchf as i1 i2 t2))
          ((= (car i2) $setreg)
           (op1-setreg as i1 i2 t2))
          ((= (car i2) $check)
           (op1-check as i1 i2 t2)))))

(define-peephole $op2
  (lambda (as i1 i2 i3 t1 t2 t3)
    (cond ((= (car i2) $branchf)
           (op2-branchf as i1 i2 t2))
          ((= (car i2) $setreg)
           (op2-setreg as i1 i2 t2))
          ((= (car i2) $check)
           (op2-check as i1 i2 t2)))))

(define-peephole $op2imm
  (lambda (as i1 i2 i3 t1 t2 t3)
    (cond ((= (car i2) $branchf)
           (op2imm-branchf as i1 i2 t2))
          ((= (car i2) $setreg)
           (op2imm-setreg as i1 i2 t2))
          ((= (car i2) $check)
           (op2imm-check as i1 i2 t2)))))

(define-peephole $const
  (lambda (as i1 i2 i3 t1 t2 t3)
    (cond ((= (car i2) $setreg)
           (const-setreg as i1 i2 t2))
          ((= (car i2) $op2)
           (const-op2 as i1 i2 t2))
          ((= (car i2) $return)
           (const-return as i1 i2 t2)))))

(define-peephole $setrtn
  (lambda (as i1 i2 i3 t1 t2 t3)
    (cond ((= (car i2) $branch)
           (cond ((= (car i3) $.align)
                  (if (not (null? t3))
                      (let ((i4 (car t3))
                            (t4 (cdr t3)))
                        (cond ((= (car i4) $.label)
                               (setrtn-branch as i1 i2 i3 i4 t4))))))))
          ((= (car i2) $invoke)
           (cond ((= (car i3) $.align)
                  (if (not (null? t3))
                      (let ((i4 (car t3))
                            (t4 (cdr t3)))
                        (cond ((= (car i4) $.label)
                               (setrtn-invoke as i1 i2 i3 i4 t4)))))))))))

(define-peephole $branch
  (lambda (as i1 i2 i3 t1 t2 t3)
    (cond ((= (car i2) $.align)
           (cond ((= (car i3) $.label)
                  (branch-and-label as i1 i2 i3 t3)))))))

(define-peephole $global
  (lambda (as i1 i2 i3 t1 t2 t3)
    (cond ((= (car i2) $setreg)
           (global-setreg as i1 i2 t2))
          ((= (car i2) $invoke)
           (global-invoke as i1 i2 t2))
          ((= (car i2) $setrtn)
           (cond ((= (car i3) $invoke)
                  (global-setrtn-invoke as i1 i2 i3 t3)))))))

(define-peephole $reg/op1/check
  (lambda (as i1 i2 i3 t1 t2 t3)
    (cond ((= (car i2) $reg)
           (cond ((= (car i3) $op1)
                  (if (not (null? t3))
                      (let ((i4 (car t3))
                            (t4 (cdr t3)))
                        (cond ((= (car i4) $setreg)
                               (reg/op1/check-reg-op1-setreg
                                as i1 i2 i3 i4 t4)))))))))))

(define-peephole $reg/op2/check
  (lambda (as i1 i2 i3 t1 t2 t3)
    (cond ((= (car i2) $reg)
           (cond ((= (car i3) $op2imm)
                  (if (not (null? t3))
                      (let ((i4 (car t3))
                            (t4 (cdr t3)))
                        (cond ((= (car i4) $check)
                               (reg/op2/check-reg-op2imm-check
                                as i1 i2 i3 i4 t4)))))))))))

; Worker procedures.

(define (reg-return as i:reg i:return tail)
  (let ((rs (operand1 i:reg)))
    (if (hwreg? rs)
        (as-source! as (cons (list $reg/return rs) tail)))))

(define (reg-op1-setreg as i:reg i:op1 i:setreg tail-1 tail)
  (let ((rs (operand1 i:reg))
        (rd (operand1 i:setreg))
        (op (operand1 i:op1)))
    (if (hwreg? rs)
        (if (hwreg? rd)
            (peep-reg/op1/setreg as op rs rd tail)
            (peep-reg/op1/setreg as op rs 'RESULT tail-1)))))

(define (reg-op1 as i:reg i:op1 tail)
  (let ((rs (operand1 i:reg))
        (op (operand1 i:op1)))
    (if (hwreg? rs)
        (peep-reg/op1/setreg as op rs 'RESULT tail))))

(define (op1-setreg as i:op1 i:setreg tail)
  (let ((op (operand1 i:op1))
        (rd (operand1 i:setreg)))
    (if (hwreg? rd)
        (peep-reg/op1/setreg as op 'RESULT rd tail))))

(define (peep-reg/op1/setreg as op rs rd tail)
  (let ((op (case op
              ((car)               'internal:car)
              ((cdr)               'internal:cdr)
              ((car:pair)          'internal:car:pair)
              ((cdr:pair)          'internal:cdr:pair)
              ((cell-ref)          'internal:cell-ref)
              ((vector-length)     'internal:vector-length)
              ((vector-length:vec) 'internal:vector-length:vec)
              ((string-length)     'internal:string-length)
              ((--)                'internal:--)
              ((fx--)              'internal:fx--)
              ((fxpositive?)       'internal:fxpositive?)
              ((fxnegative?)       'internal:fxnegative?)
              ((fxzero?)           'internal:fxzero?)
              (else #f))))
    (if op
        (as-source! as (cons (list $reg/op1/setreg op rs rd) tail)))))

(define (reg-op2-setreg as i:reg i:op2 i:setreg tail-1 tail)
  (let ((rs1 (operand1 i:reg))
        (rs2 (operand2 i:op2))
        (op  (operand1 i:op2))
        (rd  (operand1 i:setreg)))
    (if (hwreg? rs1)
        (if (hwreg? rd)
            (peep-reg/op2/setreg as op rs1 rs2 rd tail)
            (peep-reg/op2/setreg as op rs1 rs2 'RESULT tail-1)))))

(define (reg-op2 as i:reg i:op2 tail)
  (let ((rs1 (operand1 i:reg))
        (rs2 (operand2 i:op2))
        (op  (operand1 i:op2)))
    (if (hwreg? rs1)
        (peep-reg/op2/setreg as op rs1 rs2 'RESULT tail))))

(define (op2-setreg as i:op2 i:setreg tail)
  (let ((op  (operand1 i:op2))
        (rs2 (operand2 i:op2))
        (rd  (operand1 i:setreg)))
    (if (hwreg? rd)
        (peep-reg/op2/setreg as op 'RESULT rs2 rd tail))))

(define (peep-reg/op2/setreg as op rs1 rs2 rd tail)
  (let ((op (case op
              ((+)                  'internal:+)
              ((-)                  'internal:-)
              ((fx+)                'internal:fx+)
              ((fx-)                'internal:fx-)
              ((fx=)                'internal:fx=)
              ((fx>)                'internal:fx>)
              ((fx>=)               'internal:fx>=)
              ((fx<)                'internal:fx<)
              ((fx<=)               'internal:fx<=)
              ((eq?)                'internal:eq?)
              ((cons)               'internal:cons)
              ((vector-ref)         'internal:vector-ref)
              ((vector-ref:trusted) 'internal:vector-ref:trusted)
              ((string-ref)         'internal:string-ref)
              ((set-car!)           'internal:set-car!)
              ((set-cdr!)           'internal:set-cdr!)
              ((cell-set!)          'internal:cell-set!)
              (else #f))))
    (if op
        (as-source! as (cons (list $reg/op2/setreg op rs1 rs2 rd) tail)))))

(define (reg-op2imm-setreg as i:reg i:op2imm i:setreg tail-1 tail)
  (let ((rs  (operand1 i:reg))
        (imm (operand2 i:op2imm))
        (op  (operand1 i:op2imm))
        (rd  (operand1 i:setreg)))
    (if (hwreg? rs)
        (if (hwreg? rd)
            (peep-reg/op2imm/setreg as op rs imm rd tail)
            (peep-reg/op2imm/setreg as op rs imm 'RESULT tail-1)))))

(define (reg-op2imm as i:reg i:op2imm tail)
  (let ((rs  (operand1 i:reg))
        (imm (operand2 i:op2imm))
        (op  (operand1 i:op2imm)))
    (if (hwreg? rs)
        (peep-reg/op2imm/setreg as op rs imm 'RESULT tail))))

(define (op2imm-setreg as i:op2imm i:setreg tail)
  (let ((op  (operand1 i:op2imm))
        (imm (operand2 i:op2imm))
        (rd  (operand1 i:setreg)))
    (if (hwreg? rd)
        (peep-reg/op2imm/setreg as op 'RESULT imm rd tail))))

(define (peep-reg/op2imm/setreg as op rs imm rd tail)
  (let ((op (case op
              ((+)          'internal:+/imm)
              ((-)          'internal:-/imm)
              ((fx+)        'internal:fx+/imm)
              ((fx-)        'internal:fx-/imm)
              ((fx=)        'internal:fx=/imm)
              ((fx<)        'internal:fx</imm)
              ((fx<=)       'internal:fx<=/imm)
              ((fx>)        'internal:fx>/imm)
              ((fx>=)       'internal:fx>=/imm)
              ((eq?)        'internal:eq?/imm)
              ((vector-ref) 'internal:vector-ref/imm)
              ((string-ref) 'internal:string-ref/imm)
              (else #f))))
    (if op
        (as-source! as (cons (list $reg/op2imm/setreg op rs imm rd) tail)))))

(define (reg-op1-branchf as i:reg i:op1 i:branchf tail)
  (let ((rs (operand1 i:reg))
        (op (operand1 i:op1))
        (L  (operand1 i:branchf)))
    (if (hwreg? rs)
        (peep-reg/op1/branchf as op rs L tail))))

(define (op1-branchf as i:op1 i:branchf tail)
  (let ((op (operand1 i:op1))
        (L  (operand1 i:branchf)))
    (peep-reg/op1/branchf as op 'RESULT L tail)))

(define (peep-reg/op1/branchf as op rs L tail)
  (let ((op (case op
              ((null?)       'internal:branchf-null?)
              ((pair?)       'internal:branchf-pair?)
              ((zero?)       'internal:branchf-zero?)
              ((eof-object?) 'internal:branchf-eof-object?)
              ((fixnum?)     'internal:branchf-fixnum?)
              ((char?)       'internal:branchf-char?)
              ((fxzero?)     'internal:branchf-fxzero?)
              ((fxnegative?) 'internal:branchf-fxnegative?)
              ((fxpositive?) 'internal:branchf-fxpositive?)
              (else #f))))
    (if op
        (as-source! as (cons (list $reg/op1/branchf op rs L) tail)))))

(define (reg-op2-branchf as i:reg i:op2 i:branchf tail)
  (let ((rs1 (operand1 i:reg))
        (rs2 (operand2 i:op2))
        (op  (operand1 i:op2))
        (L   (operand1 i:branchf)))
    (if (hwreg? rs1)
        (peep-reg/op2/branchf as op rs1 rs2 L tail))))

(define (op2-branchf as i:op2 i:branchf tail)
  (let ((op  (operand1 i:op2))
        (rs2 (operand2 i:op2))
        (L   (operand1 i:branchf)))
    (peep-reg/op2/branchf as op 'RESULT rs2 L tail)))

(define (peep-reg/op2/branchf as op rs1 rs2 L tail)
  (let ((op (case op
              ((<)       'internal:branchf-<)
              ((>)       'internal:branchf->)
              ((>=)      'internal:branchf->=)
              ((<=)      'internal:branchf-<=)
              ((=)       'internal:branchf-=)
              ((eq?)     'internal:branchf-eq?)
              ((char=?)  'internal:branchf-char=?)
              ((char>=?) 'internal:branchf-char>=?)
              ((char>?)  'internal:branchf-char>?)
              ((char<=?) 'internal:branchf-char<=?)
              ((char<?)  'internal:branchf-char<?)
              ((fx=)     'internal:branchf-fx=)
              ((fx>)     'internal:branchf-fx>)
              ((fx>=)    'internal:branchf-fx>=)
              ((fx<)     'internal:branchf-fx<)
              ((fx<=)    'internal:branchf-fx<=)
              (else #f))))
    (if op
        (as-source! as
                    (cons (list $reg/op2/branchf op rs1 rs2 L)
                          tail)))))

(define (reg-op2imm-branchf as i:reg i:op2imm i:branchf tail)
  (let ((rs  (operand1 i:reg))
        (imm (operand2 i:op2imm))
        (op  (operand1 i:op2imm))
        (L   (operand1 i:branchf)))
    (if (hwreg? rs)
        (peep-reg/op2imm/branchf as op rs imm L tail))))

(define (op2imm-branchf as i:op2imm i:branchf tail)
  (let ((op  (operand1 i:op2imm))
        (imm (operand2 i:op2imm))
        (L   (operand1 i:branchf)))
    (peep-reg/op2imm/branchf as op 'RESULT imm L tail)))

(define (peep-reg/op2imm/branchf as op rs imm L tail)
  (let ((op (case op
              ((<)       'internal:branchf-</imm)
              ((>)       'internal:branchf->/imm)
              ((>=)      'internal:branchf->=/imm)
              ((<=)      'internal:branchf-<=/imm)
              ((=)       'internal:branchf-=/imm)
              ((eq?)     'internal:branchf-eq?/imm)
              ((char=?)  'internal:branchf-char=?/imm)
              ((char>=?) 'internal:branchf-char>=?/imm)
              ((char>?)  'internal:branchf-char>?/imm)
              ((char<=?) 'internal:branchf-char<=?/imm)
              ((char<?)  'internal:branchf-char<?/imm)
              ((fx=)     'internal:branchf-fx=/imm)
              ((fx>)     'internal:branchf-fx>/imm)
              ((fx>=)    'internal:branchf-fx>=/imm)
              ((fx<)     'internal:branchf-fx</imm)
              ((fx<=)    'internal:branchf-fx<=/imm)
              (else #f))))
    (if op
        (as-source! as
                    (cons (list $reg/op2imm/branchf op rs imm L)
                          tail)))))

; Check optimization.

(define (reg-op1-check as i:reg i:op1 i:check tail)
  (let ((rs (operand1 i:reg))
        (op (operand1 i:op1)))
    (if (hwreg? rs)
        (peep-reg/op1/check as
                            op
                            rs
                            (operand4 i:check)
                            (list (operand1 i:check)
                                  (operand2 i:check)
                                  (operand3 i:check))
                            tail))))

(define (op1-check as i:op1 i:check tail)
  (let ((op (operand1 i:op1)))
    (peep-reg/op1/check as
                        op
                        'RESULT
                        (operand4 i:check)
                        (list (operand1 i:check)
                              (operand2 i:check)
                              (operand3 i:check))
                        tail)))

(define (peep-reg/op1/check as op rs L1 liveregs tail)
  (let ((op (case op
              ((fixnum?)      'internal:check-fixnum?)
              ((pair?)        'internal:check-pair?)
              ((vector?)      'internal:check-vector?)
              (else #f))))
    (if op
        (as-source! as
                    (cons (list $reg/op1/check op rs L1 liveregs)
                          tail)))))

(define (reg-op2-check as i:reg i:op2 i:check tail)
  (let ((rs1 (operand1 i:reg))
        (rs2 (operand2 i:op2))
        (op (operand1 i:op2)))
    (if (hwreg? rs1)
        (peep-reg/op2/check as
                            op
                            rs1
                            rs2
                            (operand4 i:check)
                            (list (operand1 i:check)
                                  (operand2 i:check)
                                  (operand3 i:check))
                            tail))))

(define (op2-check as i:op2 i:check tail)
  (let ((rs2 (operand2 i:op2))
        (op (operand1 i:op2)))
    (peep-reg/op2/check as
                        op
                        'RESULT
                        rs2
                        (operand4 i:check)
                        (list (operand1 i:check)
                              (operand2 i:check)
                              (operand3 i:check))
                        tail)))

(define (peep-reg/op2/check as op rs1 rs2 L1 liveregs tail)
  (let ((op (case op
              ((<:fix:fix)   'internal:check-<:fix:fix)
              ((<=:fix:fix)  'internal:check-<=:fix:fix)
              ((>=:fix:fix)  'internal:check->=:fix:fix)
              (else #f))))
    (if op
        (as-source! as
                    (cons (list $reg/op2/check op rs1 rs2 L1 liveregs)
                          tail)))))

(define (reg-op2imm-check as i:reg i:op2imm i:check tail)
  (let ((rs1 (operand1 i:reg))
        (op (operand1 i:op2imm))
        (imm (operand2 i:op2imm)))
    (if (hwreg? rs1)
        (peep-reg/op2imm/check as
                               op
                               rs1
                               imm
                               (operand4 i:check)
                               (list (operand1 i:check)
                                     (operand2 i:check)
                                     (operand3 i:check))
                               tail))))

(define (op2imm-check as i:op2imm i:check tail)
  (let ((op (operand1 i:op2imm))
        (imm (operand2 i:op2imm)))
    (peep-reg/op2imm/check as
                           op
                           'RESULT
                           imm
                           (operand4 i:check)
                           (list (operand1 i:check)
                                 (operand2 i:check)
                                 (operand3 i:check))
                           tail)))

(define (peep-reg/op2imm/check as op rs1 imm L1 liveregs tail)
  (let ((op (case op
              ((<:fix:fix)   'internal:check-<:fix:fix/imm)
              ((<=:fix:fix)  'internal:check-<=:fix:fix/imm)
              ((>=:fix:fix)  'internal:check->=:fix:fix/imm)
              (else #f))))
    (if op
        (as-source! as
                    (cons (list $reg/op2imm/check op rs1 imm L1 liveregs)
                          tail)))))

(define (reg/op1/check-reg-op1-setreg as i:ro1check i:reg i:op1 i:setreg tail)
  (let ((o1 (operand1 i:ro1check))
        (r1 (operand2 i:ro1check))
        (r2 (operand1 i:reg))
        (o2 (operand1 i:op1))
        (r3 (operand1 i:setreg)))
    (if (and (eq? o1 'internal:check-vector?)
             (eq? r1 r2)
             (eq? o2 'vector-length:vec)
             (hwreg? r1)
             (hwreg? r3))
        (as-source! as
                    (cons (list $reg/op2/check
                                'internal:check-vector?/vector-length:vec
                                r1
                                r3
                                (operand3 i:ro1check)
                                (operand4 i:ro1check))
                          tail)))))

; Range checks of the form 0 <= i < n can be performed by a single check.
; This peephole optimization recognizes
;         reg     rs1
;         op2     <:fix:fix,rs2
;         check   r1,r2,r3,L
;         reg     rs1                     ; must match earlier reg
;         op2imm  >=:fix:fix,0
;         check   r1,r2,r3,L              ; label must match earlier check

(define (reg/op2/check-reg-op2imm-check
         as i:ro2check i:reg i:op2imm i:check tail)
  (let ((o1   (operand1 i:ro2check))
        (rs1  (operand2 i:ro2check))
        (rs2  (operand3 i:ro2check))
        (L1   (operand4 i:ro2check))
        (live (operand5 i:ro2check))
        (rs3  (operand1 i:reg))
        (o2   (operand1 i:op2imm))
        (x    (operand2 i:op2imm))
        (L2   (operand4 i:check)))
    (if (and (eq? o1 'internal:check-<:fix:fix)
             (eq? o2 '>=:fix:fix)
             (eq? rs1 rs3)
             (eq? x 0)
             (eq? L1 L2))
        (as-source! as
                    (cons (list $reg/op2/check 'internal:check-range
                                                rs1 rs2 L1 live)
                          tail)))))

; End of check optimization.

(define (reg-op3 as i:reg i:op3 tail)
  (let ((rs1 (operand1 i:reg))
        (rs2 (operand2 i:op3))
        (rs3 (operand3 i:op3))
        (op  (operand1 i:op3)))
    (if (hwreg? rs1)
        (let ((op (case op
                    ((vector-set!) 'internal:vector-set!)
                    ((string-set!) 'internal:string-set!)
                    (else #f))))
          (if op
              (as-source! as (cons (list $reg/op3 op rs1 rs2 rs3) tail)))))))

; Reg-setreg is not restricted to hardware registers, as $movereg is 
; a standard instruction.

(define (reg-setreg as i:reg i:setreg tail)
  (let ((rs (operand1 i:reg))
        (rd (operand1 i:setreg)))
    (if (= rs rd)
        (as-source! as tail)
        (as-source! as (cons (list $movereg rs rd) tail)))))

(define (reg-branchf as i:reg i:branchf tail)
  (let ((rs (operand1 i:reg))
        (L  (operand1 i:branchf)))
    (if (hwreg? rs)
        (as-source! as (cons (list $reg/branchf rs L) tail)))))

(define (const-setreg as i:const i:setreg tail)
  (let ((c  (operand1 i:const))
        (rd (operand1 i:setreg)))
    (if (hwreg? rd)
        (as-source! as (cons (list $const/setreg c rd) tail)))))

; Make-vector on vectors of known short length.

(define (const-op2 as i:const i:op2 tail)
  (let ((vn '#(make-vector:0 make-vector:1 make-vector:2 make-vector:3
               make-vector:4 make-vector:5 make-vector:6 make-vector:7
               make-vector:8 make-vector:9))
        (c  (operand1 i:const))
        (op (operand1 i:op2))
        (r  (operand2 i:op2)))
    (if (and (eq? op 'make-vector)
             (fixnum? c)
             (<= 0 c 9))
        (as-source! as (cons (list $op2 (vector-ref vn c) r) tail)))))

; Constants that can be synthesized in a single instruction can be
; moved into RESULT in the delay slot of the return instruction.

(define (const-return as i:const i:return tail)
  (let ((c (operand1 i:const)))
    (if (or (and (number? c) (immediate-int? c))
            (null? c)
            (boolean? c))
        (as-source! as (cons (list $const/return c) tail)))))

; This allows the use of hardware 'call' instructions.
;    (setrtn Lx)
;    (branch Ly k)
;    (.align k)            Ignored on SPARC
;    (.label Lx)
; => (setrtn/branch Ly k)
;    (.label Lx)

(define (setrtn-branch as i:setrtn i:branch i:align i:label tail)
  (let ((return-label (operand1 i:setrtn))
        (branch-ops   (cdr i:branch))
        (label        (operand1 i:label)))
    (if (= return-label label)
        (as-source! as (cons (cons $setrtn/branch branch-ops)
                             (cons i:label
                                   tail))))))

; Ditto for 'invoke'.
;
; Disabled because it does _not_ pay off on the SPARC currently -- 
; probably, the dependency created between 'jmpl' and 'st' is not 
; handled well on the test machine (an Ultrasparc).  Might work 
; better if the return address were to be kept in a register always.

(define (setrtn-invoke as i:setrtn i:invoke i:align i:label tail)
  (let ((return-label (operand1 i:setrtn))
        (invoke-ops   (operand1 i:invoke))
        (label        (operand1 i:label)))
    (if (and #f				; DISABLED
             (= return-label label))
        (as-source! as (cons (cons $setrtn/invoke invoke-ops)
                             (cons i:label
                                   tail))))))

; Gets rid of spurious branch-to-next-instruction
;    (branch Lx k)
;    (.align y)
;    (.label Lx)
; => (.align y)
;    (.label Lx)

(define (branch-and-label as i:branch i:align i:label tail)
  (let ((branch-label (operand1 i:branch))
        (label        (operand1 i:label)))
    (if (= branch-label label)
        (as-source! as (cons i:align (cons i:label tail))))))

(define (global-setreg as i:global i:setreg tail)
  (let ((global (operand1 i:global))
        (rd     (operand1 i:setreg)))
    (if (hwreg? rd)
        (as-source! as (cons (list $global/setreg global rd) tail)))))

; Obscure guard: unsafe-code = #t implies that global/invoke will not
; check the value of the global variable, yet unsafe-code and
; catch-undefined-globals are supposed to be independent.

(define (global-invoke as i:global i:invoke tail)
  (let ((global (operand1 i:global))
        (argc   (operand1 i:invoke)))
    (if (not (and (unsafe-code) (catch-undefined-globals)))
        (as-source! as (cons (list $global/invoke global argc) tail)))))

; Obscure guard: see comment for previous procedure.
; FIXME!  This implementation is temporary until setrtn-invoke is enabled.

(define (global-setrtn-invoke as i:global i:setrtn i:invoke tail)
  (let ((global (operand1 i:global))
        (argc   (operand1 i:invoke)))
    (if (not (and (unsafe-code) (catch-undefined-globals)))
        (as-source! as (cons i:setrtn 
                             (cons (list $global/invoke global argc)
                                   tail))))))

(define (reg-setglbl as i:reg i:setglbl tail)
  (let ((rs     (operand1 i:reg))
        (global (operand1 i:setglbl)))
    (if (hwreg? rs)
        (as-source! as (cons (list $reg/setglbl rs global) tail)))))



; Test code

(define (peeptest istream)
  (let ((as (make-assembly-structure istream)))
    (let loop ((l '()))
      (if (null? (as-source as))
          (reverse l)
          (begin (peep as)
                 (let ((a (car (as-source as))))
                   (as-source! as (cdr (as-source as)))
                   (loop (cons a l))))))))


; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; SPARC assembler machine parameters & utility procedures.
;
; 13 May 1999 / wdc

; Round up to nearest 8.

(define (roundup8 n)
  (* (quotient (+ n 7) 8) 8))

; Given an integer code for a register, return its register label.
; This register label is the register number for a h.w. register and the
; offsets from GLOBALS[ r0 ] for a s.w. register.

(define regname
  (let ((v (vector $r.reg0  $r.reg1  $r.reg2  $r.reg3  $r.reg4  $r.reg5
                   $r.reg6  $r.reg7  $r.reg8  $r.reg9  $r.reg10 $r.reg11
                   $r.reg12 $r.reg13 $r.reg14 $r.reg15 $r.reg16 $r.reg17
                   $r.reg18 $r.reg19 $r.reg20 $r.reg21 $r.reg22 $r.reg23
                   $r.reg24 $r.reg25 $r.reg26 $r.reg27 $r.reg28 $r.reg29
                   $r.reg30 $r.reg31)))
    (lambda (r)
      (vector-ref v r))))

; Is a general-purpose register mapped to a hardware register?
; This is fragile! FIXME.

(define (hardware-mapped? r)
  (or (and (>= r $r.reg0) (<= r $r.reg7))
      (= r $r.argreg2)
      (= r $r.argreg3)
      (= r $r.result)
      (= r $r.g0)
      (= r $r.tmp0)
      (= r $r.tmp1)
      (= r $r.tmp2)))

; Used by peephole optimizer

(define (hwreg? x)
  (<= 0 x 7))

(define (immediate-int? x)
  (and (exact? x)
       (integer? x)
       (<= -1024 x 1023)))

; Given an exact integer, can it be represented as a fixnum?

(define fixnum-range?
  (let ((-two^29  (- (expt 2 29)))
        (two^29-1 (- (expt 2 29) 1)))
    (lambda (x)
      (<= -two^29 x two^29-1))))

; Does the integer x fit in the immediate field of an instruction?

(define (immediate-literal? x)
  (<= -4096 x 4095))

; Return the offset in the %GLOBALS table of the given memory-mapped 
; register. A memory-mapped register is represented by an integer which 
; is its offet, so just return the value.

(define (swreg-global-offset r) r)

; Return a bit representation of a character constant.

(define (char->immediate c)
  (+ (* (char->integer c) 65536) $imm.character))

; Convert an integer to a fixnum.

(define (thefixnum x) (* x 4))

; The offset of data slot 'n' within a procedure structure, not adjusting 
; for tag. The proc is a header followed by code, const, and then data.

(define (procedure-slot-offset n)
  (+ 12 (* n 4)))

; Src is a register, hwreg is a hardware register. If src is a
; hardware register, return src. Otherwise, emit an instruction to load
; src into hwreg and return hwreg.

(define (force-hwreg! as src hwreg)
  (if (hardware-mapped? src)
      src
      (emit-load-reg! as src hwreg)))

; Given an arbitrary constant opd, generate code to load it into a
; register r.

(define (emit-constant->register as opd r)
  (cond ((and (integer? opd) (exact? opd))
         (if (fixnum-range? opd)	
             (emit-immediate->register! as (thefixnum opd) r)
             (emit-const->register! as (emit-datum as opd) r)))
        ((boolean? opd)
         (emit-immediate->register! as
                                    (if (eq? opd #t)
                                        $imm.true
                                        $imm.false)
                                    r))
        ((equal? opd (eof-object))
         (emit-immediate->register! as $imm.eof r))
        ((equal? opd (unspecified))
         (emit-immediate->register! as $imm.unspecified r))
        ((equal? opd (undefined))
         (emit-immediate->register! as $imm.undefined r))
        ((null? opd)
         (emit-immediate->register! as $imm.null r))
        ((char? opd)
         (emit-immediate->register! as (char->immediate opd) r))
        (else
         (emit-const->register! as (emit-datum as opd) r))))


; Stuff a bitpattern or symbolic expression into a register.
; (CONST, for immediate constants.)
;
; FIXME(?): if this had access to eval-expr (currently hidden inside the
; sparc assembler) it could attempt to evaluate symbolic expressions,
; thereby selecting better code sequences when possible.

(define (emit-immediate->register! as i r)
  (let ((dest (if (not (hardware-mapped? r)) $r.tmp0 r)))
    (cond ((and (number? i) (immediate-literal? i))
           (sparc.set as i dest))
          ((and (number? i) (zero? (remainder (abs i) 1024)))
           (sparc.sethi as `(hi ,i) dest))
          (else
           (sparc.sethi as `(hi ,i) dest)
           (sparc.ori as dest `(lo ,i) dest)))
    (if (not (hardware-mapped? r))
        (emit-store-reg! as r dest))))


; Reference the constants vector and put the constant reference in a register.
; `offset' is an integer offset into the constants vector (a constant) for
; the current procedure.
; Destroys $r.tmp0 and $r.tmp1, but either can be the destination register.
; (CONST, for structured constants, GLOBAL, SETGLBL, LAMBDA).

(define (emit-const->register! as offset r)
  (let ((cvlabel (+ 4 (- (* offset 4) $tag.vector-tag))))
    (cond ((hardware-mapped? r)
           (sparc.ldi as $r.reg0 $p.constvector $r.tmp0)
           (if (asm:fits? cvlabel 13)
               (sparc.ldi as $r.tmp0 cvlabel r)
               (begin (sparc.sethi as `(hi ,cvlabel) $r.tmp1)
                      (sparc.addr  as $r.tmp0 $r.tmp1 $r.tmp0)
                      (sparc.ldi   as $r.tmp0 `(lo ,cvlabel) r))))
          (else
           (emit-const->register! as offset $r.tmp0)
           (emit-store-reg! as $r.tmp0 r)))))



; Emit single instruction to load sw-mapped reg into another reg, and return
; the destination reg.

(define (emit-load-reg! as from to)
  (if (or (hardware-mapped? from) (not (hardware-mapped? to)))
      (asm-error "emit-load-reg: " from to)
      (begin (sparc.ldi as $r.globals (swreg-global-offset from) to)
             to)))

(define (emit-store-reg! as from to)
  (if (or (not (hardware-mapped? from)) (hardware-mapped? to))
      (asm-error "emit-store-reg: " from to)
      (begin (sparc.sti as from (swreg-global-offset to) $r.globals)
             to)))

; Generic move-reg-to-HW-reg

(define (emit-move2hwreg! as from to)
  (if (hardware-mapped? from)
      (sparc.move as from to)
      (emit-load-reg! as from to))
  to)

; Evaluation of condition code for value or control.
;
; branchf.a is an annulled conditional branch that tests the condition codes
;     and branches if some condition is false.
; rd is #f or a hardware register.
; target is #f or a label.
; Exactly one of rd and target must be #f.
;
; (Why isn't this split into two separate procedures?  Because dozens of
; this procedure's callers have the value/control duality, and it saves
; space to put the test here instead of putting it in each caller.)

(define (emit-evaluate-cc! as branchf.a rd target)
  (if target
      (begin (branchf.a   as target)
             (sparc.slot  as))
      (let ((target (new-label)))
        (branchf.a   as target)
        (sparc.set   as $imm.false rd)
        (sparc.set   as $imm.true rd)
        (sparc.label as target))))

; Code for runtime safety checking.

(define (emit-check! as rs0 L1 liveregs)
  (sparc.cmpi as rs0 $imm.false)
  (emit-checkcc! as sparc.be L1 liveregs))

; FIXME:  This should call the exception handler for non-continuable exceptions.

(define (emit-trap! as rs1 rs2 rs3 exn)
  (if (not (= rs3 $r.reg0))
      (emit-move2hwreg! as rs3 $r.argreg3))
  (if (not (= rs2 $r.reg0))
      (emit-move2hwreg! as rs2 $r.argreg2))
  (if (not (= rs1 $r.reg0))
      (emit-move2hwreg! as rs1 $r.result))
  (millicode-call/numarg-in-reg as $m.exception (thefixnum exn) $r.tmp0))

; Given:
;     an annulled conditional branch that branches
;         if the check is ok
;     a non-annulled conditional branch that branches
;         if the check is not ok
;     #f, or a procedure that takes an assembly segment as
;         argument and emits an instruction that goes into
;         the delay slot of either branch
;     three registers whose contents should be passed to the
;         exception handler if the check is not ok
;     the exception code
; Emits code to call the millicode exception routine with
; the given exception code if the condition is false.
;
; FIXME:  The nop can often be replaced by the instruction that
; follows it.

(begin
 '
(define (emit-checkcc-and-fill-slot!
         as branch-ok.a branch-bad slot-filler L1)
  (let* ((situation (list exn rs1 rs2 rs3))
         (L1 (exception-label as situation)))
    (if L1
        (begin (branch-bad as L1)
               (if slot-filler
                   (slot-filler as)
                   (sparc.nop as)))
        (let* ((L1 (new-label))
               (L2 (new-label)))
          (exception-label-set! as situation L1)
          (branch-ok.a as L2)
          (if slot-filler
              (slot-filler as)
              (sparc.slot  as))
          (sparc.label as L1)
          (cond ((= rs3 $r.reg0)
                 #f)
                ((hardware-mapped? $r.argreg3)
                 (emit-move2hwreg! as rs3 $r.argreg3))
                ((hardware-mapped? rs3)
                 (emit-store-reg! as rs3 $r.argreg3))
                (else
                 (emit-move2hwreg! as rs3 $r.tmp0)
                 (emit-store-reg! as $r.tmp0 $r.argreg3)))
          (if (not (= rs2 $r.reg0))
              (emit-move2hwreg! as rs2 $r.argreg2))
          (if (not (= rs1 $r.reg0))
              (emit-move2hwreg! as rs1 $r.result))
          ; FIXME:  This should be a non-continuable exception.
          (sparc.jmpli as $r.millicode $m.exception $r.o7)
          (emit-immediate->register! as (thefixnum exn) $r.tmp0)
          (sparc.label as L2)))))
#f
)

(define (emit-checkcc! as branch-bad L1 liveregs)
  (branch-bad as L1)
  (apply sparc.slot2 as liveregs))

; Generation of millicode calls for non-continuable exceptions.

(begin
 '
; To create only one millicode call per code segment per non-continuable
; exception situation, we use the "as-user" feature of assembly segments.
; Could use a hash table here.

(define (exception-label as situation)
  (let ((user-data (as-user as)))
    (if user-data
        (let ((exception-labels (assq 'exception-labels user-data)))
          (if exception-labels
              (let ((probe (assoc situation (cdr exception-labels))))
                (if probe
                    (cdr probe)
                    #f))
              #f))
        #f)))
'
(define (exception-label-set! as situation label)
  (let ((user-data (as-user as)))
    (if user-data
        (let ((exception-labels (assq 'exception-labels user-data)))
          (if exception-labels
              (let ((probe (assoc situation (cdr exception-labels))))
                (if probe
                    (error "COMPILER BUG: Exception situation defined twice")
                    (set-cdr! exception-labels
                              (cons (cons situation label)
                                    (cdr exception-labels)))))
              (begin (as-user! as
                               (cons (list 'exception-labels)
                                     user-data))
                     (exception-label-set! as situation label))))
        (begin (as-user! as '())
               (exception-label-set! as situation label)))))
#f
)

; Millicode calling

(define (millicode-call/0arg as mproc)
  (sparc.jmpli as $r.millicode mproc $r.o7)
  (sparc.nop   as))

(define (millicode-call/1arg as mproc r)
  (sparc.jmpli as $r.millicode mproc $r.o7)
  (emit-move2hwreg! as r $r.argreg2))

(define (millicode-call/1arg-in-result as mproc r)
  (millicode-call/1arg-in-reg as mproc r $r.result))

(define (millicode-call/1arg-in-reg as mproc rs rd)
  (sparc.jmpli as $r.millicode mproc $r.o7)
  (emit-move2hwreg! as rs rd))

(define (millicode-call/numarg-in-result as mproc num)
  (sparc.jmpli as $r.millicode mproc $r.o7)
  (sparc.set   as num $r.result))

(define (millicode-call/numarg-in-reg as mproc num reg)
  (if (not (hardware-mapped? reg))
      (asm-error "millicode-call/numarg-in-reg requires HW register: " reg))
  (sparc.jmpli as $r.millicode mproc $r.o7)
  (sparc.set   as num reg))

(define (millicode-call/2arg as mproc r1 r2)
  (emit-move2hwreg! as r1 $r.argreg2)
  (sparc.jmpli      as $r.millicode mproc $r.o7)
  (emit-move2hwreg! as r2 $r.argreg3))

; NOTE: Don't use TMP0 since TMP0 is sometimes a millicode argument
; register (for example to m_exception).
;
; NOTE: Don't use sparc.set rather than sethi/ori; we need to know that
; two instructions get generated.
;
; FIXME: Should calculate the value if possible to get better precision
; and to avoid generating a fixup.  See emit-return-address! in gen-msi.sch.

(define (millicode-call/ret as mproc label)
  (cond ((short-effective-addresses)
         (sparc.jmpli as $r.millicode mproc $r.o7)
         (sparc.addi  as $r.o7 `(- ,label (- ,(here as) 4) 8) $r.o7))
        (else
         (let ((val `(- ,label (+ ,(here as) 8) 8)))
           (sparc.sethi as `(hi ,val) $r.tmp1)
           (sparc.ori   as $r.tmp1 `(lo ,val) $r.tmp1)
           (sparc.jmpli as $r.millicode mproc $r.o7)
           (sparc.addr  as $r.o7 $r.tmp1 $r.o7)))))

(define (check-timer as DESTINATION RETRY)
  (sparc.subicc as $r.timer 1 $r.timer)
  (sparc.bne.a  as DESTINATION)
  (sparc.slot   as)
  (millicode-call/ret as $m.timer-exception RETRY))

; When the destination and retry labels are the same, and follow the
; timer check immediately, then this code saves two static instructions.

(define (check-timer0 as)
  (sparc.subicc as $r.timer 1 $r.timer)
  (sparc.bne.a  as (+ (here as) 16))
  (sparc.slot   as)
  (sparc.jmpli as $r.millicode $m.timer-exception $r.o7)
  (sparc.nop as))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 9 May 1999 / wdc
;
; SPARC machine assembler.
;
; The procedure `sparc-instruction' takes an instruction class keyword and
; some operands and returns an assembler procedure for the instruction
; denoted by the class and the operands.
;
; All assembler procedures for SPARC mnemonics are defined in sparcasm2.sch.
;
; The SPARC has 32-bit, big-endian words.  All instructions are 1 word.
; This assembler currently accepts a subset of the SPARC v8 instruction set.
;
; Each assembler procedure takes an `as' assembly structure (see 
; Asm/Common/pass5p1.sch) and operands relevant to the instruction, and
; side-effects the assembly structure by emitting bits for the instruction
; and any necessary fixups.  There are separate instruction mnemonics and
; assembler procedures for instructions which in the SPARC instruction set 
; are normally considered the "same".  For example, the `add' instruction is
; split into two operations here: `sparc.addr' takes a register as operand2,
; and `sparc.addi' takes an immediate.  We could remove this restriction
; by using objects with identity rather than numbers for registers, but it
; does not seem to be an important problem.
;
; Operands that denote values (addresses, immediates, offsets) may be
; expressed using symbolic expressions. These expressions must conform
; to the following grammar:
;
;   <expr> --> ( <number> . <obj> )        ; label
;            | <number>                    ; literal value (exact integer)
;            | (+ <expr> ... )             ; sum
;            | (- <expr> ... )             ; difference
;            | (hi <expr>)                 ; high 22 bits
;            | (lo <expr>)                 ; low 10 bits
;
; Each assembler procedure will check that its value operand(s) fit in 
; their instruction fields.  It is a fatal error for an operand not 
; to fit, and the assembler calls `asm-error' to signal this error.  
; However, in some cases the assembler will instead call the error 
; procedure `asm-value-too-large', which allows the higher-level assembler 
; to retry the assembly with different settings (typically, by splitting 
; a jump instruction into an offset calculation and a jump).
;
; Note: the idiom that is seen in this file,
;   (emit-fixup-proc! as (lambda (b l) (fixup b l)))
; when `fixup' is a local procedure, avoids allocation of the closure
; except in the cases where the fixup is in fact needed, for gains in
; speed and reduction in allocation.  (Ask me if you want numbers.)
;
; If FILL-DELAY-SLOTS returns true, then this assembler supports two
; distinct mechanisms for filling branch delay slots.
;
; An annulled conditional branch or an un-annulled unconditional branch
; may be followed by the strange instruction SPARC.SLOT, which turns into
; a nop in the delay slot that may be replaced by copying the instruction
; at the target of the branch into the delay slot and increasing the branch
; offset by 4.
;
; An un-annulled conditional branch whose target depends upon a known set
; of general registers, and does not depend upon the condition codes, may
; be followed by the strange instruction SPARC.SLOT2, which takes any
; number of registers as operands.  This strange instruction turns into
; nothing at all if the following instruction has no side effects except
; to the condition codes and/or to a destination register that is distinct
; from the specified registers plus the stack pointer and %o7; otherwise
; the SPARC.SLOT2 instruction becomes a nop in the delay slot.  The
; implementation of this uses a buffer that must be cleared when a label
; is emitted or when the current offset is obtained.

(define sparc-instruction)

(let ((original-emit-label! emit-label!)
      (original-here here))
  (set! emit-label!
        (lambda (as L)
          (assembler-value! as 'slot2-info #f)
          (original-emit-label! as L)))
  (set! here
        (lambda (as)
          (assembler-value! as 'slot2-info #f)
          (original-here as)))
  'emit-label!)

(let ((emit! (lambda (as bits)
               (assembler-value! as 'slot2-info #f)
               (emit! as bits)))
      (emit-fixup-proc! (lambda (as proc)
                          (assembler-value! as 'slot2-info #f)
                          (emit-fixup-proc! as proc)))
      (goes-in-delay-slot2? (lambda (as rd)
                              (let ((regs (assembler-value as 'slot2-info)))
                                (and regs
                                     (fill-delay-slots)
                                     (not (= rd $r.stkp))
                                     (not (= rd $r.o7))
                                     (not (memv rd regs)))))))
  
  (define ibit (asm:bv 0 0 #x20 0))     ; immediate bit: 2^13
  (define abit (asm:bv #x20 0 0 0))     ; annul bit: 2^29
  (define zero (asm:bv 0 0 0 0))        ; all zero bits
  
  (define two^32 (expt 2 32))
  
  ; Constant expression evaluation. If the expression cannot be 
  ; evaluated, eval-expr returns #f, otherwise a number.
  ; The symbol table lookup must fail by returning #f.
  
  (define (eval-expr as e)
    
    (define (complement x)
      (modulo (+ two^32 x) two^32))
    
    (define (hibits e)
      (cond ((not e) e)
            ((< e 0)
             (complement (quotient (complement e) 1024)))
            (else
             (quotient e 1024))))
    
    (define (lobits e)
      (cond ((not e) e)
            ((< e 0)
             (remainder (complement e) 1024))
            (else
             (remainder e 1024))))
    
    (define (evaluate e)
      (cond ((integer? e)      e)
            ((label? e)        (label-value as e))
            ((eq? 'hi (car e)) (hibits (evaluate (cadr e))))
            ((eq? 'lo (car e)) (lobits (evaluate (cadr e))))
            ((eq? '+ (car e))
             (let loop ((e (cdr e)) (s 0))
               (if (null? e) s
                             (let ((op (evaluate (car e))))
                               (if (not op) op
                                            (loop (cdr e) (+ s op)))))))
            ((eq? '- (car e))  
             (let loop ((e (cdr e)) (d #f))
               (if (null? e) d
                             (let ((op (evaluate (car e))))
                               (if (not op) op
                                            (loop (cdr e) (if d (- d op) op)))))))
            (else
             (signal-error 'badexpr e))))
    
    (evaluate e))
  
  ; Common error handling.
  
  (define (signal-error code . rest)
    (define msg "SPARC assembler: ")
    (case code
      ((badexpr)
       (asm-error msg "invalid expression " (car rest)))
      ((toolarge)
       (asm-error msg "value too large in " (car rest) ": "
                  (cadr rest) " = " (caddr rest)))
      ((fixup)
       (asm-error msg "fixup failed in " (car rest) " for " (cadr rest)))
      ((unaligned)
       (asm-error msg "unaligned target in " (car rest) ": " (cadr rest)))
      (else 
       (error "Invalid error code in assembler: " code))))
  
  ; The following procedures construct instructions by depositing field
  ; values directly into bytevectors; the location parameter in the dep-*!
  ; procedures is the address in the bytevector of the most significant byte.
  
  (define (copy! bv k bits)
    (bytevector-set! bv k (bytevector-ref bits 0))
    (bytevector-set! bv (+ k 1) (bytevector-ref bits 1))
    (bytevector-set! bv (+ k 2) (bytevector-ref bits 2))
    (bytevector-set! bv (+ k 3) (bytevector-ref bits 3))
    bv)
  
  (define (copy bits)
    (let ((bv (make-bytevector 4)))
      (bytevector-set! bv 0 (bytevector-ref bits 0))
      (bytevector-set! bv 1 (bytevector-ref bits 1))
      (bytevector-set! bv 2 (bytevector-ref bits 2))
      (bytevector-set! bv 3 (bytevector-ref bits 3))
      bv))
  
  (define (copy-instr bv from to)
    (bytevector-set! bv to (bytevector-ref bv from))
    (bytevector-set! bv (+ to 1) (bytevector-ref bv (+ from 1)))
    (bytevector-set! bv (+ to 2) (bytevector-ref bv (+ from 2)))
    (bytevector-set! bv (+ to 3) (bytevector-ref bv (+ from 3))))
  
  (define (dep-rs1! bits k rs1)
    (bytevector-set! bits (+ k 1)
                          (logior (bytevector-ref bits (+ k 1))
                                  (rshl rs1 2)))
    (bytevector-set! bits (+ k 2)
                          (logior (bytevector-ref bits (+ k 2))
                                  (lsh (logand rs1 3) 6))))
  
  (define (dep-rs2! bits k rs2)
    (bytevector-set! bits (+ k 3)
                          (logior (bytevector-ref bits (+ k 3)) rs2)))
  
  (define (dep-rd! bits k rd)
    (bytevector-set! bits k
                          (logior (bytevector-ref bits k) (lsh rd 1))))
  
  (define (dep-imm! bits k imm)
    (cond ((fixnum? imm)
           (bytevector-set! bits (+ k 3) (logand imm 255))
           (bytevector-set! bits (+ k 2)
                                 (logior (bytevector-ref bits (+ k 2))
                                         (logand (rsha imm 8) 31))))
          ((bytevector? imm)
           (bytevector-set! bits (+ k 3) (bytevector-ref imm 0))
           (bytevector-set! bits (+ k 2)
                                 (logior (bytevector-ref bits (+ k 2))
                                         (logand (bytevector-ref imm 1)
                                                 31))))
          (else
           (dep-imm! bits k (asm:int->bv imm)))))
  
  (define (dep-branch-offset! bits k offs)
    (cond ((fixnum? offs)
           (if (not (= (logand offs 3) 0))
               (signal-error 'unaligned "branch" offs))
           (dep-imm22! bits k (rsha offs 2)))
          ((bytevector? offs)
           (if (not (= (logand (bytevector-ref offs 3) 3) 0))
               (signal-error 'unaligned "branch" (asm:bv->int offs)))
           (dep-imm22! bits k (asm:rsha offs 2)))
          (else
           (dep-branch-offset! bits k (asm:int->bv offs)))))
  
  (define (dep-imm22! bits k imm)
    (cond ((fixnum? imm)
           (bytevector-set! bits (+ k 3) (logand imm 255))
           (bytevector-set! bits (+ k 2)
                                 (logand (rsha imm 8) 255))
           (bytevector-set! bits (+ k 1)
                                 (logior (bytevector-ref bits (+ k 1))
                                         (logand (rsha imm 16) 63))))
          ((bytevector? imm)
           (bytevector-set! bits (+ k 3) (bytevector-ref imm 3))
           (bytevector-set! bits (+ k 2) (bytevector-ref imm 2))
           (bytevector-set! bits (+ k 1)
                                 (logior (bytevector-ref bits (+ k 1))
                                         (logand (bytevector-ref imm 1)
                                                 63))))
          (else
           (dep-imm22! bits k (asm:int->bv imm)))))
  
  (define (dep-call-offset! bits k offs)
    (cond ((fixnum? offs)
           (if (not (= (logand offs 3) 0))
               (signal-error 'unaligned "call" offs))
           (bytevector-set! bits (+ k 3) (logand (rsha offs 2) 255))
           (bytevector-set! bits (+ k 2) (logand (rsha offs 10) 255))
           (bytevector-set! bits (+ k 1) (logand (rsha offs 18) 255))
           (bytevector-set! bits k (logior (bytevector-ref bits k)
                                           (logand (rsha offs 26) 63))))
          ((bytevector? offs)
           (if (not (= (logand (bytevector-ref offs 3) 3) 0))
               (signal-error 'unaligned "call" (asm:bv->int offs)))
           (let ((offs (asm:rsha offs 2)))
             (bytevector-set! bits (+ k 3) (bytevector-ref offs 3))
             (bytevector-set! bits (+ k 2) (bytevector-ref offs 2))
             (bytevector-set! bits (+ k 1) (bytevector-ref offs 1))
             (bytevector-set! bits k (logior (bytevector-ref bits k)
                                             (logand (bytevector-ref offs 0)
                                                     63)))))
          (else
           (dep-call-offset! bits k (asm:int->bv offs)))))
  
  ; Add 1 to an instruction (to bump a branch offset by 4).
  ; FIXME: should check for field overflow.
  
  (define (add1 bv loc)
    (let* ((r0 (+ (bytevector-ref bv (+ loc 3)) 1))
           (d0 (logand r0 255))
           (c0 (rshl r0 8)))
      (bytevector-set! bv (+ loc 3) d0)
      (let* ((r1 (+ (bytevector-ref bv (+ loc 2)) c0))
             (d1 (logand r1 255))
             (c1 (rshl r1 8)))
        (bytevector-set! bv (+ loc 2) d1)
        (let* ((r2 (+ (bytevector-ref bv (+ loc 1)) c1))
               (d2 (logand r2 255)))
          (bytevector-set! bv (+ loc 1) d2)))))
  
  ; For delay slot filling -- uses the assembler value scratchpad in
  ; the as structure.  Delay slot filling is discussed in the comments
  ; for `branch' and `class-slot', below.
  
  (define (remember-branch-target as obj)
    (assembler-value! as 'branch-target obj))
  
  (define (recover-branch-target as)
    (assembler-value as 'branch-target))
  
  ; Mark the instruction at the current address as not being eligible 
  ; for being lifted into a branch delay slot.
  ;
  ; FIXME: should perhaps be a hash table; see BOOT-STATUS file for details.
  
  (define (not-a-delay-slot-instruction as)
    (assembler-value! as 'not-dsi
                         (cons (here as)
                               (or (assembler-value as 'not-dsi) '()))))
  
  (define (is-a-delay-slot-instruction? as bv addr)
    (and (not (memv addr (or (assembler-value as 'not-dsi) '())))
         (< addr (bytevector-length bv))))
  
  ; SETHI, etc.
  
  (define (class-sethi bits)
    (let ((bits (asm:lsh bits 22)))
      (lambda (as val rd)
        
        (define (fixup bv loc)
          (dep-imm22! bv loc
                         (or (eval-expr as val)
                             (signal-error 'fixup "sethi" val))))
        
        (define (fixup2 bv loc)
          (copy! bv loc bits)
          (dep-rd! bv loc rd)
          (fixup bv loc))
        
        (if (goes-in-delay-slot2? as rd)
            (emit-fixup-proc! as
                              (lambda (b l)
                                (fixup2 b (- l 4))))
            
            (let ((bits (copy bits))
                  (e    (eval-expr as val)))
              (if e
                  (dep-imm22! bits 0 e)
                  (emit-fixup-proc! as (lambda (b l) (fixup b l))))
              (dep-rd! bits 0 rd)
              (emit! as bits))))))
  
  ; NOP is a peculiar sethi
  
  (define (class-nop i)
    (let ((instr (class-sethi i)))
      (lambda (as)
        (instr as 0 $r.g0))))
  
  
  ; Branches
  
  (define (class00b i) (branch #b010 i zero))    ; Un-annulled IU branches.
  (define (class00a i) (branch #b010 i abit))    ; Annulled IU branches.
  (define (classf00b i) (branch #b110 i zero))   ; Un-annulled FP branches.
  (define (classf00a i) (branch #b110 i abit))   ; Annulled FP branches.
  
  ; The `type' parameter is #b010 for IU branches, #b110 for FP branches.
  ; The `bits' parameter is the bits for the cond field.
  ; The `annul' parameter is either `zero' or `abit' (see top of file).
  ;
  ; Annuled branches require special treatement for delay slot
  ; filling based on the `slot' pseudo-instruction.
  ;
  ; Strategy: when a branch with the annul bit set is assembled, remember 
  ; its target in a one-element cache in the AS structure. When a slot
  ; instruction is found (it has its own class) then the cached
  ; value (possibly a delayed expression) is gotten, and a fixup for the
  ; slot is registered.  When the fixup is later evaluated, the branch
  ; target instruction can be found, examined, and evaluated. 
  ; 
  ; The cached value is always valid when the slot instruction is assembled,
  ; because a slot instruction is always directly preceded by an annulled
  ; branch (which will always set the cache).
  
  (define (branch type bits annul)
    ; The delay slot should be filled if this is an annulled branch
    ; or an unconditional branch.
    (let ((fill-delay-slot? (or (not (eq? annul zero))
                                (eq? bits #b1000)))
          (bits (asm:logior (asm:lsh bits 25) (asm:lsh type 22) annul)))
      (lambda (as target0)
        (let ((target `(- ,target0 ,(here as))))
          
          (define (expr)
            (let ((e (eval-expr as target)))
              (cond ((not e)
                     e)
                    ((not (zero? (logand e 3)))
                     (signal-error 'unaligned "branch" target0))
                    ((asm:fits? e 24)
                     e)
                    (else
                     (asm-value-too-large as "branch" target e)))))
          
          (define (fixup bv loc)
            (let ((e (expr)))
              (if e
                  (dep-branch-offset! bv loc e)
                  (signal-error 'fixup "branch" target0))))
          
          (if fill-delay-slot?
              (remember-branch-target as target0)
              (remember-branch-target as #f)) ; Clears the cache.
          (not-a-delay-slot-instruction as)
          (let ((bits (copy bits))
                (e    (expr)))
            (if e
                (dep-branch-offset! bits 0 e)
                (emit-fixup-proc! as (lambda (b l) (fixup b l))))
            (emit! as bits))))))
  
  ; Branch delay slot pseudo-instruction.
  ;
  ; Get the branch target expression from the cache in the AS structure,
  ; and if it is not #f, register a fixup procedure for the delay slot that 
  ; will copy the target instruction to the slot and add 4 to the branch
  ; offset (unless that will overflow the offset or the instruction at the
  ; target is not suitable for lifting).
  ;
  ; It's important that this fixup run _after_ any fixups for the branch
  ; instruction itself!
  
  (define (class-slot)
    (let ((nop-instr (class-nop #b100)))
      (lambda (as)
        
        ; The branch target is the expression denoting the target location.
        
        (define branch-target (recover-branch-target as))
        
        (define (fixup bv loc)
          (let ((bt (or (eval-expr as branch-target)
                        (asm-error "Branch fixup: can't happen: " 
                                   branch-target))))
            (if (is-a-delay-slot-instruction? as bv bt)
                (begin
                 (copy-instr bv bt loc)
                 (add1 bv (- loc 4))))))
        
        (if (and branch-target (fill-delay-slots))
            (emit-fixup-proc! as (lambda (b l) (fixup b l))))
        (nop-instr as))))
  
  ; Branch delay slot pseudo-instruction 2.
  ;
  ; Emit a nop, but record the information that will allow this nop to be
  ; replaced by a sufficiently harmless ALU instruction.
  
  (define (class-slot2)
    (let ((nop-instr (class-nop #b100)))
      (lambda (as . regs)
        (nop-instr as)
        (assembler-value! as 'slot2-info regs))))
  
  ; ALU stuff, register operand, rdy, wryr. Also: jump.
  
  (define (class10r bits . extra)
    (cond ((and (not (null? extra)) (eq? (car extra) 'rdy))
           (let ((op (class10r bits)))
             (lambda (as rd)
               (op as 0 0 rd))))
          ((and (not (null? extra)) (eq? (car extra) 'wry))
           (let ((op (class10r bits)))
             (lambda (as rs)
               (op as rs 0 0))))
          (else
           (let ((bits  (asm:logior (asm:lsh #b10 30) (asm:lsh bits 19)))
                 (jump? (and (not (null? extra)) (eq? (car extra) 'jump))))
             (lambda (as rs1 rs2 rd)
               (let ((bits (copy bits)))
                 (dep-rs1! bits 0 rs1)
                 (dep-rs2! bits 0 rs2)
                 (dep-rd! bits 0 rd)
                 (cond (jump?
                        (not-a-delay-slot-instruction as)
                        (emit! as bits))
                       ((goes-in-delay-slot2? as rd)
                        (emit-fixup-proc!
                         as
                         (lambda (bv loc)
                           (copy! bv (- loc 4) bits))))
                       (else
                        (emit! as bits)))))))))
  
  
  ; ALU stuff, immediate operand, wryi. Also: jump.
  
  (define (class10i bits  . extra)
    (if (and (not (null? extra)) (eq? (car extra) 'wry))
        (let ((op (class10i bits)))
          (lambda (as src)
            (op as 0 src 0)))
        (let ((bits  (asm:logior (asm:lsh #b10 30) (asm:lsh bits 19) ibit))
              (jump? (and (not (null? extra)) (eq? (car extra) 'jump))))
          (lambda (as rs1 e rd)
            
            (define (expr)
              (let ((imm (eval-expr as e)))
                (cond ((not imm)
                       imm)
                      ((asm:fits? imm 13)
                       imm)
                      (jump?
                       (asm-value-too-large as "`jmpli'" e imm))
                      (else
                       (asm-value-too-large as "ALU instruction" e imm)))))
            
            (define (fixup bv loc)
              (let ((e (expr)))
                (if e
                    (dep-imm! bv loc e)
                    (signal-error 'fixup "ALU instruction" e))))
            
            (let ((bits (copy bits))
                  (e    (expr)))
              (if e
                  (dep-imm! bits 0 e)
                  (emit-fixup-proc! as (lambda (b l) (fixup b l))))
              (dep-rs1! bits 0 rs1)
              (dep-rd! bits 0 rd)
              (cond (jump?
                     (not-a-delay-slot-instruction as)
                     (emit! as bits))
                    ((goes-in-delay-slot2? as rd)
                     (emit-fixup-proc!
                      as
                      (lambda (bv loc)
                        (copy! bv (- loc 4) bits))))
                    (else
                     (emit! as bits))))))))
  
  ; Memory stuff, register operand.
  
  (define (class11r bits)
    (let ((bits (asm:logior (asm:lsh #b11 30) (asm:lsh bits 19))))
      (lambda (as rs1 rs2 rd)
        (let ((bits (copy bits)))
          (dep-rs1! bits 0 rs1)
          (dep-rs2! bits 0 rs2)
          (dep-rd! bits 0 rd)
          (emit! as bits)))))
  
  ; Memory stuff, immediate operand.
  
  (define (class11i bits)
    (let ((bits (asm:logior (asm:lsh #b11 30) (asm:lsh bits 19) ibit)))
      (lambda (as rs1 e rd)
        
        (define (expr)
          (let ((imm (eval-expr as e)))
            (cond ((not imm) imm)
                  ((asm:fits? imm 13) imm)
                  (else 
                   (signal-error 'toolarge "Memory instruction" e imm)))))
        
        (define (fixup bv loc)
          (let ((e (expr)))
            (if e
                (dep-imm! bv loc e)
                (signal-error 'fixup "Memory instruction" e))))
        
        (let ((bits (copy bits))
              (e    (expr)))
          (dep-rs1! bits 0 rs1)
          (dep-rd! bits 0 rd)
          (if e
              (dep-imm! bits 0 e)
              (emit-fixup-proc! as (lambda (b l) (fixup b l))))
          (emit! as bits)))))
  
  ; For store instructions.  The syntax is (st a b c) meaning m[ b+c ] <- a.
  ; However, on the Sparc, the destination (rd) field is  the source of
  ; a store, so we transform the instruction into (st c b a) and pass it
  ; to the real store procedure.
  
  (define (class11sr bits)
    (let ((store-instr (class11r bits)))
      (lambda (as a b c)
        (store-instr as c b a))))
  
  (define (class11si bits)
    (let ((store-instr (class11i bits)))
      (lambda (as a b c)
        (store-instr as c b a))))
  
  ; Call is a class all by itself.
  
  (define (class-call)
    (let ((code (asm:lsh #b01 30)))
      (lambda (as target0)
        (let ((target `(- ,target0 ,(here as))))
          
          (define (fixup bv loc)
            (let ((e (eval-expr as target)))
              (if e
                  (dep-call-offset! bv loc e)
                  (signal-error 'fixup "call" target0))))
          
          (let ((bits (copy code))
                (e    (eval-expr as target)))
            (not-a-delay-slot-instruction as)
            (if e
                (dep-call-offset! bits 0 e)
                (emit-fixup-proc! as (lambda (b l) (fixup b l))))
            (emit! as bits))))))
  
  (define (class-label)
    (lambda (as label)
      (emit-label! as label)))
  
  ; FP operation, don't set CC.
  
  (define (class-fpop1 i) (fpop #b110100 i))
  
  ; FP operation, set CC
  
  (define (class-fpop2 i) (fpop #b110101 i))
  
  (define (fpop type opf)
    (let ((bits (asm:logior (asm:lsh #b10 30)
                            (asm:lsh type 19)
                            (asm:lsh opf 5))))
      (lambda (as rs1 rs2 rd)
        (let ((bits (copy bits)))
          (dep-rs1! bits 0 rs1)
          (dep-rs2! bits 0 rs2)
          (dep-rd! bits 0 rd)
          (emit! as bits)))))
  
  (set! sparc-instruction
        (lambda (kwd . ops)
          (case kwd
            ((i11)   (apply class11i ops))
            ((r11)   (apply class11r ops))
            ((si11)  (apply class11si ops))
            ((sr11)  (apply class11sr ops))
            ((sethi) (apply class-sethi ops))
            ((r10)   (apply class10r ops))
            ((i10)   (apply class10i ops))
            ((b00)   (apply class00b ops))
            ((a00)   (apply class00a ops))
            ((call)  (apply class-call ops))
            ((label) (apply class-label ops))
            ((nop)   (apply class-nop ops))
            ((slot)  (apply class-slot ops))
            ((slot2) (apply class-slot2 ops))
            ((fb00)  (apply classf00b ops))
            ((fa00)  (apply classf00a ops))
            ((fp)    (apply class-fpop1 ops))
            ((fpcc)  (apply class-fpop2 ops))
            (else
             (asm-error "sparc-instruction: unrecognized class: " kwd)))))
  'sparc-instruction)

; eof
; Instruction mnemonics

(define sparc.lddi    (sparc-instruction 'i11 #b000011))
(define sparc.lddr    (sparc-instruction 'r11 #b000011))
(define sparc.ldi     (sparc-instruction 'i11 #b000000))
(define sparc.ldr     (sparc-instruction 'r11 #b000000))
(define sparc.ldhi    (sparc-instruction 'i11 #b000010))
(define sparc.ldhr    (sparc-instruction 'r11 #b000010))
(define sparc.ldbi    (sparc-instruction 'i11 #b000001))
(define sparc.ldbr    (sparc-instruction 'r11 #b000001))
(define sparc.lddfi   (sparc-instruction 'i11 #b100011))
(define sparc.lddfr   (sparc-instruction 'r11 #b100011))
(define sparc.stdi    (sparc-instruction 'si11 #b000111))
(define sparc.stdr    (sparc-instruction 'sr11 #b000111))
(define sparc.sti     (sparc-instruction 'si11 #b000100))
(define sparc.str     (sparc-instruction 'sr11 #b000100))
(define sparc.sthi    (sparc-instruction 'si11 #b000110))
(define sparc.sthr    (sparc-instruction 'sr11 #b000110))
(define sparc.stbi    (sparc-instruction 'si11 #b000101))
(define sparc.stbr    (sparc-instruction 'sr11 #b000101))
(define sparc.stdfi   (sparc-instruction 'si11 #b100111))
(define sparc.stdfr   (sparc-instruction 'sr11 #b100111))
(define sparc.sethi   (sparc-instruction 'sethi #b100))
(define sparc.andr    (sparc-instruction 'r10 #b000001))
(define sparc.andrcc  (sparc-instruction 'r10 #b010001))
(define sparc.andi    (sparc-instruction 'i10 #b000001))
(define sparc.andicc  (sparc-instruction 'i10 #b010001))
(define sparc.orr     (sparc-instruction 'r10 #b000010))
(define sparc.orrcc   (sparc-instruction 'r10 #b010010))
(define sparc.ori     (sparc-instruction 'i10 #b000010))
(define sparc.oricc   (sparc-instruction 'i10 #b010010))
(define sparc.xorr    (sparc-instruction 'r10 #b000011))
(define sparc.xorrcc  (sparc-instruction 'r10 #b010011))
(define sparc.xori    (sparc-instruction 'i10 #b000011))
(define sparc.xoricc  (sparc-instruction 'i10 #b010011))
(define sparc.sllr    (sparc-instruction 'r10 #b100101))
(define sparc.slli    (sparc-instruction 'i10 #b100101))
(define sparc.srlr    (sparc-instruction 'r10 #b100110))
(define sparc.srli    (sparc-instruction 'i10 #b100110))
(define sparc.srar    (sparc-instruction 'r10 #b100111))
(define sparc.srai    (sparc-instruction 'i10 #b100111))
(define sparc.addr    (sparc-instruction 'r10 #b000000))
(define sparc.addrcc  (sparc-instruction 'r10 #b010000))
(define sparc.addi    (sparc-instruction 'i10 #b000000))
(define sparc.addicc  (sparc-instruction 'i10 #b010000))
(define sparc.taddrcc (sparc-instruction 'r10 #b100000))
(define sparc.taddicc (sparc-instruction 'i10 #b100000))
(define sparc.subr    (sparc-instruction 'r10 #b000100))
(define sparc.subrcc  (sparc-instruction 'r10 #b010100))
(define sparc.subi    (sparc-instruction 'i10 #b000100))
(define sparc.subicc  (sparc-instruction 'i10 #b010100))
(define sparc.tsubrcc (sparc-instruction 'r10 #b100001))
(define sparc.tsubicc (sparc-instruction 'i10 #b100001))
(define sparc.smulr   (sparc-instruction 'r10 #b001011))
(define sparc.smulrcc (sparc-instruction 'r10 #b011011))
(define sparc.smuli   (sparc-instruction 'i10 #b001011))
(define sparc.smulicc (sparc-instruction 'i10 #b011011))
(define sparc.sdivr   (sparc-instruction 'r10 #b001111))
(define sparc.sdivrcc (sparc-instruction 'r10 #b011111))
(define sparc.sdivi   (sparc-instruction 'i10 #b001111))
(define sparc.sdivicc (sparc-instruction 'i10 #b011111))
(define sparc.b       (sparc-instruction 'b00 #b1000))
(define sparc.b.a     (sparc-instruction 'a00 #b1000))
(define sparc.bne     (sparc-instruction 'b00 #b1001))
(define sparc.bne.a   (sparc-instruction 'a00 #b1001))
(define sparc.be      (sparc-instruction 'b00 #b0001))
(define sparc.be.a    (sparc-instruction 'a00 #b0001))
(define sparc.bg      (sparc-instruction 'b00 #b1010))
(define sparc.bg.a    (sparc-instruction 'a00 #b1010))
(define sparc.ble     (sparc-instruction 'b00 #b0010))
(define sparc.ble.a   (sparc-instruction 'a00 #b0010))
(define sparc.bge     (sparc-instruction 'b00 #b1011))
(define sparc.bge.a   (sparc-instruction 'a00 #b1011))
(define sparc.bl      (sparc-instruction 'b00 #b0011))
(define sparc.bl.a    (sparc-instruction 'a00 #b0011))
(define sparc.bgu     (sparc-instruction 'b00 #b1100))
(define sparc.bgu.a   (sparc-instruction 'a00 #b1100))
(define sparc.bleu    (sparc-instruction 'b00 #b0100))
(define sparc.bleu.a  (sparc-instruction 'a00 #b0100))
(define sparc.bcc     (sparc-instruction 'b00 #b1101))
(define sparc.bcc.a   (sparc-instruction 'a00 #b1101))
(define sparc.bcs     (sparc-instruction 'b00 #b0101))
(define sparc.bcs.a   (sparc-instruction 'a00 #b0101))
(define sparc.bpos    (sparc-instruction 'b00 #b1110))
(define sparc.bpos.a  (sparc-instruction 'a00 #b1110))
(define sparc.bneg    (sparc-instruction 'b00 #b0110))
(define sparc.bneg.a  (sparc-instruction 'a00 #b0110))
(define sparc.bvc     (sparc-instruction 'b00 #b1111))
(define sparc.bvc.a   (sparc-instruction 'a00 #b1111))
(define sparc.bvs     (sparc-instruction 'b00 #b0111))
(define sparc.bvs.a   (sparc-instruction 'a00 #b0111))
(define sparc.call    (sparc-instruction 'call))
(define sparc.jmplr   (sparc-instruction 'r10 #b111000 'jump))
(define sparc.jmpli   (sparc-instruction 'i10 #b111000 'jump))
(define sparc.nop     (sparc-instruction 'nop #b100))
(define sparc.ornr    (sparc-instruction 'r10 #b000110))
(define sparc.orni    (sparc-instruction 'i10 #b000110))
(define sparc.ornrcc  (sparc-instruction 'r10 #b010110))
(define sparc.ornicc  (sparc-instruction 'i10 #b010110))
(define sparc.andni   (sparc-instruction 'i10 #b000101))
(define sparc.andnr   (sparc-instruction 'r10 #b000101))
(define sparc.andnicc (sparc-instruction 'i10 #b010101))
(define sparc.andnrcc (sparc-instruction 'r10 #b010101))
(define sparc.rdy     (sparc-instruction 'r10 #b101000 'rdy))
(define sparc.wryr    (sparc-instruction 'r10 #b110000 'wry))
(define sparc.wryi    (sparc-instruction 'i10 #b110000 'wry))
(define sparc.fb      (sparc-instruction 'fb00 #b1000))
(define sparc.fb.a    (sparc-instruction 'fa00 #b1000))
(define sparc.fbn     (sparc-instruction 'fb00 #b0000))
(define sparc.fbn.a   (sparc-instruction 'fa00 #b0000))
(define sparc.fbu     (sparc-instruction 'fb00 #b0111))
(define sparc.fbu.a   (sparc-instruction 'fa00 #b0111))
(define sparc.fbg     (sparc-instruction 'fb00 #b0110))
(define sparc.fbg.a   (sparc-instruction 'fa00 #b0110))
(define sparc.fbug    (sparc-instruction 'fb00 #b0101))
(define sparc.fbug.a  (sparc-instruction 'fa00 #b0101))
(define sparc.fbl     (sparc-instruction 'fb00 #b0100))
(define sparc.fbl.a   (sparc-instruction 'fa00 #b0100))
(define sparc.fbul    (sparc-instruction 'fb00 #b0011))
(define sparc.fbul.a  (sparc-instruction 'fa00 #b0011))
(define sparc.fblg    (sparc-instruction 'fb00 #b0010))
(define sparc.fblg.a  (sparc-instruction 'fa00 #b0010))
(define sparc.fbne    (sparc-instruction 'fb00 #b0001))
(define sparc.fbne.a  (sparc-instruction 'fa00 #b0001))
(define sparc.fbe     (sparc-instruction 'fb00 #b1001))
(define sparc.fbe.a   (sparc-instruction 'fa00 #b1001))
(define sparc.fbue    (sparc-instruction 'fb00 #b1010))
(define sparc.fbue.a  (sparc-instruction 'fa00 #b1010))
(define sparc.fbge    (sparc-instruction 'fb00 #b1011))
(define sparc.fbge.a  (sparc-instruction 'fa00 #b1011))
(define sparc.fbuge   (sparc-instruction 'fb00 #b1100))
(define sparc.fbuge.a (sparc-instruction 'fa00 #b1100))
(define sparc.fble    (sparc-instruction 'fb00 #b1101))
(define sparc.fble.a  (sparc-instruction 'fa00 #b1101))
(define sparc.fbule   (sparc-instruction 'fb00 #b1110))
(define sparc.fbule.a (sparc-instruction 'fa00 #b1110))
(define sparc.fbo     (sparc-instruction 'fb00 #b1111))
(define sparc.fbo.a   (sparc-instruction 'fa00 #b1111))
(define sparc.faddd   (sparc-instruction 'fp   #b001000010))
(define sparc.fsubd   (sparc-instruction 'fp   #b001000110))
(define sparc.fmuld   (sparc-instruction 'fp   #b001001010))
(define sparc.fdivd   (sparc-instruction 'fp   #b001001110))
(define sparc%fnegs   (sparc-instruction 'fp   #b000000101)) ; See below
(define sparc%fmovs   (sparc-instruction 'fp   #b000000001)) ; See below
(define sparc%fabss   (sparc-instruction 'fp   #b000001001)) ; See below
(define sparc%fcmpdcc (sparc-instruction 'fpcc #b001010010)) ; See below

; Strange instructions.

(define sparc.slot    (sparc-instruction 'slot))
(define sparc.slot2   (sparc-instruction 'slot2))
(define sparc.label   (sparc-instruction 'label))

; Aliases.

(define sparc.bnz     sparc.bne)
(define sparc.bnz.a   sparc.bne.a)
(define sparc.bz      sparc.be)
(define sparc.bz.a    sparc.be.a)
(define sparc.bgeu    sparc.bcc)
(define sparc.bgeu.a  sparc.bcc.a)
(define sparc.blu     sparc.bcs)
(define sparc.blu.a   sparc.bcs.a)

; Abstractions.

(define (sparc.cmpr as r1 r2) (sparc.subrcc as r1 r2 $r.g0))
(define (sparc.cmpi as r imm) (sparc.subicc as r imm $r.g0))
(define (sparc.move as rs rd) (sparc.orr as $r.g0 rs rd))
(define (sparc.set as imm rd) (sparc.ori as $r.g0 imm rd))
(define (sparc.btsti as rs imm) (sparc.andicc as rs imm $r.g0))
(define (sparc.clr as rd) (sparc.move as $r.g0 rd))

(define (sparc.deccc as rs . rest)
  (let ((k (cond ((null? rest) 1)
                 ((null? (cdr rest)) (car rest))
                 (else (asm-error "sparc.deccc: too many operands: " rest)))))
    (sparc.subicc as rs k rs)))

; Floating-point abstractions
;
; For fmovd, fnegd, and fabsd, we must synthesize the instruction from
; fmovs, fnegs, and fabss -- SPARC V8 has only the latter.  (SPARC V9 add
; the former.)

(define (sparc.fmovd as rs rd)
  (sparc%fmovs as rs 0 rd)
  (sparc%fmovs as (+ rs 1) 0 (+ rd 1)))

(define (sparc.fnegd as rs rd)
  (sparc%fnegs as rs 0 rd)
  (if (not (= rs rd))
      (sparc%fmovs as (+ rs 1) 0 (+ rd 1))))

(define (sparc.fabsd as rs rd)
  (sparc%fabss as rs 0 rd)
  (if (not (= rs rd))
      (sparc%fmovs as (+ rs 1) 0 (+ rd 1))))

(define (sparc.fcmpd as rs1 rs2)
  (sparc%fcmpdcc as rs1 rs2 0))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; Asm/Sparc/gen-msi.sch -- SPARC assembler code emitters for 
;    core MacScheme instructions
;
; 9 May 1999 / wdc


; SETGLBL
;
; RS must be a hardware register.
;
; A global cell is a pair, where the car holds the value.

(define (emit-register->global! as rs offset)
  (cond ((= rs $r.result)
	 (sparc.move as $r.result $r.argreg2)
	 (emit-const->register! as offset $r.result)
	 (if (write-barrier)
	     (sparc.jmpli as $r.millicode $m.addtrans $r.o7))
	 (sparc.sti as $r.argreg2 (- $tag.pair-tag) $r.result))
	(else
	 (emit-const->register! as offset $r.result)
	 (sparc.sti as rs (- $tag.pair-tag) $r.result)
	 (if (write-barrier)
	     (millicode-call/1arg as $m.addtrans rs)))))


; GLOBAL
;
; A global cell is a pair, where the car holds the value.
; If (catch-undefined-globals) is true, then code will be emitted to
; check whether the global is #!undefined when loaded. If it is, 
; an exception will be taken, with the global in question in $r.result.

(define (emit-global->register! as offset r)
  (emit-load-global as offset r (catch-undefined-globals)))

; This leaves the cell in ARGREG2.  That fact is utilized by global/invoke
; to signal an appropriate error message.

(define (emit-load-global as offset r check?)
  
  (define (emit-undef-check! as r)
    (if check?
	(let ((GLOBAL-OK (new-label)))
	  (sparc.cmpi   as r $imm.undefined)
	  (sparc.bne.a  as GLOBAL-OK)
	  (sparc.slot   as)
	  (millicode-call/0arg as $m.global-ex)            ; Cell in ARGREG2.
	  (sparc.label  as GLOBAL-OK))))

  (emit-const->register! as offset $r.argreg2)             ; Load cell.
  (if (hardware-mapped? r)
      (begin (sparc.ldi as $r.argreg2 (- $tag.pair-tag) r)
	     (emit-undef-check! as r))
      (begin (sparc.ldi as $r.argreg2 (- $tag.pair-tag) $r.tmp0)
	     (emit-store-reg! as $r.tmp0 r)
	     (emit-undef-check! as $r.tmp0))))


; MOVEREG

(define (emit-register->register! as from to)
  (if (not (= from to))
      (cond ((and (hardware-mapped? from) (hardware-mapped? to))
	     (sparc.move as from to))
	    ((hardware-mapped? from)
	     (emit-store-reg! as from to))
	    ((hardware-mapped? to)
	     (emit-load-reg! as from to))
	    (else
	     (emit-load-reg! as from $r.tmp0)
	     (emit-store-reg! as $r.tmp0 to)))))


; ARGS=

(define (emit-args=! as n)
  (if (not (unsafe-code))
      (let ((L2 (new-label)))
	(sparc.cmpi   as $r.result (thefixnum n))  ; FIXME: limit 1023 args
	(sparc.be.a   as L2)
	(sparc.slot   as)
	(millicode-call/numarg-in-reg as $m.argc-ex (thefixnum n) $r.argreg2)
	(sparc.label  as L2))))


; ARGS>=
;
; The cases for 0 and 1 rest arguments are handled in-line; all other
; cases, including too few, are handled in millicode (really: a C call-out).
;
; The fast path only applies when we don't have to mess with the last
; register, hence the test.

(define (emit-args>=! as n)
  (let ((L0  (new-label))
	(L99 (new-label))
	(L98 (new-label)))
    (if (< n (- *lastreg* 1))
	(let ((dest (regname (+ n 1))))
	  (sparc.cmpi   as $r.result (thefixnum n)) ; n args
	  (if (hardware-mapped? dest)
	      (begin
		(sparc.be.a as L99)
		(sparc.set  as $imm.null dest))
	      (begin
		(sparc.set  as $imm.null $r.tmp0)
		(sparc.be.a as L99)
		(sparc.sti  as $r.tmp0 (swreg-global-offset dest) $r.globals)))
	  (sparc.cmpi   as $r.result (thefixnum (+ n 1))) ; n+1 args
	  (sparc.bne.a  as L98)
	  (sparc.nop    as)
	  (millicode-call/numarg-in-result as $m.alloc 8)
	  (let ((src1 (force-hwreg! as dest $r.tmp1)))
	    (sparc.set as $imm.null $r.tmp0)
	    (sparc.sti as src1 0 $r.result)
	    (sparc.sti as $r.tmp0 4 $r.result)
	    (sparc.addi as $r.result $tag.pair-tag $r.result)
	    (sparc.b as L99)
	    (if (hardware-mapped? dest)
		(sparc.move as $r.result dest)
		(sparc.sti  as $r.result (swreg-global-offset dest)
			    $r.globals)))))
    ; General case
    (sparc.label  as L98)
    (sparc.move   as $r.reg0 $r.argreg3)  ; FIXME in Sparc/mcode.s
    (millicode-call/numarg-in-reg as $m.varargs (thefixnum n) $r.argreg2)
    (sparc.label  as L99)))


; INVOKE
; SETRTN/INVOKE
;
; Bummed.  Can still do better when the procedure to call is in a general
; register (avoids the redundant move to RESULT preceding INVOKE).
;
; Note we must set up the argument count even in unsafe mode, because we 
; may be calling code that was not compiled unsafe.

(define (emit-invoke as n setrtn? mc-exception)
  (let ((START    (new-label))
        (TIMER-OK (new-label))
        (PROC-OK  (new-label)))
    (cond ((not (unsafe-code))
           (sparc.label        as START)
           (sparc.subicc       as $r.timer 1 $r.timer)
           (sparc.bne          as TIMER-OK)
           (sparc.andi         as $r.result $tag.tagmask $r.tmp0)
           (millicode-call/ret as $m.timer-exception START)
           (sparc.label        as TIMER-OK)
           (sparc.cmpi         as $r.tmp0 $tag.procedure-tag)
           (sparc.be.a         as PROC-OK)
           (sparc.ldi          as $r.result $p.codevector $r.tmp0)
           (millicode-call/ret as mc-exception START)
           (sparc.label        as PROC-OK))
          (else
           (sparc.label        as START)
           (sparc.subicc       as $r.timer 1 $r.timer)
           (sparc.bne.a        as TIMER-OK)
           (sparc.ldi          as $r.result $p.codevector $r.tmp0)
           (millicode-call/ret as $m.timer-exception START)
           (sparc.label        as TIMER-OK)))
    (sparc.move                as $r.result $r.reg0)
    ;; FIXME: limit 1023 args
    (cond (setrtn?
           (sparc.set          as (thefixnum n) $r.result)
           (sparc.jmpli        as $r.tmp0 $p.codeoffset $r.o7)
           (sparc.sti          as $r.o7 4 $r.stkp))
          (else
           (sparc.jmpli        as $r.tmp0 $p.codeoffset $r.g0)
           (sparc.set          as (thefixnum n) $r.result)))))

; SAVE -- for new compiler
;
; Create stack frame.  To avoid confusing the garbage collector, the
; slots must be initialized to something definite unless they will
; immediately be initialized by a MacScheme machine store instruction.
; The creation is done by emit-save0!, and the initialization is done
; by emit-save1!.

(define (emit-save0! as n)
  (let* ((L1        (new-label))
	 (L0        (new-label))
	 (framesize (+ 8 (* (+ n 1) 4)))
	 (realsize  (roundup8 (+ framesize 4))))
    (sparc.label  as L0)
    (sparc.subi   as $r.stkp realsize $r.stkp)
    (sparc.cmpr   as $r.stklim $r.stkp)
    (sparc.ble.a  as L1)
    (sparc.set    as framesize $r.tmp0)
    (sparc.addi   as $r.stkp realsize $r.stkp)
    (millicode-call/ret as $m.stkoflow L0)
    (sparc.label  as L1)
    ; initialize size and return fields of stack frame
    (sparc.sti    as $r.tmp0 0 $r.stkp)
    (sparc.sti    as $r.g0 4 $r.stkp)))

; Given a vector v of booleans, initializes slot i of the stack frame
; if and only if (vector-ref v i).

(define (emit-save1! as v)
  (let ((n (vector-length v)))
    (let loop ((i 0) (offset 12))
      (cond ((= i n)
             #t)
            ((vector-ref v i)
	     (sparc.sti as $r.g0 offset $r.stkp)
	     (loop (+ i 1) (+ offset 4)))
	    (else
	     (loop (+ i 1) (+ offset 4)))))))


; RESTORE
;
; Restore registers from stack frame
; FIXME: Use ldd/std here; see comments for emit-save!, above.
; We pop only actual registers.

(define (emit-restore! as n)
  (let ((n (min n 31)))
    (do ((i      0  (+ i 1))
	 (offset 12 (+ offset 4)))
	((> i n))
      (let ((r (regname i)))
	(if (hardware-mapped? r)
	    (sparc.ldi as $r.stkp offset r)
	    (begin (sparc.ldi as $r.stkp offset $r.tmp0)
		   (emit-store-reg! as $r.tmp0 r)))))))

; POP -- for new compiler
;
; Pop frame.
; If returning?, then emit the return as well and put the pop
; in its delay slot.

(define (emit-pop! as n returning?)
  (let* ((framesize (+ 8 (* (+ n 1) 4)))
	 (realsize  (roundup8 (+ framesize 4))))
    (if returning?
        (begin (sparc.ldi   as $r.stkp (+ realsize 4) $r.o7)
	       (sparc.jmpli as $r.o7 8 $r.g0)
	       (sparc.addi  as $r.stkp realsize $r.stkp))
        (sparc.addi as $r.stkp realsize $r.stkp))))


; SETRTN
;
; Change the return address in the stack frame.

(define (emit-setrtn! as label)
  (emit-return-address! as label)
  (sparc.sti as $r.o7 4 $r.stkp))


; APPLY
;
; `apply' falls into millicode.
;
; The timer check is performed here because it is not very easy for the
; millicode to do this.

(define (emit-apply! as r1 r2)
  (let ((L0 (new-label)))
    (check-timer0        as)
    (sparc.label         as L0)
    (emit-move2hwreg!    as r1 $r.argreg2)
    (emit-move2hwreg!    as r2 $r.argreg3)
    (millicode-call/0arg as $m.apply)))


; LOAD

(define (emit-load! as slot dest-reg)
  (if (hardware-mapped? dest-reg)
      (sparc.ldi as $r.stkp (+ 12 (* slot 4)) dest-reg)
      (begin (sparc.ldi as $r.stkp (+ 12 (* slot 4)) $r.tmp0)
	     (emit-store-reg! as $r.tmp0 dest-reg))))


; STORE

(define (emit-store! as k n)
  (if (hardware-mapped? k)
      (sparc.sti as k (+ 12 (* n 4)) $r.stkp)
      (begin (emit-load-reg! as k $r.tmp0)
	     (sparc.sti as $r.tmp0 (+ 12 (* n 4)) $r.stkp))))


; LEXICAL

(define (emit-lexical! as m n)
  (let ((base (emit-follow-chain! as m)))
    (sparc.ldi as base (- (procedure-slot-offset n) $tag.procedure-tag)
	       $r.result)))


; SETLEX
; FIXME: should allow an in-line barrier

(define (emit-setlex! as m n)
  (let ((base (emit-follow-chain! as m)))
    (sparc.sti as $r.result (- (procedure-slot-offset n) $tag.procedure-tag)
	       base)
    (if (write-barrier)
	(begin
	  (sparc.move as $r.result $r.argreg2)
	  (millicode-call/1arg-in-result as $m.addtrans base)))))


; Follow static links.
;
; By using and leaving the result in ARGREG3 rather than in RESULT, 
; we save a temporary register.

(define (emit-follow-chain! as m)
  (let loop ((q m))
    (cond ((not (zero? q))
	   (sparc.ldi as
		      (if (= q m) $r.reg0 $r.argreg3)
		      $p.linkoffset
		      $r.argreg3)
	   (loop (- q 1)))
	  ((zero? m) 
	   $r.reg0)
	  (else 
	   $r.argreg3))))

; RETURN

(define (emit-return! as)
  (sparc.ldi   as $r.stkp 4 $r.o7)
  (sparc.jmpli as $r.o7 8 $r.g0)
  (sparc.nop   as))


; RETURN-REG k

(define (emit-return-reg! as r)
  (sparc.ldi   as $r.stkp 4 $r.o7)
  (sparc.jmpli as $r.o7 8 $r.g0)
  (sparc.move  as r $r.result))


; RETURN-CONST k
;
; The constant c must be synthesizable in a single instruction.

(define (emit-return-const! as c)
  (sparc.ldi   as $r.stkp 4 $r.o7)
  (sparc.jmpli as $r.o7 8 $r.g0)
  (emit-constant->register as c $r.result))


; MVRTN

(define (emit-mvrtn! as)
  (asm-error "multiple-value return has not been implemented (yet)."))


; LEXES

(define (emit-lexes! as n-slots)
  (emit-alloc-proc! as n-slots)
  (sparc.ldi as $r.reg0 $p.codevector $r.tmp0)
  (sparc.ldi as $r.reg0 $p.constvector $r.tmp1)
  (sparc.sti as $r.tmp0 $p.codevector $r.result)
  (sparc.sti as $r.tmp1 $p.constvector $r.result)
  (emit-init-proc-slots! as n-slots))


; LAMBDA

(define (emit-lambda! as code-offs0 const-offs0 n-slots)
  (let* ((code-offs  (+ 4 (- (* 4 code-offs0) $tag.vector-tag)))
         (const-offs (+ 4 (- (* 4 const-offs0) $tag.vector-tag)))
         (fits? (asm:fits? const-offs 13)))
    (emit-alloc-proc! as n-slots)
    (if fits?
        (begin (sparc.ldi as $r.reg0 $p.constvector $r.tmp0)
               (sparc.ldi as $r.tmp0 code-offs $r.tmp1))
        (emit-const->register! as code-offs0 $r.tmp1))
    (sparc.sti as $r.tmp1 $p.codevector $r.result)
    (if fits?
        (begin (sparc.ldi as $r.reg0 $p.constvector $r.tmp0)
               (sparc.ldi as $r.tmp0 const-offs $r.tmp1))
        (emit-const->register! as const-offs0 $r.tmp1))
    (sparc.sti as $r.tmp1 $p.constvector $r.result)
    (emit-init-proc-slots! as n-slots)))
 
; Allocate procedure with room for n register slots; return tagged pointer.

(define emit-alloc-proc!
  (let ((two^12 (expt 2 12)))
    (lambda (as n)
      (millicode-call/numarg-in-result as $m.alloc (* (+ n 4) 4))
      (let ((header (+ (* (* (+ n 3) 4) 256) $imm.procedure-header)))
	(emit-immediate->register! as header $r.tmp0)
	(sparc.sti  as $r.tmp0 0 $r.result)
	(sparc.addi as $r.result $tag.procedure-tag $r.result)))))

; Initialize data slots in procedure from current registers as specified for
; `lamba' and `lexes'. If there are more data slots than registers, then
; we must generate code to cdr down the list in the last register to obtain
; the rest of the data. The list is expected to have at least the minimal
; length.
;
; The tagged pointer to the procedure is in $r.result.

(define (emit-init-proc-slots! as n)

  (define (save-registers lo hi offset)
    (do ((lo     lo     (+ lo 1))
	 (offset offset (+ offset 4)))
	((> lo hi))
      (let ((r (force-hwreg! as (regname lo) $r.tmp0)))
	(sparc.sti as r offset $r.result))))

  (define (save-list lo hi offset)
    (emit-load-reg! as $r.reg31 $r.tmp0)
    (do ((lo     lo      (+ lo 1))
	 (offset offset (+ offset 4)))
	((> lo hi))
      (sparc.ldi as $r.tmp0 (- $tag.pair-tag) $r.tmp1)
      (sparc.sti as $r.tmp1 offset $r.result)
      (if (< lo hi)
	  (begin 
	    (sparc.ldi as $r.tmp0 (+ (- $tag.pair-tag) 4) $r.tmp0)))))
      
  (cond ((< n *lastreg*)
	 (save-registers 0 n $p.reg0))
	(else
	 (save-registers 0 (- *lastreg* 1) $p.reg0)
	 (save-list      *lastreg* n (+ $p.reg0 (* *lastreg* 4))))))

; BRANCH

(define (emit-branch! as check-timer? label)
  (if check-timer?
      (check-timer as label label)
      (begin (sparc.b    as label)
             (sparc.slot as))))


; BRANCHF

(define (emit-branchf! as label)
  (emit-branchfreg! as $r.result label))


; BRANCHFREG -- introduced by peephole optimization.

(define (emit-branchfreg! as hwreg label)
  (sparc.cmpi as hwreg $imm.false)
  (sparc.be.a as label)
  (sparc.slot as))


; BRANCH-WITH-SETRTN -- introduced by peephole optimization

(define (emit-branch-with-setrtn! as label)
  (check-timer0 as)
  (sparc.call   as label)
  (sparc.sti    as $r.o7 4 $r.stkp))

; JUMP
;
; Given the finalization order (outer is finalized before inner is assembled)
; the label value will always be available when a jump is assembled.  The
; only exception is when m = 0, but does this ever happen?  This code handles
; the case anyway.

(define (emit-jump! as m label)
  (let* ((r      (emit-follow-chain! as m))
	 (labelv (label-value as label))
	 (v      (if (number? labelv)
		     (+ labelv $p.codeoffset)
		     (list '+ label $p.codeoffset))))
    (sparc.ldi as r $p.codevector $r.tmp0)
    (if (and (number? v) (immediate-literal? v))
	(sparc.jmpli as $r.tmp0 v $r.g0)
	(begin (emit-immediate->register! as v $r.tmp1)
	       (sparc.jmplr as $r.tmp0 $r.tmp1 $r.g0)))
    (sparc.move  as r $r.reg0)))


; .SINGLESTEP
;
; Single step: jump to millicode; pass index of documentation string in
; %TMP0. Some instructions execute when reg0 is not a valid pointer to
; the current procedure (because this is just after returning); in this
; case we restore reg0 from the stack location given by 'funkyloc'.

(define (emit-singlestep-instr! as funky? funkyloc cvlabel)
  (if funky?
      (sparc.ldi as $r.stkp (+ (thefixnum funkyloc) 12) $r.reg0))
  (millicode-call/numarg-in-reg as $m.singlestep
				   (thefixnum cvlabel)
				   $r.argreg2))


; Emit the effective address of a label-8 into %o7.
;
; There are multiple ways to do this.  If the call causes an expensive
; bubble in the pipeline it is probably much less expensive to grub
; the code vector address out of the procedure in REG0 and calculate it
; that way.  FIXME: We need to benchmark these options.
;
; In general the point is moot as the common-case sequence
;       setrtn L1
;       invoke n
;   L1:
; should be peephole-optimized into the obvious fast code.

(define (emit-return-address! as label)
  (let* ((loc  (here as))
	 (lloc (label-value as label)))

    (define (emit-short val)
      (sparc.call as (+ loc 8))
      (sparc.addi as $r.o7 val $r.o7))

    (define (emit-long val)
      ; Don't use sparc.set: we need to know that two instructions get
      ; generated.
      (sparc.sethi as `(hi ,val) $r.tmp0)
      (sparc.ori   as $r.tmp0 `(lo ,val) $r.tmp0)
      (sparc.call  as (+ loc 16))
      (sparc.addr  as $r.o7 $r.tmp0 $r.o7))

    (cond (lloc
	   (let ((target-rel-addr (- lloc loc 8)))
	     (if (immediate-literal? target-rel-addr)
		 (emit-short target-rel-addr)
		 (emit-long (- target-rel-addr 8)))))
	  ((short-effective-addresses)
	   (emit-short `(- ,label ,loc 8)))
	  (else
	   (emit-long `(- ,label ,loc 16))))))

; eof
; Copyright 1998 Lars T Hansen.
; 
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 22 April 1999 / wdc
;
; SPARC code generation macros for primitives, part 1:
;   primitives defined in Compiler/sparc.imp.sch.

; These extend Asm/Common/pass5p1.sch.

(define (operand5 instruction)
  (car (cddddr (cdr instruction))))

(define (operand6 instruction)
  (cadr (cddddr (cdr instruction))))

(define (operand7 instruction)
  (caddr (cddddr (cdr instruction))))


; Primop emitters.

(define (emit-primop.1arg! as op)
  ((find-primop op) as))

(define (emit-primop.2arg! as op r)
  ((find-primop op) as r))

(define (emit-primop.3arg! as a1 a2 a3)
  ((find-primop a1) as a2 a3))

(define (emit-primop.4arg! as a1 a2 a3 a4)
  ((find-primop a1) as a2 a3 a4))

(define (emit-primop.5arg! as a1 a2 a3 a4 a5)
  ((find-primop a1) as a2 a3 a4 a5))

(define (emit-primop.6arg! as a1 a2 a3 a4 a5 a6)
  ((find-primop a1) as a2 a3 a4 a5 a6))

(define (emit-primop.7arg! as a1 a2 a3 a4 a5 a6 a7)
  ((find-primop a1) as a2 a3 a4 a5 a6 a7))


; Hash table of primops

(define primop-vector (make-vector 256 '()))

(define (define-primop name proc)
  (let ((h (logand (symbol-hash name) 255)))
    (vector-set! primop-vector h (cons (cons name proc)
				       (vector-ref primop-vector h)))
    name))

(define (find-primop name)
  (let ((h (logand (symbol-hash name) 255)))
    (cdr (assq name (vector-ref primop-vector h)))))

(define (for-each-primop proc)
  (do ((i 0 (+ i 1)))
      ((= i (vector-length primop-vector)))
    (for-each (lambda (p)
                (proc (cdr p)))
              (vector-ref primop-vector i))))

; Primops

(define-primop 'unspecified
  (lambda (as)
    (emit-immediate->register! as $imm.unspecified $r.result)))

(define-primop 'undefined
  (lambda (as)
    (emit-immediate->register! as $imm.undefined $r.result)))

(define-primop 'eof-object
  (lambda (as)
    (emit-immediate->register! as $imm.eof $r.result)))

(define-primop 'enable-interrupts
  (lambda (as)
    (millicode-call/0arg as $m.enable-interrupts)))

(define-primop 'disable-interrupts
  (lambda (as)
    (millicode-call/0arg as $m.disable-interrupts)))

(define-primop 'gc-counter
  (lambda (as)
    (sparc.ldi as $r.globals $g.gccnt $r.result)))

(define-primop 'zero?
  (lambda (as)
    (emit-cmp-primop! as sparc.be.a $m.zerop $r.g0)))

(define-primop '=
  (lambda (as r)
    (emit-cmp-primop! as sparc.be.a $m.numeq r)))

(define-primop '<
  (lambda (as r)
    (emit-cmp-primop! as sparc.bl.a $m.numlt r)))

(define-primop '<=
  (lambda (as r)
    (emit-cmp-primop! as sparc.ble.a $m.numle r)))

(define-primop '>
  (lambda (as r)
    (emit-cmp-primop! as sparc.bg.a $m.numgt r)))

(define-primop '>=
  (lambda (as r)
    (emit-cmp-primop! as sparc.bge.a $m.numge r)))

(define-primop 'complex?
  (lambda (as)
    (millicode-call/0arg as $m.complexp)))

(define-primop 'real?
  (lambda (as)
    (millicode-call/0arg as $m.realp)))

(define-primop 'rational?
  (lambda (as)
    (millicode-call/0arg as $m.rationalp)))

(define-primop 'integer?
  (lambda (as)
    (millicode-call/0arg as $m.integerp)))

(define-primop 'exact?
  (lambda (as)
    (millicode-call/0arg as $m.exactp)))

(define-primop 'inexact?
  (lambda (as)
    (millicode-call/0arg as $m.inexactp)))

(define-primop 'fixnum?
  (lambda (as)
    (sparc.btsti as $r.result 3)
    (emit-set-boolean! as)))

(define-primop '+
  (lambda (as r)
    (emit-primop.4arg! as 'internal:+ $r.result r $r.result)))

(define-primop '-
  (lambda (as r)
    (emit-primop.4arg! as 'internal:- $r.result r $r.result)))

(define-primop '*
  (lambda (as rs2)
    (emit-multiply-code as rs2 #f)))

(define (emit-multiply-code as rs2 fixnum-arithmetic?)
  (if (and (unsafe-code) fixnum-arithmetic?)
      (begin
	(sparc.srai    as $r.result 2 $r.tmp0)
	(sparc.smulr   as $r.tmp0 rs2 $r.result))
      (let ((rs2    (force-hwreg! as rs2 $r.argreg2))
	    (Lstart (new-label))
	    (Ltagok (new-label))
	    (Loflo  (new-label))
	    (Ldone  (new-label)))
	(sparc.label   as Lstart)
	(sparc.orr     as $r.result rs2 $r.tmp0)
	(sparc.btsti   as $r.tmp0 3)
	(sparc.be.a    as Ltagok)
	(sparc.srai    as $r.result 2 $r.tmp0)
	(sparc.label   as Loflo)
	(if (not (= rs2 $r.argreg2)) (sparc.move as rs2 $r.argreg2))
	(if (not fixnum-arithmetic?)
	    (begin
	      (millicode-call/ret as $m.multiply Ldone))
	    (begin
	      (sparc.set as (thefixnum $ex.fx*) $r.tmp0)
	      (millicode-call/ret as $m.exception Lstart)))
	(sparc.label   as Ltagok)
	(sparc.smulr   as $r.tmp0 rs2 $r.tmp0)
	(sparc.rdy     as $r.tmp1)
	(sparc.srai    as $r.tmp0 31 $r.tmp2)
	(sparc.cmpr    as $r.tmp1 $r.tmp2)
	(sparc.bne.a   as Loflo)
	(sparc.slot    as)
	(sparc.move    as $r.tmp0 $r.result)
	(sparc.label   as Ldone))))

(define-primop '/
  (lambda (as r)
    (millicode-call/1arg as $m.divide r)))

(define-primop 'quotient
  (lambda (as r)
    (millicode-call/1arg as $m.quotient r)))

(define-primop 'remainder
  (lambda (as r)
    (millicode-call/1arg as $m.remainder r)))

(define-primop '--
  (lambda (as)
    (emit-negate as $r.result $r.result)))

(define-primop 'round
  (lambda (as)
    (millicode-call/0arg as $m.round)))

(define-primop 'truncate
  (lambda (as)
    (millicode-call/0arg as $m.truncate)))

(define-primop 'lognot
  (lambda (as)
    (if (not (unsafe-code))
	(emit-assert-fixnum! as $r.result $ex.lognot))
    (sparc.ornr as $r.g0 $r.result $r.result)  ; argument order matters
    (sparc.xori as $r.result 3 $r.result)))

(define-primop 'logand
  (lambda (as x)
    (logical-op as $r.result x $r.result sparc.andr $ex.logand)))

(define-primop 'logior
  (lambda (as x)
    (logical-op as $r.result x $r.result sparc.orr $ex.logior)))

(define-primop 'logxor
  (lambda (as x)
    (logical-op as $r.result x $r.result sparc.xorr $ex.logxor)))

; Fixnum shifts.
;
; Only positive shifts are meaningful.
; FIXME: These are incompatible with MacScheme and MIT Scheme.
; FIXME: need to return to start of sequence after fault.

(define-primop 'lsh
  (lambda (as x)
    (emit-shift-operation as $ex.lsh $r.result x $r.result)))

(define-primop 'rshl
  (lambda (as x)
    (emit-shift-operation as $ex.rshl $r.result x $r.result)))

(define-primop 'rsha
  (lambda (as x)
    (emit-shift-operation as $ex.rsha $r.result x $r.result)))


; fixnums only.
; FIXME: for symmetry with shifts there should be rotl and rotr (?)
;        or perhaps rot should only ever rotate one way.
; FIXME: implement.

(define-primop 'rot
  (lambda (as x)
    (asm-error "Sparcasm: ROT primop is not implemented.")))

(define-primop 'null?
  (lambda (as)
    (sparc.cmpi as $r.result $imm.null)
    (emit-set-boolean! as)))

(define-primop 'pair?
  (lambda (as)
    (emit-single-tagcheck->bool! as $tag.pair-tag)))

(define-primop 'eof-object?
  (lambda (as)
    (sparc.cmpi as $r.result $imm.eof)
    (emit-set-boolean! as)))

; Tests the specific representation, not 'flonum or compnum with 0i'.

(define-primop 'flonum?
  (lambda (as)
    (emit-double-tagcheck->bool! as $tag.bytevector-tag
				 (+ $imm.bytevector-header
				    $tag.flonum-typetag))))

(define-primop 'compnum?
  (lambda (as)
    (emit-double-tagcheck->bool! as $tag.bytevector-tag
				 (+ $imm.bytevector-header
				    $tag.compnum-typetag))))

(define-primop 'symbol?
  (lambda (as)
    (emit-double-tagcheck->bool! as $tag.vector-tag
				 (+ $imm.vector-header
				    $tag.symbol-typetag))))

(define-primop 'port?
  (lambda (as)
    (emit-double-tagcheck->bool! as $tag.vector-tag
				 (+ $imm.vector-header
				    $tag.port-typetag))))

(define-primop 'structure?
  (lambda (as)
    (emit-double-tagcheck->bool! as $tag.vector-tag
				 (+ $imm.vector-header
				    $tag.structure-typetag))))

(define-primop 'char?
  (lambda (as)
    (sparc.andi as $r.result #xFF $r.tmp0)
    (sparc.cmpi as $r.tmp0 $imm.character)
    (emit-set-boolean! as)))

(define-primop 'string?
  (lambda (as)
    (emit-double-tagcheck->bool! as
				 $tag.bytevector-tag
				 (+ $imm.bytevector-header
				    $tag.string-typetag))))

(define-primop 'bytevector?
  (lambda (as)
    (emit-double-tagcheck->bool! as
				 $tag.bytevector-tag
				 (+ $imm.bytevector-header
				    $tag.bytevector-typetag))))

(define-primop 'bytevector-like?
  (lambda (as)
    (emit-single-tagcheck->bool! as $tag.bytevector-tag)))

(define-primop 'vector?
  (lambda (as)
    (emit-double-tagcheck->bool! as
				 $tag.vector-tag
				 (+ $imm.vector-header
				    $tag.vector-typetag))))

(define-primop 'vector-like?
  (lambda (as)
    (emit-single-tagcheck->bool! as $tag.vector-tag)))

(define-primop 'procedure?
  (lambda (as)
    (emit-single-tagcheck->bool! as $tag.procedure-tag)))

(define-primop 'cons
  (lambda (as r)
    (emit-primop.4arg! as 'internal:cons $r.result r $r.result)))

(define-primop 'car
  (lambda (as)
    (emit-primop.3arg! as 'internal:car $r.result $r.result)))

(define-primop 'cdr
  (lambda (as)
    (emit-primop.3arg! as 'internal:cdr $r.result $r.result)))

(define-primop 'car:pair
  (lambda (as)
    (sparc.ldi as $r.result (- $tag.pair-tag) $r.result)))

(define-primop 'cdr:pair
  (lambda (as)
    (sparc.ldi as $r.result (- 4 $tag.pair-tag) $r.result)))

(define-primop 'set-car!
  (lambda (as x)
    (if (not (unsafe-code))
	(emit-single-tagcheck-assert! as $tag.pair-tag $ex.car #f))
    (emit-setcar/setcdr! as $r.result x 0)))

(define-primop 'set-cdr!
  (lambda (as x)
    (if (not (unsafe-code))
	(emit-single-tagcheck-assert! as $tag.pair-tag $ex.cdr #f))
    (emit-setcar/setcdr! as $r.result x 4)))

; Cells are internal data structures, represented using pairs.
; No error checking is done on cell references.

(define-primop 'make-cell
  (lambda (as)
    (emit-primop.4arg! as 'internal:cons $r.result $r.g0 $r.result)))

(define-primop 'cell-ref
  (lambda (as)
    (emit-primop.3arg! as 'internal:cell-ref $r.result $r.result)))

(define-primop 'cell-set!
  (lambda (as r)
    (emit-setcar/setcdr! as $r.result r 0)))

(define-primop 'syscall
  (lambda (as)
    (millicode-call/0arg as $m.syscall)))

(define-primop 'break
  (lambda (as)
    (millicode-call/0arg as $m.break)))

(define-primop 'creg
  (lambda (as)
    (millicode-call/0arg as $m.creg)))

(define-primop 'creg-set!
  (lambda (as)
    (millicode-call/0arg as $m.creg-set!)))

(define-primop 'typetag
  (lambda (as)
    (millicode-call/0arg as $m.typetag)))

(define-primop 'typetag-set!
  (lambda (as r)
    (millicode-call/1arg as $m.typetag-set r)))

(define-primop 'exact->inexact
  (lambda (as)
    (millicode-call/0arg as $m.exact->inexact)))

(define-primop 'inexact->exact
  (lambda (as)
    (millicode-call/0arg as $m.inexact->exact)))

(define-primop 'real-part
  (lambda (as)
    (millicode-call/0arg as $m.real-part)))

(define-primop 'imag-part
  (lambda (as)
    (millicode-call/0arg as $m.imag-part)))

(define-primop 'char->integer
  (lambda (as)
    (if (not (unsafe-code))
	(emit-assert-char! as $ex.char2int #f))
    (sparc.srli as $r.result 14 $r.result)))

(define-primop 'integer->char
  (lambda (as)
    (if (not (unsafe-code))
	(emit-assert-fixnum! as $r.result $ex.int2char))
    (sparc.andi as $r.result #x3FF $r.result)
    (sparc.slli as $r.result 14 $r.result)
    (sparc.ori  as $r.result $imm.character $r.result)))

(define-primop 'not
  (lambda (as)
    (sparc.cmpi as $r.result $imm.false)
    (emit-set-boolean! as)))

(define-primop 'eq?
  (lambda (as x)
    (emit-primop.4arg! as 'internal:eq? $r.result x $r.result)))

(define-primop 'eqv?
  (lambda (as x)
    (let ((tmp (force-hwreg! as x $r.tmp0))
	  (L1  (new-label)))
      (sparc.cmpr as $r.result tmp)
      (sparc.be.a as L1)
      (sparc.set  as $imm.true $r.result)
      (millicode-call/1arg as $m.eqv tmp)
      (sparc.label as L1))))

(define-primop 'make-bytevector
  (lambda (as)
    (if (not (unsafe-code))
	(emit-assert-positive-fixnum! as $r.result $ex.mkbvl))
    (emit-allocate-bytevector as
			      (+ $imm.bytevector-header
				 $tag.bytevector-typetag)
			      #f)
    (sparc.addi as $r.result $tag.bytevector-tag $r.result)))

(define-primop 'bytevector-fill!
  (lambda (as rs2)
    (let* ((fault (emit-double-tagcheck-assert! as
						$tag.bytevector-tag
						(+ $imm.bytevector-header
						   $tag.bytevector-typetag)
						$ex.bvfill
						rs2))
	   (rs2 (force-hwreg! as rs2 $r.argreg2)))
      (sparc.btsti  as rs2 3)
      (sparc.bne    as fault)
      (sparc.srai   as rs2 2 $r.tmp2)
      (sparc.ldi    as $r.result (- $tag.bytevector-tag) $r.tmp0)
      (sparc.addi   as $r.result (- 4 $tag.bytevector-tag) $r.tmp1)
      (sparc.srai   as $r.tmp0 8 $r.tmp0)
      (emit-bytevector-fill as $r.tmp0 $r.tmp1 $r.tmp2))))

(define-primop 'bytevector-length
  (lambda (as)
    (emit-get-length! as 
		      $tag.bytevector-tag
		      (+ $imm.bytevector-header $tag.bytevector-typetag)
		      $ex.bvlen
		      $r.result
		      $r.result)))

(define-primop 'bytevector-like-length
  (lambda (as)
    (emit-get-length! as
		      $tag.bytevector-tag
		      #f
		      $ex.bvllen
		      $r.result
		      $r.result)))

(define-primop 'bytevector-ref
  (lambda (as r)
    (let ((fault (if (not (unsafe-code))
		     (emit-double-tagcheck-assert!
		      as
		      $tag.bytevector-tag
		      (+ $imm.bytevector-header $tag.bytevector-typetag)
		      $ex.bvref
		      r)
		     #f)))
      (emit-bytevector-like-ref! as $r.result r $r.result fault #f #t))))

(define-primop 'bytevector-like-ref
  (lambda (as r)
    (let ((fault (if (not (unsafe-code))
		     (emit-single-tagcheck-assert! as
						   $tag.bytevector-tag
						   $ex.bvlref
						   r)
		     #f)))
      (emit-bytevector-like-ref! as $r.result r $r.result fault #f #f))))

(define-primop 'bytevector-set!
  (lambda (as r1 r2)
    (let ((fault (if (not (unsafe-code))
		     (emit-double-tagcheck-assert!
		      as
		      $tag.bytevector-tag
		      (+ $imm.bytevector-header $tag.bytevector-typetag)
		      $ex.bvset
		      r1)
		     #f)))
      (emit-bytevector-like-set! as r1 r2 fault #t))))

(define-primop 'bytevector-like-set!
  (lambda (as r1 r2)
    (let ((fault (if (not (unsafe-code))
		     (emit-single-tagcheck-assert! as
						   $tag.bytevector-tag
						   $ex.bvlset
						   r1)
		     #f)))
      (emit-bytevector-like-set! as r1 r2 fault #f))))

(define-primop 'sys$bvlcmp
  (lambda (as x)
    (millicode-call/1arg as $m.bvlcmp x)))

; Strings

; RESULT must have nonnegative fixnum.
; RS2 must have character.

(define-primop 'make-string
  (lambda (as rs2)
    (let ((FAULT (new-label))
	  (START (new-label)))
      (sparc.label as START)
      (let ((rs2 (force-hwreg! as rs2 $r.argreg2)))
	(if (not (unsafe-code))
	    (let ((L1 (new-label))
		  (L2 (new-label)))
	      (sparc.tsubrcc as $r.result $r.g0 $r.g0)
	      (sparc.bvc.a   as L1)
	      (sparc.andi    as rs2 255 $r.tmp0)
	      (sparc.label   as FAULT)
	      (if (not (= rs2 $r.argreg2))
		  (sparc.move as rs2 $r.argreg2))
	      (sparc.set     as (thefixnum $ex.mkbvl) $r.tmp0) ; Wrong code.
	      (millicode-call/ret as $m.exception START)
	      (sparc.label   as L1)
	      (sparc.bl      as FAULT)
	      (sparc.cmpi    as $r.tmp0 $imm.character)
	      (sparc.bne     as FAULT)
	      (sparc.move as $r.result $r.argreg3))
	    (begin
	      (sparc.move as $r.result $r.argreg3)))
	(emit-allocate-bytevector as
				  (+ $imm.bytevector-header
				     $tag.string-typetag)
				  $r.argreg3)
	(sparc.srai   as rs2 16 $r.tmp1)
	(sparc.addi   as $r.result 4 $r.result)
	(sparc.srai   as $r.argreg3 2 $r.tmp0)
	(emit-bytevector-fill as $r.tmp0 $r.result $r.tmp1)
	(sparc.addi as $r.result (- $tag.bytevector-tag 4) $r.result)))))

(define-primop 'string-length
  (lambda (as)
    (emit-primop.3arg! as 'internal:string-length $r.result $r.result)))

(define-primop 'string-ref
  (lambda (as r)
    (emit-primop.4arg! as 'internal:string-ref $r.result r $r.result)))

(define-primop 'string-set!
  (lambda (as r1 r2)
    (emit-string-set! as $r.result r1 r2)))

(define-primop 'sys$partial-list->vector
  (lambda (as r)
    (millicode-call/1arg as $m.partial-list->vector r)))

(define-primop 'make-procedure
  (lambda (as)
    (emit-make-vector-like! as
			    '()
			    $imm.procedure-header
			    $tag.procedure-tag)))

(define-primop 'make-vector
  (lambda (as r)
    (emit-make-vector-like! as
			    r
			    (+ $imm.vector-header $tag.vector-typetag)
			    $tag.vector-tag)))

(define-primop 'make-vector:0
  (lambda (as r) (make-vector-n as 0 r)))

(define-primop 'make-vector:1
  (lambda (as r) (make-vector-n as 1 r)))

(define-primop 'make-vector:2
  (lambda (as r) (make-vector-n as 2 r)))

(define-primop 'make-vector:3
  (lambda (as r) (make-vector-n as 3 r)))

(define-primop 'make-vector:4
  (lambda (as r) (make-vector-n as 4 r)))

(define-primop 'make-vector:5
  (lambda (as r) (make-vector-n as 5 r)))

(define-primop 'make-vector:6
  (lambda (as r) (make-vector-n as 6 r)))

(define-primop 'make-vector:7
  (lambda (as r) (make-vector-n as 7 r)))

(define-primop 'make-vector:8
  (lambda (as r) (make-vector-n as 8 r)))

(define-primop 'make-vector:9
  (lambda (as r) (make-vector-n as 9 r)))

(define-primop 'vector-length
  (lambda (as)
    (emit-primop.3arg! as 'internal:vector-length $r.result $r.result)))

(define-primop 'vector-like-length
  (lambda (as)
    (emit-get-length! as $tag.vector-tag #f $ex.vllen $r.result $r.result)))

(define-primop 'vector-length:vec
  (lambda (as)
    (emit-get-length-trusted! as $tag.vector-tag $r.result $r.result)))

(define-primop 'procedure-length
  (lambda (as)
    (emit-get-length! as $tag.procedure-tag #f $ex.plen $r.result $r.result)))

(define-primop 'vector-ref
  (lambda (as r)
    (emit-primop.4arg! as 'internal:vector-ref $r.result r $r.result)))

(define-primop 'vector-like-ref
  (lambda (as r)
    (let ((fault (if (not (unsafe-code))
		     (emit-single-tagcheck-assert! as
						   $tag.vector-tag
						   $ex.vlref
						   r)
		     #f)))
      (emit-vector-like-ref!
       as $r.result r $r.result fault $tag.vector-tag #f))))

(define-primop 'vector-ref:trusted
  (lambda (as rs2)
    (emit-vector-like-ref-trusted!
     as $r.result rs2 $r.result $tag.vector-tag)))

(define-primop 'procedure-ref
  (lambda (as r)
    (let ((fault (if (not (unsafe-code))
		     (emit-single-tagcheck-assert! as
						   $tag.procedure-tag
						   $ex.pref
						   r)
		     #f)))
      (emit-vector-like-ref!
       as $r.result r $r.result fault $tag.procedure-tag #f))))

(define-primop 'vector-set!
  (lambda (as r1 r2)
    (emit-primop.4arg! as 'internal:vector-set! $r.result r1 r2)))

(define-primop 'vector-like-set!
  (lambda (as r1 r2)
    (let ((fault (if (not (unsafe-code))
		     (emit-single-tagcheck-assert! as
						   $tag.vector-tag
						   $ex.vlset
						   r1)
		     #f)))
      (emit-vector-like-set! as $r.result r1 r2 fault $tag.vector-tag #f))))

(define-primop 'vector-set!:trusted
  (lambda (as rs2 rs3)
    (emit-vector-like-set-trusted! as $r.result rs2 rs3 $tag.vector-tag)))

(define-primop 'procedure-set!
  (lambda (as r1 r2)
    (let ((fault (if (not (unsafe-code))
		     (emit-single-tagcheck-assert! as
						   $tag.procedure-tag
						   $ex.pset
						   r1)
		     #f)))
      (emit-vector-like-set! as $r.result r1 r2 fault $tag.procedure-tag #f))))

(define-primop 'char<?
  (lambda (as x)
    (emit-char-cmp as x sparc.bl.a $ex.char<?)))

(define-primop 'char<=?
  (lambda (as x)
    (emit-char-cmp as x sparc.ble.a $ex.char<=?)))

(define-primop 'char=?
  (lambda (as x)
    (emit-char-cmp as x sparc.be.a $ex.char=?)))

(define-primop 'char>?
  (lambda (as x)
    (emit-char-cmp as x sparc.bg.a $ex.char>?)))

(define-primop 'char>=?
  (lambda (as x)
    (emit-char-cmp as x sparc.bge.a $ex.char>=?)))

; Experimental (for performance).
; This makes massive assumptions about the layout of the port structure:
; A port is a vector-like where
;   #0 = port.input?
;   #4 = port.buffer
;   #7 = port.rd-lim
;   #8 = port.rd-ptr
; See Lib/iosys.sch for more information.

(define-primop 'sys$read-char
  (lambda (as)
    (let ((Lfinish (new-label))
	  (Lend    (new-label)))
      (if (not (unsafe-code))
	  (begin
	    (sparc.andi as $r.result $tag.tagmask $r.tmp0) ; mask argument tag
	    (sparc.cmpi as $r.tmp0 $tag.vector-tag); vector-like? 
	    (sparc.bne as Lfinish)		   ; skip if not vector-like
	    (sparc.nop as)
	    (sparc.ldbi as $r.RESULT 0 $r.tmp1)))   ; header byte
      (sparc.ldi  as $r.RESULT 1 $r.tmp2)	    ; port.input? or garbage
      (if (not (unsafe-code))
	  (begin
	    (sparc.cmpi as $r.tmp1 $hdr.port)       ; port?
	    (sparc.bne as Lfinish)))		    ; skip if not port
      (sparc.cmpi as $r.tmp2 $imm.false)  	    ; [slot] input port?
      (sparc.be as Lfinish)			    ; skip if not active port
      (sparc.ldi as $r.RESULT (+ 1 32) $r.tmp1)	    ; [slot] port.rd-ptr 
      (sparc.ldi as $r.RESULT (+ 1 28) $r.tmp2)	    ; port.rd-lim
      (sparc.ldi as $r.RESULT (+ 1 16) $r.tmp0)	    ; port.buffer
      (sparc.cmpr as $r.tmp1 $r.tmp2)		    ; rd-ptr < rd-lim?
      (sparc.bge as Lfinish)			    ; skip if rd-ptr >= rd-lim
      (sparc.subi as $r.tmp0 1 $r.tmp0)		    ; [slot] addr of string@0
      (sparc.srai as $r.tmp1 2 $r.tmp2)		    ; rd-ptr as native int
      (sparc.ldbr as $r.tmp0 $r.tmp2 $r.tmp2)	    ; get byte from string
      (sparc.addi as $r.tmp1 4 $r.tmp1)		    ; bump rd-ptr
      (sparc.sti as $r.tmp1 (+ 1 32) $r.RESULT)	    ; store rd-ptr in port
      (sparc.slli as $r.tmp2 16 $r.tmp2)	    ; convert to char #1
      (sparc.b as Lend)
      (sparc.ori as $r.tmp2 $imm.character $r.RESULT) ; [slot] convert to char
      (sparc.label as Lfinish)
      (sparc.set as $imm.false $r.RESULT)	    ; failed
      (sparc.label as Lend))))


; eof
; Copyright 1998 Lars T Hansen.
; 
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 9 May 1999 / wdc
;
; SPARC code generation macros for primitives, part 2:
;   primitives introduced by peephole optimization.

(define-primop 'internal:car
  (lambda (as src1 dest)
    (internal-primop-invariant2 'internal:car src1 dest)
    (if (not (unsafe-code))
	(emit-single-tagcheck-assert-reg! as
					  $tag.pair-tag src1 #f $ex.car))
    (sparc.ldi as src1 (- $tag.pair-tag) dest)))

(define-primop 'internal:cdr
  (lambda (as src1 dest)
    (internal-primop-invariant2 'internal:cdr src1 dest)
    (if (not (unsafe-code))
	(emit-single-tagcheck-assert-reg! as
					  $tag.pair-tag src1 #f $ex.cdr))
    (sparc.ldi as src1 (- 4 $tag.pair-tag) dest)))

(define-primop 'internal:cell-ref
  (lambda (as src1 dest)
    (internal-primop-invariant2 'internal:cell-ref src1 dest)
    (sparc.ldi as src1 (- $tag.pair-tag) dest)))

(define-primop 'internal:set-car!
  (lambda (as rs1 rs2 dest-ignored)
    (internal-primop-invariant2 'internal:set-car! rs1 dest-ignored)
    (if (not (unsafe-code))
	(emit-single-tagcheck-assert-reg! as $tag.pair-tag rs1 rs2 $ex.car))
    (emit-setcar/setcdr! as rs1 rs2 0)))

(define-primop 'internal:set-cdr!
  (lambda (as rs1 rs2 dest-ignored)
    (internal-primop-invariant2 'internal:set-cdr! rs1 dest-ignored)
    (if (not (unsafe-code))
	(emit-single-tagcheck-assert-reg! as $tag.pair-tag rs1 rs2 $ex.cdr))
    (emit-setcar/setcdr! as rs1 rs2 4)))

(define-primop 'internal:cell-set!
  (lambda (as rs1 rs2 dest-ignored)
    (internal-primop-invariant2 'internal:cell-set! rs1 dest-ignored)
    (emit-setcar/setcdr! as rs1 rs2 0)))

; CONS
;
; One instruction reduced here translates into about 2.5KB reduction in the
; size of the basic heap image. :-)
;
; In the out-of-line case, if rd != RESULT then a garbage value is left 
; in RESULT, but it always looks like a fixnum, so it's OK.

(define-primop 'internal:cons
  (lambda (as rs1 rs2 rd)
    (if (inline-allocation)
	(let ((ENOUGH-MEMORY (new-label))
	      (START (new-label)))
	  (sparc.label   as START)
	  (sparc.addi    as $r.e-top 8 $r.e-top)
	  (sparc.cmpr    as $r.e-top $r.e-limit)
	  (sparc.ble.a   as ENOUGH-MEMORY)
	  (sparc.sti     as rs1 -8 $r.e-top)
	  (millicode-call/ret as $m.gc START)
	  (sparc.label   as ENOUGH-MEMORY)
	  (sparc.sti     as (force-hwreg! as rs2 $r.tmp0) -4 $r.e-top)
	  (sparc.subi    as $r.e-top (- 8 $tag.pair-tag) rd))
	(begin
	  (if (= rs1 $r.result)
	      (sparc.move as $r.result $r.argreg2))
	  (millicode-call/numarg-in-result as $m.alloc 8)
	  (if (= rs1 $r.result)
	      (sparc.sti as $r.argreg2 0 $r.result)
	      (sparc.sti as rs1 0 $r.result))
	  (sparc.sti as (force-hwreg! as rs2 $r.tmp1) 4 $r.result)
	  (sparc.addi as $r.result $tag.pair-tag rd)))))

(define-primop 'internal:car:pair
  (lambda (as src1 dest)
    (internal-primop-invariant2 'internal:car src1 dest)
    (sparc.ldi as src1 (- $tag.pair-tag) dest)))

(define-primop 'internal:cdr:pair
  (lambda (as src1 dest)
    (internal-primop-invariant2 'internal:cdr src1 dest)
    (sparc.ldi as src1 (- 4 $tag.pair-tag) dest)))

; Vector operations.

(define-primop 'internal:vector-length
  (lambda (as rs rd)
    (internal-primop-invariant2 'internal:vector-length rs rd)
    (emit-get-length! as
		      $tag.vector-tag
		      (+ $imm.vector-header $tag.vector-typetag)
		      $ex.vlen
		      rs
		      rd)))

(define-primop 'internal:vector-ref
  (lambda (as rs1 rs2 rd)
    (internal-primop-invariant2 'internal:vector-ref rs1 rd)
    (let ((fault (if (not (unsafe-code))
		     (emit-double-tagcheck-assert-reg/reg!
		      as
		      $tag.vector-tag
		      (+ $imm.vector-header $tag.vector-typetag)
		      rs1 
		      rs2
		      $ex.vref))))
      (emit-vector-like-ref! as rs1 rs2 rd fault $tag.vector-tag #t))))

(define-primop 'internal:vector-ref/imm
  (lambda (as rs1 imm rd)
    (internal-primop-invariant2 'internal:vector-ref/imm rs1 rd)
    (let ((fault (if (not (unsafe-code))
		     (emit-double-tagcheck-assert-reg/imm!
		      as
		      $tag.vector-tag
		      (+ $imm.vector-header $tag.vector-typetag)
		      rs1 
		      imm
		      $ex.vref))))
      (emit-vector-like-ref/imm! as rs1 imm rd fault $tag.vector-tag #t))))

(define-primop 'internal:vector-set!
  (lambda (as rs1 rs2 rs3)
    (internal-primop-invariant1 'internal:vector-set! rs1)
    (let ((fault (if (not (unsafe-code))
		     (emit-double-tagcheck-assert-reg/reg!
		      as
		      $tag.vector-tag
		      (+ $imm.vector-header $tag.vector-typetag)
		      rs1
		      rs2
		      $ex.vset))))
      (emit-vector-like-set! as rs1 rs2 rs3 fault $tag.vector-tag #t))))

(define-primop 'internal:vector-length:vec
  (lambda (as rs1 dst)
    (internal-primop-invariant2 'internal:vector-length:vec rs1 dst)
    (emit-get-length-trusted! as $tag.vector-tag rs1 dst)))

(define-primop 'internal:vector-ref:trusted
  (lambda (as rs1 rs2 dst)
    (emit-vector-like-ref-trusted! as rs1 rs2 dst $tag.vector-tag)))

(define-primop 'internal:vector-set!:trusted
  (lambda (as rs1 rs2 rs3)
    (emit-vector-like-ref-trusted! as rs1 rs2 rs3 $tag.vector-tag)))

; Strings.

(define-primop 'internal:string-length
  (lambda (as rs rd)
    (internal-primop-invariant2 'internal:string-length rs rd)
    (emit-get-length! as
		      $tag.bytevector-tag
		      (+ $imm.bytevector-header $tag.string-typetag)
		      $ex.slen
		      rs
		      rd)))

(define-primop 'internal:string-ref
  (lambda (as rs1 rs2 rd)
    (internal-primop-invariant2 'internal:string-ref rs1 rd)
    (let ((fault (if (not (unsafe-code))
		     (emit-double-tagcheck-assert-reg/reg!
		      as
		      $tag.bytevector-tag
		      (+ $imm.bytevector-header $tag.string-typetag)
		      rs1 
		      rs2
		      $ex.sref))))
      (emit-bytevector-like-ref! as rs1 rs2 rd fault #t #t))))

(define-primop 'internal:string-ref/imm
  (lambda (as rs1 imm rd)
    (internal-primop-invariant2 'internal:string-ref/imm rs1 rd)
    (let ((fault (if (not (unsafe-code))
		     (emit-double-tagcheck-assert-reg/imm!
		      as
		      $tag.bytevector-tag
		      (+ $imm.bytevector-header $tag.string-typetag)
		      rs1 
		      imm
		      $ex.sref))))
      (emit-bytevector-like-ref/imm! as rs1 imm rd fault #t #t))))

(define-primop 'internal:string-set!
  (lambda (as rs1 rs2 rs3)
    (internal-primop-invariant1 'internal:string-set! rs1)
      (emit-string-set! as rs1 rs2 rs3)))

(define-primop 'internal:+
  (lambda (as src1 src2 dest)
    (internal-primop-invariant2 'internal:+ src1 dest)
    (emit-arith-primop! as sparc.taddrcc sparc.subr $m.add src1 src2 dest #t)))

(define-primop 'internal:+/imm
  (lambda (as src1 imm dest)
    (internal-primop-invariant2 'internal:+/imm src1 dest)
    (emit-arith-primop! as sparc.taddicc sparc.subi $m.add src1 imm dest #f)))

(define-primop 'internal:-
  (lambda (as src1 src2 dest)
    (internal-primop-invariant2 'internal:- src1 dest)
    (emit-arith-primop! as sparc.tsubrcc sparc.addr $m.subtract 
			src1 src2 dest #t)))

(define-primop 'internal:-/imm
  (lambda (as src1 imm dest)
    (internal-primop-invariant2 'internal:-/imm src1 dest)
    (emit-arith-primop! as sparc.tsubicc sparc.addi $m.subtract
			src1 imm dest #f)))

(define-primop 'internal:--
  (lambda (as rs rd)
    (internal-primop-invariant2 'internal:-- rs rd)
    (emit-negate as rs rd)))

(define-primop 'internal:branchf-null?
  (lambda (as reg label)
    (internal-primop-invariant1 'internal:branchf-null? reg)
    (sparc.cmpi  as reg $imm.null)
    (sparc.bne.a as label)
    (sparc.slot  as)))

(define-primop 'internal:branchf-pair?
  (lambda (as reg label)
    (internal-primop-invariant1 'internal:branchf-pair? reg)
    (sparc.andi  as reg $tag.tagmask $r.tmp0)
    (sparc.cmpi  as $r.tmp0 $tag.pair-tag)
    (sparc.bne.a as label)
    (sparc.slot  as)))

(define-primop 'internal:branchf-zero?
  (lambda (as reg label)
    (internal-primop-invariant1 'internal:brancf-zero? reg)
    (emit-bcmp-primop! as sparc.bne.a reg $r.g0 label $m.zerop #t)))

(define-primop 'internal:branchf-eof-object?
  (lambda (as rs label)
    (internal-primop-invariant1 'internal:branchf-eof-object? rs)
    (sparc.cmpi  as rs $imm.eof)
    (sparc.bne.a as label)
    (sparc.slot  as)))

(define-primop 'internal:branchf-fixnum?
  (lambda (as rs label)
    (internal-primop-invariant1 'internal:branchf-fixnum? rs)
    (sparc.btsti as rs 3)
    (sparc.bne.a as label)
    (sparc.slot  as)))

(define-primop 'internal:branchf-char?
  (lambda (as rs label)
    (internal-primop-invariant1 'internal:branchf-char? rs)
    (sparc.andi  as rs 255 $r.tmp0)
    (sparc.cmpi  as $r.tmp0 $imm.character)
    (sparc.bne.a as label)
    (sparc.slot  as)))

(define-primop 'internal:branchf-=
  (lambda (as src1 src2 label)
    (internal-primop-invariant1 'internal:branchf-= src1)
    (emit-bcmp-primop! as sparc.bne.a src1 src2 label $m.numeq #t)))

(define-primop 'internal:branchf-<
  (lambda (as src1 src2 label)
    (internal-primop-invariant1 'internal:branchf-< src1)
    (emit-bcmp-primop! as sparc.bge.a src1 src2 label $m.numlt #t)))

(define-primop 'internal:branchf-<=
  (lambda (as src1 src2 label)
    (internal-primop-invariant1 'internal:branchf-<= src1)
    (emit-bcmp-primop! as sparc.bg.a src1 src2 label $m.numle #t)))

(define-primop 'internal:branchf->
  (lambda (as src1 src2 label)
    (internal-primop-invariant1 'internal:branchf-> src1)
    (emit-bcmp-primop! as sparc.ble.a src1 src2 label $m.numgt #t)))

(define-primop 'internal:branchf->=
  (lambda (as src1 src2 label)
    (internal-primop-invariant1 'internal:branchf->= src1)
    (emit-bcmp-primop! as sparc.bl.a src1 src2 label $m.numge #t)))

(define-primop 'internal:branchf-=/imm
  (lambda (as src1 imm label)
    (internal-primop-invariant1 'internal:branchf-=/imm src1)
    (emit-bcmp-primop! as sparc.bne.a src1 imm label $m.numeq #f)))

(define-primop 'internal:branchf-</imm
  (lambda (as src1 imm label)
    (internal-primop-invariant1 'internal:branchf-</imm src1)
    (emit-bcmp-primop! as sparc.bge.a src1 imm label $m.numlt #f)))

(define-primop 'internal:branchf-<=/imm
  (lambda (as src1 imm label)
    (internal-primop-invariant1 'internal:branchf-<=/imm src1)
    (emit-bcmp-primop! as sparc.bg.a src1 imm label $m.numle #f)))

(define-primop 'internal:branchf->/imm
  (lambda (as src1 imm label)
    (internal-primop-invariant1 'internal:branchf->/imm src1)
    (emit-bcmp-primop! as sparc.ble.a src1 imm label $m.numgt #f)))

(define-primop 'internal:branchf->=/imm
  (lambda (as src1 imm label)
    (internal-primop-invariant1 'internal:branchf->=/imm src1)
    (emit-bcmp-primop! as sparc.bl.a src1 imm label $m.numge #f)))

(define-primop 'internal:branchf-char=?
  (lambda (as src1 src2 label)
    (internal-primop-invariant1 'internal:branchf-char=? src1)
    (emit-char-bcmp-primop! as sparc.bne.a src1 src2 label $ex.char=?)))

(define-primop 'internal:branchf-char<=?
  (lambda (as src1 src2 label)
    (internal-primop-invariant1 'internal:branchf-char<=? src1)
    (emit-char-bcmp-primop! as sparc.bg.a src1 src2 label $ex.char<=?)))

(define-primop 'internal:branchf-char<?
  (lambda (as src1 src2 label)
    (internal-primop-invariant1 'internal:branchf-char<? src1)
    (emit-char-bcmp-primop! as sparc.bge.a src1 src2 label $ex.char<?)))

(define-primop 'internal:branchf-char>=?
  (lambda (as src1 src2 label)
    (internal-primop-invariant1 'internal:branchf-char>=? src1)
    (emit-char-bcmp-primop! as sparc.bl.a src1 src2 label $ex.char>=?)))

(define-primop 'internal:branchf-char>?
  (lambda (as src1 src2 label)
    (internal-primop-invariant1 'internal:branchf-char>=? src1)
    (emit-char-bcmp-primop! as sparc.ble.a src1 src2 label $ex.char>?)))

(define-primop 'internal:branchf-char=?/imm
  (lambda (as src imm label)
    (internal-primop-invariant1 'internal:branchf-char=?/imm src)
    (emit-char-bcmp-primop! as sparc.bne.a src imm label $ex.char=?)))

(define-primop 'internal:branchf-char>=?/imm
  (lambda (as src imm label)
    (internal-primop-invariant1 'internal:branchf-char>=?/imm src)
    (emit-char-bcmp-primop! as sparc.bl.a src imm label $ex.char>=?)))

(define-primop 'internal:branchf-char>?/imm
  (lambda (as src imm label)
    (internal-primop-invariant1 'internal:branchf-char>?/imm src)
    (emit-char-bcmp-primop! as sparc.ble.a src imm label $ex.char>?)))

(define-primop 'internal:branchf-char<=?/imm
  (lambda (as src imm label)
    (internal-primop-invariant1 'internal:branchf-char<=?/imm src)
    (emit-char-bcmp-primop! as sparc.bg.a src imm label $ex.char<=?)))

(define-primop 'internal:branchf-char<?/imm
  (lambda (as src imm label)
    (internal-primop-invariant1 'internal:branchf-char<?/imm src)
    (emit-char-bcmp-primop! as sparc.bge.a src imm label $ex.char<?)))

(define-primop 'internal:eq?
  (lambda (as src1 src2 dest)
    (internal-primop-invariant2 'internal:eq? src1 dest)
    (let ((tmp (force-hwreg! as src2 $r.tmp0)))
      (sparc.cmpr as src1 tmp)
      (emit-set-boolean-reg! as dest))))

(define-primop 'internal:eq?/imm
  (lambda (as rs imm rd)
    (internal-primop-invariant2 'internal:eq?/imm rs rd)
    (cond ((fixnum? imm) (sparc.cmpi as rs (thefixnum imm)))
	  ((eq? imm #t)  (sparc.cmpi as rs $imm.true))
	  ((eq? imm #f)  (sparc.cmpi as rs $imm.false))
	  ((null? imm)   (sparc.cmpi as rs $imm.null))
	  (else ???))
    (emit-set-boolean-reg! as rd)))

(define-primop 'internal:branchf-eq?
  (lambda (as src1 src2 label)
    (internal-primop-invariant1 'internal:branchf-eq? src1)
    (let ((src2 (force-hwreg! as src2 $r.tmp0)))
      (sparc.cmpr  as src1 src2)
      (sparc.bne.a as label)
      (sparc.slot  as))))

(define-primop 'internal:branchf-eq?/imm
  (lambda (as rs imm label)
    (internal-primop-invariant1 'internal:branchf-eq?/imm rs)
    (cond ((fixnum? imm) (sparc.cmpi as rs (thefixnum imm)))
	  ((eq? imm #t)  (sparc.cmpi as rs $imm.true))
	  ((eq? imm #f)  (sparc.cmpi as rs $imm.false))
	  ((null? imm)   (sparc.cmpi as rs $imm.null))
	  (else ???))
    (sparc.bne.a as label)
    (sparc.slot  as)))

; Unary predicates followed by a check.

(define-primop 'internal:check-fixnum?
  (lambda (as src L1 liveregs)
    (sparc.btsti   as src 3)
    (emit-checkcc! as sparc.bne L1 liveregs)))

(define-primop 'internal:check-pair?
  (lambda (as src L1 liveregs)
    (sparc.andi    as src $tag.tagmask $r.tmp0)
    (sparc.cmpi    as $r.tmp0 $tag.pair-tag)
    (emit-checkcc! as sparc.bne L1 liveregs)))

(define-primop 'internal:check-vector?
  (lambda (as src L1 liveregs)
    (sparc.andi    as src $tag.tagmask $r.tmp0)
    (sparc.cmpi    as $r.tmp0 $tag.vector-tag)
    (sparc.bne     as L1)
    (sparc.nop     as)
    (sparc.ldi     as src (- $tag.vector-tag) $r.tmp0)
    (sparc.andi    as $r.tmp0 255 $r.tmp1)
    (sparc.cmpi    as $r.tmp1 $imm.vector-header)
    (emit-checkcc! as sparc.bne L1 liveregs)))

(define-primop 'internal:check-vector?/vector-length:vec
  (lambda (as src dst L1 liveregs)
    (sparc.andi    as src     $tag.tagmask        $r.tmp0)
    (sparc.cmpi    as $r.tmp0 $tag.vector-tag)
    (sparc.bne     as L1)
    (sparc.nop     as)
    (sparc.ldi     as src     (- $tag.vector-tag) $r.tmp0)
    (sparc.andi    as $r.tmp0 255                 $r.tmp1)
    (sparc.cmpi    as $r.tmp1 $imm.vector-header)
    (sparc.bne     as L1)
    (apply sparc.slot2 as liveregs)
    (sparc.srli    as $r.tmp0 8 dst)))

(define (internal-primop-invariant2 name a b)
    (if (not (and (hardware-mapped? a) (hardware-mapped? b)))
	(asm-error "SPARC assembler internal invariant violated by " name
		   " on operands " a " and " b)))

(define (internal-primop-invariant1 name a)
    (if (not (hardware-mapped? a))
	(asm-error "SPARC assembler internal invariant violated by " name
		   " on operand " a)))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; SPARC code generation macros for primitives, part 3a:
;   helper procedures for scalars.


; LOGAND, LOGIOR, LOGXOR: logical operations on fixnums.
;
; Input:  Registers rs1 and rs2, both of which can be general registers.
;         In addition, rs1 can be RESULT, and rs2 can be ARGREG2.
; Output: Register dest, which can be a general register or RESULT.

(define (logical-op as rs1 rs2 dest op excode)

  (define (fail rs1 rs2 L0)
    (if (not (= rs1 $r.result))  (sparc.move as rs1 $r.result))
    (if (not (= rs2 $r.argreg2)) (sparc.move as rs2 $r.argreg2))
    (sparc.set as (thefixnum excode) $r.tmp0)
    (millicode-call/ret as $m.exception L0))

  (let ((L0  (new-label))
        (L1  (new-label)))
    (sparc.label     as L0)
    (let ((rs1 (force-hwreg! as rs1 $r.result))
          (rs2 (force-hwreg! as rs2 $r.argreg2))
          (u   (unsafe-code))
          (d   (hardware-mapped? dest)))
      (cond ((and u d)
             (op as rs1 rs2 dest))
            ((and u (not d))
             (op as rs1 rs2 $r.tmp0)
             (emit-store-reg! as $r.tmp0 dest))
            ((and (not u) d)
             (sparc.orr     as rs1 rs2 $r.tmp0)
             (sparc.btsti   as $r.tmp0 3)
             (sparc.bz.a    as L1)
             (op            as rs1 rs2 dest)
             (fail rs1 rs2 L0)
             (sparc.label   as L1))
            (else
             (sparc.orr     as rs1 rs2 $r.tmp0)
             (sparc.btsti   as $r.tmp0 3)
             (sparc.bz.a    as L1)
             (op            as rs1 rs2 $r.tmp0)
             (fail rs1 rs2 L0)
             (sparc.label   as L1)
             (emit-store-reg! as $r.tmp0 dest))))))


; LSH, RSHA, RSHL: Bitwise shifts on fixnums.
;
; Notes for future contemplation:
;   - The semantics do not match those of MIT Scheme or MacScheme: only 
;     positive shifts are allowed.
;   - The names do not match the fixnum-specific procedures of Chez Scheme
;     that have the same semantics: fxsll, fxsra, fxsrl.
;   - This code checks that the second argument is in range; if it did
;     not, then we could get a MOD for free.  Probably too hardware-dependent
;     to worry about.
;   - The range 0..31 for the shift count is curious given that the fixnum
;     is 30-bit.

(define (emit-shift-operation as exn rs1 rs2 rd)
  (let ((rs2 (force-hwreg! as rs2 $r.argreg2)))
    (if (not (unsafe-code))
        (let ((L0 (new-label))
              (FAULT (new-label))
              (START (new-label)))
          (sparc.label as START)
          (sparc.btsti as rs1 3)          ; RS1 fixnum?
          (sparc.be.a  as L0)
          (sparc.andi  as rs2 #x7c $r.g0) ; RS2 fixnum and 0 <= RS2 < 32?
          (sparc.label as FAULT)
          (if (not (= rs1 $r.result))
              (sparc.move as rs1 $r.result))
          (if (not (= rs2 $r.argreg2))
              (emit-move2hwreg! as rs2 $r.argreg2))
          (sparc.set   as (thefixnum exn) $r.tmp0)
          (millicode-call/ret as $m.exception START)
          (sparc.label as L0)
          (sparc.bne   as FAULT)
          (sparc.srai  as rs2 2 $r.tmp1))
        (begin
          (sparc.srai  as rs2 2 $r.tmp1)))
    (cond ((= exn $ex.lsh)
           (sparc.sllr as rs1 $r.tmp1 rd))
          ((= exn $ex.rshl)
           (sparc.srlr  as rs1 $r.tmp1 rd)
           (sparc.andni as rd 3 rd))
          ((= exn $ex.rsha)
           (sparc.srar  as rs1 $r.tmp1 rd)
           (sparc.andni as rd 3 rd))
          (else ???))))


; Set result on condition code.
;
; The processor's zero bit has been affected by a previous instruction.
; If the bit is set, store #t in RESULT, otherwise store #f in RESULT.

(define (emit-set-boolean! as)
  (emit-set-boolean-reg! as $r.result))


; Set on condition code.
;
; The processor's zero bit has been affected by a previous instruction.
; If the bit is set, store #t in the processor register 'dest', otherwise
; store #f in 'dest'.

(define (emit-set-boolean-reg! as dest)
  (let ((L1 (new-label)))
    (sparc.set   as $imm.true dest)
    (sparc.bne.a as L1)
    (sparc.set   as $imm.false dest)
    (sparc.label as L1)))


; Representation predicate.

(define (emit-single-tagcheck->bool! as tag)
  (sparc.andi as $r.result $tag.tagmask $r.tmp0)
  (sparc.cmpi as $r.tmp0 tag)
  (emit-set-boolean! as))

(define (emit-single-tagcheck-assert! as tag1 excode reg2)
  (emit-single-tagcheck-assert-reg! as tag1 $r.result reg2 excode))

(define (emit-single-tagcheck-assert-reg! as tag1 reg reg2 excode)
  (let ((L0    (new-label))
        (L1    (new-label))
        (FAULT (new-label)))
    (sparc.label as L0)
    (sparc.andi  as reg $tag.tagmask $r.tmp0)
    (sparc.cmpi  as $r.tmp0 tag1)
    (fault-if-ne as excode #f #f reg reg2 L0)))

; Assert that a machine register has a fixnum in it.
; Returns the label of the fault code.

(define (emit-assert-fixnum! as reg excode)
  (let ((L0    (new-label))
        (L1    (new-label))
        (FAULT (new-label)))
    (sparc.label  as L0)
    (sparc.btsti  as reg 3)
    (fault-if-ne as excode #f #f reg #f L0)))

; Assert that RESULT has a character in it.
; Returns the label of the fault code.

(define (emit-assert-char! as excode fault-label)
  (let ((L0    (new-label))
        (L1    (new-label))
        (FAULT (new-label)))
    (sparc.label as L0)
    (sparc.andi  as $r.result #xFF $r.tmp0)
    (sparc.cmpi  as $r.tmp0 $imm.character)
    (fault-if-ne as excode #f fault-label #f #f L0)))

; Generate code for fault handling if the zero flag is not set.
; - excode is the nativeint exception code.
; - cont-label, if not #f, is the label to go to if there is no fault.
; - fault-label, if not #f, is the label of an existing fault handler.
; - reg1, if not #f, is the number of a register which must be
;   moved into RESULT before the fault handler is called.
; - reg2, if not #f, is the number of a register which must be moved
;   into ARGREG2 before the fault handler is called.
; - ret-label, if not #f, is the return address to be set up before calling
;   the fault handler.
;
; Ret-label and fault-label cannot simultaneously be non-#f; in this case
; the ret-label is ignored (since the existing fault handler most likely
; sets up the return in the desired manner).

(define (fault-if-ne as excode cont-label fault-label reg1 reg2 ret-label)
  (if fault-label
      (begin 
        (if (and reg2 (not (= reg2 $r.argreg2)))
            (emit-move2hwreg! as reg2 $r.argreg2))
        (sparc.bne as fault-label)
        (if (and reg1 (not (= reg1 $r.result)))
            (sparc.move as reg1 $r.result)
            (sparc.nop as))
        fault-label)
      (let ((FAULT (new-label))
            (L1    (new-label)))
        (sparc.be.a  as (or cont-label L1))
        (sparc.slot  as)
        (sparc.label as FAULT)
        (if (and reg1 (not (= reg1 $r.result)))
            (sparc.move as reg1 $r.result))
        (if (and reg2 (not (= reg2 $r.argreg2)))
            (emit-move2hwreg! as reg2 $r.argreg2))
        (sparc.set   as (thefixnum excode) $r.tmp0)
        (millicode-call/ret as $m.exception (or ret-label L1))
        (if (or (not cont-label) (not ret-label))
            (sparc.label as L1))
        FAULT)))

; This is more expensive than what is good for it (5 cycles in the usual case),
; but there does not seem to be a better way.

(define (emit-assert-positive-fixnum! as reg excode)
  (let ((L1 (new-label))
        (L2 (new-label))
        (L3 (new-label))) 
    (sparc.label   as L2)
    (sparc.tsubrcc as reg $r.g0 $r.g0)
    (sparc.bvc     as L1)
    (sparc.nop     as)
    (sparc.label   as L3)
    (if (not (= reg $r.result))
        (sparc.move as reg $r.result))
    (sparc.set     as (thefixnum excode) $r.tmp0)
    (millicode-call/ret as $m.exception l2)
    (sparc.label   as L1)
    (sparc.bl      as L3)
    (sparc.nop     as)
    L3))


; Arithmetic comparison with boolean result.

(define (emit-cmp-primop! as branch_t.a generic r)
  (let ((Ltagok (new-label))
        (Lcont  (new-label))
        (r      (force-hwreg! as r $r.argreg2)))
    (sparc.tsubrcc as $r.result r $r.g0)
    (sparc.bvc.a   as Ltagok)
    (sparc.set     as $imm.false $r.result)
    (if (not (= r $r.argreg2))
        (sparc.move    as r $r.argreg2))
    (millicode-call/ret as generic Lcont)
    (sparc.label   as Ltagok)
    (branch_t.a    as Lcont)
    (sparc.set     as $imm.true $r.result)
    (sparc.label   as Lcont)))


; Arithmetic comparison and branch.
;
; This code does not use the chained branch trick (DCTI) that was documented
; in the Sparc v8 manual and deprecated in the v9 manual.  This code executes
; _much_ faster on the Ultra than the code using DCTI, even though it executes
; the same instructions.
;
; Parameters and preconditions.
;   Src1 is a general register, RESULT, ARGREG2, or ARGREG3.
;   Src2 is a general register, RESULT, ARGREG2, ARGREG3, or an immediate.
;   Src2 is an immediate iff src2isreg = #f.
;   Branch_f.a is a branch on condition code that branches if the condition
;     is not true.
;   Generic is the millicode table offset of the generic procedure.

(define (emit-bcmp-primop! as branch_f.a src1 src2 Lfalse generic src2isreg)
  (let ((Ltagok (new-label))
        (Ltrue  (new-label))
        (op2    (if src2isreg
                    (force-hwreg! as src2 $r.tmp1)
                    (thefixnum src2)))
        (sub   (if src2isreg sparc.tsubrcc sparc.tsubicc))
        (mov   (if src2isreg sparc.move sparc.set)))
    (sub         as src1 op2 $r.g0)
    (sparc.bvc.a as Ltagok)
    (sparc.slot  as)

    ; Not both fixnums.
    ; Must move src1 to result if src1 is not result.
    ; Must move src2 to argreg2 if src2 is not argreg2.

    (let ((move-res  (not (= src1 $r.result)))
          (move-arg2 (or (not src2isreg) (not (= op2 $r.argreg2)))))
      (if (and move-arg2 move-res)
          (mov     as op2 $r.argreg2))
      (sparc.jmpli as $r.millicode generic $r.o7)
      (cond (move-res   (sparc.move as src1 $r.result))
            (move-arg2  (mov        as op2 $r.argreg2))
            (else       (sparc.nop  as)))
      (sparc.cmpi  as $r.result $imm.false)
      (sparc.bne.a as Ltrue)
      (sparc.slot  as)
      (sparc.b     as Lfalse)
      (sparc.slot  as))

    (sparc.label as Ltagok)
    (branch_f.a   as Lfalse)
    (sparc.slot  as)
    (sparc.label as Ltrue)))


; Generic arithmetic for + and -.
; Some rules:
;   We have two HW registers src1 and dest.
;   If src2isreg is #t then src2 may be a HW reg or a SW reg
;   If src2isreg is #f then src2 is an immediate fixnum, not shifted.
;   Src1 and dest may be RESULT, but src2 may not.
;   Src2 may be ARGREG2, the others may not.
;
; FIXME! This is incomprehensible.

; New code below.

'(define (emit-arith-primop! as op invop generic src1 src2 dest src2isreg)
  (let ((L1  (new-label))
        (op2 (if src2isreg
                 (force-hwreg! as src2 $r.tmp1)
                 (thefixnum src2))))
    (if (and src2isreg (= op2 dest))
        (begin (op          as src1 op2 $r.tmp0)
               (sparc.bvc.a as L1)
               (sparc.move  as $r.tmp0 dest))
        (begin (op          as src1 op2 dest)
               (sparc.bvc.a as L1)
               (sparc.slot  as)
               (invop       as dest op2 dest)))
    (let ((n    (+ (if (not (= src1 $r.result)) 1 0)
                   (if (or (not src2isreg) (not (= op2 $r.argreg2))) 1 0)))
          (mov2 (if src2isreg sparc.move sparc.set)))
      (if (= n 2)
          (mov2 as op2 $r.argreg2))
      (sparc.jmpli as $r.millicode generic $r.o7)
      (cond ((= n 0) (sparc.nop  as))
            ((= n 1) (mov2       as op2 $r.argreg2))
            (else    (sparc.move as src1 $r.result)))
      ; Generic arithmetic leaves stuff in RESULT, must move to dest if
      ; dest is not RESULT.
      (if (not (= dest $r.result))
          (sparc.move as $r.result dest))
      (sparc.label as L1))))

; Comprehensible, but longer.
;
; Important to be careful not to clobber arguments, and not to leave garbage
; in rd, if millicode is called.
;
; op is the appropriate operation.
; invop is the appropriate inverse operation.
; RS1 can be any general hw register or RESULT.
; RS2/IMM can be any general register or ARGREG2 (op2isreg=#t), or 
;         an immediate (op2isreg=#f)
; RD can be any general hw register or RESULT.
;
; FIXME: split this into two procedures.

(define (emit-arith-primop! as op invop generic rs1 rs2/imm rd op2isreg)
  (let ((L1 (new-label)))
    (if op2isreg
        (let ((rs2 (force-hwreg! as rs2/imm $r.argreg2)))
          (cond ((or (= rs1 rs2 rd)
                     (and (= rs2 rd)
                          (= generic $m.subtract)))
                 (op          as rs1 rs2 $r.tmp0)
                 (sparc.bvc.a as L1)
                 (sparc.move  as $r.tmp0 rd))
                ((= rs1 rd)
                 (op          as rs1 rs2 rs1)
                 (sparc.bvc.a as L1)
                 (sparc.slot  as)
                 (invop       as rs1 rs2 rs1))
                ((= rs2 rd)
                 (op          as rs1 rs2 rs2)
                 (sparc.bvc.a as L1)
                 (sparc.slot  as)
                 (invop       as rs2 rs1 rs2))
                (else
                 (op          as rs1 rs2 rd)
                 (sparc.bvc.a as L1)
                 (sparc.slot  as)
                 (if (and (not (= rd $r.result)) (not (= rd $r.argreg2)))
                     (sparc.clr as rd))))
          (cond ((and (= rs1 $r.result) (= rs2 $r.argreg2))
                 ;; Could peephole the INVOP or CLR into the slot here.
                 (millicode-call/0arg as generic))
                ((= rs1 $r.result)
                 (millicode-call/1arg as generic rs2))
                ((= rs2 $r.argreg2)
                 (millicode-call/1arg-in-result as generic rs1))
                (else
                 (sparc.move as rs2 $r.argreg2)
                 (millicode-call/1arg-in-result as generic rs1))))
        (let ((imm (thefixnum rs2/imm)))
          (op          as rs1 imm rd)
          (sparc.bvc.a as L1)
          (sparc.slot  as)
          (invop       as rd imm rd)
          (if (not (= rs1 $r.result))
              (sparc.move as rs1 $r.result))
          (millicode-call/numarg-in-reg as generic imm $r.argreg2)))
    (if (not (= rd $r.result))
        (sparc.move as $r.result rd))
    (sparc.label as L1)))


; Important to be careful not to leave garbage in rd if millicode is called.

(define (emit-negate as rs rd)
  (let ((L1 (new-label)))
    (cond ((= rs rd)
           (sparc.tsubrcc as $r.g0 rs rs)
           (sparc.bvc.a   as L1)
           (sparc.slot    as)
           (if (= rs $r.result)
               (begin 
                 (sparc.jmpli as $r.millicode $m.negate $r.o7)
                 (sparc.subr  as $r.g0 $r.result $r.result))
               (begin
                 (sparc.subr  as $r.g0 rs rs)
                 (sparc.jmpli as $r.millicode $m.negate $r.o7)
                 (sparc.move  as rs $r.result))))
          (else
           (sparc.tsubrcc as $r.g0 rs rd)
           (sparc.bvc.a   as L1)
           (sparc.slot    as)
           (cond ((= rs $r.result)
                  (sparc.jmpli as $r.millicode $m.negate $r.o7)
                  (sparc.clr   as rd))
                 ((= rd $r.result)
                  (sparc.jmpli as $r.millicode $m.negate $r.o7)
                  (sparc.move  as rs $r.result))
                 (else
                  (sparc.clr   as rd)
                  (sparc.jmpli as $r.millicode $m.negate $r.o7)
                  (sparc.move  as rs $r.result)))))
    (if (not (= rd $r.result))
        (sparc.move as $r.result rd))
    (sparc.label   as L1)))

; Character comparison.

; r is a register or a character constant.

(define (emit-char-cmp as r btrue.a excode)
  (emit-charcmp! as (lambda ()
                      (let ((l2 (new-label)))
                        (sparc.set   as $imm.false $r.result)
                        (btrue.a     as L2)
                        (sparc.set   as $imm.true $r.result)
                        (sparc.label as L2)))
                 $r.result
                 r
                 excode))
 
; op1 is a hw register
; op2 is a register or a character constant

(define (emit-char-bcmp-primop! as bfalse.a op1 op2 L0 excode)
  (emit-charcmp! as (lambda ()
                      (bfalse.a   as L0)
                      (sparc.slot as))
                 op1
                 op2
                 excode))

; We check the tags of both by xoring them and seeing if the low byte is 0.
; If so, then we can subtract one from the other (tag and all) and check the
; condition codes.  
;
; The branch-on-true instruction must have the annull bit set. (???)
;
; op1 is a hw register
; op2 is a register or a character constant.

(define (emit-charcmp! as tail op1 op2 excode)
  (let ((op2 (if (char? op2)
                 op2
                 (force-hwreg! as op2 $r.argreg2))))
    (cond ((not (unsafe-code))
           (let ((L0 (new-label))
                 (L1 (new-label))
                 (FAULT (new-label)))
             (sparc.label as L0)
             (cond ((char? op2)
                    (sparc.xori  as op1 $imm.character $r.tmp0)
                    (sparc.btsti as $r.tmp0 #xFF)
                    (sparc.srli  as op1 16 $r.tmp0)
                    (sparc.be.a  as L1)
                    (sparc.cmpi  as $r.tmp0 (char->integer op2)))
                   (else
                    (sparc.andi  as op1 #xFF $r.tmp0)
                    (sparc.andi  as op2 #xFF $r.tmp1)
                    (sparc.cmpr  as $r.tmp0 $r.tmp1)
                    (sparc.bne   as FAULT)
                    (sparc.cmpi  as $r.tmp0 $imm.character)
                    (sparc.be.a  as L1)
                    (sparc.cmpr  as op1 op2)))
             (sparc.label as FAULT)
             (if (not (eqv? op1 $r.result))
                 (sparc.move as op1 $r.result))
             (cond ((char? op2) 
                    (emit-immediate->register! as
                                               (char->immediate op2)
                                               $r.argreg2))
                   ((not (eqv? op2 $r.argreg2))
                    (sparc.move as op2 $r.argreg2)))
             (sparc.set   as (thefixnum excode) $r.tmp0)
             (millicode-call/ret as $m.exception L0)
             (sparc.label as L1)))
          ((not (char? op2))
           (sparc.cmpr as op1 op2))
          (else
           (sparc.srli as op1 16 $r.tmp0)
           (sparc.cmpi as $r.tmp0 (char->integer op2))))
    (tail)))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; SPARC code generation macros for primitives, part 3b:
;   helper procedures for data structures.


; SET-CAR!, SET-CDR!, CELL-SET!
;
; Input:  RS1: a hardware register; has pair pointer (tag check must be
;         performed by the caller).
;         RS2: any register; has value to store.
; Output: None.
;
; Having rs1 != RESULT is pretty silly with the current write barrier
; but will be less silly with the new barrier.

(define (emit-setcar/setcdr! as rs1 rs2 offs)
  (cond ((and (write-barrier) (hardware-mapped? rs2))
	 (sparc.sti as rs2 (- offs $tag.pair-tag) rs1)
         (if (not (= rs1 $r.result))
             (sparc.move as rs1 $r.result))
         (millicode-call/1arg as $m.addtrans rs2))
        ((write-barrier)
         (emit-move2hwreg! as rs2 $r.argreg2)
         (sparc.sti as $r.argreg2 (- offs $tag.pair-tag) rs1)
         (millicode-call/1arg-in-result as $m.addtrans rs1))
        ((hardware-mapped? rs2)
         (sparc.sti as rs2 (- offs $tag.pair-tag) rs1))
        (else
         (emit-move2hwreg! as rs2 $r.argreg2)
         (sparc.sti as $r.argreg2 (- offs $tag.pair-tag) rs1))))




; Representation predicate.
;
; RESULT has an object.  If the tag of RESULT is 'tag1' and the 
; header byte of the object is 'tag2' then set RESULT to #t, else
; set it to #f.

(define (emit-double-tagcheck->bool! as tag1 tag2)
  (let ((L1 (new-label)))
    (sparc.andi  as $r.result $tag.tagmask $r.tmp0)
    (sparc.cmpi  as $r.tmp0 tag1)
    (sparc.bne.a as L1)
    (sparc.set   as $imm.false $r.result)
    (sparc.ldbi  as $r.result (+ (- tag1) 3) $r.tmp0)
    (sparc.set   as $imm.true $r.result)
    (sparc.cmpi  as $r.tmp0 tag2)
    (sparc.bne.a as L1)
    (sparc.set   as $imm.false $r.result)
    (sparc.label as L1)))


; Check structure tag.
;
; RS1 has an object.  If the tag of RS1 is not 'tag1', or if the tag is 
; 'tag1' but the header byte of the object header is not 'tag2', then an
; exception with code 'excode' is signalled.  The exception call is set
; up to return to the first instruction of the emitted code.
;
; If RS1 is not RESULT then it is moved to RESULT before the exception 
; is signalled.
;
; If RS2/IMM is not #f, then it is a register or immediate that is moved
; to ARGREG2 before the exception is signalled; it is an immediate iff 
; imm? = #t.  
;
; RS1 must be a hardware register.
; RS2/IMM is a general register, ARGREG2, an immediate, or #f.
; RS3 is a general register, ARGREG3, or #f.
;
; The procedure returns the label of the fault address.  If the execution
; falls off the end of the emitted instruction sequence, then the following
; are true:
;  - the tag of the object in RS1 was 'tag1' and its header byte was 'tag2'
;  - the object header word is in TMP0.

(define (double-tagcheck-assert as tag1 tag2 rs1 rs2/imm rs3 excode imm?)
  (let ((L0    (new-label))
        (L1    (new-label))
        (FAULT (new-label)))
    (sparc.label as L0)
    (sparc.andi  as rs1 $tag.tagmask $r.tmp0)
    (sparc.cmpi  as $r.tmp0 tag1)
    (sparc.be.a  as L1)
    (sparc.ldi   as rs1 (- tag1) $r.tmp0)
    (sparc.label as FAULT)
    (if (not (= rs1 $r.result))
        (sparc.move as rs1 $r.result))
    (if rs2/imm 
        (cond (imm?
               (sparc.set as (thefixnum rs2/imm) $r.argreg2))
              ((= rs2/imm $r.argreg2))
              (else
               (emit-move2hwreg! as rs2/imm $r.argreg2))))
    (if (and rs3 (not (= rs3 $r.argreg3)))
        (emit-move2hwreg! as rs3 $r.argreg3))
    (sparc.set   as (thefixnum excode) $r.tmp0)
    (millicode-call/ret as $m.exception L0)
    (sparc.label as L1)
    (sparc.andi  as $r.tmp0 255 $r.tmp1)
    (sparc.cmpi  as $r.tmp1 tag2)
    (sparc.bne.a as FAULT)
    (sparc.slot  as)
    FAULT))

(define (emit-double-tagcheck-assert! as tag1 tag2 excode reg2)
  (double-tagcheck-assert as tag1 tag2 $r.result reg2 #f excode #f))

(define (emit-double-tagcheck-assert-reg/reg! as tag1 tag2 rs1 rs2 excode)
  (double-tagcheck-assert as tag1 tag2 rs1 rs2 #f excode #f))
  
(define (emit-double-tagcheck-assert-reg/imm! as tag1 tag2 rs1 imm excode)
  (double-tagcheck-assert as tag1 tag2 rs1 imm #f excode #t))
  



; Get the length of a vector or bytevector structure, with tag checking
; included.
;
; Input: RS and RD are both hardware registers.

(define (emit-get-length! as tag1 tag2 excode rs rd)
  (if (not (unsafe-code))
      (if tag2
          (emit-double-tagcheck-assert-reg/reg! as tag1 tag2 rs rd excode)
          (emit-single-tagcheck-assert-reg! as tag1 rs rd excode)))
  (emit-get-length-trusted! as tag1 rs rd))

; Get the length of a vector or bytevector structure, without tag checking.
;
; Input: RS and RD are both hardware registers.

(define (emit-get-length-trusted! as tag1 rs rd)
  (sparc.ldi  as rs (- tag1) $r.tmp0)
  (sparc.srli as $r.tmp0 8 rd)
  (if (= tag1 $tag.bytevector-tag)
      (sparc.slli as rd 2 rd)))


; Allocate a bytevector, leave untagged pointer in RESULT.

(define (emit-allocate-bytevector as hdr preserved-result)

  ; Preserve the length field, then calculate the number of words
  ; to allocate.  The value `28' is an adjustment of 3 (for rounding 
  ; up) plus another 4 bytes for the header, all represented as a fixnum.

  (if (not preserved-result)
      (sparc.move as $r.result $r.argreg2))
  (sparc.addi as $r.result 28 $r.result)
  (sparc.andi as $r.result (asm:signed #xFFFFFFF0) $r.result)

  ; Allocate space

  (sparc.jmpli as $r.millicode $m.alloc-bv $r.o7)
  (sparc.srai  as $r.result 2 $r.result)
  
  ; Setup the header.

  (if (not preserved-result)
      (sparc.slli as $r.argreg2 6 $r.tmp0)
      (sparc.slli as preserved-result 6 $r.tmp0))
  (sparc.addi as $r.tmp0 hdr $r.tmp0)
  (sparc.sti  as $r.tmp0 0 $r.result))


; Given a nativeint count, a pointer to the first element of a 
; bytevector-like structure, and a byte value, fill the bytevector
; with the byte value.

(define (emit-bytevector-fill as r-bytecount r-pointer r-value)
  (let ((L2 (new-label))
        (L1 (new-label)))
    (sparc.label  as L2)
    (sparc.deccc  as r-bytecount)
    (sparc.bge.a  as L2)
    (sparc.stbr   as r-value r-bytecount r-pointer)
    (sparc.label  as L1)))


; BYTEVECTOR-REF, BYTEVECTOR-LIKE-REF, STRING-REF.
;
; The pointer in RS1 is known to be bytevector-like.  RS2 is the fixnum
; index into the structure.  Get the RS2'th element and place it in RD.
;
; RS1 and RD are hardware registers.
; RS2 is a general register or ARGREG2.
; 'fault' is defined iff (unsafe-code) = #f
; header is in TMP0 iff (unsafe-code) = #f and 'header-loaded?' = #t
; if 'charize?' is #t then store result as char, otherwise as fixnum.

(define (emit-bytevector-like-ref! as rs1 rs2 rd fault charize? header-loaded?)
  (let ((rs2 (force-hwreg! as rs2 $r.argreg2)))
    (if (not (unsafe-code))
        (begin
          ; check that index is fixnum
          (sparc.btsti  as rs2 3)
          (sparc.bne    as fault)
          (if (not header-loaded?)
              (sparc.ldi as rs1 (- $tag.bytevector-tag) $r.tmp0))
          ; check length
          (sparc.srai   as rs2 2 $r.tmp1)
          (sparc.srli   as $r.tmp0 8 $r.tmp0)
          (sparc.cmpr   as $r.tmp0 $r.tmp1)
          (sparc.bleu as fault)
          ; No NOP or SLOT -- the SUBI below goes into the slot.
          )
        (begin
          (sparc.srai   as rs2 2 $r.tmp1)))
    ; Pointer is in RS1.
    ; Shifted index is in TMP1.
    (sparc.addi as rs1 (- 4 $tag.bytevector-tag) $r.tmp0)
    (sparc.ldbr as $r.tmp0 $r.tmp1 $r.tmp0)
    (if (not charize?)
        (sparc.slli as $r.tmp0 2 rd)
        (begin (sparc.slli as $r.tmp0 16 rd)
               (sparc.ori  as rd $imm.character rd)))))

; As above, but RS2 is replaced by an immediate, IMM.
;
; The immediate, represented as a fixnum, is guaranteed fit in the 
; instruction's immediate field.

(define (emit-bytevector-like-ref/imm! as rs1 imm rd fault charize?
                                       header-loaded?)
  (if (not (unsafe-code))
      (begin
        (if (not header-loaded?)
            (sparc.ldi as rs1 (- $tag.bytevector-tag) $r.tmp0))
        ; Range check.
        (sparc.srli   as $r.tmp0 8 $r.tmp0)
        (sparc.cmpi   as $r.tmp0 imm)
        (sparc.bleu.a as fault)
        (sparc.slot   as)))

  ; Pointer is in RS1.

  (let ((adjusted-offset (+ (- 4 $tag.bytevector-tag) imm)))
    (if (immediate-literal? adjusted-offset)
        (begin
          (sparc.ldbi as rs1 adjusted-offset $r.tmp0))
        (begin
          (sparc.addi as rs1 (- 4 $tag.bytevector-tag) $r.tmp0)
          (sparc.ldbr as $r.tmp0 imm $r.tmp0)))
    (if (not charize?)
        (sparc.slli as $r.tmp0 2 rd)
        (begin (sparc.slli as $r.tmp0 16 rd)
               (sparc.ori  as rd $imm.character rd)))))


; BYTEVECTOR-SET!, BYTEVECTOR-LIKE-SET!
;
; Input:  RESULT -- a pointer to a bytevector-like structure.
;         TMP0   -- the header iff (unsafe-code) = #f and header-loaded? = #t
;         IDX    -- a register that holds the second argument
;         BYTE   -- a register that holds the third argument
; Output: Nothing.
;
; 'Fault' is the address of the error code iff (unsafe-code) = #f
;
; FIXME: 
;   - Argument values passed to error handler appear to be bogus 
;     (error message is very strange).
;   - There's no check that the value actually fits in a byte.
;   - Uses ARGREG3 and and TMP2.

(define (emit-bytevector-like-set! as idx byte fault header-loaded?)
  (let ((r1 (force-hwreg! as idx $r.tmp1))
        (r2 (force-hwreg! as byte $r.argreg3)))
    (if (not (unsafe-code))
        (begin
          (if (not header-loaded?)
              (sparc.ldi     as $r.result (- $tag.bytevector-tag) $r.tmp0))
          ; Both index and byte must be fixnums.  
          ; Can't use tsubcc because the computation may really overflow.
          (sparc.orr     as r1 r2 $r.tmp2)
          (sparc.btsti   as $r.tmp2 3)
          (sparc.bnz     as fault)
          ; No NOP -- next instruction is OK in slot.
          ; Index must be in range.
          (sparc.srli    as $r.tmp0 8 $r.tmp0)    ; limit - in slot
          (sparc.srai    as r1 2 $r.tmp1)         ; index
          (sparc.cmpr    as $r.tmp1 $r.tmp0)
          (sparc.bgeu    as fault)
          ; No NOP -- next instruction is OK in slot.
          )
        (begin
          (sparc.srai   as r1 2 $r.tmp1)))
    (sparc.srli as r2 2 $r.tmp0)
    ; Using ARGREG2 as the destination is OK because the resulting pointer
    ; value always looks like a fixnum.  By doing so, we avoid needing TMP2.
    (sparc.addi as $r.result (- 4 $tag.bytevector-tag) $r.argreg2)
    (sparc.stbr as $r.tmp0 $r.tmp1 $r.argreg2)))


; STRING-SET!

(define (emit-string-set! as rs1 rs2 rs3)
  (let* ((rs2 (force-hwreg! as rs2 $r.argreg2))
         (rs3 (force-hwreg! as rs3 $r.argreg3))
         (FAULT (if (not (unsafe-code))
                    (double-tagcheck-assert 
                     as 
                     $tag.bytevector-tag
                     (+ $imm.bytevector-header $tag.string-typetag)
                     rs1 rs2 rs3
                     $ex.sset
                     #f))))
    ; Header is in TMP0; TMP1 and TMP2 are free.
    (if (not (unsafe-code))
        (begin
          ; RS2 must be a fixnum.
          (sparc.btsti  as rs2 3)
          (sparc.bne    as FAULT)
          ; Index (in RS2) must be valid; header is in tmp0.
          (sparc.srli   as $r.tmp0 8 $r.tmp0) ; limit
          (sparc.srai   as rs2 2 $r.tmp1) ; index
          (sparc.cmpr   as $r.tmp1 $r.tmp0)
          (sparc.bgeu   as FAULT)
          ; RS3 must be a character.
          (sparc.andi   as rs3 #xFF $r.tmp0)
          (sparc.cmpi   as $r.tmp0 $imm.character)
          (sparc.bne    as FAULT)
          ; No NOP -- the SRLI below goes in the slot
          )
        (begin
          (sparc.srai as rs2 2 $r.tmp1)))
    ; tmp1 has nativeint index. 
    ; rs3/argreg3 has character.
    ; tmp0 is garbage.
    (sparc.subi as $r.tmp1 (- $tag.bytevector-tag 4) $r.tmp1)
    (sparc.srli as rs3 16 $r.tmp0)
    (sparc.stbr as $r.tmp0 rs1 $r.tmp1)))


; VECTORS and PROCEDURES

; Allocate short vectors of known length; faster than the general case.
; FIXME: can also allocate in-line.

(define (make-vector-n as length r)
  (sparc.jmpli as $r.millicode $m.alloc $r.o7)
  (sparc.set  as (thefixnum (+ length 1)) $r.result)
  (emit-immediate->register! as (+ (* 256 (thefixnum length))
                                   $imm.vector-header
                                   $tag.vector-typetag)
                             $r.tmp0)
  (sparc.sti  as $r.tmp0 0 $r.result)
  (let ((dest (force-hwreg! as r $r.argreg2)))
    (do ((i 0 (+ i 1)))
        ((= i length))
      (sparc.sti as dest (* (+ i 1) 4) $r.result)))
  (sparc.addi as $r.result $tag.vector-tag $r.result))


; emit-make-vector-like! assumes argreg3 is not destroyed by alloci.
; FIXME: bug: $ex.mkvl is not right if the operation is make-procedure
; or make-vector.

(define (emit-make-vector-like! as r hdr ptrtag)
  (let ((FAULT (emit-assert-positive-fixnum! as $r.result $ex.mkvl)))
    (sparc.move  as $r.result $r.argreg3)
    (sparc.addi  as $r.result 4 $r.result)
    (sparc.jmpli as $r.millicode $m.alloci $r.o7)
    (if (null? r)
        (sparc.set as $imm.null $r.argreg2)
        (emit-move2hwreg! as r $r.argreg2))
    (sparc.slli  as $r.argreg3 8 $r.tmp0)
    (sparc.addi  as $r.tmp0 hdr $r.tmp0)
    (sparc.sti   as $r.tmp0 0 $r.result)
    (sparc.addi  as $r.result ptrtag $r.result)))


; VECTOR-REF, VECTOR-LIKE-REF, PROCEDURE-REF
;
; FAULT is valid iff (unsafe-code) = #f
; Header is in TMP0 iff (unsafe-code) = #f and header-loaded? = #t.

(define (emit-vector-like-ref! as rs1 rs2 rd FAULT tag header-loaded?)
  (let ((index (force-hwreg! as rs2 $r.argreg2)))
    (if (not (unsafe-code))
        (begin
         (if (not header-loaded?)
             (sparc.ldi   as rs1 (- tag) $r.tmp0))
         ; Index must be fixnum.
         (sparc.btsti as index 3)
         (sparc.bne   as FAULT)
         ; Index must be within bounds.
         (sparc.srai  as $r.tmp0 8 $r.tmp0)
         (sparc.cmpr  as $r.tmp0 index)
         (sparc.bleu  as FAULT)
         ; No NOP; the following instruction is valid in the slot.
         ))
    (emit-vector-like-ref-trusted! as rs1 index rd tag)))

(define (emit-vector-like-ref-trusted! as rs1 rs2 rd tag)
  (let ((index (force-hwreg! as rs2 $r.argreg2)))
    (sparc.addi as rs1 (- 4 tag) $r.tmp0)
    (sparc.ldr  as $r.tmp0 index rd)))


; VECTOR-REF/IMM, VECTOR-LIKE-REF/IMM, PROCEDURE-REF/IMM
;
; 'rs1' is a hardware register containing a vectorish pointer (to a
;       vector-like or procedure).
; 'imm' is a fixnum s.t. (immediate-literal? imm) => #t.
; 'rd' is a hardware register.
; 'FAULT' is the label of the error code iff (unsafe-code) => #f
; 'tag' is the tag of the pointer in rs1.
; 'header-loaded?' is #t iff the structure header word is in $r.tmp0.

(define (emit-vector-like-ref/imm! as rs1 imm rd FAULT tag header-loaded?)
  (if (not (unsafe-code))
      (begin
        (if (not header-loaded?) (sparc.ldi as rs1 (- tag) $r.tmp0))
        ; Check bounds.
        (sparc.srai  as $r.tmp0 10 $r.tmp0)
        (sparc.cmpi  as $r.tmp0 imm)
        (sparc.bleu  as FAULT)
        (sparc.nop   as)))
  (emit-vector-like-ref/imm-trusted! as rs1 imm rd tag))

; 'rs1' is a hardware register containing a vectorish pointer (to a
;       vector-like or procedure).
; 'imm' is a fixnum s.t. (immediate-literal? imm) => #t.
; 'rd' is a hardware register.
; 'tag' is the tag of the pointer in rs1.

(define (emit-vector-like-ref/imm-trusted! as rs1 imm rd tag)
  (let* ((offset (* imm 4))                       ; words->bytes
         (adjusted-offset (+ (- 4 tag) offset)))
    (if (immediate-literal? adjusted-offset)
        (begin
          (sparc.ldi as rs1 adjusted-offset rd))
        (begin
          (sparc.addi as rs1 (- 4 tag) $r.tmp0)
          (sparc.ldi  as $r.tmp0 offset rd)))))



; VECTOR-SET!, VECTOR-LIKE-SET!, PROCEDURE-SET!
;
; It is assumed that the pointer in RESULT is valid. We must check the index
; in register x for validity and then perform the side effect (by calling
; millicode). The tag is the pointer tag to be adjusted for.
;
; The use of vector-set is ok even if it is a procedure.

; fault is valid iff (unsafe-code) = #f
; header is in tmp0 iff (unsafe-code) = #f and header-loaded? = #t

(define (emit-vector-like-set! as rs1 rs2 rs3 fault tag header-loaded?)
  (let ((rs2 (force-hwreg! as rs2 $r.tmp1))
        (rs3 (force-hwreg! as rs3 $r.argreg2)))
    (if (not (unsafe-code))
        (begin 
         (if (not header-loaded?)
             (sparc.ldi as $r.result (- tag) $r.tmp0))
         (sparc.btsti as rs2 3)
         (sparc.bne   as fault)
         (sparc.srai  as $r.tmp0 8 $r.tmp0)
         (sparc.cmpr  as $r.tmp0 rs2)
         (sparc.bleu  as fault)))
    (emit-vector-like-set-trusted! as rs1 rs2 rs3 tag)))

; rs1 must be a hardware register.
; tag is the pointer tag to be adjusted for.

(define (emit-vector-like-set-trusted! as rs1 rs2 rs3 tag)
  (let ((rs2 (force-hwreg! as rs2 $r.tmp1))
        (rs3 (force-hwreg! as rs3 $r.argreg2)))
    ;; The ADDR can go in the delay slot of a preceding BLEU.
    (sparc.addr as rs1 rs2 $r.tmp0)
    (cond ((not (write-barrier))
           (sparc.sti  as rs3 (- 4 tag) $r.tmp0))
          ((= rs1 $r.result)
           (cond ((= rs3 $r.argreg2)
                  (sparc.jmpli as $r.millicode $m.addtrans $r.o7)
                  (sparc.sti  as rs3 (- 4 tag) $r.tmp0))
                 (else
                  (sparc.sti  as rs3 (- 4 tag) $r.tmp0)
                  (millicode-call/1arg as $m.addtrans rs3))))
          (else
           (cond ((= rs3 $r.argreg2)
                  (sparc.sti  as rs3 (- 4 tag) $r.tmp0)
                  (millicode-call/1arg-in-result as $m.addtrans rs1))
                 (else
                  (sparc.sti  as rs3 (- 4 tag) $r.tmp0)
                  (sparc.move as rs1 $r.result)
                  (millicode-call/1arg as $m.addtrans rs3)))))))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; 9 May 1999 / wdc
;
; SPARC code generation macros for primitives, part 3:
;   fixnum-specific operations.
;
; Constraints for all the primops.
;
; RS1 is a general hardware register or RESULT.
; RS2 is a general register or ARGREG2.
; IMM is an exact integer in the range -1024 .. 1023.
; RD is a general hardware register or RESULT.

; FIXME
;   Missing fxquotient, fxremainder
;   When new pass1 in place:
;     Must add code to pass1 to allow n-ary calls to be rewritten as binary
;     Must add compiler macro for fxabs.


; most-negative-fixnum, most-positive-fixnum.

(define-primop 'most-negative-fixnum
  (lambda (as)
    (emit-immediate->register! as (asm:signed #x80000000) $r.result)))

(define-primop 'most-positive-fixnum
  (lambda (as)
    (emit-immediate->register! as (asm:signed #x7FFFFFFC) $r.result)))


; fx+, fx- w/o immediates

(define-primop 'fx+
  (lambda (as rs2)
    (emit-fixnum-arithmetic as sparc.taddrcc sparc.addr $r.result rs2 $r.result
			    $ex.fx+)))

(define-primop 'internal:fx+
  (lambda (as rs1 rs2 rd)
    (emit-fixnum-arithmetic as sparc.taddrcc sparc.addr rs1 rs2 rd $ex.fx+)))

(define-primop 'fx-
  (lambda (as rs2)
    (emit-fixnum-arithmetic as sparc.tsubrcc sparc.subr $r.result rs2 $r.result
			    $ex.fx-)))

(define-primop 'internal:fx-
  (lambda (as rs1 rs2 rd)
    (emit-fixnum-arithmetic as sparc.tsubrcc sparc.subr rs1 rs2 rd $ex.fx-)))

(define-primop 'fx--
  (lambda (as)
    (emit-fixnum-arithmetic as sparc.tsubrcc sparc.subr
			    $r.g0 $r.result $r.result $ex.fx--)))

(define-primop 'internal:fx--
  (lambda (as rs rd)
    (emit-fixnum-arithmetic as sparc.tsubrcc sparc.subr $r.g0 rs rd $ex.fx--)))

(define (emit-fixnum-arithmetic as op-check op-nocheck rs1 rs2 rd exn)
  (if (unsafe-code)
      (let ((rs2 (force-hwreg! as rs2 $r.argreg2)))
	(op-nocheck as rs1 rs2 rd))
      (let ((rs2 (force-hwreg! as rs2 $r.argreg2))
	    (L0  (new-label))
	    (L1  (new-label)))
	(sparc.label  as L0)
	(op-check     as rs1 rs2 $r.tmp0)
	(sparc.bvc.a  as L1)
	(sparc.move   as $r.tmp0 rd)
        (if (not (= exn $ex.fx--))
            (begin
              (if (not (= rs1 $r.result)) (sparc.move as rs1 $r.result))
              (if (not (= rs2 $r.argreg2)) (sparc.move as rs2 $r.argreg2)))
            (begin
              (if (not (= rs2 $r.result)) (sparc.move as rs2 $r.result))))
	(sparc.set    as (thefixnum exn) $r.tmp0)
	(millicode-call/ret as $m.exception L0)
	(sparc.label  as L1))))

; fx* w/o immediate

(define-primop 'fx*
  (lambda (as rs2)
    (emit-multiply-code as rs2 #t)))

; fx+, fx- w/immediates

(define-primop 'internal:fx+/imm
  (lambda (as rs imm rd)
    (emit-fixnum-arithmetic/imm as sparc.taddicc sparc.addi
				rs imm rd $ex.fx+)))

(define-primop 'internal:fx-/imm
  (lambda (as rs imm rd)
    (emit-fixnum-arithmetic/imm as sparc.tsubicc sparc.subi
				rs imm rd $ex.fx-)))

(define (emit-fixnum-arithmetic/imm as op-check op-nocheck rs imm rd exn)
  (if (unsafe-code)
      (op-nocheck as rs (thefixnum imm) rd)
      (let ((L0  (new-label))
	    (L1  (new-label)))
	(sparc.label  as L0)
	(op-check     as rs (thefixnum imm) $r.tmp0)
	(sparc.bvc.a  as L1)
	(sparc.move   as $r.tmp0 rd)
	(if (not (= rs $r.result)) (sparc.move as rs $r.result))
	(sparc.set    as (thefixnum imm) $r.argreg2)
	(sparc.set    as (thefixnum exn) $r.tmp0)
	(millicode-call/ret as $m.exception L0)
	(sparc.label  as L1))))


; fx=, fx<, fx<=, fx>, fx>=, fxpositive?, fxnegative?, fxzero? w/o immediates

(define-primop 'fx=
  (lambda (as rs2)
    (emit-fixnum-compare as sparc.bne.a $r.result rs2 $r.result $ex.fx= #f)))

(define-primop 'fx<
  (lambda (as rs2)
    (emit-fixnum-compare as sparc.bge.a $r.result rs2 $r.result $ex.fx< #f)))

(define-primop 'fx<=
  (lambda (as rs2)
    (emit-fixnum-compare as sparc.bg.a $r.result rs2 $r.result $ex.fx<= #f)))

(define-primop 'fx>
  (lambda (as rs2)
    (emit-fixnum-compare as sparc.ble.a $r.result rs2 $r.result $ex.fx> #f)))

(define-primop 'fx>=
  (lambda (as rs2)
    (emit-fixnum-compare as sparc.bl.a $r.result rs2 $r.result $ex.fx>= #f)))

(define-primop 'internal:fx=
  (lambda (as rs1 rs2 rd)
    (emit-fixnum-compare as sparc.bne.a rs1 rs2 rd $ex.fx= #f)))

(define-primop 'internal:fx<
  (lambda (as rs1 rs2 rd)
    (emit-fixnum-compare as sparc.bge.a rs1 rs2 rd $ex.fx< #f)))

(define-primop 'internal:fx<=
  (lambda (as rs1 rs2 rd)
    (emit-fixnum-compare as sparc.bg.a rs1 rs2 rd $ex.fx<= #f)))

(define-primop 'internal:fx>
  (lambda (as rs1 rs2 rd)
    (emit-fixnum-compare as sparc.ble.a rs1 rs2 rd $ex.fx> #f)))

(define-primop 'internal:fx>=
  (lambda (as rs1 rs2 rd)
    (emit-fixnum-compare as sparc.bl.a rs1 rs2 rd $ex.fx>= #f)))


; Use '/imm' code for these because the generated code is better.

(define-primop 'fxpositive?
  (lambda (as)
    (emit-fixnum-compare/imm as sparc.ble.a $r.result 0 $r.result
			     $ex.fxpositive? #f)))

(define-primop 'fxnegative?
  (lambda (as)
    (emit-fixnum-compare/imm as sparc.bge.a $r.result 0 $r.result
				$ex.fxnegative? #f)))

(define-primop 'fxzero?
  (lambda (as)
    (emit-fixnum-compare/imm as sparc.bne.a $r.result 0 $r.result
				$ex.fxzero? #f)))

(define-primop 'internal:fxpositive?
  (lambda (as rs rd)
    (emit-fixnum-compare/imm as sparc.ble.a rs 0 rd $ex.fxpositive? #f)))

(define-primop 'internal:fxnegative?
  (lambda (as rs rd)
    (emit-fixnum-compare/imm as sparc.bge.a rs 0 rd $ex.fxnegative? #f)))

(define-primop 'internal:fxzero?
  (lambda (as rs rd)
    (emit-fixnum-compare/imm as sparc.bne.a rs 0 rd $ex.fxzero? #f)))


; fx=, fx<, fx<=, fx>, fx>=  w/immediates

(define-primop 'internal:fx=/imm
  (lambda (as rs imm rd)
    (emit-fixnum-compare/imm as sparc.bne.a rs imm rd $ex.fx= #f)))

(define-primop 'internal:fx</imm
  (lambda (as rs imm rd)
    (emit-fixnum-compare/imm as sparc.bge.a rs imm rd $ex.fx< #f)))

(define-primop 'internal:fx<=/imm
  (lambda (as rs imm rd)
    (emit-fixnum-compare/imm as sparc.bg.a rs imm rd $ex.fx<= #f)))

(define-primop 'internal:fx>/imm
  (lambda (as rs imm rd)
    (emit-fixnum-compare/imm as sparc.ble.a rs imm rd $ex.fx> #f)))

(define-primop 'internal:fx>=/imm
  (lambda (as rs imm rd)
    (emit-fixnum-compare/imm as sparc.bl.a rs imm rd $ex.fx>= #f)))

; fx=, fx<, fx<=, fx>, fx>=, fxpositive?, fxnegative?, fxzero? w/o immediates
; for control.

(define-primop 'internal:branchf-fx=
  (lambda (as rs1 rs2 L)
    (emit-fixnum-compare as sparc.bne.a rs1 rs2 #f $ex.fx= L)))

(define-primop 'internal:branchf-fx<
  (lambda (as rs1 rs2 L)
    (emit-fixnum-compare as sparc.bge.a rs1 rs2 #f $ex.fx< L)))

(define-primop 'internal:branchf-fx<=
  (lambda (as rs1 rs2 L)
    (emit-fixnum-compare as sparc.bg.a rs1 rs2 #f $ex.fx<= L)))

(define-primop 'internal:branchf-fx>
  (lambda (as rs1 rs2 L)
    (emit-fixnum-compare as sparc.ble.a rs1 rs2 #f $ex.fx> L)))

(define-primop 'internal:branchf-fx>=
  (lambda (as rs1 rs2 L)
    (emit-fixnum-compare as sparc.bl.a rs1 rs2 #f $ex.fx>= L)))

(define-primop 'internal:branchf-fxpositive?
  (lambda (as rs1 L)
    (emit-fixnum-compare/imm as sparc.ble.a rs1 0 #f $ex.fxpositive? L)))

(define-primop 'internal:branchf-fxnegative?
  (lambda (as rs1 L)
    (emit-fixnum-compare/imm as sparc.bge.a rs1 0 #f $ex.fxnegative? L)))

(define-primop 'internal:branchf-fxzero?
  (lambda (as rs1 L)
    (emit-fixnum-compare/imm as sparc.bne.a rs1 0 #f $ex.fxzero? L)))


; fx=, fx<, fx<=, fx>, fx>=  w/immediates for control.

(define-primop 'internal:branchf-fx=/imm
  (lambda (as rs imm L)
    (emit-fixnum-compare/imm as sparc.bne.a rs imm #f $ex.fx= L)))

(define-primop 'internal:branchf-fx</imm
  (lambda (as rs imm L)
    (emit-fixnum-compare/imm as sparc.bge.a rs imm #f $ex.fx< L)))

(define-primop 'internal:branchf-fx<=/imm
  (lambda (as rs imm L)
    (emit-fixnum-compare/imm as sparc.bg.a rs imm #f $ex.fx<= L)))

(define-primop 'internal:branchf-fx>/imm
  (lambda (as rs imm L)
    (emit-fixnum-compare/imm as sparc.ble.a rs imm #f $ex.fx> L)))

(define-primop 'internal:branchf-fx>=/imm
  (lambda (as rs imm L)
    (emit-fixnum-compare/imm as sparc.bl.a rs imm #f $ex.fx>= L)))


; Trusted fixnum comparisons.

(define-primop '=:fix:fix
  (lambda (as rs2)
    (emit-fixnum-compare-trusted as sparc.bne.a $r.result rs2 $r.result #f)))

(define-primop '<:fix:fix
  (lambda (as rs2)
    (emit-fixnum-compare-trusted as sparc.bge.a $r.result rs2 $r.result #f)))

(define-primop '<=:fix:fix
  (lambda (as rs2)
    (emit-fixnum-compare-trusted as sparc.bg.a $r.result rs2 $r.result #f)))

(define-primop '>:fix:fix
  (lambda (as rs2)
    (emit-fixnum-compare-trusted as sparc.ble.a $r.result rs2 $r.result #f)))

(define-primop '>=:fix:fix
  (lambda (as rs2)
    (emit-fixnum-compare-trusted as sparc.bl.a $r.result rs2 $r.result #f)))

(define-primop 'internal:=:fix:fix
  (lambda (as rs1 rs2 rd)
    (emit-fixnum-compare-trusted as sparc.bne.a rs1 rs2 rd #f)))

(define-primop 'internal:<:fix:fix
  (lambda (as rs1 rs2 rd)
    (emit-fixnum-compare-trusted as sparc.bge.a rs1 rs2 rd #f)))

(define-primop 'internal:<=:fix:fix
  (lambda (as rs1 rs2 rd)
    (emit-fixnum-compare-trusted as sparc.bg.a rs1 rs2 rd #f)))

(define-primop 'internal:>:fix:fix
  (lambda (as rs1 rs2 rd)
    (emit-fixnum-compare-trusted as sparc.ble.a rs1 rs2 rd #f)))

(define-primop 'internal:>=:fix:fix
  (lambda (as rs1 rs2 rd)
    (emit-fixnum-compare-trusted as sparc.bl.a rs1 rs2 rd #f)))

; With immediates.

(define-primop 'internal:=:fix:fix/imm
  (lambda (as rs imm rd)
    (emit-fixnum-compare/imm-trusted as sparc.bne.a rs imm rd #f)))

(define-primop 'internal:<:fix:fix/imm
  (lambda (as rs imm rd)
    (emit-fixnum-compare/imm-trusted as sparc.bge.a rs imm rd #f)))

(define-primop 'internal:<=:fix:fix/imm
  (lambda (as rs imm rd)
    (emit-fixnum-compare/imm-trusted as sparc.bg.a rs imm rd #f)))

(define-primop 'internal:>:fix:fix/imm
  (lambda (as rs imm rd)
    (emit-fixnum-compare/imm-trusted as sparc.ble.a rs imm rd #f)))

(define-primop 'internal:>=:fix:fix/imm
  (lambda (as rs imm rd)
    (emit-fixnum-compare/imm-trusted as sparc.bl.a rs imm rd #f)))

; Without immediates, for control.

(define-primop 'internal:branchf-=:fix:fix
  (lambda (as rs1 rs2 L)
    (emit-fixnum-compare-trusted as sparc.bne.a rs1 rs2 #f L)))

(define-primop 'internal:branchf-<:fix:fix
  (lambda (as rs1 rs2 L)
    (emit-fixnum-compare-trusted as sparc.bge.a rs1 rs2 #f L)))

(define-primop 'internal:branchf-<=:fix:fix
  (lambda (as rs1 rs2 L)
    (emit-fixnum-compare-trusted as sparc.bg.a rs1 rs2 #f L)))

(define-primop 'internal:branchf->:fix:fix
  (lambda (as rs1 rs2 L)
    (emit-fixnum-compare-trusted as sparc.ble.a rs1 rs2 #f L)))

(define-primop 'internal:branchf->=:fix:fix
  (lambda (as rs1 rs2 L)
    (emit-fixnum-compare-trusted as sparc.bl.a rs1 rs2 #f L)))

; With immediates, for control.

(define-primop 'internal:branchf-=:fix:fix/imm
  (lambda (as rs imm L)
    (emit-fixnum-compare/imm-trusted as sparc.bne.a rs imm #f L)))

(define-primop 'internal:branchf-<:fix:fix/imm
  (lambda (as rs imm L)
    (emit-fixnum-compare/imm-trusted as sparc.bge.a rs imm #f L)))

(define-primop 'internal:branchf-<=:fix:fix/imm
  (lambda (as rs imm L)
    (emit-fixnum-compare/imm-trusted as sparc.bg.a rs imm #f L)))

(define-primop 'internal:branchf->:fix:fix/imm
  (lambda (as rs imm L)
    (emit-fixnum-compare/imm-trusted as sparc.ble.a rs imm #f L)))

(define-primop 'internal:branchf->=:fix:fix/imm
  (lambda (as rs imm L)
    (emit-fixnum-compare/imm-trusted as sparc.bl.a rs imm #f L)))

; Range check:  0 <= src1 < src2

(define-primop 'internal:check-range
  (lambda (as src1 src2 L1 livregs)
    (let ((src2 (force-hwreg! as src2 $r.argreg2)))
      (emit-fixnum-compare-check
       as src2 src1 sparc.bleu L1 livregs))))

; Trusted fixnum comparisons followed by a check.

(define-primop 'internal:check-=:fix:fix
  (lambda (as src1 src2 L1 liveregs)
    (emit-fixnum-compare-check
     as src1 src2 sparc.bne L1 liveregs)))

(define-primop 'internal:check-<:fix:fix
  (lambda (as src1 src2 L1 liveregs)
    (emit-fixnum-compare-check
     as src1 src2 sparc.bge L1 liveregs)))

(define-primop 'internal:check-<=:fix:fix
  (lambda (as src1 src2 L1 liveregs)
    (emit-fixnum-compare-check
     as src1 src2 sparc.bg L1 liveregs)))

(define-primop 'internal:check->:fix:fix
  (lambda (as src1 src2 L1 liveregs)
    (emit-fixnum-compare-check
     as src1 src2 sparc.ble L1 liveregs)))

(define-primop 'internal:check->=:fix:fix
  (lambda (as src1 src2 L1 liveregs)
    (emit-fixnum-compare-check
     as src1 src2 sparc.bl L1 liveregs)))

(define-primop 'internal:check-=:fix:fix/imm
  (lambda (as src1 imm L1 liveregs)
    (emit-fixnum-compare/imm-check
     as src1 imm sparc.bne L1 liveregs)))

(define-primop 'internal:check-<:fix:fix/imm
  (lambda (as src1 imm L1 liveregs)
    (emit-fixnum-compare/imm-check
     as src1 imm sparc.bge L1 liveregs)))

(define-primop 'internal:check-<=:fix:fix/imm
  (lambda (as src1 imm L1 liveregs)
    (emit-fixnum-compare/imm-check
     as src1 imm sparc.bg L1 liveregs)))

(define-primop 'internal:check->:fix:fix/imm
  (lambda (as src1 imm L1 liveregs)
    (emit-fixnum-compare/imm-check
     as src1 imm sparc.ble L1 liveregs)))

(define-primop 'internal:check->=:fix:fix/imm
  (lambda (as src1 imm L1 liveregs)
    (emit-fixnum-compare/imm-check
     as src1 imm sparc.bl L1 liveregs)))

; Below, 'target' is a label or #f.  If #f, RD must be a general hardware
; register or RESULT, and a boolean result is generated in RD.

(define (emit-fixnum-compare as branchf.a rs1 rs2 rd exn target)
  (if (unsafe-code)
      (emit-fixnum-compare-trusted as branchf.a rs1 rs2 rd target)
      (let ((rs2 (force-hwreg! as rs2 $r.argreg2))
            (L0 (new-label))
            (L1 (new-label)))
        (sparc.label as L0)
        (sparc.orr   as rs1 rs2 $r.tmp0)
        (sparc.btsti as $r.tmp0 3)
        (sparc.be.a  as L1)
        (sparc.cmpr  as rs1 rs2)
        (if (not (= rs1 $r.result)) (sparc.move as rs1 $r.result))
        (if (not (= rs2 $r.argreg2)) (sparc.move as rs2 $r.argreg2))
        (sparc.set   as (thefixnum exn) $r.tmp0)
        (millicode-call/ret as $m.exception L0)
        (sparc.label as L1)
        (emit-evaluate-cc! as branchf.a rd target))))

; Below, 'target' is a label or #f.  If #f, RD must be a general hardware
; register or RESULT, and a boolean result is generated in RD.

(define (emit-fixnum-compare-trusted as branchf.a rs1 rs2 rd target)
  (let ((rs2 (force-hwreg! as rs2 $r.argreg2)))
    (sparc.cmpr  as rs1 rs2)
    (emit-evaluate-cc! as branchf.a rd target)))

; rs must be a hardware register.

(define (emit-fixnum-compare/imm as branchf.a rs imm rd exn target)
  (if (unsafe-code)
      (emit-fixnum-compare/imm-trusted as branchf.a rs imm rd target)
      (let ((L0 (new-label))
            (L1 (new-label)))
        (sparc.label as L0)
        (sparc.btsti as rs 3)
        (sparc.be.a  as L1)
        (sparc.cmpi  as rs (thefixnum imm))
        (if (not (= rs $r.result)) (sparc.move as rs $r.result))
        (sparc.set   as (thefixnum imm) $r.argreg2)
        (sparc.set   as (thefixnum exn) $r.tmp0)
        (millicode-call/ret as $m.exception L0)
        (sparc.label as L1)))
  (emit-evaluate-cc! as branchf.a rd target))

; rs must be a hardware register.

(define (emit-fixnum-compare/imm-trusted as branchf.a rs imm rd target)
  (sparc.cmpi  as rs (thefixnum imm))
  (emit-evaluate-cc! as branchf.a rd target))

; Range checks.

(define (emit-fixnum-compare-check
         as src1 src2 branch-bad L1 liveregs)
  (internal-primop-invariant1 'emit-fixnum-compare-check src1)
  (let ((src2 (force-hwreg! as src2 $r.argreg2)))
    (sparc.cmpr    as src1 src2)
    (emit-checkcc! as branch-bad L1 liveregs)))

(define (emit-fixnum-compare/imm-check
         as src1 imm branch-bad L1 liveregs)
  (internal-primop-invariant1 'emit-fixnum-compare/imm-check src1)
  (sparc.cmpi    as src1 imm)
  (emit-checkcc! as branch-bad L1 liveregs))

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; SPARC machine assembler flags.
;
; 12 April 1999


; INTERNAL!
(define short-effective-addresses
  (make-twobit-flag 'short-effective-addresses))

(define runtime-safety-checking
  (make-twobit-flag 'runtime-safety-checking))

(define catch-undefined-globals
  (make-twobit-flag 'catch-undefined-globals))

(define inline-allocation
  (make-twobit-flag 'inline-allocation))
  
;(define inline-assignment
;  (make-twobit-flag 'inline-assignment))

(define write-barrier
  (make-twobit-flag 'write-barrier))  

(define peephole-optimization
  (make-twobit-flag 'peephole-optimization))

(define single-stepping
  (make-twobit-flag 'single-stepping))

(define fill-delay-slots
  (make-twobit-flag 'fill-delay-slots))

; For backward compatibility.

;(define unsafe-code
;  (make-twobit-flag 'unsafe-code))

(define (unsafe-code . args)
  (if (null? args)
      (not (runtime-safety-checking))
      (runtime-safety-checking (not (car args)))))

(define (display-assembler-flags which)
  (case which
    ((debugging)
     (display-twobit-flag single-stepping))
    ((safety)
     (display-twobit-flag write-barrier)
     ;(display-twobit-flag unsafe-code)
     (display-twobit-flag runtime-safety-checking)
     (if (runtime-safety-checking)
         (begin (display "  ")
                (display-twobit-flag catch-undefined-globals))))
    ((optimization)
     (display-twobit-flag peephole-optimization)
     (display-twobit-flag inline-allocation)
     ;  (display-twobit-flag inline-assignment)
     (display-twobit-flag fill-delay-slots))
    (else #t)))

(define (set-assembler-flags! mode)
  (case mode
    ((no-optimization)
     (set-assembler-flags! 'standard)
     (peephole-optimization #f)
     (fill-delay-slots #f))
    ((standard)
     (short-effective-addresses #t)
     (catch-undefined-globals #t)
     (inline-allocation #f)
     ; (inline-assignment #f)
     (peephole-optimization #t)
     (runtime-safety-checking #t)
     (write-barrier #t)
     (single-stepping #f)
     (fill-delay-slots #t))
    ((fast-safe default)
     (set-assembler-flags! 'standard)
     ; (inline-assignment #t)
     (inline-allocation #t))
    ((fast-unsafe)
     (set-assembler-flags! 'fast-safe)
     (catch-undefined-globals #f)
     (runtime-safety-checking #f))
    (else
     (error "set-assembler-flags!: unknown mode " mode))))

(set-assembler-flags! 'default)

; eof
; Copyright 1998 Lars T Hansen.
;
; $Id: twobit.sch,v 1.3 1999/08/23 19:14:26 lth Exp $
;
; SPARC disassembler.
;
; (disassemble-instruction instruction address)
;     => decoded-instruction
;
; (disassemble-codevector codevector)
;     => decoded-instruction-list
;
; (print-instructions decoded-instruction-list)
;     => unspecified
;     Also takes an optional port and optionally the symbol "native-names".
;
; (format-instruction decoded-instruction address larceny-names?) 
;     => string
; 
; A `decoded-instruction' is a list where the car is a mnemonic and
; the operands are appropriate for that mnemonic.
;
; A `mnemonic' is an exact nonnegative integer.  It encodes the name of
; the instruction as well as its attributes (operand pattern and instruction
; type).  See below for specific operations on mnemonics.

(define (disassemble-codevector cv)
  (define (loop addr ilist)
    (if (< addr 0)
	ilist
	(loop (- addr 4)
	      (cons (disassemble-instruction (bytevector-word-ref cv addr)
					     addr)
		    ilist))))
  (loop (- (bytevector-length cv) 4) '()))

(define disassemble-instruction)	    ; Defined below.

; Mnemonics

(define *asm-annul* 1)
(define *asm-immed* 2)
(define *asm-store* 4)
(define *asm-load* 8)
(define *asm-branch* 16)
(define *asm-freg* 32)
(define *asm-fpop* 64)
(define *asm-no-op2* 128)
(define *asm-no-op3* 256)

(define *asm-bits*
  `((a . ,*asm-annul*) (i . ,*asm-immed*) (s . ,*asm-store*)
    (l . ,*asm-load*) (b . ,*asm-branch*) (f . ,*asm-freg*)
    (fpop . ,*asm-fpop*) (no-op2 . ,*asm-no-op2*) (no-op3 . ,*asm-no-op3*)))

(define *asm-mnemonic-table* '())

(define mnemonic 
  (let ((n 0))
    (lambda (name . rest)
      (let* ((probe (assq name *asm-mnemonic-table*))
	     (code  (* 1024 
		       (if probe
			   (cdr probe)
			   (let ((code n))
			     (set! n (+ n 1))
			     (set! *asm-mnemonic-table*
				   (cons (cons name code)
					 *asm-mnemonic-table*))
			     code)))))
	(for-each (lambda (x)
		    (set! code (+ code (cdr (assq x *asm-bits*)))))
		  rest)
	code))))

(define (mnemonic:name mnemonic)
  (let ((mnemonic (quotient mnemonic 1024)))
    (let loop ((t *asm-mnemonic-table*))
      (cond ((null? t) #f)
	    ((= (cdar t) mnemonic) (caar t))
	    (else (loop (cdr t)))))))

(define (mnemonic=? m name)
  (= (quotient m 1024) (quotient (mnemonic name) 1024)))

(define (mnemonic:test bit)
  (lambda (mnemonic)
    (not (zero? (logand mnemonic bit)))))

(define (mnemonic:test-not bit)
  (lambda (mnemonic)
    (zero? (logand mnemonic bit))))

(define mnemonic:annul? (mnemonic:test *asm-annul*))
(define mnemonic:immediate? (mnemonic:test *asm-immed*))
(define mnemonic:store? (mnemonic:test *asm-store*))
(define mnemonic:load? (mnemonic:test *asm-load*))
(define mnemonic:branch? (mnemonic:test *asm-branch*))
(define mnemonic:freg? (mnemonic:test *asm-freg*))
(define mnemonic:fpop? (mnemonic:test *asm-fpop*))
(define mnemonic:op2? (mnemonic:test-not *asm-no-op2*))
(define mnemonic:op3? (mnemonic:test-not *asm-no-op3*))

; Instruction disassembler.

(let ()

  ;; Useful constants

  (define two^3 (expt 2 3))
  (define two^5 (expt 2 5))
  (define two^6 (expt 2 6))
  (define two^8 (expt 2 8))
  (define two^9 (expt 2 9))
  (define two^12 (expt 2 12))
  (define two^13 (expt 2 13))
  (define two^14 (expt 2 14))
  (define two^16 (expt 2 16))
  (define two^19 (expt 2 19))
  (define two^21 (expt 2 21))
  (define two^22 (expt 2 22))
  (define two^24 (expt 2 24))
  (define two^25 (expt 2 25))
  (define two^29 (expt 2 29))
  (define two^30 (expt 2 30))
  (define two^32 (expt 2 32))

  ;; Class 0 has branches and weirdness, like sethi and nop.
  ;; We dispatch first on the op2 field and then on the op3 field.

  (define class00
    (let ((b-table
	   (vector (mnemonic 'bn 'b)
		   (mnemonic 'be 'b)
		   (mnemonic 'ble 'b)
		   (mnemonic 'bl 'b)
		   (mnemonic 'bleu 'b)
		   (mnemonic 'bcs 'b)
		   (mnemonic 'bneg 'b)
		   (mnemonic 'bvs 'b)
		   (mnemonic 'ba 'b)
		   (mnemonic 'bne 'b)
		   (mnemonic 'bg 'b)
		   (mnemonic 'bge 'b)
		   (mnemonic 'bgu 'b)
		   (mnemonic 'bcc 'b)
		   (mnemonic 'bpos 'b)
		   (mnemonic 'bvc 'b)
		   (mnemonic 'bn 'a 'b)
		   (mnemonic 'be 'a 'b)
		   (mnemonic 'ble 'a 'b)
		   (mnemonic 'bl 'a 'b)
		   (mnemonic 'bleu 'a 'b)
		   (mnemonic 'bcs 'a 'b)
		   (mnemonic 'bneg 'a 'b)
		   (mnemonic 'bvs 'a 'b)
		   (mnemonic 'ba 'a 'b)
		   (mnemonic 'bne 'a 'b)
		   (mnemonic 'bg 'a 'b)
		   (mnemonic 'bge 'a 'b)
		   (mnemonic 'bgu 'a 'b)
		   (mnemonic 'bcc 'a 'b)
		   (mnemonic 'bpos 'a 'b)
		   (mnemonic 'bvc 'a 'b)))
	  (fb-table
	   (vector (mnemonic 'fbn 'b)
		   (mnemonic 'fbne 'b)
		   (mnemonic 'fblg 'b)
		   (mnemonic 'fbul 'b)
		   (mnemonic 'fbl 'b)
		   (mnemonic 'fbug 'b)
		   (mnemonic 'fbg 'b)
		   (mnemonic 'fbu 'b)
		   (mnemonic 'fba 'b)
		   (mnemonic 'fbe 'b)
		   (mnemonic 'fbue 'b)
		   (mnemonic 'fbge 'b)
		   (mnemonic 'fbuge 'b)
		   (mnemonic 'fble 'b)
		   (mnemonic 'fbule 'b)
		   (mnemonic 'fbo 'b)
		   (mnemonic 'fbn 'a 'b)
		   (mnemonic 'fbne 'a 'b)
		   (mnemonic 'fblg 'a 'b)
		   (mnemonic 'fbul 'a 'b)
		   (mnemonic 'fbl 'a 'b)
		   (mnemonic 'fbug 'a 'b)
		   (mnemonic 'fbg 'a 'b)
		   (mnemonic 'fbu 'a 'b)
		   (mnemonic 'fba 'a 'b)
		   (mnemonic 'fbe 'a 'b)
		   (mnemonic 'fbue 'a 'b)
		   (mnemonic 'fbge 'a 'b)
		   (mnemonic 'fbuge 'a 'b)
		   (mnemonic 'fble 'a 'b)
		   (mnemonic 'fbule 'a 'b)
		   (mnemonic 'fbo 'a 'b)))
	  (nop (mnemonic 'nop))
	  (sethi (mnemonic 'sethi)))

      (lambda (ip instr)
	(let ((op2 (op2field instr)))
	  (cond ((= op2 #b100)
		 (if (zero? (rdfield instr))
		     `(,nop)
		     `(,sethi ,(imm22field instr) ,(rdfield instr))))
		((= op2 #b010)
		 `(,(vector-ref b-table (rdfield instr))
		   ,(* 4 (imm22field instr))))
		((= op2 #b110)
		 `(,(vector-ref fb-table (rdfield instr))
		   ,(* 4 (imm22field instr))))
		(else
		 (disasm-error "Can't disassemble " (number->string instr 16)
			       " at ip=" ip
			       " with op2=" op2)))))))

  ;; Class 1 is the call instruction; there's no choice.

  (define (class01 ip instr)
    `(,(mnemonic 'call) ,(* 4 (imm30field instr))))

  ;; Class 2 is for the ALU. Dispatch on op3 field.

  (define class10
    (let ((op3-table
	   `#((,(mnemonic 'add)   ,(mnemonic 'add 'i))
	      (,(mnemonic 'and)   ,(mnemonic 'and 'i))
	      (,(mnemonic 'or)    ,(mnemonic 'or 'i))
	      (,(mnemonic 'xor)   ,(mnemonic 'xor 'i))
	      (,(mnemonic 'sub)   ,(mnemonic 'sub 'i))
	      (,(mnemonic 'andn)  ,(mnemonic 'andn 'i))
	      (,(mnemonic 'orn)   ,(mnemonic 'orn 'i))
	      (,(mnemonic 'xnor)  ,(mnemonic 'xnor 'i))
	      (0          0)
	      (0          0)
	      (0          0)                              ; 10
	      (,(mnemonic 'smul)  ,(mnemonic 'smul 'i))
	      (0          0)
	      (0          0)
	      (0          0)
	      (,(mnemonic 'sdiv)  ,(mnemonic 'sdiv 'i))
	      (,(mnemonic 'addcc) ,(mnemonic 'addcc 'i))
	      (,(mnemonic 'andcc) ,(mnemonic 'andcc 'i))
	      (,(mnemonic 'orcc)  ,(mnemonic 'orcc 'i))
	      (,(mnemonic 'xorcc) ,(mnemonic 'xorcc 'i))
	      (,(mnemonic 'subcc) ,(mnemonic 'subcc 'i))  ; 20
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (,(mnemonic 'smulcc) ,(mnemonic 'smulcc 'i))
	      (0          0)
	      (0          0)
	      (0          0)                               ; 30
	      (,(mnemonic 'sdivcc) ,(mnemonic 'sdivcc 'i))
	      (,(mnemonic 'taddcc) ,(mnemonic 'taddcc 'i))
	      (,(mnemonic 'tsubcc) ,(mnemonic 'tsubcc 'i))
	      (0          0)
	      (0          0)
	      (0          0)
	      (,(mnemonic 'sll)   ,(mnemonic 'sll 'i))
	      (,(mnemonic 'srl)   ,(mnemonic 'srl 'i))
	      (,(mnemonic 'sra)   ,(mnemonic 'sra 'i))
	      (,(mnemonic 'rd)   0)                       ; 40
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (,(mnemonic 'wr)  ,(mnemonic 'wr 'i))
	      (0          0)
	      (0          0)                               ; 50
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (,(mnemonic 'jmpl)  ,(mnemonic 'jmpl 'i))
	      (0          0)
	      (0          0)
	      (0          0)
	      (,(mnemonic 'save)  ,(mnemonic 'save 'i))   ; 60
	      (,(mnemonic 'restore) ,(mnemonic 'restore 'i))
	      (0          0)
	      (0          0))))

      (lambda (ip instr)
	(let ((op3 (op3field instr)))
	  (if (or (= op3 #b110100) (= op3 #b110101))
	      (fpop-instruction ip instr)
	      (nice-instruction op3-table ip instr))))))


  ;; Class 3 is memory stuff.

  (define class11
    (let ((op3-table
	   `#((,(mnemonic 'ld 'l)    ,(mnemonic 'ld 'i 'l))
	      (,(mnemonic 'ldb 'l)   ,(mnemonic 'ldb 'i 'l))
	      (,(mnemonic 'ldh 'l)   ,(mnemonic 'ldh 'i 'l))
	      (,(mnemonic 'ldd 'l)   ,(mnemonic 'ldd 'i 'l))
	      (,(mnemonic 'st 's)    ,(mnemonic 'st 'i 's))
	      (,(mnemonic 'stb 's)   ,(mnemonic 'stb 'i 's))
	      (,(mnemonic 'sth 's)   ,(mnemonic 'sth 'i 's))
	      (,(mnemonic 'std 's)   ,(mnemonic 'std 'i 's))
	      (0          0)
	      (0          0)
	      (0          0)		; 10
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)		; 20
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)		; 30
	      (0          0)
	      (,(mnemonic 'ldf 'f 'l) ,(mnemonic 'ldf 'i 'f 'l))
	      (0          0)
	      (0          0)
	      (,(mnemonic 'lddf 'f 'l) ,(mnemonic 'lddf 'i 'f 'l))
	      (,(mnemonic 'stf 'f 's)  ,(mnemonic 'stf 'i 'f 's))
	      (0          0)
	      (0          0)
	      (,(mnemonic 'stdf 'f 's) ,(mnemonic 'stdf 'i 'f 's))
	      (0          0)		; 40
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)		; 50
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)
	      (0          0)		; 60
	      (0          0)
	      (0          0)
	      (0          0))))

      (lambda (ip instr)
	(nice-instruction op3-table ip instr))))

  ;; For classes 2 and 3

  (define (nice-instruction op3-table ip instr)
    (let* ((op3  (op3field instr))
	   (imm  (ifield instr))
	   (rd   (rdfield instr))
	   (rs1  (rs1field instr))
	   (src2 (if (zero? imm)
		     (rs2field instr)
		     (imm13field instr))))
      (let ((op ((if (zero? imm) car cadr) (vector-ref op3-table op3))))
	`(,op ,rs1 ,src2 ,rd))))

  ;; Floating-point operate instructions

  (define (fpop-instruction ip instr)
    (let ((rd  (rdfield instr))
	  (rs1 (rs1field instr))
	  (rs2 (rs2field instr))
	  (fpop (fpop-field instr)))
      `(,(cdr (assv fpop fpop-names)) ,rs1 ,rs2 ,rd)))

  (define fpop-names
    `((#b000000001 . ,(mnemonic 'fmovs 'fpop 'no-op2))
      (#b000000101 . ,(mnemonic 'fnegs 'fpop 'no-op2))
      (#b000001001 . ,(mnemonic 'fabss 'fpop 'no-op2))
      (#b001000010 . ,(mnemonic 'faddd 'fpop))
      (#b001000110 . ,(mnemonic 'fsubd 'fpop))
      (#b001001010 . ,(mnemonic 'fmuld 'fpop))
      (#b001001110 . ,(mnemonic 'fdivd 'fpop))
      (#b001010010 . ,(mnemonic 'fcmpd 'fpop 'no-op3))))
      

  ;; The following procedures pick apart an instruction

  (define (op2field instr)
    (remainder (quotient instr two^22) two^3))

  (define (op3field instr)
    (remainder (quotient instr two^19) two^6))

  (define (ifield instr)
    (remainder (quotient instr two^13) 2))

  (define (rs2field instr)
    (remainder instr two^5))

  (define (rs1field instr)
    (remainder (quotient instr two^14) two^5))

  (define (rdfield instr)
    (remainder (quotient instr two^25) two^5))

  (define (imm13field instr)
    (let ((x (remainder instr two^13)))
      (if (not (zero? (quotient x two^12)))
	  (- x two^13)
	  x)))
	
  (define (imm22field instr)
    (let ((x (remainder instr two^22)))
      (if (not (zero? (quotient x two^21)))
	  (- x two^22)
	  x)))

  (define (imm30field instr)
    (let ((x (remainder instr two^30)))
      (if (not (zero? (quotient x two^29)))
	  (- x two^30)
	  x)))

  (define (fpop-field instr)
    (remainder (quotient instr two^5) two^9))

  (set! disassemble-instruction
	(let ((class-table (vector class00 class01 class10 class11)))
	  (lambda (instr addr)
	    ((vector-ref class-table (quotient instr two^30)) addr instr))))

  'disassemble-instruction)


; Instruction printer
;
; It assumes that the first instruction comes from address 0, and prints
; addresses (and relative addresses) based on that assumption.
;
; If the optional symbol native-names is supplied, then SPARC register
; names is used, and millicode calls are not annotated with millicode names.

(define (print-instructions ilist . rest)

  (define port (current-output-port))
  (define larceny-names? #t)

  (define (print-ilist ilist a)
    (if (null? ilist)
	'()
	(begin (display (format-instruction (car ilist) a larceny-names?)
			port)
	       (newline port)
	       (print-ilist (cdr ilist) (+ a 4)))))
  
  (do ((rest rest (cdr rest)))
      ((null? rest))
    (cond ((port? (car rest))
	   (set! port (car rest)))
	  ((eq? (car rest) 'native-names)
	   (set! larceny-names? #f))))
  
  (print-ilist ilist 0))

(define format-instruction)		    ; Defined below

(define *format-instructions-pretty* #t)

; Instruction formatter.

(let ()

  (define use-larceny-registers #t)

  (define sparc-register-table 
    (vector "%g0" "%g1" "%g2" "%g3" "%g4" "%g5" "%g6" "%g7"
	    "%o0" "%o1" "%o2" "%o3" "%o4" "%o5" "%o6" "%o7"
	    "%l0" "%l1" "%l2" "%l3" "%l4" "%l5" "%l6" "%l7"
	    "%i0" "%i1" "%i2" "%i3" "%i4" "%i5" "%i6"  "%i7"))

  (define larceny-register-table
    (make-vector 32 #f))

  (define (larceny-register-name reg . rest)
    (if (null? rest)
	(or (and use-larceny-registers
		 (vector-ref larceny-register-table reg))
	    (vector-ref sparc-register-table reg))
	(vector-set! larceny-register-table reg (car rest))))

  (define millicode-procs '())

  (define (float-register-name reg)
    (string-append "%f" (number->string reg)))
    
  (define op car)
  (define op1 cadr)
  (define op2 caddr)
  (define op3 cadddr)
  (define tabstring (string #\tab))

  (define (heximm n)
    (if (>= n 16)
	(string-append tabstring "! 0x" (number->string n 16))
	""))

  (define (millicode-name offset . rest)
    (if (null? rest)
	(let ((probe (assv offset millicode-procs)))
	  (if probe
	      (cdr probe)
	      "[unknown]"))
	(set! millicode-procs
	      (cons (cons offset (car rest)) millicode-procs))))

  (define (millicode-call offset)
    (string-append tabstring "! " (millicode-name offset)))

  (define (plus/minus n)
    (cond ((< n 0)
	   (string-append " - " (number->string (abs n))))
	  ((and (= n 0) *format-instructions-pretty*) "")
	  (else
	   (string-append " + " (number->string n)))))

  (define (srcreg instr extractor)
    (if (mnemonic:freg? (op instr))
	(float-register-name (extractor instr))
	(larceny-register-name (extractor instr))))
	
  (define (sethi instr)
    (string-append (number->string (* (op1 instr) 1024)) ", "
		   (larceny-register-name (op2 instr))
		   (heximm (* (op1 instr) 1024))))

  (define (rrr instr)
    (string-append (larceny-register-name (op1 instr)) ", "
		   (larceny-register-name (op2 instr)) ", "
		   (larceny-register-name (op3 instr))))

  (define (rir instr)
    (string-append (larceny-register-name (op1 instr)) ", "
		   (number->string (op2 instr)) ", "
		   (larceny-register-name (op3 instr))
		   (heximm (op2 instr))))

  (define (sir instr)
    (string-append (srcreg instr op3) ", [ "
		   (larceny-register-name (op1 instr))
		   (plus/minus (op2 instr)) " ]"))

  (define (srr instr)
    (string-append (srcreg instr op3) ", [ "
		   (larceny-register-name (op1 instr)) "+"
		   (larceny-register-name (op2 instr)) " ]"))
      
  (define (lir instr)
    (string-append "[ " (larceny-register-name (op1 instr))
		   (plus/minus (op2 instr)) " ], "
		   (srcreg instr op3)))

  (define (lrr instr)
    (string-append "[ " (larceny-register-name (op1 instr)) "+"
		   (larceny-register-name (op2 instr)) " ], "
		   (srcreg instr op3)))

  (define (bimm instr addr)
    (string-append "#" (number->string (+ (op1 instr) addr))))

  (define (jmpli instr)
    (string-append (larceny-register-name (op1 instr)) 
		   (plus/minus (op2 instr)) ", "
		   (larceny-register-name (op3 instr))
		   (if (and (= (op1 instr) $r.globals)
			    use-larceny-registers)
		       (millicode-call (op2 instr))
		       (heximm (op2 instr)))))

  (define (jmplr instr)
    (string-append (larceny-register-name (op1 instr)) "+"
		   (larceny-register-name (op2 instr)) ", "
		   (larceny-register-name (op3 instr))))

  (define (call instr addr)
    (string-append "#" (number->string (+ (op1 instr) addr))))

  (define (rd instr)
    (string-append "%y, " (srcreg instr op3)))

  (define (wr instr imm?)
    (if imm?
	(string-append (larceny-register-name (op1 instr)) ", "
		       (number->string (op2 instr)) ", %y"
		       (larceny-register-name (op3 instr)))
	(string-append (larceny-register-name (op1 instr)) ", "
		       (larceny-register-name (op2 instr)) ", %y")))

  (define (fpop instr op2-used? op3-used?)
    (string-append (float-register-name (op1 instr)) ", "
		   (cond ((and op2-used? op3-used?)
			  (string-append
			   (float-register-name (op2 instr)) ", "
			   (float-register-name (op3 instr))))
			 (op2-used?
			  (float-register-name (op2 instr)))
			 (else
			  (float-register-name (op3 instr))))))

  ;; If we want to handle instruction aliases (clr, mov, etc) then
  ;; the structure of this procedure must change, because as it is,
  ;; the printing of the name is independent of the operand values.

  (define (format-instr i a larceny-names?)
    (set! use-larceny-registers larceny-names?)
    (let ((m (car i)))
      (string-append (number->string a)
		     tabstring
		     (symbol->string (mnemonic:name m))
		     (if (mnemonic:annul? m) ",a" "")
		     tabstring
		     (cond ((mnemonic:store? m) 
			    (if (mnemonic:immediate? m) (sir i) (srr i)))
			   ((mnemonic:load? m)
			    (if (mnemonic:immediate? m) (lir i) (lrr i)))
			   ((mnemonic:fpop? m)
			    (fpop i (mnemonic:op2? m) (mnemonic:op3? m)))
			   ((mnemonic:branch? m) (bimm i a))
			   ((mnemonic=? m 'sethi) (sethi i))
			   ((mnemonic=? m 'nop) "")
			   ((mnemonic=? m 'jmpl)
			    (if (mnemonic:immediate? m) (jmpli i) (jmplr i)))
			   ((mnemonic=? m 'call) (call i a))
			   ((mnemonic=? m 'rd) (rd i))
			   ((mnemonic=? m 'wr) (wr i (mnemonic:immediate? m)))
			   ((mnemonic:immediate? m) (rir i))
			   (else (rrr i))))))

  (larceny-register-name $r.tmp0 "%tmp0")
  (larceny-register-name $r.result "%result")
  (larceny-register-name $r.argreg2 "%argreg2")
  (larceny-register-name $r.argreg3 "%argreg3")
  (larceny-register-name $r.tmp1 "%tmp1")
  (larceny-register-name $r.tmp2 "%tmp2")
  (larceny-register-name $r.reg0 "%r0")
  (larceny-register-name $r.reg1 "%r1")
  (larceny-register-name $r.reg2 "%r2")
  (larceny-register-name $r.reg3 "%r3")
  (larceny-register-name $r.reg4 "%r4")
  (larceny-register-name $r.reg5 "%r5")
  (larceny-register-name $r.reg6 "%r6")
  (larceny-register-name $r.reg7 "%r7")
  (larceny-register-name $r.e-top "%etop")
  (larceny-register-name $r.e-limit "%elim")
  (larceny-register-name $r.timer "%timer")
  (larceny-register-name $r.millicode "%millicode")
  (larceny-register-name $r.globals "%globals")
  (larceny-register-name $r.stkp "%stkp")       ; note: after elim

  (millicode-name $m.alloc "alloc")
  (millicode-name $m.alloci "alloci")
  (millicode-name $m.gc "gc")
  (millicode-name $m.addtrans "addtrans")
  (millicode-name $m.stkoflow "stkoflow")
  (millicode-name $m.stkuflow "stkuflow")
  (millicode-name $m.creg "creg")
  (millicode-name $m.creg-set! "creg-set!")
  (millicode-name $m.add "+")
  (millicode-name $m.subtract "- (binary)")
  (millicode-name $m.multiply "*")
  (millicode-name $m.quotient "quotient")
  (millicode-name $m.remainder "remainder")
  (millicode-name $m.divide "/")
  (millicode-name $m.modulo "modulo")
  (millicode-name $m.negate "- (unary)")
  (millicode-name $m.numeq "=")
  (millicode-name $m.numlt "<")
  (millicode-name $m.numle "<=")
  (millicode-name $m.numgt ">")
  (millicode-name $m.numge ">=")
  (millicode-name $m.zerop "zero?")
  (millicode-name $m.complexp "complex?")
  (millicode-name $m.realp "real?")
  (millicode-name $m.rationalp "rational?")
  (millicode-name $m.integerp "integer?")
  (millicode-name $m.exactp "exact?")
  (millicode-name $m.inexactp "inexact?")
  (millicode-name $m.exact->inexact "exact->inexact")
  (millicode-name $m.inexact->exact "inexact->exact")
  (millicode-name $m.make-rectangular "make-rectangular")
  (millicode-name $m.real-part "real-part")
  (millicode-name $m.imag-part "imag-part")
  (millicode-name $m.sqrt "sqrt")
  (millicode-name $m.round "round")
  (millicode-name $m.truncate "truncate")
  (millicode-name $m.apply "apply")
  (millicode-name $m.varargs "varargs")
  (millicode-name $m.typetag "typetag")
  (millicode-name $m.typetag-set "typetag-set")
  (millicode-name $m.break "break")
  (millicode-name $m.eqv "eqv?")
  (millicode-name $m.partial-list->vector "partial-list->vector")
  (millicode-name $m.timer-exception "timer-exception")
  (millicode-name $m.exception "exception")
  (millicode-name $m.singlestep "singlestep")
  (millicode-name $m.syscall "syscall")
  (millicode-name $m.bvlcmp "bvlcmp")
  (millicode-name $m.enable-interrupts "enable-interrupts")
  (millicode-name $m.disable-interrupts "disable-interrupts")
  (millicode-name $m.alloc-bv "alloc-bv")
  (millicode-name $m.global-ex "global-exception")
  (millicode-name $m.invoke-ex "invoke-exception")
  (millicode-name $m.global-invoke-ex "global-invoke-exception")
  (millicode-name $m.argc-ex "argc-exception")

  (set! format-instruction format-instr)
  'format-instruction)


; eof


; ----------------------------------------------------------------------

(define (twobit-benchmark type . rest)
  (let ((k (if (null? rest) 1 (car rest))))
    (run-benchmark 
     "twobit"
     k
     (lambda () 
       (case type
         ((long) 
          (compiler-switches 'fast-safe)
          (benchmark-block-mode #f)
          (compile-file "twobit-input-long.sch"))
         ((short) 
          (compiler-switches 'fast-safe)
          (benchmark-block-mode #t)
          (compile-file "twobit-input-short.sch"))
         (else
          (error "Benchmark type must be `long' or `short': " type))))
     (lambda (result)
       #t))))

; eof