summaryrefslogtreecommitdiff
path: root/module/srfi/srfi-1.scm
blob: 8ddf2714bfd2a30bbc2201edc2f9e6f74d5cacf8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
;;; srfi-1.scm --- List Library

;; 	Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2009, 2010 Free Software Foundation, Inc.
;;
;; This library is free software; you can redistribute it and/or
;; modify it under the terms of the GNU Lesser General Public
;; License as published by the Free Software Foundation; either
;; version 3 of the License, or (at your option) any later version.
;; 
;; This library is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; Lesser General Public License for more details.
;; 
;; You should have received a copy of the GNU Lesser General Public
;; License along with this library; if not, write to the Free Software
;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

;;; Author: Martin Grabmueller <mgrabmue@cs.tu-berlin.de>
;;; Date: 2001-06-06

;;; Commentary:

;; This is an implementation of SRFI-1 (List Library).
;;
;; All procedures defined in SRFI-1, which are not already defined in
;; the Guile core library, are exported.  The procedures in this
;; implementation work, but they have not been tuned for speed or
;; memory usage.
;;
;; This module is fully documented in the Guile Reference Manual.

;;; Code:

(define-module (srfi srfi-1)
  :export (
;;; Constructors
 ;; cons				<= in the core
 ;; list				<= in the core
 xcons
 ;; cons*				<= in the core
 ;; make-list				<= in the core
 list-tabulate
 list-copy
 circular-list
 ;; iota				; Extended.

;;; Predicates
 proper-list?
 circular-list?
 dotted-list?
 ;; pair?				<= in the core
 ;; null?				<= in the core
 null-list?
 not-pair?
 list=

;;; Selectors
 ;; car					<= in the core
 ;; cdr					<= in the core
 ;; caar				<= in the core
 ;; cadr				<= in the core
 ;; cdar				<= in the core
 ;; cddr				<= in the core
 ;; caaar				<= in the core
 ;; caadr				<= in the core
 ;; cadar				<= in the core
 ;; caddr				<= in the core
 ;; cdaar				<= in the core
 ;; cdadr				<= in the core
 ;; cddar				<= in the core
 ;; cdddr				<= in the core
 ;; caaaar				<= in the core
 ;; caaadr				<= in the core
 ;; caadar				<= in the core
 ;; caaddr				<= in the core
 ;; cadaar				<= in the core
 ;; cadadr				<= in the core
 ;; caddar				<= in the core
 ;; cadddr				<= in the core
 ;; cdaaar				<= in the core
 ;; cdaadr				<= in the core
 ;; cdadar				<= in the core
 ;; cdaddr				<= in the core
 ;; cddaar				<= in the core
 ;; cddadr				<= in the core
 ;; cdddar				<= in the core
 ;; cddddr				<= in the core
 ;; list-ref				<= in the core
 first
 second
 third
 fourth
 fifth
 sixth
 seventh
 eighth
 ninth
 tenth
 car+cdr
 take
 drop
 take-right
 drop-right
 take!
 drop-right!
 split-at
 split-at!
 last
 ;; last-pair				<= in the core

;;; Miscelleneous: length, append, concatenate, reverse, zip & count
 ;; length				<= in the core
 length+
 ;; append				<= in the core
 ;; append!				<= in the core
 concatenate
 concatenate!
 ;; reverse				<= in the core
 ;; reverse!				<= in the core
 append-reverse
 append-reverse!
 zip
 unzip1
 unzip2
 unzip3
 unzip4
 unzip5
 count

;;; Fold, unfold & map
 fold
 fold-right
 pair-fold
 pair-fold-right
 reduce
 reduce-right
 unfold
 unfold-right
 ;; map					; Extended.
 ;; for-each				; Extended.
 append-map
 append-map!
 map!
 ;; map-in-order			; Extended.
 pair-for-each
 filter-map

;;; Filtering & partitioning
 ;; filter				<= in the core
 partition
 remove
 ;; filter!				<= in the core
 partition!
 remove!

;;; Searching
 find
 find-tail
 take-while
 take-while!
 drop-while
 span
 span!
 break
 break!
 any
 every
 ;; list-index				; Extended.
 ;; member				; Extended.
 ;; memq				<= in the core
 ;; memv				<= in the core

;;; Deletion
 ;; delete				; Extended.
 ;; delete!				; Extended.
 delete-duplicates
 delete-duplicates!

;;; Association lists
 ;; assoc				; Extended.
 ;; assq				<= in the core
 ;; assv				<= in the core
 alist-cons
 alist-copy
 alist-delete
 alist-delete!

;;; Set operations on lists
 lset<=
 lset=
 lset-adjoin
 lset-union
 lset-intersection
 lset-difference
 lset-xor
 lset-diff+intersection
 lset-union!
 lset-intersection!
 lset-difference!
 lset-xor!
 lset-diff+intersection!

;;; Primitive side-effects
 ;; set-car!				<= in the core
 ;; set-cdr!				<= in the core
 )
  :re-export (cons list cons* make-list pair? null?
	      car cdr caar cadr cdar cddr
	      caaar caadr cadar caddr cdaar cdadr cddar cdddr
	      caaaar caaadr caadar caaddr cadaar cadadr caddar cadddr
	      cdaaar cdaadr cdadar cdaddr cddaar cddadr cdddar cddddr
	      list-ref last-pair length append append! reverse reverse!
	      filter filter! memq memv assq assv set-car! set-cdr!)
  :replace (iota map for-each map-in-order list-copy list-index member
	    delete delete! assoc)
  )

(cond-expand-provide (current-module) '(srfi-1))

;; Load the compiled primitives from the shared library.
;;
(load-extension (string-append "libguile-" (effective-version))
                "scm_init_srfi_1")


;;; Constructors

(define (xcons d a)
  "Like `cons', but with interchanged arguments.  Useful mostly when passed to
higher-order procedures."
  (cons a d))

;; internal helper, similar to (scsh utilities) check-arg.
(define (check-arg-type pred arg caller)
  (if (pred arg)
      arg
      (scm-error 'wrong-type-arg caller
		 "Wrong type argument: ~S" (list arg) '())))

(define (out-of-range proc arg)
  (scm-error 'out-of-range proc
             "Value out of range: ~A" (list arg) (list arg)))

;; the srfi spec doesn't seem to forbid inexact integers.
(define (non-negative-integer? x) (and (integer? x) (>= x 0)))

(define (list-tabulate n init-proc)
  "Return an N-element list, where each list element is produced by applying the
procedure INIT-PROC to the corresponding list index.  The order in which
INIT-PROC is applied to the indices is not specified."
  (check-arg-type non-negative-integer? n "list-tabulate")
  (let lp ((n n) (acc '()))
    (if (<= n 0)
        acc
        (lp (- n 1) (cons (init-proc (- n 1)) acc)))))

(define (circular-list elt1 . elts)
  (set! elts (cons elt1 elts))
  (set-cdr! (last-pair elts) elts)
  elts)

(define* (iota count #:optional (start 0) (step 1))
  (check-arg-type non-negative-integer? count "iota")
  (let lp ((n 0) (acc '()))
    (if (= n count)
	(reverse! acc)
	(lp (+ n 1) (cons (+ start (* n step)) acc)))))

;;; Predicates

(define (proper-list? x)
  (list? x))

(define (circular-list? x)
  (if (not-pair? x)
    #f
    (let lp ((hare (cdr x)) (tortoise x))
      (if (not-pair? hare)
	#f
	(let ((hare (cdr hare)))
	  (if (not-pair? hare)
	    #f
	    (if (eq? hare tortoise)
	      #t
	      (lp (cdr hare) (cdr tortoise)))))))))

(define (dotted-list? x)
  (cond
    ((null? x) #f)
    ((not-pair? x) #t)
    (else
     (let lp ((hare (cdr x)) (tortoise x))
       (cond
	 ((null? hare) #f)
	 ((not-pair? hare) #t)
	 (else
	  (let ((hare (cdr hare)))
	    (cond
	      ((null? hare) #f)
	      ((not-pair? hare) #t)
	      ((eq? hare tortoise) #f)
	      (else
	       (lp (cdr hare) (cdr tortoise)))))))))))

(define (null-list? x)
  (cond
    ((proper-list? x)
     (null? x))
    ((circular-list? x)
     #f)
    (else
     (error "not a proper list in null-list?"))))

(define (not-pair? x)
  "Return #t if X is not a pair, #f otherwise.

This is shorthand notation `(not (pair? X))' and is supposed to be used for
end-of-list checking in contexts where dotted lists are allowed."
  (not (pair? x)))

(define (list= elt= . rest)
  (define (lists-equal a b)
    (let lp ((a a) (b b))
      (cond ((null? a)
	     (null? b))
	    ((null? b)
	     #f)
	    (else
	     (and (elt= (car a) (car b))
		  (lp (cdr a) (cdr b)))))))
  (or (null? rest)
      (let lp ((lists rest))
	(or (null? (cdr lists))
	    (and (lists-equal (car lists) (cadr lists))
		 (lp (cdr lists)))))))

;;; Selectors

(define first car)
(define second cadr)
(define third caddr)
(define fourth cadddr)
(define (fifth x) (car (cddddr x)))
(define (sixth x) (cadr (cddddr x)))
(define (seventh x) (caddr (cddddr x)))
(define (eighth x) (cadddr (cddddr x)))
(define (ninth x) (car (cddddr (cddddr x))))
(define (tenth x) (cadr (cddddr (cddddr x))))

(define (car+cdr x)
  "Return two values, the `car' and the `cdr' of PAIR."
  (values (car x) (cdr x)))

(define take list-head)
(define drop list-tail)

(define (take! lst i)
  "Linear-update variant of `take'."
  (if (= i 0)
      '()
      (let ((tail (drop lst (- i 1))))
        (set-cdr! tail '())
        lst)))

(define (drop-right! lst i)
  "Linear-update variant of `drop-right'."
  (let ((tail (drop lst i)))
    (if (null? tail)
        '()
        (let loop ((prev lst)
                   (tail (cdr tail)))
          (if (null? tail)
              (if (pair? prev)
                  (begin
                    (set-cdr! prev '())
                    lst)
                  lst)
              (loop (cdr prev)
                    (cdr tail)))))))

(define (split-at lst i)
  "Return two values, a list of the elements before index I in LST, and
a list of those after."
  (if (< i 0)
      (out-of-range 'split-at i)
      (let lp ((l lst) (n i) (acc '()))
        (if (<= n 0)
            (values (reverse! acc) l)
            (lp (cdr l) (- n 1) (cons (car l) acc))))))

(define (split-at! lst i)
  "Linear-update variant of `split-at'."
  (cond ((< i 0)
         (out-of-range 'split-at! i))
        ((= i 0)
         (values '() lst))
        (else
         (let lp ((l lst) (n (- i 1)))
           (if (<= n 0)
               (let ((tmp (cdr l)))
                 (set-cdr! l '())
                 (values lst tmp))
               (lp (cdr l) (- n 1)))))))

(define (last pair)
  "Return the last element of the non-empty, finite list PAIR."
  (car (last-pair pair)))

;;; Miscelleneous: length, append, concatenate, reverse, zip & count

(define (zip clist1 . rest)
  (let lp ((l (cons clist1 rest)) (acc '()))
    (if (any null? l)
      (reverse! acc)
      (lp (map1 cdr l) (cons (map1 car l) acc)))))


(define (unzip1 l)
  (map1 first l))
(define (unzip2 l)
  (values (map1 first l) (map1 second l)))
(define (unzip3 l)
  (values (map1 first l) (map1 second l) (map1 third l)))
(define (unzip4 l)
  (values (map1 first l) (map1 second l) (map1 third l) (map1 fourth l)))
(define (unzip5 l)
  (values (map1 first l) (map1 second l) (map1 third l) (map1 fourth l)
	  (map1 fifth l)))

;;; Fold, unfold & map

(define (fold kons knil list1 . rest)
  "Apply PROC to the elements of LIST1 ... LISTN to build a result, and return
that result.  See the manual for details."
  (if (null? rest)
      (let f ((knil knil) (list1 list1))
	(if (null? list1)
	    knil
	    (f (kons (car list1) knil) (cdr list1))))
      (let f ((knil knil) (lists (cons list1 rest)))
	(if (any null? lists)
	    knil
	    (let ((cars (map1 car lists))
		  (cdrs (map1 cdr lists)))
	      (f (apply kons (append! cars (list knil))) cdrs))))))

(define (fold-right kons knil clist1 . rest)
  (if (null? rest)
      (let loop ((lst    (reverse clist1))
                 (result knil))
        (if (null? lst)
            result
            (loop (cdr lst)
                  (kons (car lst) result))))
      (let loop ((lists  (map1 reverse (cons clist1 rest)))
                 (result knil))
        (if (any1 null? lists)
            result
            (loop (map1 cdr lists)
                  (apply kons (append! (map1 car lists) (list result))))))))

(define (pair-fold kons knil clist1 . rest)
  (if (null? rest)
      (let f ((knil knil) (list1 clist1))
	(if (null? list1)
	    knil
	    (let ((tail (cdr list1)))
	    (f (kons list1 knil) tail))))
      (let f ((knil knil) (lists (cons clist1 rest)))
	(if (any null? lists)
	    knil
	    (let ((tails (map1 cdr lists)))
	      (f (apply kons (append! lists (list knil))) tails))))))


(define (pair-fold-right kons knil clist1 . rest)
  (if (null? rest)
    (let f ((list1 clist1))
      (if (null? list1)
	knil
	(kons list1 (f (cdr list1)))))
    (let f ((lists (cons clist1 rest)))
      (if (any null? lists)
	knil
	(apply kons (append! lists (list (f (map1 cdr lists)))))))))

(define* (unfold p f g seed #:optional (tail-gen (lambda (x) '())))
  (define (reverse+tail lst seed)
    (let loop ((lst    lst)
               (result (tail-gen seed)))
      (if (null? lst)
          result
          (loop (cdr lst)
                (cons (car lst) result)))))

  (let loop ((seed   seed)
             (result '()))
    (if (p seed)
        (reverse+tail result seed)
        (loop (g seed)
              (cons (f seed) result)))))

(define* (unfold-right p f g seed #:optional (tail '()))
  (let uf ((seed seed) (lis tail))
    (if (p seed)
        lis
        (uf (g seed) (cons (f seed) lis)))))

(define (reduce f ridentity lst)
  "`reduce' is a variant of `fold', where the first call to F is on two
elements from LST, rather than one element and a given initial value.
If LST is empty, RIDENTITY is returned.  If LST has just one element
then that's the return value."
  (if (null? lst)
      ridentity
      (fold f (car lst) (cdr lst))))

(define (reduce-right f ridentity lst)
  "`reduce-right' is a variant of `fold-right', where the first call to
F is on two elements from LST, rather than one element and a given
initial value.  If LST is empty, RIDENTITY is returned.  If LST
has just one element then that's the return value."
  (if (null? lst)
      ridentity
      (fold-right f (last lst) (drop-right lst 1))))


;; Internal helper procedure.  Map `f' over the single list `ls'.
;;
(define map1 map)

(define (append-map f clist1 . rest)
  (concatenate (apply map f clist1 rest)))
  
(define (append-map! f clist1 . rest)
  (concatenate! (apply map f clist1 rest)))

;; OPTIMIZE-ME: Re-use cons cells of list1
(define map! map)

(define (filter-map proc list1 . rest)
  "Apply PROC to to the elements of LIST1... and return a list of the
results as per SRFI-1 `map', except that any #f results are omitted from
the list returned."
  (if (null? rest)
      (let lp ((l list1)
               (rl '()))
        (if (null? l)
            (reverse! rl)
            (let ((res (proc (car l))))
              (if res
                  (lp (cdr l) (cons res rl))
                  (lp (cdr l) rl)))))
      (let lp ((l (cons list1 rest))
               (rl '()))
        (if (any1 null? l)
            (reverse! rl)
            (let ((res (apply proc (map1 car l))))
              (if res
                  (lp (map1 cdr l) (cons res rl))
                  (lp (map1 cdr l) rl)))))))

(define (pair-for-each f clist1 . rest)
  (if (null? rest)
    (let lp ((l clist1))
      (if (null? l)
	(if #f #f)
	(begin
	  (f l)
	  (lp (cdr l)))))
    (let lp ((l (cons clist1 rest)))
      (if (any1 null? l)
	(if #f #f)
	(begin
	  (apply f l)
	  (lp (map1 cdr l)))))))


;;; Searching

(define (take-while pred ls)
  "Return a new list which is the longest initial prefix of LS whose
elements all satisfy the predicate PRED."
  (cond ((null? ls) '())
        ((not (pred (car ls))) '())
        (else
         (let ((result (list (car ls))))
           (let lp ((ls (cdr ls)) (p result))
             (cond ((null? ls) result)
                   ((not (pred (car ls))) result)
                   (else
                    (set-cdr! p (list (car ls)))
                    (lp (cdr ls) (cdr p)))))))))

(define (take-while! pred lst)
  "Linear-update variant of `take-while'."
  (let loop ((prev #f)
             (rest lst))
    (cond ((null? rest)
           lst)
          ((pred (car rest))
           (loop rest (cdr rest)))
          (else
           (if (pair? prev)
               (begin
                 (set-cdr! prev '())
                 lst)
               '())))))

(define (drop-while pred lst)
  "Drop the longest initial prefix of LST whose elements all satisfy the
predicate PRED."
  (let loop ((lst lst))
    (cond ((null? lst)
           '())
          ((pred (car lst))
           (loop (cdr lst)))
          (else lst))))

(define (span pred lst)
  "Return two values, the longest initial prefix of LST whose elements
all satisfy the predicate PRED, and the remainder of LST."
  (let lp ((lst lst) (rl '()))
    (if (and (not (null? lst))
             (pred (car lst)))
        (lp (cdr lst) (cons (car lst) rl))
        (values (reverse! rl) lst))))

(define (span! pred list)
  "Linear-update variant of `span'."
  (let loop ((prev #f)
             (rest list))
    (cond ((null? rest)
           (values list '()))
          ((pred (car rest))
           (loop rest (cdr rest)))
          (else
           (if (pair? prev)
               (begin
                 (set-cdr! prev '())
                 (values list rest))
               (values '() list))))))

(define (break pred clist)
  "Return two values, the longest initial prefix of LST whose elements
all fail the predicate PRED, and the remainder of LST."
  (let lp ((clist clist) (rl '()))
    (if (or (null? clist)
	    (pred (car clist)))
	(values (reverse! rl) clist)
	(lp (cdr clist) (cons (car clist) rl)))))

(define (break! pred list)
  "Linear-update variant of `break'."
  (let loop ((l    list)
             (prev #f))
    (cond ((null? l)
           (values list '()))
          ((pred (car l))
           (if (pair? prev)
               (begin
                 (set-cdr! prev '())
                 (values list l))
               (values '() list)))
          (else
           (loop (cdr l) l)))))

(define (any pred ls . lists)
  (if (null? lists)
      (any1 pred ls)
      (let lp ((lists (cons ls lists)))
	(cond ((any1 null? lists)
	       #f)
	      ((any1 null? (map1 cdr lists))
	       (apply pred (map1 car lists)))
	      (else
	       (or (apply pred (map1 car lists)) (lp (map1 cdr lists))))))))

(define (any1 pred ls)
  (let lp ((ls ls))
    (cond ((null? ls)
	   #f)
	  ((null? (cdr ls))
	   (pred (car ls)))
	  (else
	   (or (pred (car ls)) (lp (cdr ls)))))))

(define (every pred ls . lists)
  (if (null? lists)
      (every1 pred ls)
      (let lp ((lists (cons ls lists)))
	(cond ((any1 null? lists)
	       #t)
	      ((any1 null? (map1 cdr lists))
	       (apply pred (map1 car lists)))
	      (else
	       (and (apply pred (map1 car lists)) (lp (map1 cdr lists))))))))

(define (every1 pred ls)
  (let lp ((ls ls))
    (cond ((null? ls)
	   #t)
	  ((null? (cdr ls))
	   (pred (car ls)))
	  (else
	   (and (pred (car ls)) (lp (cdr ls)))))))

(define (list-index pred clist1 . rest)
  "Return the index of the first set of elements, one from each of
CLIST1 ... CLISTN, that satisfies PRED."
  (if (null? rest)
    (let lp ((l clist1) (i 0))
      (if (null? l)
	#f
	(if (pred (car l))
	  i
	  (lp (cdr l) (+ i 1)))))
    (let lp ((lists (cons clist1 rest)) (i 0))
      (cond ((any1 null? lists)
	     #f)
	    ((apply pred (map1 car lists)) i)
	    (else
	     (lp (map1 cdr lists) (+ i 1)))))))

;;; Association lists

(define alist-cons acons)

(define (alist-copy alist)
  "Return a copy of ALIST, copying both the pairs comprising the list
and those making the associations."
  (let lp ((a  alist)
           (rl '()))
    (if (null? a)
        (reverse! rl)
        (lp (cdr a) (alist-cons (caar a) (cdar a) rl)))))

(define* (alist-delete key alist #:optional (k= equal?))
  (let lp ((a alist) (rl '()))
    (if (null? a)
	(reverse! rl)
	(if (k= key (caar a))
            (lp (cdr a) rl)
            (lp (cdr a) (cons (car a) rl))))))

(define* (alist-delete! key alist #:optional (k= equal?))
  (alist-delete key alist k=))	; XXX:optimize

;;; Set operations on lists

(define (lset<= = . rest)
  (if (null? rest)
    #t
    (let lp ((f (car rest)) (r (cdr rest)))
      (or (null? r)
	  (and (every (lambda (el) (member el (car r) =)) f)
	       (lp (car r) (cdr r)))))))

(define (lset= = . rest)
  (if (null? rest)
    #t
    (let lp ((f (car rest)) (r (cdr rest)))
      (or (null? r)
	  (and (every (lambda (el) (member el (car r) =)) f)
	       (every (lambda (el) (member el f (lambda (x y) (= y x)))) (car r))
	       (lp (car r) (cdr r)))))))

;; It's not quite clear if duplicates among the `rest' elements are meant to
;; be cast out.  The spec says `=' is called as (= lstelem restelem),
;; suggesting perhaps not, but the reference implementation shows the "list"
;; at each stage as including those elements already added.  The latter
;; corresponds to what's described for lset-union, so that's what's done.
;;
(define (lset-adjoin = list . rest)
  "Add to LIST any of the elements of REST not already in the list.
These elements are `cons'ed onto the start of LIST (so the return shares
a common tail with LIST), but the order they're added is unspecified.

The given `=' procedure is used for comparing elements, called
as `(@var{=} listelem elem)', i.e., the second argument is one of the
given REST parameters."
  (let lp ((l rest) (acc list))
    (if (null? l)
        acc
        (if (member (car l) acc (lambda (x y) (= y x)))
            (lp (cdr l) acc)
            (lp (cdr l) (cons (car l) acc))))))

(define (lset-union = . rest)
  (let ((acc '()))
    (for-each (lambda (lst)
		(if (null? acc)
		    (set! acc lst)
		    (for-each (lambda (elem)
				(if (not (member elem acc
						 (lambda (x y) (= y x))))
				    (set! acc (cons elem acc))))
			      lst)))
	      rest)
    acc))

(define (lset-intersection = list1 . rest)
  (let lp ((l list1) (acc '()))
    (if (null? l)
      (reverse! acc)
      (if (every (lambda (ll) (member (car l) ll =)) rest)
	(lp (cdr l) (cons (car l) acc))
	(lp (cdr l) acc)))))

(define (lset-difference = list1 . rest)
  (if (null? rest)
    list1
    (let lp ((l list1) (acc '()))
      (if (null? l)
	(reverse! acc)
	(if (any (lambda (ll) (member (car l) ll =)) rest)
	  (lp (cdr l) acc)
	  (lp (cdr l) (cons (car l) acc)))))))

;(define (fold kons knil list1 . rest)

(define (lset-xor = . rest)
  (fold (lambda (lst res)
	  (let lp ((l lst) (acc '()))
	    (if (null? l)
	      (let lp0 ((r res) (acc acc))
		(if (null? r)
		  (reverse! acc)
		  (if (member (car r) lst =)
		    (lp0 (cdr r) acc)
		    (lp0 (cdr r) (cons (car r) acc)))))
	      (if (member (car l) res =)
		(lp (cdr l) acc)
		(lp (cdr l) (cons (car l) acc))))))
	'()
	rest))

(define (lset-diff+intersection = list1 . rest)
  (let lp ((l list1) (accd '()) (acci '()))
    (if (null? l)
      (values (reverse! accd) (reverse! acci))
      (let ((appears (every (lambda (ll) (member (car l) ll =)) rest)))
	(if appears
	  (lp (cdr l) accd (cons (car l) acci))
	  (lp (cdr l) (cons (car l) accd) acci))))))


(define (lset-union! = . rest)
  (apply lset-union = rest))		; XXX:optimize

(define (lset-intersection! = list1 . rest)
  (apply lset-intersection = list1 rest)) ; XXX:optimize

(define (lset-xor! = . rest)
  (apply lset-xor = rest))		; XXX:optimize

(define (lset-diff+intersection! = list1 . rest)
  (apply lset-diff+intersection = list1 rest)) ; XXX:optimize

;;; srfi-1.scm ends here