summaryrefslogtreecommitdiff
path: root/libguile/threads.c
blob: 80f01402de9f54bfc6ce20c3bcad898df753cc05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
/* Copyright 1995-1998,2000-2014,2018-2019,2023
     Free Software Foundation, Inc.

   This file is part of Guile.

   Guile is free software: you can redistribute it and/or modify it
   under the terms of the GNU Lesser General Public License as published
   by the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   Guile is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
   License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with Guile.  If not, see
   <https://www.gnu.org/licenses/>.  */



#ifdef HAVE_CONFIG_H
# include <config.h>
#endif

#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <full-read.h>
#include <nproc.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>   /* for memset used by FD_ZERO on Solaris 10 */
#include <sys/time.h>
#include <sys/select.h>                           /* from Gnulib */
#include <unistd.h>

#if HAVE_PTHREAD_NP_H
# include <pthread_np.h>
#endif

#include "async.h"
#include "bdw-gc.h"
#include "boolean.h"
#include "continuations.h"
#include "deprecation.h"
#include "dynwind.h"
#include "eval.h"
#include "extensions.h"
#include "fluids.h"
#include "gc-inline.h"
#include "gc.h"
#include "gsubr.h"
#include "hashtab.h"
#include "init.h"
#include "iselect.h"
#include "jit.h"
#include "list.h"
#include "modules.h"
#include "numbers.h"
#include "pairs.h"
#include "ports.h"
#include "scmsigs.h"
#include "strings.h"
#include "symbols.h"
#include "variable.h"
#include "version.h"
#include "vm.h"

#include "threads.h"

#include <gc/gc_mark.h>




/* The GC "kind" for threads that allow them to mark their VM
   stacks.  */
static int thread_gc_kind;

static struct GC_ms_entry *
thread_mark (GC_word *addr, struct GC_ms_entry *mark_stack_ptr,
             struct GC_ms_entry *mark_stack_limit, GC_word env)
{
  int word;
  struct scm_thread *t = (struct scm_thread *) addr;

  if (SCM_UNPACK (t->handle) == 0)
    /* T must be on the free-list; ignore.  (See warning in
       gc_mark.h.)  */
    return mark_stack_ptr;

  /* Mark T.  We could be more precise, but it doesn't matter.  */
  for (word = 0; word * sizeof (*addr) < sizeof (*t); word++)
    mark_stack_ptr = GC_MARK_AND_PUSH ((void *) addr[word],
				       mark_stack_ptr, mark_stack_limit,
				       NULL);

  /* The pointerless freelists are threaded through their first word,
     but GC doesn't know to trace them (as they are pointerless), so we
     need to do that here.  See the comments at the top of libgc's
     gc_inline.h.  */
  for (size_t n = 0; n < SCM_INLINE_GC_FREELIST_COUNT; n++)
    {
      void *chain = t->pointerless_freelists[n];
      if (chain)
        {
          /* The first link is already marked by the thread itsel, so we
             just have to mark the tail.  */
          while ((chain = *(void **)chain))
            mark_stack_ptr = GC_mark_and_push (chain, mark_stack_ptr,
                                               mark_stack_limit, NULL);
        }
    }

  mark_stack_ptr = scm_i_vm_mark_stack (&t->vm, mark_stack_ptr,
                                        mark_stack_limit);

  return mark_stack_ptr;
}



static void
to_timespec (SCM t, scm_t_timespec *waittime)
{
  if (scm_is_pair (t))
    {
      waittime->tv_sec = scm_to_ulong (SCM_CAR (t));
      waittime->tv_nsec = scm_to_ulong (SCM_CDR (t)) * 1000;
    }
  else
    {
      double time = scm_to_double (t);
      double sec = scm_c_truncate (time);

      waittime->tv_sec = (long) sec;
      waittime->tv_nsec = (long) ((time - sec) * 1000000000);
    }
}



/*** Queues */

/* Note: We annotate with "GC-robust" assignments whose purpose is to avoid
   the risk of false references leading to unbounded retained space as
   described in "Bounding Space Usage of Conservative Garbage Collectors",
   H.J. Boehm, 2001.  */

/* Make an empty queue data structure.
 */
static SCM
make_queue ()
{
  return scm_cons (SCM_EOL, SCM_EOL);
}

static scm_i_pthread_mutex_t queue_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;

/* Put T at the back of Q and return a handle that can be used with
   remqueue to remove T from Q again.
 */
static SCM
enqueue (SCM q, SCM t)
{
  SCM c = scm_cons (t, SCM_EOL);
  scm_i_pthread_mutex_lock (&queue_lock);
  if (scm_is_null (SCM_CDR (q)))
    SCM_SETCDR (q, c);
  else
    SCM_SETCDR (SCM_CAR (q), c);
  SCM_SETCAR (q, c);
  scm_i_pthread_mutex_unlock (&queue_lock);
  return c;
}

/* Remove the element that the handle C refers to from the queue Q.  C
   must have been returned from a call to enqueue.  The return value
   is zero when the element referred to by C has already been removed.
   Otherwise, 1 is returned.
*/
static int
remqueue (SCM q, SCM c)
{
  SCM p, prev = q;
  scm_i_pthread_mutex_lock (&queue_lock);
  for (p = SCM_CDR (q); !scm_is_null (p); p = SCM_CDR (p))
    {
      if (scm_is_eq (p, c))
	{
	  if (scm_is_eq (c, SCM_CAR (q)))
            SCM_SETCAR (q, scm_is_eq (prev, q) ? SCM_EOL : prev);
	  SCM_SETCDR (prev, SCM_CDR (c));

	  /* GC-robust */
	  SCM_SETCDR (c, SCM_EOL);

          scm_i_pthread_mutex_unlock (&queue_lock);
	  return 1;
	}
      prev = p;
    }
  scm_i_pthread_mutex_unlock (&queue_lock);
  return 0;
}

/* Remove the front-most element from the queue Q and return it.
   Return SCM_BOOL_F when Q is empty.
*/
static SCM
dequeue (SCM q)
{
  SCM c;
  scm_i_pthread_mutex_lock (&queue_lock);
  c = SCM_CDR (q);
  if (scm_is_null (c))
    {
      scm_i_pthread_mutex_unlock (&queue_lock);
      return SCM_BOOL_F;
    }
  else
    {
      SCM_SETCDR (q, SCM_CDR (c));
      if (scm_is_null (SCM_CDR (q)))
	SCM_SETCAR (q, SCM_EOL);
      scm_i_pthread_mutex_unlock (&queue_lock);

      /* GC-robust */
      SCM_SETCDR (c, SCM_EOL);

      return SCM_CAR (c);
    }
}

/*** Thread smob routines */


static int
thread_print (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
{
  /* On a Gnu system pthread_t is an unsigned long, but on mingw it's a
     struct.  A cast like "(unsigned long) t->pthread" is a syntax error in
     the struct case, hence we go via a union, and extract according to the
     size of pthread_t.  */
  union {
    scm_i_pthread_t p;
    unsigned short us;
    unsigned int   ui;
    unsigned long  ul;
    uintmax_t  um;
  } u;
  scm_thread *t = SCM_I_THREAD_DATA (exp);
  scm_i_pthread_t p = t->pthread;
  uintmax_t id;
  u.p = p;
  if (sizeof (p) == sizeof (unsigned short))
    id = u.us;
  else if (sizeof (p) == sizeof (unsigned int))
    id = u.ui;
  else if (sizeof (p) == sizeof (unsigned long))
    id = u.ul;
  else
    id = u.um;

  scm_puts ("#<thread ", port);
  scm_uintprint (id, 10, port);
  scm_puts (" (", port);
  scm_uintprint ((scm_t_bits)t, 16, port);
  scm_puts (")>", port);
  return 1;
}


/*** Blocking on queues. */

/* See also scm_system_async_mark_for_thread for how such a block is
   interrputed.
*/

/* Put the current thread on QUEUE and go to sleep, waiting for it to
   be woken up by a call to 'unblock_from_queue', or to be
   interrupted.  Upon return of this function, the current thread is
   no longer on QUEUE, even when the sleep has been interrupted.

   The caller of block_self must hold MUTEX.  It will be atomically
   unlocked while sleeping, just as with scm_i_pthread_cond_wait.

   When WAITTIME is not NULL, the sleep will be aborted at that time.

   The return value of block_self is an errno value.  It will be zero
   when the sleep has been successfully completed by a call to
   unblock_from_queue, EINTR when it has been interrupted by the
   delivery of a system async, and ETIMEDOUT when the timeout has
   expired.

   The system asyncs themselves are not executed by block_self.
*/
static int
block_self (SCM queue, scm_i_pthread_mutex_t *mutex,
	    const scm_t_timespec *waittime)
{
  scm_thread *t = SCM_I_CURRENT_THREAD;
  SCM q_handle;
  int err;

  if (scm_i_prepare_to_wait_on_cond (t, mutex, &t->sleep_cond))
    return EINTR;

  t->block_asyncs++;
  q_handle = enqueue (queue, t->handle);
  if (waittime == NULL)
    err = scm_i_scm_pthread_cond_wait (&t->sleep_cond, mutex);
  else
    err = scm_i_scm_pthread_cond_timedwait (&t->sleep_cond, mutex, waittime);

  /* When we are still on QUEUE, we have been interrupted.  We
     report this only when no other error (such as a timeout) has
     happened above.
  */
  if (remqueue (queue, q_handle) && err == 0)
    err = EINTR;
  t->block_asyncs--;
  scm_i_wait_finished (t);

  return err;
}

/* Wake up the first thread on QUEUE, if any.  The awoken thread is
   returned, or #f if the queue was empty.
 */
static SCM
unblock_from_queue (SCM queue)
{
  SCM thread = dequeue (queue);
  if (scm_is_true (thread))
    scm_i_pthread_cond_signal (&SCM_I_THREAD_DATA(thread)->sleep_cond);
  return thread;
}


/* Getting into and out of guile mode.
 */

/* Key used to attach a cleanup handler to a given thread.  Also, if
   thread-local storage is unavailable, this key is used to retrieve the
   current thread with `pthread_getspecific ()'.  */
scm_i_pthread_key_t scm_i_thread_key;


#ifdef SCM_HAVE_THREAD_STORAGE_CLASS

/* When thread-local storage (TLS) is available, a pointer to the
   current-thread object is kept in TLS.  Note that storing the thread-object
   itself in TLS (rather than a pointer to some malloc'd memory) is not
   possible since thread objects may live longer than the actual thread they
   represent.  */
/* SCM_INTERNAL fixes https://debbugs.gnu.org/60234 */
SCM_INTERNAL SCM_THREAD_LOCAL scm_thread *scm_i_current_thread = NULL;

#endif /* SCM_HAVE_THREAD_STORAGE_CLASS */


static scm_i_pthread_mutex_t thread_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
static scm_thread *all_threads = NULL;
static int thread_count;

static SCM default_dynamic_state;

/* Perform first stage of thread initialisation, in non-guile mode.
 */
static void
guilify_self_1 (struct GC_stack_base *base, int needs_unregister)
{
  scm_thread t;

  /* We must arrange for SCM_I_CURRENT_THREAD to point to a valid value
     before allocating anything in this thread, because allocation could
     cause GC to run, and GC could cause finalizers, which could invoke
     Scheme functions, which need the current thread to be set.  */

  memset (&t, 0, sizeof (t));

  t.pthread = scm_i_pthread_self ();
  t.handle = SCM_BOOL_F;
  t.result = SCM_BOOL_F;
  t.pending_asyncs = SCM_EOL;
  t.block_asyncs = 1;
  t.base = base->mem_base;
  t.continuation_root = SCM_EOL;
  t.continuation_base = t.base;
  scm_i_pthread_cond_init (&t.sleep_cond, NULL);
  scm_i_vm_prepare_stack (&t.vm);

  if (pipe2 (t.sleep_pipe, O_CLOEXEC) != 0)
    /* FIXME: Error conditions during the initialization phase are handled
       gracelessly since public functions such as `scm_init_guile ()'
       currently have type `void'.  */
    abort ();

  t.exited = 0;
  t.guile_mode = 0;
  t.needs_unregister = needs_unregister;

  /* The switcheroo.  */
  {
    scm_thread *t_ptr = &t;
    
    GC_disable ();
    t_ptr = GC_generic_malloc (sizeof (*t_ptr), thread_gc_kind);
    memcpy (t_ptr, &t, sizeof t);

    scm_i_pthread_setspecific (scm_i_thread_key, t_ptr);

#ifdef SCM_HAVE_THREAD_STORAGE_CLASS
    /* Cache the current thread in TLS for faster lookup.  */
    scm_i_current_thread = t_ptr;
#endif

    scm_i_pthread_mutex_lock (&thread_admin_mutex);
    t_ptr->next_thread = all_threads;
    all_threads = t_ptr;
    thread_count++;
    scm_i_pthread_mutex_unlock (&thread_admin_mutex);

    GC_enable ();
  }
}

/* Perform second stage of thread initialisation, in guile mode.
 */
static void
guilify_self_2 (SCM dynamic_state)
{
  scm_thread *t = SCM_I_CURRENT_THREAD;

  t->guile_mode = 1;

  SCM_NEWSMOB (t->handle, scm_tc16_thread, t);

  t->continuation_root = scm_cons (t->handle, SCM_EOL);
  t->continuation_base = t->base;

  t->dynamic_state = scm_gc_typed_calloc (scm_t_dynamic_state);
  t->dynamic_state->thread_local_values = scm_c_make_hash_table (0);
  scm_set_current_dynamic_state (dynamic_state);

  t->dynstack.base = scm_gc_malloc (16 * sizeof (scm_t_bits), "dynstack");
  t->dynstack.limit = t->dynstack.base + 16;
  t->dynstack.top = t->dynstack.base + SCM_DYNSTACK_HEADER_LEN;

  t->block_asyncs = 0;

  /* See note in finalizers.c:queue_finalizer_async().  */
  GC_invoke_finalizers ();
}




static void
on_thread_exit (void *v)
{
  /* This handler is executed in non-guile mode.  Note that although
     libgc isn't guaranteed to see thread-locals, for this thread-local
     that isn't an issue as we have the all_threads list.  */
  scm_thread *t = (scm_thread *) v, **tp;

  t->exited = 1;

  close (t->sleep_pipe[0]);
  close (t->sleep_pipe[1]);
  t->sleep_pipe[0] = t->sleep_pipe[1] = -1;

  scm_i_pthread_mutex_lock (&thread_admin_mutex);
  for (tp = &all_threads; *tp; tp = &(*tp)->next_thread)
    if (*tp == t)
      {
	*tp = t->next_thread;

	/* GC-robust */
	t->next_thread = NULL;

	break;
      }
  thread_count--;

  /* Prevent any concurrent or future marker from visiting this
     thread.  */
  t->handle = SCM_PACK (0);

  /* If there's only one other thread, it could be the signal delivery
     thread, so we need to notify it to shut down by closing its read pipe.
     If it's not the signal delivery thread, then closing the read pipe isn't
     going to hurt.  */
  if (thread_count <= 1)
    scm_i_close_signal_pipe ();

  scm_i_pthread_mutex_unlock (&thread_admin_mutex);

  /* Although this thread has exited, the thread object might still be
     alive.  Release unused memory.  */
  for (size_t n = 0; n < SCM_INLINE_GC_FREELIST_COUNT; n++)
    t->freelists[n] = t->pointerless_freelists[n] = NULL;
  t->dynamic_state = NULL;
  t->dynstack.base = NULL;
  t->dynstack.top = NULL;
  t->dynstack.limit = NULL;
  scm_i_vm_free_stack (&t->vm);
#if ENABLE_JIT
  scm_jit_state_free (t->jit_state);
#endif
  t->jit_state = NULL;

#ifdef SCM_HAVE_THREAD_STORAGE_CLASS
  scm_i_current_thread = NULL;
#endif

#if SCM_USE_PTHREAD_THREADS
  if (t->needs_unregister)
    GC_unregister_my_thread ();
#endif
}

static scm_i_pthread_once_t init_thread_key_once = SCM_I_PTHREAD_ONCE_INIT;

static void
init_thread_key (void)
{
  scm_i_pthread_key_create (&scm_i_thread_key, on_thread_exit);
}

/* Perform any initializations necessary to make the current thread
   known to Guile (via SCM_I_CURRENT_THREAD), initializing Guile itself,
   if necessary.

   BASE is the stack base to use with GC.

   DYNAMIC_STATE is the set of fluid values to start with.

   Returns zero when the thread was known to guile already; otherwise
   return 1.

   Note that it could be the case that the thread was known
   to Guile, but not in guile mode (because we are within a
   scm_without_guile call).   Check SCM_I_CURRENT_THREAD->guile_mode to
   be sure.  New threads are put into guile mode implicitly.  */

static int
scm_i_init_thread_for_guile (struct GC_stack_base *base,
                             SCM dynamic_state)
{
  scm_i_pthread_once (&init_thread_key_once, init_thread_key);

  if (SCM_I_CURRENT_THREAD)
    {
      /* Thread is already known to Guile.
      */
      return 0;
    }
  else
    {
      /* This thread has not been guilified yet.
       */

      scm_i_pthread_mutex_lock (&scm_i_init_mutex);
      if (scm_initialized_p == 0)
	{
	  /* First thread ever to enter Guile.  Run the full
	     initialization.
	  */
	  scm_i_init_guile (base);

#if SCM_USE_PTHREAD_THREADS
          /* Allow other threads to come in later.  */
          GC_allow_register_threads ();
#endif

	  scm_i_pthread_mutex_unlock (&scm_i_init_mutex);
	}
      else
	{
          int needs_unregister = 0;

	  /* Guile is already initialized, but this thread enters it for
	     the first time.  Only initialize this thread.
	  */
	  scm_i_pthread_mutex_unlock (&scm_i_init_mutex);

          /* Register this thread with libgc.  */
#if SCM_USE_PTHREAD_THREADS
          if (GC_register_my_thread (base) == GC_SUCCESS)
            needs_unregister = 1;
#endif

	  guilify_self_1 (base, needs_unregister);
	  guilify_self_2 (dynamic_state);
	}
      return 1;
    }
}

void
scm_init_guile ()
{
  struct GC_stack_base stack_base;
  
  if (GC_get_stack_base (&stack_base) == GC_SUCCESS)
    scm_i_init_thread_for_guile (&stack_base, default_dynamic_state);
  else
    {
      fprintf (stderr, "Failed to get stack base for current thread.\n");
      exit (EXIT_FAILURE);
    }
}

struct with_guile_args
{
  GC_fn_type func;
  void *data;
  SCM dynamic_state;
};

static void *
with_guile_trampoline (void *data)
{
  struct with_guile_args *args = data;

  return scm_c_with_continuation_barrier (args->func, args->data);
}
  
static void *
with_guile (struct GC_stack_base *base, void *data)
{
  void *res;
  int new_thread;
  scm_thread *t;
  struct with_guile_args *args = data;

  new_thread = scm_i_init_thread_for_guile (base, args->dynamic_state);
  t = SCM_I_CURRENT_THREAD;
  if (new_thread)
    {
      /* We are in Guile mode.  */
      assert (t->guile_mode);

      res = scm_c_with_continuation_barrier (args->func, args->data);

      /* Leave Guile mode.  */
      t->guile_mode = 0;
    }
  else if (t->guile_mode)
    {
      /* Already in Guile mode.  */
      res = scm_c_with_continuation_barrier (args->func, args->data);
    }
  else
    {
      /* We are not in Guile mode, either because we are not within a
         scm_with_guile, or because we are within a scm_without_guile.

         This call to scm_with_guile() could happen from anywhere on the
         stack, and in particular lower on the stack than when it was
         when this thread was first guilified.  Thus, `base' must be
         updated.  */
#if SCM_STACK_GROWS_UP
      if (SCM_STACK_PTR (base->mem_base) < t->base)
        t->base = SCM_STACK_PTR (base->mem_base);
#else
      if (SCM_STACK_PTR (base->mem_base) > t->base)
        t->base = SCM_STACK_PTR (base->mem_base);
#endif

      t->guile_mode = 1;
      res = GC_call_with_gc_active (with_guile_trampoline, args);
      t->guile_mode = 0;
    }
  return res;
}

static void *
scm_i_with_guile (void *(*func)(void *), void *data, SCM dynamic_state)
{
  struct with_guile_args args;

  args.func = func;
  args.data = data;
  args.dynamic_state = dynamic_state;
  
  return GC_call_with_stack_base (with_guile, &args);
}

void *
scm_with_guile (void *(*func)(void *), void *data)
{
  return scm_i_with_guile (func, data, default_dynamic_state);
}

void *
scm_without_guile (void *(*func)(void *), void *data)
{
  void *result;
  scm_thread *t = SCM_I_CURRENT_THREAD;

  if (t->guile_mode)
    {
      SCM_I_CURRENT_THREAD->guile_mode = 0;
      result = GC_do_blocking (func, data);
      SCM_I_CURRENT_THREAD->guile_mode = 1;
    }
  else
    /* Otherwise we're not in guile mode, so nothing to do.  */
    result = func (data);

  return result;
}


/*** Thread creation */

/* Because (ice-9 boot-9) loads up (ice-9 threads), we know that this
   variable will get loaded before a call to scm_call_with_new_thread
   and therefore no lock or pthread_once_t is needed. */
static SCM call_with_new_thread_var;

SCM
scm_call_with_new_thread (SCM thunk, SCM handler)
{
  SCM call_with_new_thread = scm_variable_ref (call_with_new_thread_var);
  if (SCM_UNBNDP (handler))
    return scm_call_1 (call_with_new_thread, thunk);
  return scm_call_2 (call_with_new_thread, thunk, handler);
}

typedef struct launch_data launch_data;

struct launch_data {
  launch_data *prev;
  launch_data *next;
  SCM dynamic_state;
  SCM thunk;
};

/* GC-protect the launch data for new threads.  */
static launch_data *protected_launch_data;
static scm_i_pthread_mutex_t protected_launch_data_lock =
  SCM_I_PTHREAD_MUTEX_INITIALIZER;

static void
protect_launch_data (launch_data *data)
{
  scm_i_pthread_mutex_lock (&protected_launch_data_lock);
  data->next = protected_launch_data;
  if (protected_launch_data)
    protected_launch_data->prev = data;
  protected_launch_data = data;
  scm_i_pthread_mutex_unlock (&protected_launch_data_lock);
}

static void
unprotect_launch_data (launch_data *data)
{
  scm_i_pthread_mutex_lock (&protected_launch_data_lock);
  if (data->next)
    data->next->prev = data->prev;
  if (data->prev)
    data->prev->next = data->next;
  else
    protected_launch_data = data->next;
  scm_i_pthread_mutex_unlock (&protected_launch_data_lock);
}

static void *
really_launch (void *d)
{
  scm_thread *t = SCM_I_CURRENT_THREAD;
  unprotect_launch_data (d);
  /* The thread starts with asyncs blocked.  */
  t->block_asyncs++;
  SCM_I_CURRENT_THREAD->result = scm_call_0 (((launch_data *)d)->thunk);
  return 0;
}

static void *
launch_thread (void *d)
{
  launch_data *data = (launch_data *)d;
  scm_i_pthread_detach (scm_i_pthread_self ());
  scm_i_with_guile (really_launch, d, data->dynamic_state);
  return NULL;
}

SCM_INTERNAL SCM scm_sys_call_with_new_thread (SCM);
SCM_DEFINE (scm_sys_call_with_new_thread, "%call-with-new-thread", 1, 0, 0,
	    (SCM thunk), "")
#define FUNC_NAME s_scm_sys_call_with_new_thread
{
  launch_data *data;
  scm_i_pthread_t id;
  int err;

  SCM_ASSERT (scm_is_true (scm_thunk_p (thunk)), thunk, SCM_ARG1, FUNC_NAME);

  GC_collect_a_little ();
  data = scm_gc_typed_calloc (launch_data);
  data->dynamic_state = scm_current_dynamic_state ();
  data->thunk = thunk;
  protect_launch_data (data);
  err = scm_i_pthread_create (&id, NULL, launch_thread, data);
  if (err)
    {
      errno = err;
      scm_syserror (NULL);
    }

  return SCM_UNSPECIFIED;
}
#undef FUNC_NAME

SCM
scm_spawn_thread (scm_t_catch_body body, void *body_data,
		  scm_t_catch_handler handler, void *handler_data)
{
  SCM body_closure, handler_closure;

  body_closure = scm_c_make_thunk (body, body_data);
  handler_closure = handler == NULL ? SCM_UNDEFINED :
    scm_i_make_catch_handler (handler, handler_data);

  return scm_call_with_new_thread (body_closure, handler_closure);
}

SCM_DEFINE (scm_yield, "yield", 0, 0, 0,
	    (),
"Move the calling thread to the end of the scheduling queue.")
#define FUNC_NAME s_scm_yield
{
  return scm_from_bool (scm_i_sched_yield ());
}
#undef FUNC_NAME

static SCM cancel_thread_var;

SCM
scm_cancel_thread (SCM thread)
{
  scm_call_1 (scm_variable_ref (cancel_thread_var), thread);
  return SCM_UNSPECIFIED;
}

static SCM join_thread_var;

SCM
scm_join_thread (SCM thread)
{
  return scm_call_1 (scm_variable_ref (join_thread_var), thread);
}

SCM
scm_join_thread_timed (SCM thread, SCM timeout, SCM timeoutval)
{
  SCM join_thread = scm_variable_ref (join_thread_var);

  if (SCM_UNBNDP (timeout))
    return scm_call_1 (join_thread, thread);
  else if (SCM_UNBNDP (timeoutval))
    return scm_call_2 (join_thread, thread, timeout);
  else
    return scm_call_3 (join_thread, thread, timeout, timeoutval);
}

SCM_DEFINE (scm_thread_p, "thread?", 1, 0, 0,
	    (SCM obj),
	    "Return @code{#t} if @var{obj} is a thread.")
#define FUNC_NAME s_scm_thread_p
{
  return SCM_I_IS_THREAD(obj) ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME




/* We implement our own mutex type since we want them to be 'fair', we
   want to do fancy things while waiting for them (like running
   asyncs) and we might want to add things that are nice for
   debugging.
*/

enum scm_mutex_kind {
  /* A standard mutex can only be locked once.  If you try to lock it
     again from the thread that locked it to begin with (the "owner"
     thread), it throws an error.  It can only be unlocked from the
     thread that locked it in the first place.  */
  SCM_MUTEX_STANDARD,
  /* A recursive mutex can be locked multiple times by its owner.  It
     then has to be unlocked the corresponding number of times, and like
     standard mutexes can only be unlocked by the owner thread.  */
  SCM_MUTEX_RECURSIVE,
  /* An unowned mutex is like a standard mutex, except that it can be
     unlocked by any thread.  A corrolary of this behavior is that a
     thread's attempt to lock a mutex that it already owns will block
     instead of signalling an error, as it could be that some other
     thread unlocks the mutex, allowing the owner thread to proceed.
     This kind of mutex is a bit strange and is here for use by
     SRFI-18.  */
  SCM_MUTEX_UNOWNED
};

struct scm_mutex {
  scm_i_pthread_mutex_t lock;
  /* The thread that owns this mutex, or #f if the mutex is unlocked.  */
  SCM owner;
  /* Queue of threads waiting for this mutex.  */
  SCM waiting;
  /* For SCM_MUTEX_RECURSIVE (and only SCM_MUTEX_RECURSIVE), the
     recursive lock count.  The first lock does not count.  */
  int level;
};

#define SCM_MUTEXP(x)     SCM_SMOB_PREDICATE (scm_tc16_mutex, x)
#define SCM_MUTEX_DATA(x) ((struct scm_mutex *) SCM_SMOB_DATA (x))
#define SCM_MUTEX_KIND(x) ((enum scm_mutex_kind) (SCM_SMOB_FLAGS (x) & 0x3))

static int
scm_mutex_print (SCM mx, SCM port, scm_print_state *pstate SCM_UNUSED)
{
  struct scm_mutex *m = SCM_MUTEX_DATA (mx);
  scm_puts ("#<mutex ", port);
  scm_uintprint ((scm_t_bits)m, 16, port);
  scm_puts (">", port);
  return 1;
}

SCM_SYMBOL (allow_external_unlock_sym, "allow-external-unlock");
SCM_SYMBOL (recursive_sym, "recursive");

SCM_DEFINE (scm_make_mutex_with_kind, "make-mutex", 0, 1, 0,
	    (SCM kind),
	    "Create a new mutex.  If @var{kind} is not given, the mutex\n"
            "will be a standard non-recursive mutex.  Otherwise pass\n"
            "@code{recursive} to make a recursive mutex, or\n"
            "@code{allow-external-unlock} to make a non-recursive mutex\n"
            "that can be unlocked from any thread.")
#define FUNC_NAME s_scm_make_mutex_with_kind
{
  enum scm_mutex_kind mkind = SCM_MUTEX_STANDARD;
  struct scm_mutex *m;
  scm_i_pthread_mutex_t lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;

  if (!SCM_UNBNDP (kind))
    {
      if (scm_is_eq (kind, allow_external_unlock_sym))
	mkind = SCM_MUTEX_UNOWNED;
      else if (scm_is_eq (kind, recursive_sym))
	mkind = SCM_MUTEX_RECURSIVE;
      else
	SCM_MISC_ERROR ("unsupported mutex kind: ~a", scm_list_1 (kind));
    }

  m = scm_gc_malloc (sizeof (struct scm_mutex), "mutex");
  /* Because PTHREAD_MUTEX_INITIALIZER is static, it's plain old data,
     and so we can just copy it.  */
  memcpy (&m->lock, &lock, sizeof (m->lock));
  m->owner = SCM_BOOL_F;
  m->level = 0;
  m->waiting = make_queue ();

  return scm_new_smob (scm_tc16_mutex | (mkind << 16), (scm_t_bits) m);
}
#undef FUNC_NAME

SCM
scm_make_mutex (void)
{
  return scm_make_mutex_with_kind (SCM_UNDEFINED);
}

SCM_DEFINE (scm_make_recursive_mutex, "make-recursive-mutex", 0, 0, 0,
	    (void),
	    "Create a new recursive mutex. ")
#define FUNC_NAME s_scm_make_recursive_mutex
{
  return scm_make_mutex_with_kind (recursive_sym);
}
#undef FUNC_NAME

SCM
scm_lock_mutex (SCM mx)
{
  return scm_timed_lock_mutex (mx, SCM_UNDEFINED);
}

static inline SCM
lock_mutex (enum scm_mutex_kind kind, struct scm_mutex *m,
            scm_thread *current_thread, scm_t_timespec *waittime)
#define FUNC_NAME "lock-mutex"
{
  scm_i_scm_pthread_mutex_lock (&m->lock);

  if (scm_is_eq (m->owner, SCM_BOOL_F))
    {
      m->owner = current_thread->handle;
      scm_i_pthread_mutex_unlock (&m->lock);
      return SCM_BOOL_T;
    }
  else if (kind == SCM_MUTEX_RECURSIVE &&
           scm_is_eq (m->owner, current_thread->handle))
    {
      m->level++;
      scm_i_pthread_mutex_unlock (&m->lock);
      return SCM_BOOL_T;
    }
  else if (kind == SCM_MUTEX_STANDARD &&
           scm_is_eq (m->owner, current_thread->handle))
    {
      scm_i_pthread_mutex_unlock (&m->lock);
      SCM_MISC_ERROR ("mutex already locked by thread", SCM_EOL);
    }
  else
    while (1)
      {
        int err = block_self (m->waiting, &m->lock, waittime);

        if (err == 0)
          {
            goto maybe_acquire;
          }
        else if (err == ETIMEDOUT)
          {
            scm_i_pthread_mutex_unlock (&m->lock);
            return SCM_BOOL_F;
          }
        else if (err == EINTR)
          {
            scm_i_pthread_mutex_unlock (&m->lock);
            scm_async_tick ();
            scm_i_scm_pthread_mutex_lock (&m->lock);
            goto maybe_acquire;
          }
        else
          {
            /* Shouldn't happen.  */
            scm_i_pthread_mutex_unlock (&m->lock);
            errno = err;
            SCM_SYSERROR;
          }

      maybe_acquire:
        if (scm_is_eq (m->owner, SCM_BOOL_F))
          {
            m->owner = current_thread->handle;
            scm_i_pthread_mutex_unlock (&m->lock);
            return SCM_BOOL_T;
          }
      }
}
#undef FUNC_NAME

SCM_DEFINE (scm_timed_lock_mutex, "lock-mutex", 1, 1, 0,
	    (SCM mutex, SCM timeout),
	    "Lock mutex @var{mutex}. If the mutex is already locked, "
            "the calling thread blocks until the mutex becomes available.")
#define FUNC_NAME s_scm_timed_lock_mutex
{
  scm_t_timespec cwaittime, *waittime = NULL;
  struct scm_mutex *m;
  scm_thread *t = SCM_I_CURRENT_THREAD;
  SCM ret;

  SCM_VALIDATE_MUTEX (1, mutex);
  m = SCM_MUTEX_DATA (mutex);

  if (! SCM_UNBNDP (timeout) && ! scm_is_false (timeout))
    {
      to_timespec (timeout, &cwaittime);
      waittime = &cwaittime;
    }

  /* Specialized lock_mutex implementations according to the mutex
     kind.  */
  switch (SCM_MUTEX_KIND (mutex))
    {
    case SCM_MUTEX_STANDARD:
      ret = lock_mutex (SCM_MUTEX_STANDARD, m, t, waittime);
      break;
    case SCM_MUTEX_RECURSIVE:
      ret = lock_mutex (SCM_MUTEX_RECURSIVE, m, t, waittime);
      break;
    case SCM_MUTEX_UNOWNED:
      ret = lock_mutex (SCM_MUTEX_UNOWNED, m, t, waittime);
      break;
    default:
      abort ();
    }

  scm_remember_upto_here_1 (mutex);

  return ret;
}
#undef FUNC_NAME

static void
lock_mutex_return_void (SCM mx)
{
  (void) scm_lock_mutex (mx);
}

static void
unlock_mutex_return_void (SCM mx)
{
  (void) scm_unlock_mutex (mx);
}

void
scm_dynwind_lock_mutex (SCM mutex)
{
  scm_dynwind_unwind_handler_with_scm (unlock_mutex_return_void, mutex,
				       SCM_F_WIND_EXPLICITLY);
  scm_dynwind_rewind_handler_with_scm (lock_mutex_return_void, mutex,
				       SCM_F_WIND_EXPLICITLY);
}

SCM
scm_try_mutex (SCM mutex)
{
  return scm_timed_lock_mutex (mutex, SCM_INUM0);
}

/* This function is static inline so that the compiler can specialize it
   against the mutex kind.  */
static inline void
unlock_mutex (enum scm_mutex_kind kind, struct scm_mutex *m,
              scm_thread *current_thread)
#define FUNC_NAME "unlock-mutex"
{
  scm_i_scm_pthread_mutex_lock (&m->lock);

  if (!scm_is_eq (m->owner, current_thread->handle))
    {
      if (scm_is_eq (m->owner, SCM_BOOL_F))
        {
          scm_i_pthread_mutex_unlock (&m->lock);
          SCM_MISC_ERROR ("mutex not locked", SCM_EOL);
        }

      if (kind != SCM_MUTEX_UNOWNED)
        {
          scm_i_pthread_mutex_unlock (&m->lock);
          SCM_MISC_ERROR ("mutex not locked by current thread", SCM_EOL);
        }
    }

  if (kind == SCM_MUTEX_RECURSIVE && m->level > 0)
    m->level--;
  else
    {
      m->owner = SCM_BOOL_F;
      /* Wake up one waiter.  */
      unblock_from_queue (m->waiting);
    }

  scm_i_pthread_mutex_unlock (&m->lock);
}
#undef FUNC_NAME

SCM_DEFINE (scm_unlock_mutex, "unlock-mutex", 1, 0, 0, (SCM mutex),
            "Unlocks @var{mutex}.  The calling thread must already hold\n"
            "the lock on @var{mutex}, unless the mutex was created with\n"
            "the @code{allow-external-unlock} option; otherwise an error\n"
            "will be signalled.")
#define FUNC_NAME s_scm_unlock_mutex
{
  struct scm_mutex *m;
  scm_thread *t = SCM_I_CURRENT_THREAD;

  SCM_VALIDATE_MUTEX (1, mutex);

  m = SCM_MUTEX_DATA (mutex);

  /* Specialized unlock_mutex implementations according to the mutex
     kind.  */
  switch (SCM_MUTEX_KIND (mutex))
    {
    case SCM_MUTEX_STANDARD:
      unlock_mutex (SCM_MUTEX_STANDARD, m, t);
      break;
    case SCM_MUTEX_RECURSIVE:
      unlock_mutex (SCM_MUTEX_RECURSIVE, m, t);
      break;
    case SCM_MUTEX_UNOWNED:
      unlock_mutex (SCM_MUTEX_UNOWNED, m, t);
      break;
    default:
      abort ();
    }

  scm_remember_upto_here_1 (mutex);

  return SCM_BOOL_T;
}
#undef FUNC_NAME

SCM_DEFINE (scm_mutex_p, "mutex?", 1, 0, 0,
	    (SCM obj),
	    "Return @code{#t} if @var{obj} is a mutex.")
#define FUNC_NAME s_scm_mutex_p
{
  return SCM_MUTEXP (obj) ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME

SCM_DEFINE (scm_mutex_owner, "mutex-owner", 1, 0, 0,
	    (SCM mx),
	    "Return the thread owning @var{mx}, or @code{#f}.")
#define FUNC_NAME s_scm_mutex_owner
{
  SCM owner;
  struct scm_mutex *m = NULL;

  SCM_VALIDATE_MUTEX (1, mx);
  m = SCM_MUTEX_DATA (mx);
  scm_i_pthread_mutex_lock (&m->lock);
  owner = m->owner;
  scm_i_pthread_mutex_unlock (&m->lock);

  return owner;
}
#undef FUNC_NAME

SCM_DEFINE (scm_mutex_level, "mutex-level", 1, 0, 0,
	    (SCM mx),
	    "Return the lock level of mutex @var{mx}.")
#define FUNC_NAME s_scm_mutex_level
{
  SCM_VALIDATE_MUTEX (1, mx);
  if (SCM_MUTEX_KIND (mx) == SCM_MUTEX_RECURSIVE)
    return scm_from_int (SCM_MUTEX_DATA (mx)->level + 1);
  else if (scm_is_eq (SCM_MUTEX_DATA (mx)->owner, SCM_BOOL_F))
    return SCM_INUM0;
  else
    return SCM_INUM1;
}
#undef FUNC_NAME

SCM_DEFINE (scm_mutex_locked_p, "mutex-locked?", 1, 0, 0,
	    (SCM mx),
	    "Returns @code{#t} if the mutex @var{mx} is locked.")
#define FUNC_NAME s_scm_mutex_locked_p
{
  SCM_VALIDATE_MUTEX (1, mx);
  if (scm_is_eq (SCM_MUTEX_DATA (mx)->owner, SCM_BOOL_F))
    return SCM_BOOL_F;
  else
    return SCM_BOOL_T;
}
#undef FUNC_NAME




struct scm_cond {
  scm_i_pthread_mutex_t lock;
  SCM waiting;               /* the threads waiting for this condition. */
};

#define SCM_CONDVARP(x)       SCM_SMOB_PREDICATE (scm_tc16_condvar, x)
#define SCM_CONDVAR_DATA(x)   ((struct scm_cond *) SCM_SMOB_DATA (x))

static int
scm_cond_print (SCM cv, SCM port, scm_print_state *pstate SCM_UNUSED)
{
  struct scm_cond *c = SCM_CONDVAR_DATA (cv);
  scm_puts ("#<condition-variable ", port);
  scm_uintprint ((scm_t_bits)c, 16, port);
  scm_puts (">", port);
  return 1;
}

SCM_DEFINE (scm_make_condition_variable, "make-condition-variable", 0, 0, 0,
	    (void),
	    "Make a new condition variable.")
#define FUNC_NAME s_scm_make_condition_variable
{
  struct scm_cond *c;
  SCM cv;

  c = scm_gc_malloc (sizeof (struct scm_cond), "condition variable");
  c->waiting = SCM_EOL;
  SCM_NEWSMOB (cv, scm_tc16_condvar, (scm_t_bits) c);
  c->waiting = make_queue ();
  return cv;
}
#undef FUNC_NAME

static inline SCM
timed_wait (enum scm_mutex_kind kind, struct scm_mutex *m, struct scm_cond *c,
            scm_thread *current_thread, scm_t_timespec *waittime)
#define FUNC_NAME "wait-condition-variable"
{
  scm_i_scm_pthread_mutex_lock (&m->lock);

  if (!scm_is_eq (m->owner, current_thread->handle))
    {
      if (scm_is_eq (m->owner, SCM_BOOL_F))
        {
          scm_i_pthread_mutex_unlock (&m->lock);
          SCM_MISC_ERROR ("mutex not locked", SCM_EOL);
        }

      if (kind != SCM_MUTEX_UNOWNED)
        {
          scm_i_pthread_mutex_unlock (&m->lock);
          SCM_MISC_ERROR ("mutex not locked by current thread", SCM_EOL);
        }
    }

  while (1)
    {
      int err = 0;

      /* Unlock the mutex.  */
      if (kind == SCM_MUTEX_RECURSIVE && m->level > 0)
        m->level--;
      else
        {
          m->owner = SCM_BOOL_F;
          /* Wake up one waiter.  */
          unblock_from_queue (m->waiting);
        }

      /* Wait for someone to signal the cond, a timeout, or an
         interrupt.  */
      err = block_self (c->waiting, &m->lock, waittime);

      /* We woke up for some reason.  Reacquire the mutex before doing
         anything else.

         FIXME: We disable interrupts while reacquiring the mutex.  If
         we allow interrupts here, there's the risk of a nonlocal exit
         before we reaquire the mutex, which would be visible to user
         code.

         For example the unwind handler in

           (with-mutex m (wait-condition-variable c m))

         that tries to unlock M could see M in an already-unlocked
         state, if an interrupt while waiting on C caused the wait to
         abort and the woke thread lost the race to reacquire M.  That's
         not great.  Maybe it's necessary but for now we just disable
         interrupts while reaquiring a mutex after a wait.  */
      current_thread->block_asyncs++;
      if (kind == SCM_MUTEX_RECURSIVE &&
          scm_is_eq (m->owner, current_thread->handle))
	{
          m->level++;
          scm_i_pthread_mutex_unlock (&m->lock);
        }
      else
        while (1)
          {
            if (scm_is_eq (m->owner, SCM_BOOL_F))
              {
                m->owner = current_thread->handle;
                scm_i_pthread_mutex_unlock (&m->lock);
                break;
              }
            block_self (m->waiting, &m->lock, waittime);
          }
      current_thread->block_asyncs--;

      /* Now that we have the mutex again, handle the return value.  */
      if (err == 0)
        return SCM_BOOL_T;
      else if (err == ETIMEDOUT)
        return SCM_BOOL_F;
      else if (err == EINTR)
        /* Let caller run scm_async_tick() and loop.  */
        return SCM_BOOL_T;
      else
        {
          /* Shouldn't happen.  */
          errno = err;
          SCM_SYSERROR;
        }
    }
}
#undef FUNC_NAME

SCM_DEFINE (scm_timed_wait_condition_variable, "wait-condition-variable", 2, 1, 0,
	    (SCM cond, SCM mutex, SCM timeout),
"Wait until condition variable @var{cv} has been signalled.  While waiting, "
"mutex @var{mx} is atomically unlocked (as with @code{unlock-mutex}) and "
"is locked again when this function returns.  When @var{t} is given, "
"it specifies a point in time where the waiting should be aborted.  It "
"can be either a integer as returned by @code{current-time} or a pair "
"as returned by @code{gettimeofday}.  When the waiting is aborted the "
"mutex is locked and @code{#f} is returned.  When the condition "
"variable is in fact signalled, the mutex is also locked and @code{#t} "
"is returned. ")
#define FUNC_NAME s_scm_timed_wait_condition_variable
{
  scm_t_timespec waittime_val, *waittime = NULL;
  struct scm_cond *c;
  struct scm_mutex *m;
  scm_thread *t = SCM_I_CURRENT_THREAD;
  SCM ret;

  SCM_VALIDATE_CONDVAR (1, cond);
  SCM_VALIDATE_MUTEX (2, mutex);

  c = SCM_CONDVAR_DATA (cond);
  m = SCM_MUTEX_DATA (mutex);

  if (!SCM_UNBNDP (timeout))
    {
      to_timespec (timeout, &waittime_val);
      waittime = &waittime_val;
    }

  /* Specialized timed_wait implementations according to the mutex
     kind.  */
  switch (SCM_MUTEX_KIND (mutex))
    {
    case SCM_MUTEX_STANDARD:
      ret = timed_wait (SCM_MUTEX_STANDARD, m, c, t, waittime);
      break;
    case SCM_MUTEX_RECURSIVE:
      ret = timed_wait (SCM_MUTEX_RECURSIVE, m, c, t, waittime);
      break;
    case SCM_MUTEX_UNOWNED:
      ret = timed_wait (SCM_MUTEX_UNOWNED, m, c, t, waittime);
      break;
    default:
      abort ();
    }

  scm_remember_upto_here_2 (mutex, cond);

  return ret;
}
#undef FUNC_NAME

SCM_DEFINE (scm_signal_condition_variable, "signal-condition-variable", 1, 0, 0,
	    (SCM cv),
	    "Wake up one thread that is waiting for @var{cv}")
#define FUNC_NAME s_scm_signal_condition_variable
{
  struct scm_cond *c;
  SCM_VALIDATE_CONDVAR (1, cv);
  c = SCM_CONDVAR_DATA (cv);
  unblock_from_queue (c->waiting);
  return SCM_BOOL_T;
}
#undef FUNC_NAME

SCM_DEFINE (scm_broadcast_condition_variable, "broadcast-condition-variable", 1, 0, 0,
	    (SCM cv),
	    "Wake up all threads that are waiting for @var{cv}. ")
#define FUNC_NAME s_scm_broadcast_condition_variable
{
  struct scm_cond *c;
  SCM_VALIDATE_CONDVAR (1, cv);
  c = SCM_CONDVAR_DATA (cv);
  while (scm_is_true (unblock_from_queue (c->waiting)))
    ;
  return SCM_BOOL_T;
}
#undef FUNC_NAME

SCM_DEFINE (scm_condition_variable_p, "condition-variable?", 1, 0, 0,
	    (SCM obj),
	    "Return @code{#t} if @var{obj} is a condition variable.")
#define FUNC_NAME s_scm_condition_variable_p
{
  return SCM_CONDVARP(obj) ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME



/*** Select */

struct select_args
{
  int             nfds;
  fd_set         *read_fds;
  fd_set         *write_fds;
  fd_set         *except_fds;
  struct timeval *timeout;

  int             result;
  int             errno_value;
};

static void *
do_std_select (void *args)
{
  struct select_args *select_args;

  select_args = (struct select_args *) args;

  select_args->result =
    select (select_args->nfds,
	    select_args->read_fds, select_args->write_fds,
	    select_args->except_fds, select_args->timeout);
  select_args->errno_value = errno;

  return NULL;
}

int
scm_std_select (int nfds,
		fd_set *readfds,
		fd_set *writefds,
		fd_set *exceptfds,
		struct timeval *timeout)
{
  fd_set my_readfds;
  int res, eno, wakeup_fd;
  scm_thread *t = SCM_I_CURRENT_THREAD;
  struct select_args args;

  if (readfds == NULL)
    {
      FD_ZERO (&my_readfds);
      readfds = &my_readfds;
    }

  if (scm_i_prepare_to_wait_on_fd (t, t->sleep_pipe[1]))
    {
      eno = EINTR;
      res = -1;
    }
  else
    {
      wakeup_fd = t->sleep_pipe[0];
      FD_SET (wakeup_fd, readfds);
      if (wakeup_fd >= nfds)
        nfds = wakeup_fd+1;

      args.nfds = nfds;
      args.read_fds = readfds;
      args.write_fds = writefds;
      args.except_fds = exceptfds;
      args.timeout = timeout;

      /* Explicitly cooperate with the GC.  */
      scm_without_guile (do_std_select, &args);

      res = args.result;
      eno = args.errno_value;

      scm_i_wait_finished (t);

      if (res > 0 && FD_ISSET (wakeup_fd, readfds))
        {
          char dummy;
          full_read (wakeup_fd, &dummy, 1);

          FD_CLR (wakeup_fd, readfds);
          res -= 1;
          if (res == 0)
            {
              eno = EINTR;
              res = -1;
            }
        }
    }
  errno = eno;
  return res;
}

/* Convenience API for blocking while in guile mode. */

#if SCM_USE_PTHREAD_THREADS

/* It seems reasonable to not run procedures related to mutex and condition
   variables within `GC_do_blocking ()' since, (i) the GC can operate even
   without it, and (ii) the only potential gain would be GC latency.  See
   http://thread.gmane.org/gmane.comp.programming.garbage-collection.boehmgc/2245/focus=2251
   for a discussion of the pros and cons.  */

int
scm_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex)
{
  int res = scm_i_pthread_mutex_lock (mutex);
  return res;
}

static void
do_unlock (void *data)
{
  scm_i_pthread_mutex_unlock ((scm_i_pthread_mutex_t *)data);
}

void
scm_dynwind_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex)
{
  scm_i_scm_pthread_mutex_lock (mutex);
  scm_dynwind_unwind_handler (do_unlock, mutex, SCM_F_WIND_EXPLICITLY);
}

int
scm_pthread_cond_wait (scm_i_pthread_cond_t *cond, scm_i_pthread_mutex_t *mutex)
{
  return scm_i_pthread_cond_wait (cond, mutex);
}

int
scm_pthread_cond_timedwait (scm_i_pthread_cond_t *cond,
			    scm_i_pthread_mutex_t *mutex,
			    const scm_t_timespec *wt)
{
  return scm_i_pthread_cond_timedwait (cond, mutex, wt);
}

#endif

static void
do_unlock_with_asyncs (void *data)
{
  scm_i_pthread_mutex_unlock ((scm_i_pthread_mutex_t *)data);
  SCM_I_CURRENT_THREAD->block_asyncs--;
}

void
scm_i_dynwind_pthread_mutex_lock_block_asyncs (scm_i_pthread_mutex_t *mutex)
{
  SCM_I_CURRENT_THREAD->block_asyncs++;
  scm_i_scm_pthread_mutex_lock (mutex);
  scm_dynwind_unwind_handler (do_unlock_with_asyncs, mutex,
                              SCM_F_WIND_EXPLICITLY);
}

unsigned long
scm_std_usleep (unsigned long usecs)
{
  struct timeval tv;
  tv.tv_usec = usecs % 1000000;
  tv.tv_sec = usecs / 1000000;
  scm_std_select (0, NULL, NULL, NULL, &tv);
  return tv.tv_sec * 1000000 + tv.tv_usec;
}

unsigned int
scm_std_sleep (unsigned int secs)
{
  struct timeval tv;
  tv.tv_usec = 0;
  tv.tv_sec = secs;
  scm_std_select (0, NULL, NULL, NULL, &tv);
  return tv.tv_sec;
}

/*** Misc */

SCM_DEFINE (scm_current_thread, "current-thread", 0, 0, 0,
	    (void),
	    "Return the thread that called this function.")
#define FUNC_NAME s_scm_current_thread
{
  return SCM_I_CURRENT_THREAD->handle;
}
#undef FUNC_NAME

static SCM
scm_c_make_list (size_t n, SCM fill)
{
  SCM res = SCM_EOL;
  while (n-- > 0)
    res = scm_cons (fill, res);
  return res;
}

SCM_DEFINE (scm_all_threads, "all-threads", 0, 0, 0,
	    (void),
	    "Return a list of all threads.")
#define FUNC_NAME s_scm_all_threads
{
  /* We can not allocate while holding the thread_admin_mutex because
     of the way GC is done.
  */
  int n = thread_count;
  scm_thread *t;
  SCM list = scm_c_make_list (n, SCM_UNSPECIFIED), *l;

  scm_i_pthread_mutex_lock (&thread_admin_mutex);
  l = &list;
  for (t = all_threads; t && n > 0; t = t->next_thread)
    {
      if (t != scm_i_signal_delivery_thread)
	{
	  SCM_SETCAR (*l, t->handle);
	  l = SCM_CDRLOC (*l);
	}
      n--;
    }
  *l = SCM_EOL;
  scm_i_pthread_mutex_unlock (&thread_admin_mutex);
  return list;
}
#undef FUNC_NAME

SCM_DEFINE (scm_thread_exited_p, "thread-exited?", 1, 0, 0,
	    (SCM thread),
	    "Return @code{#t} iff @var{thread} has exited.\n")
#define FUNC_NAME s_scm_thread_exited_p
{
  return scm_from_bool (scm_c_thread_exited_p (thread));
}
#undef FUNC_NAME

int
scm_c_thread_exited_p (SCM thread)
#define FUNC_NAME  s_scm_thread_exited_p
{
  scm_thread *t;
  SCM_VALIDATE_THREAD (1, thread);
  t = SCM_I_THREAD_DATA (thread);
  return t->exited;
}
#undef FUNC_NAME

SCM_DEFINE (scm_total_processor_count, "total-processor-count", 0, 0, 0,
	    (void),
	    "Return the total number of processors of the machine, which\n"
	    "is guaranteed to be at least 1.  A ``processor'' here is a\n"
	    "thread execution unit, which can be either:\n\n"
	    "@itemize\n"
	    "@item an execution core in a (possibly multi-core) chip, in a\n"
	    "  (possibly multi- chip) module, in a single computer, or\n"
	    "@item a thread execution unit inside a core in the case of\n"
	    "  @dfn{hyper-threaded} CPUs.\n"
	    "@end itemize\n\n"
	    "Which of the two definitions is used, is unspecified.\n")
#define FUNC_NAME s_scm_total_processor_count
{
  return scm_from_ulong (num_processors (NPROC_ALL));
}
#undef FUNC_NAME

SCM_DEFINE (scm_current_processor_count, "current-processor-count", 0, 0, 0,
	    (void),
	    "Like @code{total-processor-count}, but return the number of\n"
	    "processors available to the current process.  See\n"
	    "@code{setaffinity} and @code{getaffinity} for more\n"
	    "information.\n")
#define FUNC_NAME s_scm_current_processor_count
{
  return scm_from_ulong (num_processors (NPROC_CURRENT));
}
#undef FUNC_NAME




static scm_i_pthread_cond_t wake_up_cond;
static int threads_initialized_p = 0;


/*** Initialization */

scm_i_pthread_mutex_t scm_i_misc_mutex;

#if SCM_USE_PTHREAD_THREADS
pthread_mutexattr_t scm_i_pthread_mutexattr_recursive[1];
#endif

void
scm_threads_prehistory (void *base)
{
#if SCM_USE_PTHREAD_THREADS
  pthread_mutexattr_init (scm_i_pthread_mutexattr_recursive);
  pthread_mutexattr_settype (scm_i_pthread_mutexattr_recursive,
			     PTHREAD_MUTEX_RECURSIVE);
#endif

  scm_i_pthread_mutex_init (&scm_i_misc_mutex, NULL);
  scm_i_pthread_cond_init (&wake_up_cond, NULL);

  thread_gc_kind =
    GC_new_kind (GC_new_free_list (),
		 GC_MAKE_PROC (GC_new_proc (thread_mark), 0),
		 0, 1);

  guilify_self_1 ((struct GC_stack_base *) base, 0);
}

scm_t_bits scm_tc16_thread;
scm_t_bits scm_tc16_mutex;
scm_t_bits scm_tc16_condvar;

static void
scm_init_ice_9_threads (void *unused)
{
#include "threads.x"

  cancel_thread_var =
    scm_module_variable (scm_current_module (),
                         scm_from_latin1_symbol ("cancel-thread"));
  join_thread_var =
    scm_module_variable (scm_current_module (),
                         scm_from_latin1_symbol ("join-thread"));
  call_with_new_thread_var =
    scm_module_variable (scm_current_module (),
                         scm_from_latin1_symbol ("call-with-new-thread"));
}

void
scm_init_threads ()
{
  scm_tc16_thread = scm_make_smob_type ("thread", sizeof (scm_thread));
  scm_set_smob_print (scm_tc16_thread, thread_print);

  scm_tc16_mutex = scm_make_smob_type ("mutex", sizeof (struct scm_mutex));
  scm_set_smob_print (scm_tc16_mutex, scm_mutex_print);

  scm_tc16_condvar = scm_make_smob_type ("condition-variable",
					 sizeof (struct scm_cond));
  scm_set_smob_print (scm_tc16_condvar, scm_cond_print);

  default_dynamic_state = SCM_BOOL_F;
  guilify_self_2 (scm_i_make_initial_dynamic_state ());
  threads_initialized_p = 1;

  scm_c_register_extension ("libguile-" SCM_EFFECTIVE_VERSION,
                            "scm_init_ice_9_threads",
                            scm_init_ice_9_threads, NULL);
}

void
scm_init_threads_default_dynamic_state ()
{
  default_dynamic_state = scm_current_dynamic_state ();
}