summaryrefslogtreecommitdiff
path: root/module/language/tree-il/peval.scm
blob: 36a3033b0dd84d409124a0f9ce88fbf3944cbbcf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
;;; Tree-IL partial evaluator

;; Copyright (C) 2011-2014, 2017, 2019, 2020, 2021, 2022 Free Software Foundation, Inc.

;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;; 
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;;;; Lesser General Public License for more details.
;;;; 
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(define-module (language tree-il peval)
  #:use-module (language tree-il)
  #:use-module (language tree-il primitives)
  #:use-module (language tree-il effects)
  #:use-module (ice-9 vlist)
  #:use-module (ice-9 match)
  #:use-module (srfi srfi-1)
  #:use-module (srfi srfi-9)
  #:use-module (srfi srfi-11)
  #:use-module (srfi srfi-26)
  #:use-module (system base target)
  #:use-module (ice-9 control)
  #:export (peval))

;;;
;;; Partial evaluation is Guile's most important source-to-source
;;; optimization pass.  It performs copy propagation, dead code
;;; elimination, inlining, and constant folding, all while preserving
;;; the order of effects in the residual program.
;;;
;;; For more on partial evaluation, see William Cook’s excellent
;;; tutorial on partial evaluation at DSL 2011, called “Build your own
;;; partial evaluator in 90 minutes”[0].
;;;
;;; Our implementation of this algorithm was heavily influenced by
;;; Waddell and Dybvig's paper, "Fast and Effective Procedure Inlining",
;;; IU CS Dept. TR 484.
;;;
;;; [0] http://www.cs.utexas.edu/~wcook/tutorial/.  
;;;

;; First, some helpers.
;;
(define-syntax *logging* (identifier-syntax #f))

;; For efficiency we define *logging* to inline to #f, so that the call
;; to log* gets optimized out.  If you want to log, uncomment these
;; lines:
;;
;; (define %logging #f)
;; (define-syntax *logging* (identifier-syntax %logging))
;;
;; Then you can change %logging at runtime.

(define-syntax log
  (syntax-rules (quote)
    ((log 'event arg ...)
     (if (and *logging*
              (or (eq? *logging* #t)
                  (memq 'event *logging*)))
         (log* 'event arg ...)))))

(define (log* event . args)
  (let ((pp (module-ref (resolve-interface '(ice-9 pretty-print))
                        'pretty-print)))
    (pp `(log ,event . ,args))
    (newline)
    (values)))

(define (tree-il-any proc exp)
  (let/ec k
    (tree-il-fold (lambda (exp res)
                    (let ((res (proc exp)))
                      (if res (k res) #f)))
                  (lambda (exp res) #f)
                  #f exp)))

(define (vlist-any proc vlist)
  (let ((len (vlist-length vlist)))
    (let lp ((i 0))
      (and (< i len)
           (or (proc (vlist-ref vlist i))
               (lp (1+ i)))))))

(define (singly-valued-expression? exp)
  (match exp
    (($ <const>) #t)
    (($ <void>) #t)
    (($ <lexical-ref>) #t)
    (($ <primitive-ref>) #t)
    (($ <module-ref>) #t)
    (($ <toplevel-ref>) #t)
    (($ <primcall> _ (? singly-valued-primitive?)) #t)
    (($ <primcall> _ 'values (val)) #t)
    (($ <lambda>) #t)
    (($ <conditional> _ test consequent alternate)
     (and (singly-valued-expression? consequent)
          (singly-valued-expression? alternate)))
    (else #f)))

(define (truncate-values x)
  "Discard all but the first value of X."
  (if (singly-valued-expression? x)
      x
      (make-primcall (tree-il-src x) 'values (list x))))

;; Peval will do a one-pass analysis on the source program to determine
;; the set of assigned lexicals, and to identify unreferenced and
;; singly-referenced lexicals.
;;
(define-record-type <var>
  (make-var name gensym refcount set?)
  var?
  (name var-name)
  (gensym var-gensym)
  (refcount var-refcount set-var-refcount!)
  (set? var-set? set-var-set?!))

(define* (build-var-table exp #:optional (table vlist-null))
  (tree-il-fold
   (lambda (exp res)
     (match exp
       (($ <lexical-ref> src name gensym)
        (let ((var (cdr (vhash-assq gensym res))))
          (set-var-refcount! var (1+ (var-refcount var)))
          res))
       (($ <lambda-case> src req opt rest kw init gensyms body alt)
        (fold (lambda (name sym res)
                (vhash-consq sym (make-var name sym 0 #f) res))
              res
              (append req (or opt '()) (if rest (list rest) '())
                      (match kw
                        ((aok? (kw name sym) ...) name)
                        (_ '())))
              gensyms))
       (($ <let> src names gensyms vals body)
        (fold (lambda (name sym res)
                (vhash-consq sym (make-var name sym 0 #f) res))
              res names gensyms))
       (($ <letrec>)
        (error "unexpected letrec"))
       (($ <fix> src names gensyms vals body)
        (fold (lambda (name sym res)
                (vhash-consq sym (make-var name sym 0 #f) res))
              res names gensyms))
       (($ <lexical-set> src name gensym exp)
        (set-var-set?! (cdr (vhash-assq gensym res)) #t)
        res)
       (_ res)))
   (lambda (exp res) res)
   table exp))

(define (augment-var-table-with-externally-introduced-lexicals exp table)
  "Take the previously computed var table TABLE and the term EXP and
return a table augmented with the lexicals bound in EXP which are not
present in TABLE.  This is used for the result of `expand-primcalls`,
which may introduce new lexicals if a subexpression needs to be
referenced multiple times."
  (define (maybe-add-var name sym table)
    ;; Use a refcount of 2 to prevent the copy-single optimization.
    (define refcount 2)
    (define assigned? #f)
    (if (vhash-assq sym table)
        table
        (vhash-consq sym (make-var name sym refcount assigned?) table)))
  (tree-il-fold
   (lambda (exp table)
     (match exp
       (($ <lambda-case> src req opt rest kw init gensyms body alt)
        (fold maybe-add-var table
              (append req (or opt '()) (if rest (list rest) '())
                      (match kw
                        ((aok? (kw name sym) ...) name)
                        (_ '())))
              gensyms))
       (($ <let> src names gensyms vals body)
        (fold maybe-add-var table names gensyms))
       (($ <letrec>)
        (error "unexpected letrec"))
       (($ <fix> src names gensyms vals body)
        (fold maybe-add-var table names gensyms))
       (_ table)))
   (lambda (exp table) table)
   table exp))

;; Counters are data structures used to limit the effort that peval
;; spends on particular inlining attempts.  Each call site in the source
;; program is allocated some amount of effort.  If peval exceeds the
;; effort counter while attempting to inline a call site, it aborts the
;; inlining attempt and residualizes a call instead.
;;
;; As there is a fixed number of call sites, that makes `peval' O(N) in
;; the number of call sites in the source program.
;;
;; Counters should limit the size of the residual program as well, but
;; currently this is not implemented.
;;
;; At the top level, before seeing any peval call, there is no counter,
;; because inlining will terminate as there is no recursion.  When peval
;; sees a call at the top level, it will make a new counter, allocating
;; it some amount of effort and size.
;;
;; This top-level effort counter effectively "prints money".  Within a
;; toplevel counter, no more effort is printed ex nihilo; for a nested
;; inlining attempt to proceed, effort must be transferred from the
;; toplevel counter to the nested counter.
;;
;; Via `data' and `prev', counters form a linked list, terminating in a
;; toplevel counter.  In practice `data' will be the a pointer to the
;; source expression of the procedure being inlined.
;;
;; In this way peval can detect a recursive inlining attempt, by walking
;; back on the `prev' links looking for matching `data'.  Recursive
;; counters receive a more limited effort allocation, as we don't want
;; to spend all of the effort for a toplevel inlining site on loops.
;; Also, recursive counters don't need a prompt at each inlining site:
;; either the call chain folds entirely, or it will be residualized at
;; its original call.
;;
(define-record-type <counter>
  (%make-counter effort size continuation recursive? data prev)
  counter?
  (effort effort-counter)
  (size size-counter)
  (continuation counter-continuation)
  (recursive? counter-recursive? set-counter-recursive?!)
  (data counter-data)
  (prev counter-prev))

(define (abort-counter c)
  ((counter-continuation c)))

(define (record-effort! c)
  (let ((e (effort-counter c)))
    (if (zero? (variable-ref e))
        (abort-counter c)
        (variable-set! e (1- (variable-ref e))))))

(define (record-size! c)
  (let ((s (size-counter c)))
    (if (zero? (variable-ref s))
        (abort-counter c)
        (variable-set! s (1- (variable-ref s))))))

(define (find-counter data counter)
  (and counter
       (if (eq? data (counter-data counter))
           counter
           (find-counter data (counter-prev counter)))))

(define* (transfer! from to #:optional
                    (effort (variable-ref (effort-counter from)))
                    (size (variable-ref (size-counter from))))
  (define (transfer-counter! from-v to-v amount)
    (let* ((from-balance (variable-ref from-v))
           (to-balance (variable-ref to-v))
           (amount (min amount from-balance)))
      (variable-set! from-v (- from-balance amount))
      (variable-set! to-v (+ to-balance amount))))

  (transfer-counter! (effort-counter from) (effort-counter to) effort)
  (transfer-counter! (size-counter from) (size-counter to) size))

(define (make-top-counter effort-limit size-limit continuation data)
  (%make-counter (make-variable effort-limit)
                 (make-variable size-limit)
                 continuation
                 #t
                 data
                 #f))

(define (make-nested-counter continuation data current)
  (let ((c (%make-counter (make-variable 0)
                          (make-variable 0)
                          continuation
                          #f
                          data
                          current)))
    (transfer! current c)
    c))

(define (make-recursive-counter effort-limit size-limit orig current)
  (let ((c (%make-counter (make-variable 0)
                          (make-variable 0)
                          (counter-continuation orig)
                          #t
                          (counter-data orig)
                          current)))
    (transfer! current c effort-limit size-limit)
    c))

;; Operand structures allow bindings to be processed lazily instead of
;; eagerly.  By doing so, hopefully we can get process them in a way
;; appropriate to their use contexts.  Operands also prevent values from
;; being visited multiple times, wasting effort.
;;
;; TODO: Record value size in operand structure?
;; 
(define-record-type <operand>
  (%make-operand var sym visit source visit-count use-count
                 copyable? residual-value constant-value alias)
  operand?
  (var operand-var)
  (sym operand-sym)
  (visit %operand-visit)
  (source operand-source)
  (visit-count operand-visit-count set-operand-visit-count!)
  (use-count operand-use-count set-operand-use-count!)
  (copyable? operand-copyable? set-operand-copyable?!)
  (residual-value operand-residual-value %set-operand-residual-value!)
  (constant-value operand-constant-value set-operand-constant-value!)
  (alias operand-alias set-operand-alias!))

(define* (make-operand var sym #:optional source visit alias)
  ;; Bind SYM to VAR, with value SOURCE.  Unassigned bound operands are
  ;; considered copyable until we prove otherwise.  If we have a source
  ;; expression, truncate it to one value.  Copy propagation does not
  ;; work on multiply-valued expressions.
  (let ((source (and=> source truncate-values)))
    (%make-operand var sym visit source 0 0
                   (and source (not (var-set? var))) #f #f
                   (and (not (var-set? var)) alias))))

(define* (make-bound-operands vars syms sources visit #:optional aliases)
  (if aliases
      (map (lambda (name sym source alias)
             (make-operand name sym source visit alias))
           vars syms sources aliases)
      (map (lambda (name sym source)
             (make-operand name sym source visit #f))
           vars syms sources)))

(define (make-unbound-operands vars syms)
  (map make-operand vars syms))

(define (set-operand-residual-value! op val)
  (%set-operand-residual-value!
   op
   (match val
    (($ <primcall> src 'values (first))
     ;; The continuation of a residualized binding does not need the
     ;; introduced `values' node, so undo the effects of truncation.
     first)
    (else
     val))))

(define* (visit-operand op counter ctx #:optional effort-limit size-limit)
  ;; Peval is O(N) in call sites of the source program.  However,
  ;; visiting an operand can introduce new call sites.  If we visit an
  ;; operand outside a counter -- i.e., outside an inlining attempt --
  ;; this can lead to divergence.  So, if we are visiting an operand to
  ;; try to copy it, and there is no counter, make a new one.
  ;;
  ;; This will only happen at most as many times as there are lexical
  ;; references in the source program.
  (and (zero? (operand-visit-count op))
       (dynamic-wind
         (lambda ()
           (set-operand-visit-count! op (1+ (operand-visit-count op))))
         (lambda ()
           (and (operand-source op)
                (if (or counter (and (not effort-limit) (not size-limit)))
                    ((%operand-visit op) (operand-source op) counter ctx)
                    (let/ec k
                      (define (abort)
                        ;; If we abort when visiting the value in a
                        ;; fresh context, we won't succeed in any future
                        ;; attempt, so don't try to copy it again.
                        (set-operand-copyable?! op #f)
                        (k #f))
                      ((%operand-visit op)
                       (operand-source op) 
                       (make-top-counter effort-limit size-limit abort op)
                       ctx)))))
         (lambda ()
           (set-operand-visit-count! op (1- (operand-visit-count op)))))))

;; A helper for constant folding.
;;
(define (types-check? primitive-name args)
  (case primitive-name
    ((values) #t)
    ((not pair? null? list? symbol? vector? struct?)
     (= (length args) 1))
    ((eq? eqv? equal?)
     (= (length args) 2))
    ;; FIXME: add more cases?
    (else #f)))

(define* (peval exp #:optional (cenv (current-module)) (env vlist-null)
                #:key
                (operator-size-limit 40)
                (operand-size-limit 20)
                (value-size-limit 10)
                (effort-limit 500)
                (recursive-effort-limit 100)
                (cross-module-inlining? #f))
  "Partially evaluate EXP in compilation environment CENV, with
top-level bindings from ENV and return the resulting expression."

  ;; This is a simple partial evaluator.  It effectively performs
  ;; constant folding, copy propagation, dead code elimination, and
  ;; inlining.

  ;; TODO:
  ;;
  ;; Propagate copies across toplevel bindings, if we can prove the
  ;; bindings to be immutable.
  ;;
  ;; Specialize lambda expressions with invariant arguments.

  (define local-toplevel-env
    ;; The top-level environment of the module being compiled.
    (let ()
      (define (env-folder x env)
        (match x
          (($ <toplevel-define> _ _ name)
           (vhash-consq name #t env))
          (($ <seq> _ head tail)
           (env-folder tail (env-folder head env)))
          (_ env)))
      (env-folder exp vlist-null)))

  (define (local-toplevel? name)
    (vhash-assq name local-toplevel-env))

  ;; gensym -> <var>
  ;; renamed-term -> original-term
  ;;
  (define store (build-var-table exp))

  (define (record-new-temporary! name sym refcount)
    (set! store (vhash-consq sym (make-var name sym refcount #f) store)))

  (define (lookup-var sym)
    (let ((v (vhash-assq sym store)))
      (if v (cdr v) (error "unbound var" sym (vlist->list store)))))

  (define (fresh-gensyms vars)
    (map (lambda (var)
           (let ((new (gensym (string-append (symbol->string (var-name var))
                                             " "))))
             (set! store (vhash-consq new var store))
             new))
         vars))

  (define (fresh-temporaries ls)
    (map (lambda (elt)
           (let ((new (gensym "tmp ")))
             (record-new-temporary! 'tmp new 1)
             new))
         ls))

  (define (assigned-lexical? sym)
    (var-set? (lookup-var sym)))

  (define (lexical-refcount sym)
    (var-refcount (lookup-var sym)))

  (define (splice-expression exp)
    (define vars (make-hash-table))
    (define (rename! old*)
      (match old*
        (() '())
        ((old . old*)
         (cons (let ((new (gensym "t")))
                 (hashq-set! vars old new)
                 new)
               (rename! old*)))))
    (define (new-name old) (hashq-ref vars old))
    (define renamed
      (pre-order
       (match-lambda
         (($ <lexical-ref> src name gensym)
          (make-lexical-ref src name (new-name gensym)))
         (($ <lexical-set> src name gensym exp)
          (make-lexical-set src name (new-name gensym) exp))
         (($ <lambda-case> src req opt rest kw init gensyms body alt)
          (let ((gensyms (rename! gensyms)))
            (make-lambda-case src req opt rest
                              (match kw
                                ((aok? (kw name sym) ...)
                                 (cons aok?
                                       (map (lambda (kw name sym)
                                              (list kw name (new-name sym)))
                                            kw name sym)))
                                (#f #f))
                              init gensyms body alt)))
         (($ <let> src names gensyms vals body)
          (make-let src names (rename! gensyms) vals body))
         (($ <letrec>)
          (error "unexpected letrec"))
         (($ <fix> src names gensyms vals body)
          (make-fix src names (rename! gensyms) vals body))
         (exp exp))
       exp))
    (set! store (build-var-table renamed store))
    renamed)

  (define (with-temporaries src exps refcount can-copy? k)
    (let* ((pairs (map (match-lambda
                         ((and exp (? can-copy?))
                          (cons #f exp))
                         (exp
                          (let ((sym (gensym "tmp ")))
                            (record-new-temporary! 'tmp sym refcount)
                            (cons sym exp))))
                       exps))
           (tmps (filter car pairs)))
      (match tmps
        (() (k exps))
        (tmps
         (make-let src
                   (make-list (length tmps) 'tmp)
                   (map car tmps)
                   (map cdr tmps)
                   (k (map (match-lambda
                             ((#f . val) val)
                             ((sym . _)
                              (make-lexical-ref #f 'tmp sym)))
                           pairs)))))))

  (define (make-begin0 src first second)
    (make-let-values
     src
     first
     (let ((vals (gensym "vals ")))
       (record-new-temporary! 'vals vals 1)
       (make-lambda-case
        #f
        '() #f 'vals #f '() (list vals)
        (make-seq
         src
         second
         (make-primcall #f 'apply
                        (list
                         (make-primitive-ref #f 'values)
                         (make-lexical-ref #f 'vals vals))))
        #f))))

  ;; ORIG has been alpha-renamed to NEW.  Analyze NEW and record a link
  ;; from it to ORIG.
  ;;
  (define (record-source-expression! orig new)
    (set! store (vhash-consq new (source-expression orig) store))
    new)

  ;; Find the source expression corresponding to NEW.  Used to detect
  ;; recursive inlining attempts.
  ;;
  (define (source-expression new)
    (let ((x (vhash-assq new store)))
      (if x (cdr x) new)))

  (define (record-operand-use op)
    (set-operand-use-count! op (1+ (operand-use-count op))))

  (define (unrecord-operand-uses op n)
    (let ((count (- (operand-use-count op) n)))
      (when (zero? count)
        (set-operand-residual-value! op #f))
      (set-operand-use-count! op count)))

  (define* (residualize-lexical op #:optional ctx val)
    (log 'residualize op)
    (record-operand-use op)
    (if (memq ctx '(value values))
        (set-operand-residual-value! op val))
    (make-lexical-ref #f (var-name (operand-var op)) (operand-sym op)))

  (define (fold-constants src name args ctx)
    (define (apply-primitive name args)
      ;; todo: further optimize commutative primitives
      (catch #t
        (lambda ()
          (call-with-values
              (lambda ()
                (apply (module-ref the-scm-module name) args))
            (lambda results
              (values #t results))))
        (lambda _
          (values #f '()))))
    (define (make-values src values)
      (match values
        ((single) single)               ; 1 value
        ((_ ...)                        ; 0, or 2 or more values
         (make-primcall src 'values values))))
    (define (residualize-call)
      (make-primcall src name args))
    (cond
     ((every const? args)
      (let-values (((success? values)
                    (apply-primitive name (map const-exp args))))
        (log 'fold success? values name args)
        (if success?
            (case ctx
              ((effect) (make-void src))
              ((test)
               ;; Values truncation: only take the first
               ;; value.
               (if (pair? values)
                   (make-const src (car values))
                   (make-values src '())))
              (else
               (make-values src (map (cut make-const src <>) values))))
            (residualize-call))))
     ((and (eq? ctx 'effect) (types-check? name args))
      (make-void #f))
     (else
      (residualize-call))))

  (define (inline-values src exp nmin nmax consumer)
    (let loop ((exp exp))
      (match exp
        ;; Some expression types are always singly-valued.
        ((or ($ <const>)
             ($ <void>)
             ($ <lambda>)
             ($ <lexical-ref>)
             ($ <toplevel-ref>)
             ($ <module-ref>)
             ($ <primitive-ref>)
             ($ <lexical-set>)          ; FIXME: these set! expressions
             ($ <toplevel-set>)         ; could return zero values in
             ($ <toplevel-define>)      ; the future
             ($ <module-set>)           ;
             ($ <primcall> src (? singly-valued-primitive?)))
         (and (<= nmin 1) (or (not nmax) (>= nmax 1))
              (make-call src (make-lambda #f '() consumer) (list exp))))

        ;; Statically-known number of values.
        (($ <primcall> src 'values vals)
         (and (<= nmin (length vals)) (or (not nmax) (>= nmax (length vals)))
              (make-call src (make-lambda #f '() consumer) vals)))

        ;; Not going to copy code into both branches.
        (($ <conditional>) #f)

        ;; Bail on other applications.
        (($ <call>) #f)
        (($ <primcall>) #f)

        ;; Bail on prompt and abort.
        (($ <prompt>) #f)
        (($ <abort>) #f)
        
        ;; Propagate to tail positions.
        (($ <let> src names gensyms vals body)
         (let ((body (loop body)))
           (and body
                (make-let src names gensyms vals body))))
        (($ <fix> src names gensyms vals body)
         (let ((body (loop body)))
           (and body
                (make-fix src names gensyms vals body))))
        (($ <let-values> src exp
            ($ <lambda-case> src2 req opt rest kw inits gensyms body #f))
         (let ((body (loop body)))
           (and body
                (make-let-values src exp
                                 (make-lambda-case src2 req opt rest kw
                                                   inits gensyms body #f)))))
        (($ <seq> src head tail)
         (let ((tail (loop tail)))
           (and tail (make-seq src head tail)))))))

  (define compute-effects
    (make-effects-analyzer assigned-lexical?))

  (define (constant-expression? x)
    ;; Return true if X is constant, for the purposes of copying or
    ;; elision---i.e., if it is known to have no effects, does not
    ;; allocate storage for a mutable object, and does not access
    ;; mutable data (like `car' or toplevel references).
    (constant? (compute-effects x)))

  (define (prune-bindings ops in-order? body counter ctx build-result)
    ;; This helper handles both `let' and `letrec'/`fix'.  In the latter
    ;; cases we need to make sure that if referenced binding A needs
    ;; as-yet-unreferenced binding B, that B is processed for value.
    ;; Likewise if C, when processed for effect, needs otherwise
    ;; unreferenced D, then D needs to be processed for value too.
    ;;
    (define (referenced? op)
      ;; When we visit lambdas in operator context, we just copy them,
      ;; as we will process their body later.  However this does have
      ;; the problem that any free var referenced by the lambda is not
      ;; marked as needing residualization.  Here we hack around this
      ;; and treat all bindings as referenced if we are in operator
      ;; context.
      (or (eq? ctx 'operator)
          (not (zero? (operand-use-count op)))))
    
    ;; values := (op ...)
    ;; effects := (op ...)
    (define (residualize values effects)
      ;; Note, values and effects are reversed.
      (cond
       (in-order?
        (let ((values (filter operand-residual-value ops)))
          (if (null? values)
              body
              (build-result (map (compose var-name operand-var) values)
                            (map operand-sym values)
                            (map operand-residual-value values)
                            body))))
       (else
        (let ((body
               (if (null? effects)
                   body
                   (let ((effect-vals (map operand-residual-value effects)))
                     (list->seq #f (reverse (cons body effect-vals)))))))
          (if (null? values)
              body
              (let ((values (reverse values)))
                (build-result (map (compose var-name operand-var) values)
                              (map operand-sym values)
                              (map operand-residual-value values)
                              body)))))))

    ;; old := (bool ...)
    ;; values := (op ...)
    ;; effects := ((op . value) ...)
    (let prune ((old (map referenced? ops)) (values '()) (effects '()))
      (let lp ((ops* ops) (values values) (effects effects))
        (cond
         ((null? ops*)
          (let ((new (map referenced? ops)))
            (if (not (equal? new old))
                (prune new values '())
                (residualize values
                             (map (lambda (op val)
                                    (set-operand-residual-value! op val)
                                    op)
                                  (map car effects) (map cdr effects))))))
         (else
          (let ((op (car ops*)))
            (cond
             ((memq op values)
              (lp (cdr ops*) values effects))
             ((operand-residual-value op)
              (lp (cdr ops*) (cons op values) effects))
             ((referenced? op)
              (set-operand-residual-value! op (visit-operand op counter 'value))
              (lp (cdr ops*) (cons op values) effects))
             (else
              (lp (cdr ops*)
                  values
                  (let ((effect (visit-operand op counter 'effect)))
                    (if (void? effect)
                        effects
                        (acons op effect effects))))))))))))
  
  (define (small-expression? x limit)
    (let/ec k
      (tree-il-fold
       (lambda (x res)                  ; down
         (1+ res))
       (lambda (x res)                  ; up
         (if (< res limit)
             res
             (k #f)))
       0 x)
      #t))
  
  (define (extend-env sym op env)
    (vhash-consq (operand-sym op) op (vhash-consq sym op env)))
      
  (let loop ((exp   exp)
             (env   vlist-null)         ; vhash of gensym -> <operand>
             (counter #f)               ; inlined call stack
             (ctx 'values)) ; effect, value, values, test, operator, or call
    (define (lookup var)
      (cond 
       ((vhash-assq var env) => cdr)
       (else (error "unbound var" var))))

    ;; Find a value referenced a specific number of times.  This is a hack
    ;; that's used for propagating fresh data structures like rest lists and
    ;; prompt tags.  Usually we wouldn't copy consed data, but we can do so in
    ;; some special cases like `apply' or prompts if we can account
    ;; for all of its uses.
    ;;
    ;; You don't want to use this in general because it introduces a slight
    ;; nonlinearity by running peval again (though with a small effort and size
    ;; counter).
    ;;
    (define (find-definition x n-aliases)
      (cond
       ((lexical-ref? x)
        (cond
         ((lookup (lexical-ref-gensym x))
          => (lambda (op)
               (if (var-set? (operand-var op))
                   (values #f #f)
                   (let ((y (or (operand-residual-value op)
                                (visit-operand op counter 'value 10 10)
                                (operand-source op))))
                     (cond
                      ((and (lexical-ref? y)
                            (= (lexical-refcount (lexical-ref-gensym x)) 1))
                       ;; X is a simple alias for Y.  Recurse, regardless of
                       ;; the number of aliases we were expecting.
                       (find-definition y n-aliases))
                      ((= (lexical-refcount (lexical-ref-gensym x)) n-aliases)
                       ;; We found a definition that is aliased the right
                       ;; number of times.  We still recurse in case it is a
                       ;; lexical.
                       (values (find-definition y 1)
                               op))
                      (else
                       ;; We can't account for our aliases.
                       (values #f #f)))))))
         (else
          ;; A formal parameter.  Can't say anything about that.
          (values #f #f))))
       ((= n-aliases 1)
        ;; Not a lexical: success, but only if we are looking for an
        ;; unaliased value.
        (values x #f))
       (else (values #f #f))))

    (define (visit exp ctx)
      (loop exp env counter ctx))

    (define (for-value exp)    (visit exp 'value))
    (define (for-values exp)   (visit exp 'values))
    (define (for-test exp)     (visit exp 'test))
    (define (for-effect exp)   (visit exp 'effect))
    (define (for-call exp)     (visit exp 'call))
    (define (for-tail exp)     (visit exp ctx))

    (if counter
        (record-effort! counter))

    (log 'visit ctx (and=> counter effort-counter)
         (unparse-tree-il exp))

    (match exp
      (($ <const>)
       (case ctx
         ((effect) (make-void #f))
         (else exp)))
      (($ <void>)
       (case ctx
         ((test) (make-const #f #t))
         (else exp)))
      (($ <lexical-ref> _ _ gensym)
       (log 'begin-copy gensym)
       (let lp ((op (lookup gensym)))
         (cond
          ((eq? ctx 'effect)
           (log 'lexical-for-effect gensym)
           (make-void #f))
          ((operand-alias op)
           ;; This is an unassigned operand that simply aliases some
           ;; other operand.  Recurse to avoid residualizing the leaf
           ;; binding.
           => lp)
          ((eq? ctx 'call)
           ;; Don't propagate copies if we are residualizing a call.
           (log 'residualize-lexical-call gensym op)
           (residualize-lexical op))
          ((var-set? (operand-var op))
           ;; Assigned lexicals don't copy-propagate.
           (log 'assigned-var gensym op)
           (residualize-lexical op))
          ((not (operand-copyable? op))
           ;; We already know that this operand is not copyable.
           (log 'not-copyable gensym op)
           (residualize-lexical op))
          ((and=> (operand-constant-value op)
                  (lambda (x) (or (const? x) (void? x) (primitive-ref? x))))
           ;; A cache hit.
           (let ((val (operand-constant-value op)))
             (log 'memoized-constant gensym val)
             (for-tail val)))
          ((visit-operand op counter (if (eq? ctx 'values) 'value ctx)
                          recursive-effort-limit operand-size-limit)
           =>
           ;; If we end up deciding to residualize this value instead of
           ;; copying it, save that residualized value.
           (lambda (val)
             (cond
              ((not (constant-expression? val))
               (log 'not-constant gensym op)
               ;; At this point, ctx is operator, test, or value.  A
               ;; value that is non-constant in one context will be
               ;; non-constant in the others, so it's safe to record
               ;; that here, and avoid future visits.
               (set-operand-copyable?! op #f)
               (residualize-lexical op ctx val))
              ((or (const? val)
                   (void? val)
                   (primitive-ref? val))
               ;; Always propagate simple values that cannot lead to
               ;; code bloat.
               (log 'copy-simple gensym val)
               ;; It could be this constant is the result of folding.
               ;; If that is the case, cache it.  This helps loop
               ;; unrolling get farther.
               (if (or (eq? ctx 'value) (eq? ctx 'values))
                   (begin
                     (log 'memoize-constant gensym val)
                     (set-operand-constant-value! op val)))
               val)
              ((= 1 (var-refcount (operand-var op)))
               ;; Always propagate values referenced only once.
               (log 'copy-single gensym val)
               val)
              ;; FIXME: do demand-driven size accounting rather than
              ;; these heuristics.
              ((eq? ctx 'operator)
               ;; A pure expression in the operator position.  Inline
               ;; if it's a lambda that's small enough.
               (if (and (lambda? val)
                        (small-expression? val operator-size-limit))
                   (begin
                     (log 'copy-operator gensym val)
                     val)
                   (begin
                     (log 'too-big-for-operator gensym val)
                     (residualize-lexical op ctx val))))
              (else
               ;; A pure expression, processed for call or for value.
               ;; Don't inline lambdas, because they will probably won't
               ;; fold because we don't know the operator.
               (if (and (small-expression? val value-size-limit)
                        (not (tree-il-any lambda? val)))
                   (begin
                     (log 'copy-value gensym val)
                     val)
                   (begin
                     (log 'too-big-or-has-lambda gensym val)
                     (residualize-lexical op ctx val)))))))
          (else
           ;; Visit failed.  Either the operand isn't bound, as in
           ;; lambda formal parameters, or the copy was aborted.
           (log 'unbound-or-aborted gensym op)
           (residualize-lexical op)))))
      (($ <lexical-set> src name gensym exp)
       (let ((op (lookup gensym)))
         (if (zero? (var-refcount (operand-var op)))
             (let ((exp (for-effect exp)))
               (if (void? exp)
                   exp
                   (make-seq src exp (make-void #f))))
             (begin
               (record-operand-use op)
               (make-lexical-set src name (operand-sym op) (for-value exp))))))
      (($ <let> src
          (names ... rest)
          (gensyms ... rest-sym)
          (vals ... ($ <primcall> _ 'list rest-args))
          ($ <primcall> asrc 'apply
             (proc args ...
                   ($ <lexical-ref> _
                      (? (cut eq? <> rest))
                      (? (lambda (sym)
                           (and (eq? sym rest-sym)
                                (= (lexical-refcount sym) 1))))))))
       (let* ((tmps (make-list (length rest-args) 'tmp))
              (tmp-syms (fresh-temporaries tmps)))
         (for-tail
          (make-let src
                    (append names tmps)
                    (append gensyms tmp-syms)
                    (append vals rest-args)
                    (make-call
                     asrc
                     proc
                     (append args
                             (map (cut make-lexical-ref #f <> <>)
                                  tmps tmp-syms)))))))
      (($ <let> src names gensyms vals body)
       (define (lookup-alias exp)
         ;; It's very common for macros to introduce something like:
         ;;
         ;;   ((lambda (x y) ...) x-exp y-exp)
         ;;
         ;; In that case you might end up trying to inline something like:
         ;;
         ;;   (let ((x x-exp) (y y-exp)) ...)
         ;;
         ;; But if x-exp is itself a lexical-ref that aliases some much
         ;; larger expression, perhaps it will fail to inline due to
         ;; size.  However we don't want to introduce a useless alias
         ;; (in this case, x).  So if the RHS of a let expression is a
         ;; lexical-ref, we record that expression.  If we end up having
         ;; to residualize X, then instead we residualize X-EXP, as long
         ;; as it isn't assigned.
         ;;
         (match exp
           (($ <lexical-ref> _ _ sym)
            (let ((op (lookup sym)))
              (and (not (var-set? (operand-var op))) op)))
           (_ #f)))

       (let* ((vars (map lookup-var gensyms))
              (new (fresh-gensyms vars))
              (ops (make-bound-operands vars new vals
                                        (lambda (exp counter ctx)
                                          (loop exp env counter ctx))
                                        (map lookup-alias vals)))
              (env (fold extend-env env gensyms ops))
              (body (loop body env counter ctx)))
         (match body
           (($ <const>)
            (for-tail (list->seq src (append vals (list body)))))
           (($ <lexical-ref> _ _ (? (lambda (sym) (memq sym new)) sym))
            (let ((pairs (map cons new vals)))
              ;; (let ((x foo) (y bar) ...) x) => (begin bar ... foo)
              (for-tail
               (list->seq
                src
                (append (map cdr (alist-delete sym pairs eq?))
                        (list (assq-ref pairs sym)))))))
           ((and ($ <conditional> src*
                    ($ <lexical-ref> _ _ sym) ($ <lexical-ref> _ _ sym) alt)
                 (? (lambda (_)
                      (case ctx
                        ((test effect)
                         (and (equal? (list sym) new)
                              (= (lexical-refcount sym) 2)))
                        (else #f)))))
            ;; (let ((x EXP)) (if x x ALT)) -> (if EXP #t ALT) in test context
            (make-conditional src* (visit-operand (car ops) counter 'test)
                              (make-const src* #t) alt))
           (_
            ;; Only include bindings for which lexical references
            ;; have been residualized.
            (prune-bindings ops #f body counter ctx
                            (lambda (names gensyms vals body)
                              (if (null? names) (error "what!" names))
                              (make-let src names gensyms vals body)))))))
      (($ <fix> src names gensyms vals body)
       ;; Note the difference from the `let' case: here we use letrec*
       ;; so that the `visit' procedure for the new operands closes over
       ;; an environment that includes the operands.  Also we don't try
       ;; to elide aliases, because we can't sensibly reduce something
       ;; like (letrec ((a b) (b a)) a).
       (letrec* ((visit (lambda (exp counter ctx)
                          (loop exp env* counter ctx)))
                 (vars (map lookup-var gensyms))
                 (new (fresh-gensyms vars))
                 (ops (make-bound-operands vars new vals visit))
                 (env* (fold extend-env env gensyms ops))
                 (body* (visit body counter ctx)))
         (if (const? body*)
             body*
             (prune-bindings ops #f body* counter ctx
                             (lambda (names gensyms vals body)
                               (make-fix src names gensyms vals body))))))
      (($ <let-values> lv-src producer consumer)
       ;; Peval the producer, then try to inline the consumer into
       ;; the producer.  If that succeeds, peval again.  Otherwise
       ;; reconstruct the let-values, pevaling the consumer.
       (let ((producer (for-values producer)))
         (or (match consumer
               ((and ($ <lambda-case> src () #f rest #f () (rest-sym) body #f)
                     (? (lambda _ (singly-valued-expression? producer))))
                (let ((tmp (gensym "tmp ")))
                  (record-new-temporary! 'tmp tmp 1)
                  (for-tail
                   (make-let
                    src (list 'tmp) (list tmp) (list producer)
                    (make-let
                     src (list rest) (list rest-sym)
                     (list
                      (make-primcall #f 'list
                                     (list (make-lexical-ref #f 'tmp tmp))))
                     body)))))
               (($ <lambda-case> src req opt rest #f inits gensyms body #f)
                (let* ((nmin (length req))
                       (nmax (and (not rest) (+ nmin (if opt (length opt) 0)))))
                  (cond
                   ((inline-values lv-src producer nmin nmax consumer)
                    => for-tail)
                   (else #f))))
               (_ #f))
             (make-let-values lv-src producer (for-tail consumer)))))
      (($ <toplevel-ref> src mod (? effect-free-primitive? name))
       exp)
      (($ <toplevel-ref>)
       ;; todo: open private local bindings.
       exp)
      (($ <module-ref> src module (? effect-free-primitive? name) #f)
       (let ((module (false-if-exception
                      (resolve-module module #:ensure #f))))
         (if (module? module)
             (let ((var (module-variable module name)))
               (if (eq? var (module-variable the-scm-module name))
                   (make-primitive-ref src name)
                   exp))
             exp)))
      (($ <module-ref> src module name public?)
       (cond
        ((and cross-module-inlining?
              public?
              (and=> (resolve-module module #:ensure #f)
                     (lambda (module)
                       (and=> (module-public-interface module)
                              (lambda (iface)
                                (and=> (module-inlinable-exports iface)
                                       (lambda (proc) (proc name))))))))
         => (lambda (inlined)
              ;; Similar logic to lexical-ref, but we can't enumerate
              ;; uses, and don't know about aliases.
              (log 'begin-xm-copy exp inlined)
              (cond
               ((eq? ctx 'effect)
                (log 'xm-effect)
                (make-void #f))
               ((eq? ctx 'call)
                ;; Don't propagate copies if we are residualizing a call.
                (log 'residualize-xm-call exp)
                exp)
               ((or (const? inlined) (void? inlined) (primitive-ref? inlined))
                ;; Always propagate simple values that cannot lead to
                ;; code bloat.
                (log 'copy-xm-const)
                (for-tail inlined))
               ;; Inline in operator position if it's a lambda that's
               ;; small enough.  Normally the inlinable-exports pass
               ;; will only make small lambdas available for inlining,
               ;; but you never know.
               ((and (eq? ctx 'operator) (lambda? inlined)
                     (small-expression? inlined operator-size-limit))
                (log 'copy-xm-operator exp inlined)
                (splice-expression inlined))
               (else
                (log 'xm-copy-failed)
                ;; Could copy small lambdas in value context.  Something
                ;; to revisit.
                exp))))
        (else exp)))
      (($ <module-set> src mod name public? exp)
       (make-module-set src mod name public? (for-value exp)))
      (($ <toplevel-define> src mod name exp)
       (make-toplevel-define src mod name (for-value exp)))
      (($ <toplevel-set> src mod name exp)
       (make-toplevel-set src mod name (for-value exp)))
      (($ <primitive-ref>)
       (case ctx
         ((effect) (make-void #f))
         ((test) (make-const #f #t))
         (else exp)))
      (($ <conditional> src condition subsequent alternate)
       (define (call-with-failure-thunk exp proc)
         (match exp
           (($ <call> _ _ ()) (proc exp))
           (($ <primcall> _ _ ()) (proc exp))
           (($ <const>) (proc exp))
           (($ <void>) (proc exp))
           (($ <lexical-ref>) (proc exp))
           (_
            (let ((t (gensym "failure-")))
              (record-new-temporary! 'failure t 2)
              (make-let
               src (list 'failure) (list t)
               (list
                (make-lambda
                 #f '()
                 (make-lambda-case #f '() #f #f #f '() '() exp #f)))
               (proc (make-call #f (make-lexical-ref #f 'failure t)
                                '())))))))
       (define (simplify-conditional c)
         (match c
           ;; Swap the arms of (if (not FOO) A B), to simplify.
           (($ <conditional> src ($ <primcall> _ 'not (pred))
               subsequent alternate)
            (simplify-conditional
             (make-conditional src pred alternate subsequent)))
           ;; In the following four cases, we try to expose the test to
           ;; the conditional.  This will let the CPS conversion avoid
           ;; reifying boolean literals in some cases.
           (($ <conditional> src ($ <let> src* names vars vals body)
               subsequent alternate)
            (make-let src* names vars vals
                      (simplify-conditional
                       (make-conditional src body subsequent alternate))))
           (($ <conditional> src ($ <fix> src* names vars vals body)
               subsequent alternate)
            (make-fix src* names vars vals
                      (simplify-conditional
                       (make-conditional src body subsequent alternate))))
           (($ <conditional> src ($ <seq> src* head tail)
               subsequent alternate)
            (make-seq src* head
                      (simplify-conditional
                       (make-conditional src tail subsequent alternate))))
           ;; Special cases for common tests in the predicates of chains
           ;; of if expressions.
           (($ <conditional> src
               ($ <conditional> src* outer-test inner-test ($ <const> _ #f))
               inner-subsequent
               alternate)
            (let lp ((alternate alternate))
              (match alternate
                ;; Lift a common repeated test out of a chain of if
                ;; expressions.
                (($ <conditional> _ (? (cut tree-il=? outer-test <>))
                    other-subsequent alternate)
                 (make-conditional
                  src outer-test
                  (simplify-conditional
                   (make-conditional src* inner-test inner-subsequent
                                     other-subsequent))
                  alternate))
                ;; Likewise, but punching through any surrounding
                ;; failure continuations.
                (($ <let> let-src (name) (sym) ((and thunk ($ <lambda>))) body)
                 (make-let
                  let-src (list name) (list sym) (list thunk)
                  (lp body)))
                ;; Otherwise, rotate AND tests to expose a simple
                ;; condition in the front.  Although this may result in
                ;; lexically binding failure thunks, the thunks will be
                ;; compiled to labels allocation, so there's no actual
                ;; code growth.
                (_
                 (call-with-failure-thunk
                  alternate
                  (lambda (failure)
                    (make-conditional
                     src outer-test
                     (simplify-conditional
                      (make-conditional src* inner-test inner-subsequent failure))
                     failure)))))))
           (_ c)))
       (match (for-test condition)
         (($ <const> _ val)
          (if val
              (for-tail subsequent)
              (for-tail alternate)))
         (c
          (simplify-conditional
           (make-conditional src c (for-tail subsequent)
                             (for-tail alternate))))))
      (($ <primcall> src 'call-with-values
          (producer
           ($ <lambda> _ _
              (and consumer
                   ;; No optional or kwargs.
                   ($ <lambda-case>
                      _ req #f rest #f () gensyms body #f)))))
       (for-tail (make-let-values src (make-call src producer '())
                                  consumer)))
      (($ <primcall> src 'dynamic-wind (w thunk u))
       (for-tail
        (with-temporaries
         src (list w u) 2 constant-expression?
         (match-lambda
           ((w u)
            (make-seq
             src
             (make-seq
              src
              (make-conditional
               src
               ;; fixme: introduce logic to fold thunk?
               (make-primcall src 'thunk? (list u))
               (make-call src w '())
               (make-primcall
                src 'throw
                (list
                 (make-const #f 'wrong-type-arg)
                 (make-const #f "dynamic-wind")
                 (make-const #f "Wrong type (expecting thunk): ~S")
                 (make-primcall #f 'list (list u))
                 (make-primcall #f 'list (list u)))))
              (make-primcall src 'wind (list w u)))
             (make-begin0 src
                          (make-call src thunk '())
                          (make-seq src
                                    (make-primcall src 'unwind '())
                                    (make-call src u '())))))))))

      (($ <primcall> src 'with-fluid* (f v thunk))
       (for-tail
        (with-temporaries
         src (list f v thunk) 1 constant-expression?
         (match-lambda
           ((f v thunk)
            (make-seq src
                      (make-primcall src 'push-fluid (list f v))
                      (make-begin0 src
                                   (make-call src thunk '())
                                   (make-primcall src 'pop-fluid '()))))))))

      (($ <primcall> src 'with-dynamic-state (state thunk))
       (for-tail
        (with-temporaries
         src (list state thunk) 1 constant-expression?
         (match-lambda
           ((state thunk)
            (make-seq src
                      (make-primcall src 'push-dynamic-state (list state))
                      (make-begin0 src
                                   (make-call src thunk '())
                                   (make-primcall src 'pop-dynamic-state
                                                  '()))))))))

      (($ <primcall> src 'values exps)
       (cond
        ((null? exps)
         (if (eq? ctx 'effect)
             (make-void #f)
             exp))
        (else
         (let ((vals (map for-value exps)))
           (if (and (case ctx
                      ((value test effect) #t)
                      (else (null? (cdr vals))))
                    (every singly-valued-expression? vals))
               (for-tail (list->seq src (append (cdr vals) (list (car vals)))))
               (make-primcall src 'values vals))))))

      (($ <primcall> src 'apply (proc args ... tail))
       (let lp ((tail* (find-definition tail 1)) (speculative? #t))
         (define (copyable? x)
           ;; Inlining a result from find-definition effectively copies it,
           ;; relying on the let-pruning to remove its original binding.  We
           ;; shouldn't copy non-constant expressions.
           (or (not speculative?) (constant-expression? x)))
         (match tail*
           (($ <const> _ (args* ...))
            (let ((args* (map (cut make-const #f <>) args*)))
              (for-tail (make-call src proc (append args args*)))))
           (($ <primcall> _ 'cons
               ((and head (? copyable?)) (and tail (? copyable?))))
            (for-tail (make-primcall src 'apply
                                     (cons proc
                                           (append args (list head tail))))))
           (($ <primcall> _ 'list
               (and args* ((? copyable?) ...)))
            (for-tail (make-call src proc (append args args*))))
           (tail*
            (if speculative?
                (lp (for-value tail) #f)
                (let ((args (append (map for-value args) (list tail*))))
                  (make-primcall src 'apply
                                 (cons (for-value proc) args))))))))

      (($ <primcall> src (? constructor-primitive? name) args)
       (cond
        ((and (memq ctx '(effect test))
              (match (cons name args)
                ((or ('cons _ _)
                     ('list . _)
                     ('vector . _)
                     ('make-prompt-tag)
                     ('make-prompt-tag ($ <const> _ (? string?))))
                 #t)
                (_ #f)))
         ;; Some expressions can be folded without visiting the
         ;; arguments for value.
         (let ((res (if (eq? ctx 'effect)
                        (make-void #f)
                        (make-const #f #t))))
           (for-tail (list->seq src (append args (list res))))))
        (else
         (match (cons name (map for-value args))
           (('cons x ($ <const> _ (? (cut eq? <> '()))))
            (make-primcall src 'list (list x)))
           (('cons x ($ <primcall> _ 'list elts))
            (make-primcall src 'list (cons x elts)))
           (('list)
            (make-const src '()))
           (('vector)
            (make-const src '#()))
           ((name . args)
            (make-primcall src name args))))))

      (($ <primcall> src 'thunk? (proc))
       (case ctx
         ((effect)
          (for-tail (make-seq src proc (make-void src))))
         (else
          (match (for-value proc)
            (($ <lambda> _ _ ($ <lambda-case> _ req))
             (for-tail (make-const src (null? req))))
            (proc
             (match (find-definition proc 2)
               (($ <lambda> _ _ ($ <lambda-case> _ req))
                (for-tail (make-const src (null? req))))
               (_
                (make-primcall src 'thunk? (list proc)))))))))

      (($ <primcall> src name args)
       (match (cons name (map for-value args))
         ;; FIXME: these for-tail recursions could take place outside
         ;; an effort counter.
         (('car ($ <primcall> src 'cons (head tail)))
          (for-tail (make-seq src tail head)))
         (('cdr ($ <primcall> src 'cons (head tail)))
          (for-tail (make-seq src head tail)))
         (('car ($ <primcall> src 'list (head . tail)))
          (for-tail (list->seq src (append tail (list head)))))
         (('cdr ($ <primcall> src 'list (head . tail)))
          (for-tail (make-seq src head (make-primcall #f 'list tail))))
                  
         (('car ($ <const> src (head . tail)))
          (for-tail (make-const src head)))
         (('cdr ($ <const> src (head . tail)))
          (for-tail (make-const src tail)))
         (((or 'memq 'memv) k ($ <const> _ (elts ...)))
          ;; FIXME: factor 
          (case ctx
            ((effect)
             (for-tail
              (make-seq src k (make-void #f))))
            ((test)
             (cond
              ((const? k)
               ;; A shortcut.  The `else' case would handle it, but
               ;; this way is faster.
               (let ((member (case name ((memq) memq) ((memv) memv))))
                 (make-const #f (and (member (const-exp k) elts) #t))))
              ((null? elts)
               (for-tail
                (make-seq src k (make-const #f #f))))
              (else
               (let ((t (gensym "t "))
                     (eq (if (eq? name 'memq) 'eq? 'eqv?)))
                 (record-new-temporary! 't t (length elts))
                 (for-tail
                  (make-let
                   src (list 't) (list t) (list k)
                   (let lp ((elts elts))
                     (define test
                       (make-primcall #f eq
                                      (list (make-lexical-ref #f 't t)
                                            (make-const #f (car elts)))))
                     (if (null? (cdr elts))
                         test
                         (make-conditional src test
                                           (make-const #f #t)
                                           (lp (cdr elts)))))))))))
            (else
             (cond
              ((const? k)
               (let ((member (case name ((memq) memq) ((memv) memv))))
                 (make-const #f (member (const-exp k) elts))))
              ((null? elts)
               (for-tail (make-seq src k (make-const #f #f))))
              (else
               (make-primcall src name (list k (make-const #f elts))))))))

         (((? equality-primitive?) a (and b ($ <const> _ v)))
          (cond
           ((const? a)
            ;; Constants will be deduplicated later, but eq? folding can
            ;; happen now.  Anticipate the deduplication by using equal?
            ;; instead of eq? or eqv?.
            (for-tail (make-const src (equal? (const-exp a) v))))
           ((eq? name 'eq?)
            ;; Already in a reduced state.
            (make-primcall src 'eq? (list a b)))
           ((or (memq v '(#f #t () #nil)) (symbol? v) (char? v)
                ;; Only fold to eq? value is a fixnum on target and
                ;; host, as constant folding may have us compare on host
                ;; as well.
                (and (exact-integer? v)
                     (<= (max (target-most-negative-fixnum)
                              most-negative-fixnum)
                         v
                         (min (target-most-positive-fixnum)
                              most-positive-fixnum))))
            ;; Reduce to eq?.  Note that in Guile, characters are
            ;; comparable with eq?.
            (make-primcall src 'eq? (list a b)))
           ((number? v)
            ;; equal? and eqv? on non-fixnum numbers is the same as
            ;; eqv?, and can't be reduced beyond that.
            (make-primcall src 'eqv? (list a b)))
           ((eq? name 'eqv?)
            ;; eqv? on anything else is the same as eq?.
            (make-primcall src 'eq? (list a b)))
           (else
            ;; FIXME: inline a specialized implementation of equal? for
            ;; V here.
            (make-primcall src name (list a b)))))
         (((? equality-primitive?) (and a ($ <const>)) b)
          (for-tail (make-primcall src name (list b a))))
         (((? equality-primitive?) ($ <lexical-ref> _ _ sym)
           ($ <lexical-ref> _ _ sym))
          (for-tail (make-const src #t)))

         (('logbit? ($ <const> src2
                       (? (lambda (bit)
                            (and (exact-integer? bit)
                                 (<= 0 bit (logcount most-positive-fixnum))))
                          bit))
                    val)
          (for-tail
           (make-primcall src 'logtest
                          (list (make-const src2 (ash 1 bit)) val))))

         (('logtest a b)
          (for-tail
           (make-primcall
            src
            'not
            (list
             (make-primcall src 'eq?
                            (list (make-primcall src 'logand (list a b))
                                  (make-const src 0)))))))

         (((? effect-free-primitive?) . args)
          (fold-constants src name args ctx))

         ((name . args)
          (make-primcall src name args))))

      (($ <call> src orig-proc orig-args)
       ;; todo: augment the global env with specialized functions
       (let revisit-proc ((proc (visit orig-proc 'operator)))
         (match proc
           (($ <primitive-ref> _ name)
            (let ((exp (expand-primcall (make-primcall src name orig-args))))
              (set! store
                    (augment-var-table-with-externally-introduced-lexicals
                     exp store))
              (for-tail exp)))
           (($ <lambda> _ _
               ($ <lambda-case> _ req opt rest #f inits gensyms body #f))
            ;; Simple case: no keyword arguments.
            ;; todo: handle the more complex cases
            (let* ((nargs (length orig-args))
                   (nreq (length req))
                   (opt (or opt '()))
                   (rest (if rest (list rest) '()))
                   (nopt (length opt))
                   (key (source-expression proc)))
              (define (singly-referenced-lambda? orig-proc)
                (match orig-proc
                  (($ <lambda>) #t)
                  (($ <lexical-ref> _ _ sym)
                   (and (not (assigned-lexical? sym))
                        (= (lexical-refcount sym) 1)
                        (singly-referenced-lambda?
                         (operand-source (lookup sym)))))
                  (_ #f)))
              (define (inlined-call)
                (let ((req-vals (list-head orig-args nreq))
                      (opt-vals (let lp ((args (drop orig-args nreq))
                                         (inits inits)
                                         (out '()))
                                  (match inits
                                    (() (reverse out))
                                    ((init . inits)
                                     (match args
                                       (()
                                        (lp '() inits (cons init out)))
                                       ((arg . args)
                                        (lp args inits (cons arg out))))))))
                      (rest-vals (cond
                                  ((> nargs (+ nreq nopt))
                                   (list (make-primcall
                                          #f 'list
                                          (drop orig-args (+ nreq nopt)))))
                                  ((null? rest) '())
                                  (else (list (make-const #f '()))))))
                  (if (>= nargs (+ nreq nopt))
                      (make-let src
                                (append req opt rest)
                                gensyms
                                (append req-vals opt-vals rest-vals)
                                body)
                      ;; The default initializers of optional arguments
                      ;; may refer to earlier arguments, so in the general
                      ;; case we must expand into a series of nested let
                      ;; expressions.
                      ;;
                      ;; In the generated code, the outermost let
                      ;; expression will bind all required arguments, as
                      ;; well as the empty rest argument, if any.  Each
                      ;; optional argument will be bound within an inner
                      ;; let.
                      (make-let src
                                (append req rest)
                                (append (list-head gensyms nreq)
                                        (last-pair gensyms))
                                (append req-vals rest-vals)
                                (fold-right (lambda (var gensym val body)
                                              (make-let src
                                                        (list var)
                                                        (list gensym)
                                                        (list val)
                                                        body))
                                            body
                                            opt
                                            (list-head (drop gensyms nreq) nopt)
                                            opt-vals)))))

              (cond
               ((or (< nargs nreq) (and (null? rest) (> nargs (+ nreq nopt))))
                ;; An error, or effecting arguments.
                (make-call src (for-call orig-proc) (map for-value orig-args)))
               ((or (and=> (find-counter key counter) counter-recursive?)
                    (singly-referenced-lambda? orig-proc))
                ;; A recursive call, or a lambda in the operator
                ;; position of the source expression.  Process again in
                ;; tail context.
                ;;
                ;; In the recursive case, mark intervening counters as
                ;; recursive, so we can handle a toplevel counter that
                ;; recurses mutually with some other procedure.
                ;; Otherwise, the next time we see the other procedure,
                ;; the effort limit would be clamped to 100.
                ;;
                (let ((found (find-counter key counter)))
                  (if (and found (counter-recursive? found))
                      (let lp ((counter counter))
                        (if (not (eq? counter found))
                            (begin
                              (set-counter-recursive?! counter #t)
                              (lp (counter-prev counter)))))))

                (log 'inline-recurse key)
                (loop (inlined-call) env counter ctx))
               (else
                ;; An integration at the top-level, the first
                ;; recursion of a recursive procedure, or a nested
                ;; integration of a procedure that hasn't been seen
                ;; yet.
                (log 'inline-begin exp)
                (let/ec k
                  (define (abort)
                    (log 'inline-abort exp)
                    (k (make-call src (for-call orig-proc)
                                  (map for-value orig-args))))
                  (define new-counter
                    (cond
                     ;; These first two cases will transfer effort
                     ;; from the current counter into the new
                     ;; counter.
                     ((find-counter key counter)
                      => (lambda (prev)
                           (make-recursive-counter recursive-effort-limit
                                                   operand-size-limit
                                                   prev counter)))
                     (counter
                      (make-nested-counter abort key counter))
                     ;; This case opens a new account, effectively
                     ;; printing money.  It should only do so once
                     ;; for each call site in the source program.
                     (else
                      (make-top-counter effort-limit operand-size-limit
                                        abort key))))
                  (define result
                    (loop (inlined-call) env new-counter ctx))
                      
                  (if counter
                      ;; The nested inlining attempt succeeded.
                      ;; Deposit the unspent effort and size back
                      ;; into the current counter.
                      (transfer! new-counter counter))

                  (log 'inline-end result exp)
                  result)))))
           (($ <lambda> src-proc meta orig-body)
            ;; If there are multiple cases and one matches nargs, omit all the others.
            (or (and
                 orig-body
                 (lambda-case-alternate orig-body)
                 (let ((nargs (length orig-args)))
                   (let loop ((body orig-body))
                     (match body
                       (#f #f) ;; No matching case; an error.
                       (($ <lambda-case> src-case req opt rest kw inits gensyms case-body alt)
                        (cond (kw
                               ;; FIXME: Not handling keyword cases.
                               #f)
                              ((let ((nreq (length req)))
                                 (if rest
                                   (<= nreq nargs)
                                   (<= nreq nargs (+ nreq (if opt (length opt) 0)))))
                               ;; Keep only this case.
                               (revisit-proc
                                (make-lambda
                                 src-proc meta
                                 (make-lambda-case src-case req opt rest kw inits gensyms case-body #f))))
                              (else (loop alt))))))))
                (make-call src (for-call orig-proc) (map for-value orig-args))))
           (($ <let> _ _ _ vals _)
            ;; Attempt to inline `let' in the operator position.
            ;;
            ;; We have to re-visit the proc in value mode, since the
            ;; `let' bindings might have been introduced or renamed,
            ;; whereas the lambda (if any) in operator position has not
            ;; been renamed.
            (if (or (and-map constant-expression? vals)
                    (and-map constant-expression? orig-args))
                ;; The arguments and the let-bound values commute.
                (match (for-value orig-proc)
                  (($ <let> lsrc names syms vals body)
                   (log 'inline-let orig-proc)
                   (for-tail
                    (make-let lsrc names syms vals
                              (make-call src body orig-args))))
                  ;; It's possible for a `let' to go away after the
                  ;; visit due to the fact that visiting a procedure in
                  ;; value context will prune unused bindings, whereas
                  ;; visiting in operator mode can't because it doesn't
                  ;; traverse through lambdas.  In that case re-visit
                  ;; the procedure.
                  (proc (revisit-proc proc)))
                (make-call src (for-call orig-proc)
                           (map for-value orig-args))))
           (_
            (make-call src (for-call orig-proc) (map for-value orig-args))))))
      (($ <lambda> src meta body)
       (case ctx
         ((effect) (make-void #f))
         ((test) (make-const #f #t))
         ((operator) exp)
         (else (record-source-expression!
                exp
                (make-lambda src meta (and body (for-values body)))))))
      (($ <lambda-case> src req opt rest kw inits gensyms body alt)
       (define (lift-applied-lambda body gensyms)
         (and (not opt) rest (not kw)
              (match body
                (($ <primcall> _ 'apply
                    (($ <lambda> _ _ (and lcase ($ <lambda-case> _ req1)))
                     ($ <lexical-ref> _ _ sym)
                     ...))
                 (and (equal? sym gensyms)
                      (not (lambda-case-alternate lcase))
                      (<= (length req) (length req1))
                      (every (lambda (s)
                               (= (lexical-refcount s) 1))
                             sym)
                      lcase))
                (_ #f))))
       (let* ((vars (map lookup-var gensyms))
              (new (fresh-gensyms vars))
              (env (fold extend-env env gensyms
                         (make-unbound-operands vars new)))
              (new-sym (lambda (old)
                         (operand-sym (cdr (vhash-assq old env)))))
              (body (loop body env counter ctx)))
         (or
          ;; (lambda args (apply (lambda ...) args)) => (lambda ...)
          (lift-applied-lambda body new)
          (make-lambda-case src req opt rest
                            (match kw
                              ((aok? (kw name old) ...)
                               (cons aok? (map list kw name (map new-sym old))))
                              (_ #f))
                            (map (cut loop <> env counter 'value) inits)
                            new
                            body
                            (and alt (for-tail alt))))))
      (($ <seq> src head tail)
       (let ((head (for-effect head))
             (tail (for-tail tail)))
         (if (void? head)
             tail
             (make-seq src
                       (if (and (seq? head)
                                (void? (seq-tail head)))
                           (seq-head head)
                           head)
                       tail))))
      (($ <prompt> src escape-only? tag body handler)
       (define (make-prompt-tag? x)
         (match x
           (($ <primcall> _ 'make-prompt-tag (or () ((? constant-expression?))))
            #t)
           (_ #f)))

       (let ((tag (for-value tag))
             (body (if escape-only? (for-tail body) (for-value body))))
         (cond
          ((find-definition tag 1)
           (lambda (val op)
             (make-prompt-tag? val))
           => (lambda (val op)
                ;; There is no way that an <abort> could know the tag
                ;; for this <prompt>, so we can elide the <prompt>
                ;; entirely.
                (when op (unrecord-operand-uses op 1))
                (for-tail (if escape-only? body (make-call src body '())))))
          (else
           (let ((handler (for-value handler)))
             (define (escape-only-handler? handler)
               (match handler
                 (($ <lambda> _ _
                     ($ <lambda-case> _ (_ . _) _ _ _ _ (k . _) body #f))
                  (not (tree-il-any
                        (match-lambda
                          (($ <lexical-ref> _ _ (? (cut eq? <> k))) #t)
                          (_ #f))
                        body)))
                 (else #f)))
             (if (and (not escape-only?) (escape-only-handler? handler))
                 ;; Prompt transitioning to escape-only; transition body
                 ;; to be an expression.
                 (for-tail
                  (make-prompt src #t tag (make-call #f body '()) handler))
                 (make-prompt src escape-only? tag body handler)))))))

      (($ <abort> src tag args tail)
       (make-abort src (for-value tag) (map for-value args)
                   (for-value tail))))))