1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
/* The routine quicksort was extracted from the GNU C Library qsort.c
written by Douglas C. Schmidt (schmidt@ics.uci.edu)
and adapted to guile by adding an extra pointer less
to quicksort by Roland Orre <orre@nada.kth.se>.
The reason to do this instead of using the library function qsort
was to avoid dependency of the ANSI-C extensions for local functions
and also to avoid obscure pool based solutions.
This sorting routine is not much more efficient than the stable
version but doesn't consume extra memory.
*/
#define SWAP(a, b) do { const SCM _tmp = GET(a); SET(a, GET(b)); SET(b, _tmp); } while (0)
#define MIN(A, B) ((A) <= (B) ? (A) : (B))
/* Order using quicksort. This implementation incorporates four
optimizations discussed in Sedgewick:
1. Non-recursive, using an explicit stack of pointer that store the next
array partition to sort. To save time, this maximum amount of space
required to store an array of MAX_SIZE_T is allocated on the stack.
Assuming a bit width of 32 bits for size_t, this needs only
32 * sizeof (stack_node) == 128 bytes. Pretty cheap, actually.
2. Chose the pivot element using a median-of-three decision tree. This
reduces the probability of selecting a bad pivot value and eliminates
certain extraneous comparisons.
3. Only quicksorts (UBND-LBND+1) / MAX_THRESH partitions, leaving insertion sort
to order the MAX_THRESH items within each partition. This is a big win,
since insertion sort is faster for small, mostly sorted array segments.
4. The larger of the two sub-partitions is always pushed onto the
stack first, with the algorithm then concentrating on the
smaller partition. This *guarantees* no more than log (n)
stack size is needed (actually O(1) in this case)! */
/* Discontinue quicksort algorithm when partition gets below this size.
* This particular magic number was chosen to work best on a Sun 4/260. */
#define MAX_THRESH 4
/* Inline stack abstraction: The stack size for quicksorting at most as many
* elements as can be given by a value of type size_t is, as described above,
* log (MAX_SIZE_T), which is the number of bits of size_t. More accurately,
* we would only need ceil (log (MAX_SIZE_T / MAX_THRESH)), but this is
* ignored below. */
#define STACK_SIZE (8 * sizeof (size_t)) /* assume 8 bit char */
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
#define STACK_NOT_EMPTY (stack < top)
static void
NAME (VEC_PARAM ssize_t lbnd, ssize_t ubnd, INC_PARAM SCM less)
{
/* Stack node declarations used to store unfulfilled partition obligations. */
typedef struct {
ssize_t lo;
ssize_t hi;
} stack_node;
static const char s_buggy_less[] = "buggy less predicate used when sorting";
if (ubnd-lbnd+1 > MAX_THRESH)
{
ssize_t lo = lbnd;
ssize_t hi = ubnd;
stack_node stack[STACK_SIZE];
stack_node *top = stack + 1;
while (STACK_NOT_EMPTY)
{
ssize_t left;
ssize_t right;
ssize_t mid = lo + (hi - lo) / 2;
SCM pivot;
/* Select median value from among LO, MID, and HI. Rearrange
LO and HI so the three values are sorted. This lowers the
probability of picking a pathological pivot value and
skips a comparison for both the left and right. */
SCM_TICK;
if (scm_is_true (scm_call_2 (less, GET(mid), GET(lo))))
SWAP (mid, lo);
if (scm_is_true (scm_call_2 (less, GET(hi), GET(mid))))
SWAP (mid, hi);
else
goto jump_over;
if (scm_is_true (scm_call_2 (less, GET(mid), GET(lo))))
SWAP (mid, lo);
jump_over:;
pivot = GET(mid);
left = lo + 1;
right = hi - 1;
/* Here's the famous ``collapse the walls'' section of quicksort.
Gotta like those tight inner loops! They are the main reason
that this algorithm runs much faster than others. */
do
{
while (scm_is_true (scm_call_2 (less, GET(left), pivot)))
{
left += 1;
/* The comparison predicate may be buggy */
if (left > hi)
scm_misc_error (NULL, s_buggy_less, SCM_EOL);
}
while (scm_is_true (scm_call_2 (less, pivot, GET(right))))
{
right -= 1;
/* The comparison predicate may be buggy */
if (right < lo)
scm_misc_error (NULL, s_buggy_less, SCM_EOL);
}
if (left < right)
{
SWAP (left, right);
left += 1;
right -= 1;
}
else if (left == right)
{
left += 1;
right -= 1;
break;
}
}
while (left <= right);
/* Set up pointers for next iteration. First determine whether
left and right partitions are below the threshold size. If so,
ignore one or both. Otherwise, push the larger partition's
bounds on the stack and continue sorting the smaller one. */
if ((right - lo) <= MAX_THRESH)
{
if ((hi - left) <= MAX_THRESH)
/* Ignore both small partitions. */
POP (lo, hi);
else
/* Ignore small left partition. */
lo = left;
}
else if ((hi - left) <= MAX_THRESH)
/* Ignore small right partition. */
hi = right;
else if ((right - lo) > (hi - left))
{
/* Push larger left partition indices. */
PUSH (lo, right);
lo = left;
}
else
{
/* Push larger right partition indices. */
PUSH (left, hi);
hi = right;
}
}
}
/* Once the BASE_PTR array is partially sorted by quicksort the rest is
completely sorted using insertion sort, since this is efficient for
partitions below MAX_THRESH size. BASE_PTR points to the beginning of the
array to sort, and END idexes the very last element in the array (*not*
one beyond it!). */
{
ssize_t tmp = lbnd;
ssize_t end = ubnd;
ssize_t thresh = MIN (end, MAX_THRESH);
ssize_t run;
/* Find smallest element in first threshold and place it at the
array's beginning. This is the smallest array element,
and the operation speeds up insertion sort's inner loop. */
for (run = tmp + 1; run <= thresh; run += 1)
if (scm_is_true (scm_call_2 (less, GET(run), GET(tmp))))
tmp = run;
if (tmp != lbnd)
SWAP (tmp, lbnd);
/* Insertion sort, running from left-hand-side up to right-hand-side. */
run = lbnd + 1;
while (++run <= end)
{
SCM_TICK;
tmp = run - 1;
while (scm_is_true (scm_call_2 (less, GET(run), GET(tmp))))
{
/* The comparison predicate may be buggy */
if (tmp == lbnd)
scm_misc_error (NULL, s_buggy_less, SCM_EOL);
tmp -= 1;
}
tmp += 1;
if (tmp != run)
{
SCM to_insert = GET(run);
ssize_t hi, lo;
for (hi = lo = run; --lo >= tmp; hi = lo)
SET(hi, GET(lo));
SET(hi, to_insert);
}
}
}
}
#undef SWAP
#undef MAX_THRESH
#undef STACK_SIZE
#undef PUSH
#undef POP
#undef STACK_NOT_EMPTY
#undef GET
#undef SET
#undef MIN
#undef NAME
#undef INC_PARAM
#undef VEC_PARAM
|