summaryrefslogtreecommitdiff
path: root/module/srfi/srfi-43.scm
blob: 18e97cf53ff64704d461a68e099b1d439e8b0624 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
;;; srfi-43.scm -- SRFI 43 Vector library

;;      Copyright (C) 2014, 2018 Free Software Foundation, Inc.
;;
;; This library is free software; you can redistribute it and/or
;; modify it under the terms of the GNU Lesser General Public
;; License as published by the Free Software Foundation; either
;; version 3 of the License, or (at your option) any later version.
;;
;; This library is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; Lesser General Public License for more details.
;;
;; You should have received a copy of the GNU Lesser General Public
;; License along with this library; if not, write to the Free Software
;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

;;; Author: Mark H Weaver <mhw@netris.org>

(define-module (srfi srfi-43)
  #:use-module (srfi srfi-1)
  #:use-module (srfi srfi-8)
  #:re-export (make-vector vector vector? vector-ref vector-set!
                           vector-length vector-fill! vector-copy!)
  #:replace (vector-copy list->vector vector->list)
  #:export (vector-empty? vector= vector-unfold vector-unfold-right
                          vector-reverse-copy
                          vector-append vector-concatenate
                          vector-fold vector-fold-right
                          vector-map vector-map!
                          vector-for-each vector-count
                          vector-index vector-index-right
                          vector-skip vector-skip-right
                          vector-binary-search
                          vector-any vector-every
                          vector-swap! vector-reverse!
                          vector-reverse-copy!
                          reverse-vector->list
                          reverse-list->vector))

(cond-expand-provide (current-module) '(srfi-43))

(define-syntax error-from
  (lambda (stx)
    (syntax-case stx (quote)
      ((_ 'who msg arg ...)
       #`(error #,(string-append (symbol->string (syntax->datum #'who))
                                 ": "
                                 (syntax->datum #'msg))
                arg ...)))))

(define-syntax-rule (assert-nonneg-exact-integer k who)
  (unless (and (exact-integer? k)
               (not (negative? k)))
    (error-from who "expected non-negative exact integer, got" k)))

(define-syntax-rule (assert-procedure f who)
  (unless (procedure? f)
    (error-from who "expected procedure, got" f)))

(define-syntax-rule (assert-vector v who)
  (unless (vector? v)
    (error-from who "expected vector, got" v)))

(define-syntax-rule (assert-valid-index i len who)
  (unless (and (exact-integer? i)
               (<= 0 i len))
    (error-from who "invalid index" i)))

(define-syntax-rule (assert-valid-start start len who)
  (unless (and (exact-integer? start)
               (<= 0 start len))
    (error-from who "invalid start index" start)))

(define-syntax-rule (assert-valid-range start end len who)
  (unless (and (exact-integer? start)
               (exact-integer? end)
               (<= 0 start end len))
    (error-from who "invalid index range" start end)))

(define-syntax-rule (assert-vectors vs who)
  (let loop ((vs vs))
    (unless (null? vs)
      (assert-vector (car vs) who)
      (loop (cdr vs)))))

;; Return the length of the shortest vector in VS.
;; VS must have at least one element.
(define (min-length vs)
  (let loop ((vs (cdr vs))
             (result (vector-length (car vs))))
    (if (null? vs)
        result
        (loop (cdr vs) (min result (vector-length (car vs)))))))

;; Return a list of the Ith elements of the vectors in VS.
(define (vectors-ref vs i)
  (let loop ((vs vs) (xs '()))
    (if (null? vs)
        (reverse! xs)
        (loop (cdr vs) (cons (vector-ref (car vs) i)
                             xs)))))

(define vector-unfold
  (case-lambda
    "(vector-unfold f length initial-seed ...) -> vector

The fundamental vector constructor.  Create a vector whose length is
LENGTH and iterates across each index k from 0 up to LENGTH - 1,
applying F at each iteration to the current index and current seeds, in
that order, to receive n + 1 values: the element to put in the kth slot
of the new vector, and n new seeds for the next iteration.  It is an
error for the number of seeds to vary between iterations."
    ((f len)
     (assert-procedure f 'vector-unfold)
     (assert-nonneg-exact-integer len 'vector-unfold)
     (let ((v (make-vector len)))
       (let loop ((i 0))
         (unless (= i len)
           (vector-set! v i (f i))
           (loop (+ i 1))))
       v))
    ((f len seed)
     (assert-procedure f 'vector-unfold)
     (assert-nonneg-exact-integer len 'vector-unfold)
     (let ((v (make-vector len)))
       (let loop ((i 0) (seed seed))
         (unless (= i len)
           (receive (x seed) (f i seed)
             (vector-set! v i x)
             (loop (+ i 1) seed))))
       v))
    ((f len seed1 seed2)
     (assert-procedure f 'vector-unfold)
     (assert-nonneg-exact-integer len 'vector-unfold)
     (let ((v (make-vector len)))
       (let loop ((i 0) (seed1 seed1) (seed2 seed2))
         (unless (= i len)
           (receive (x seed1 seed2) (f i seed1 seed2)
             (vector-set! v i x)
             (loop (+ i 1) seed1 seed2))))
       v))
    ((f len . seeds)
     (assert-procedure f 'vector-unfold)
     (assert-nonneg-exact-integer len 'vector-unfold)
     (let ((v (make-vector len)))
       (let loop ((i 0) (seeds seeds))
         (unless (= i len)
           (receive (x . seeds) (apply f i seeds)
             (vector-set! v i x)
             (loop (+ i 1) seeds))))
       v))))

(define vector-unfold-right
  (case-lambda
    "(vector-unfold-right f length initial-seed ...) -> vector

The fundamental vector constructor.  Create a vector whose length is
LENGTH and iterates across each index k from LENGTH - 1 down to 0,
applying F at each iteration to the current index and current seeds, in
that order, to receive n + 1 values: the element to put in the kth slot
of the new vector, and n new seeds for the next iteration.  It is an
error for the number of seeds to vary between iterations."
    ((f len)
     (assert-procedure f 'vector-unfold-right)
     (assert-nonneg-exact-integer len 'vector-unfold-right)
     (let ((v (make-vector len)))
       (let loop ((i (- len 1)))
         (unless (negative? i)
           (vector-set! v i (f i))
           (loop (- i 1))))
       v))
    ((f len seed)
     (assert-procedure f 'vector-unfold-right)
     (assert-nonneg-exact-integer len 'vector-unfold-right)
     (let ((v (make-vector len)))
       (let loop ((i (- len 1)) (seed seed))
         (unless (negative? i)
           (receive (x seed) (f i seed)
             (vector-set! v i x)
             (loop (- i 1) seed))))
       v))
    ((f len seed1 seed2)
     (assert-procedure f 'vector-unfold-right)
     (assert-nonneg-exact-integer len 'vector-unfold-right)
     (let ((v (make-vector len)))
       (let loop ((i (- len 1)) (seed1 seed1) (seed2 seed2))
         (unless (negative? i)
           (receive (x seed1 seed2) (f i seed1 seed2)
             (vector-set! v i x)
             (loop (- i 1) seed1 seed2))))
       v))
    ((f len . seeds)
     (assert-procedure f 'vector-unfold-right)
     (assert-nonneg-exact-integer len 'vector-unfold-right)
     (let ((v (make-vector len)))
       (let loop ((i (- len 1)) (seeds seeds))
         (unless (negative? i)
           (receive (x . seeds) (apply f i seeds)
             (vector-set! v i x)
             (loop (- i 1) seeds))))
       v))))

(define guile-vector-copy (@ (guile) vector-copy))

(define vector-copy
  (case-lambda*
   "(vector-copy vec [start [end [fill]]]) -> vector

Allocate a new vector whose length is END - START and fills it with
elements from vec, taking elements from vec starting at index START
and stopping at index END.  START defaults to 0 and END defaults to
the value of (vector-length VEC).  If END extends beyond the length of
VEC, the slots in the new vector that obviously cannot be filled by
elements from VEC are filled with FILL, whose default value is
unspecified."
   ((v) (guile-vector-copy v))
   ((v start) (guile-vector-copy v start))
   ((v start end #:optional (fill *unspecified*))
    (assert-vector v 'vector-copy)
    (let ((len (vector-length v)))
      (if (<= end len)
        (guile-vector-copy v start end)
        (begin
          (unless (and (exact-integer? start)
                       (exact-integer? end)
                       (<= 0 start end))
            (error-from 'vector-copy "invalid index range" start end))
          (let ((result (make-vector (- end start) fill)))
            (vector-move-left! v start (min end len) result 0)
            result)))))))

(define vector-reverse-copy
  (let ()
    (define (%vector-reverse-copy vec start end)
      (let* ((len (- end start))
             (result (make-vector len)))
        (let loop ((i 0) (j (- end 1)))
          (unless (= i len)
            (vector-set! result i (vector-ref vec j))
            (loop (+ i 1) (- j 1))))
        result))
    (case-lambda
      "(vector-reverse-copy vec [start [end]]) -> vector

Allocate a new vector whose length is END - START and fills it with
elements from vec, taking elements from vec in reverse order starting
at index START and stopping at index END.  START defaults to 0 and END
defaults to the value of (vector-length VEC)."
      ((vec)
       (assert-vector vec 'vector-reverse-copy)
       (%vector-reverse-copy vec 0 (vector-length vec)))
      ((vec start)
       (assert-vector vec 'vector-reverse-copy)
       (let ((len (vector-length vec)))
         (assert-valid-start start len 'vector-reverse-copy)
         (%vector-reverse-copy vec start len)))
      ((vec start end)
       (assert-vector vec 'vector-reverse-copy)
       (let ((len (vector-length vec)))
         (assert-valid-range start end len 'vector-reverse-copy)
         (%vector-reverse-copy vec start end))))))

(define (%vector-concatenate vs)
  (let* ((result-len (let loop ((vs vs) (len 0))
                       (if (null? vs)
                           len
                           (loop (cdr vs) (+ len (vector-length (car vs)))))))
         (result (make-vector result-len)))
    (let loop ((vs vs) (pos 0))
      (unless (null? vs)
        (let* ((v (car vs))
               (len (vector-length v)))
          (vector-move-left! v 0 len result pos)
          (loop (cdr vs) (+ pos len)))))
    result))

(define vector-append
  (case-lambda
    "(vector-append vec ...) -> vector

Return a newly allocated vector that contains all elements in order
from the subsequent locations in VEC ..."
    (() (vector))
    ((v)
     (assert-vector v 'vector-append)
     (guile-vector-copy v))
    ((v1 v2)
     (assert-vector v1 'vector-append)
     (assert-vector v2 'vector-append)
     (let ((len1 (vector-length v1))
           (len2 (vector-length v2)))
       (let ((result (make-vector (+ len1 len2))))
         (vector-move-left! v1 0 len1 result 0)
         (vector-move-left! v2 0 len2 result len1)
         result)))
    (vs
     (assert-vectors vs 'vector-append)
     (%vector-concatenate vs))))

(define (vector-concatenate vs)
  "(vector-concatenate list-of-vectors) -> vector

Append each vector in LIST-OF-VECTORS.  Equivalent to:
  (apply vector-append LIST-OF-VECTORS)"
  (assert-vectors vs 'vector-concatenate)
  (%vector-concatenate vs))

(define (vector-empty? vec)
  "(vector-empty? vec) -> boolean

Return true if VEC is empty, i.e. its length is 0, and false if not."
  (assert-vector vec 'vector-empty?)
  (zero? (vector-length vec)))

(define vector=
  (let ()
    (define (all-of-length? len vs)
      (or (null? vs)
          (and (= len (vector-length (car vs)))
               (all-of-length? len (cdr vs)))))
    (define (=up-to? i elt=? v1 v2)
      (or (negative? i)
          (let ((x1 (vector-ref v1 i))
                (x2 (vector-ref v2 i)))
            (and (or (eq? x1 x2) (elt=? x1 x2))
                 (=up-to? (- i 1) elt=? v1 v2)))))
    (case-lambda
      "(vector= elt=? vec ...) -> boolean

Return true if the vectors VEC ... have equal lengths and equal
elements according to ELT=?.  ELT=? is always applied to two
arguments.  Element comparison must be consistent with eq?, in the
following sense: if (eq? a b) returns true, then (elt=? a b) must also
return true.  The order in which comparisons are performed is
unspecified."
      ((elt=?)
       (assert-procedure elt=? 'vector=)
       #t)
      ((elt=? v)
       (assert-procedure elt=? 'vector=)
       (assert-vector v 'vector=)
       #t)
      ((elt=? v1 v2)
       (assert-procedure elt=? 'vector=)
       (assert-vector v1 'vector=)
       (assert-vector v2 'vector=)
       (let ((len (vector-length v1)))
         (and (= len (vector-length v2))
              (=up-to? (- len 1) elt=? v1 v2))))
      ((elt=? v1 . vs)
       (assert-procedure elt=? 'vector=)
       (assert-vector  v1 'vector=)
       (assert-vectors vs 'vector=)
       (let ((len (vector-length v1)))
         (and (all-of-length? len vs)
              (let loop ((vs vs))
                (or (null? vs)
                    (and (=up-to? (- len 1) elt=? v1 (car vs))
                         (loop (cdr vs)))))))))))

(define vector-fold
  (case-lambda
    "(vector-fold kons knil vec1 vec2 ...) -> value

The fundamental vector iterator.  KONS is iterated over each index in
all of the vectors, stopping at the end of the shortest; KONS is
applied as (KONS i state (vector-ref VEC1 i) (vector-ref VEC2 i) ...)
where STATE is the current state value, and I is the current index.
The current state value begins with KNIL, and becomes whatever KONS
returned at the respective iteration.  The iteration is strictly
left-to-right."
    ((kcons knil v)
     (assert-procedure kcons 'vector-fold)
     (assert-vector v 'vector-fold)
     (let ((len (vector-length v)))
       (let loop ((i 0) (state knil))
         (if (= i len)
             state
             (loop (+ i 1) (kcons i state (vector-ref v i)))))))
    ((kcons knil v1 v2)
     (assert-procedure kcons 'vector-fold)
     (assert-vector v1 'vector-fold)
     (assert-vector v2 'vector-fold)
     (let ((len (min (vector-length v1) (vector-length v2))))
       (let loop ((i 0) (state knil))
         (if (= i len)
             state
             (loop (+ i 1)
                   (kcons i state (vector-ref v1 i) (vector-ref v2 i)))))))
    ((kcons knil . vs)
     (assert-procedure kcons 'vector-fold)
     (assert-vectors vs 'vector-fold)
     (let ((len (min-length vs)))
       (let loop ((i 0) (state knil))
         (if (= i len)
             state
             (loop (+ i 1) (apply kcons i state (vectors-ref vs i)))))))))

(define vector-fold-right
  (case-lambda
    "(vector-fold-right kons knil vec1 vec2 ...) -> value

The fundamental vector iterator.  KONS is iterated over each index in
all of the vectors, starting at the end of the shortest; KONS is
applied as (KONS i state (vector-ref VEC1 i) (vector-ref VEC2 i) ...)
where STATE is the current state value, and I is the current index.
The current state value begins with KNIL, and becomes whatever KONS
returned at the respective iteration.  The iteration is strictly
right-to-left."
    ((kcons knil v)
     (assert-procedure kcons 'vector-fold-right)
     (assert-vector v 'vector-fold-right)
     (let ((len (vector-length v)))
       (let loop ((i (- len 1)) (state knil))
         (if (negative? i)
             state
             (loop (- i 1) (kcons i state (vector-ref v i)))))))
    ((kcons knil v1 v2)
     (assert-procedure kcons 'vector-fold-right)
     (assert-vector v1 'vector-fold-right)
     (assert-vector v2 'vector-fold-right)
     (let ((len (min (vector-length v1) (vector-length v2))))
       (let loop ((i (- len 1)) (state knil))
         (if (negative? i)
             state
             (loop (- i 1)
                   (kcons i state (vector-ref v1 i) (vector-ref v2 i)))))))
    ((kcons knil . vs)
     (assert-procedure kcons 'vector-fold-right)
     (assert-vectors vs 'vector-fold-right)
     (let ((len (min-length vs)))
       (let loop ((i (- len 1)) (state knil))
         (if (negative? i)
             state
             (loop (- i 1) (apply kcons i state (vectors-ref vs i)))))))))

(define vector-map
  (case-lambda
    "(vector-map f vec2 vec2 ...) -> vector

Return a new vector of the shortest size of the vector arguments.
Each element at index i of the new vector is mapped from the old
vectors by (F i (vector-ref VEC1 i) (vector-ref VEC2 i) ...).  The
dynamic order of application of F is unspecified."
    ((f v)
     (assert-procedure f 'vector-map)
     (assert-vector v 'vector-map)
     (let* ((len (vector-length v))
            (result (make-vector len)))
       (let loop ((i 0))
         (unless (= i len)
           (vector-set! result i (f i (vector-ref v i)))
           (loop (+ i 1))))
       result))
    ((f v1 v2)
     (assert-procedure f 'vector-map)
     (assert-vector v1 'vector-map)
     (assert-vector v2 'vector-map)
     (let* ((len (min (vector-length v1) (vector-length v2)))
            (result (make-vector len)))
       (let loop ((i 0))
         (unless (= i len)
           (vector-set! result i (f i (vector-ref v1 i) (vector-ref v2 i)))
           (loop (+ i 1))))
       result))
    ((f . vs)
     (assert-procedure f 'vector-map)
     (assert-vectors vs 'vector-map)
     (let* ((len (min-length vs))
            (result (make-vector len)))
       (let loop ((i 0))
         (unless (= i len)
           (vector-set! result i (apply f i (vectors-ref vs i)))
           (loop (+ i 1))))
       result))))

(define vector-map!
  (case-lambda
    "(vector-map! f vec2 vec2 ...) -> unspecified

Similar to vector-map, but rather than mapping the new elements into a
new vector, the new mapped elements are destructively inserted into
VEC1.  The dynamic order of application of F is unspecified."
    ((f v)
     (assert-procedure f 'vector-map!)
     (assert-vector v 'vector-map!)
     (let ((len (vector-length v)))
       (let loop ((i 0))
         (unless (= i len)
           (vector-set! v i (f i (vector-ref v i)))
           (loop (+ i 1))))))
    ((f v1 v2)
     (assert-procedure f 'vector-map!)
     (assert-vector v1 'vector-map!)
     (assert-vector v2 'vector-map!)
     (let ((len (min (vector-length v1) (vector-length v2))))
       (let loop ((i 0))
         (unless (= i len)
           (vector-set! v1 i (f i (vector-ref v1 i) (vector-ref v2 i)))
           (loop (+ i 1))))))
    ((f . vs)
     (assert-procedure f 'vector-map!)
     (assert-vectors vs 'vector-map!)
     (let ((len (min-length vs))
           (v1 (car vs)))
       (let loop ((i 0))
         (unless (= i len)
           (vector-set! v1 i (apply f i (vectors-ref vs i)))
           (loop (+ i 1))))))))

(define vector-for-each
  (case-lambda
    "(vector-for-each f vec1 vec2 ...) -> unspecified

Call (F i VEC1[i] VEC2[i] ...) for each index i less than the length
of the shortest vector passed.  The iteration is strictly
left-to-right."
    ((f v)
     (assert-procedure f 'vector-for-each)
     (assert-vector v 'vector-for-each)
     (let ((len (vector-length v)))
       (let loop ((i 0))
         (unless (= i len)
           (f i (vector-ref v i))
           (loop (+ i 1))))))
    ((f v1 v2)
     (assert-procedure f 'vector-for-each)
     (assert-vector v1 'vector-for-each)
     (assert-vector v2 'vector-for-each)
     (let ((len (min (vector-length v1)
                     (vector-length v2))))
       (let loop ((i 0))
         (unless (= i len)
           (f i (vector-ref v1 i) (vector-ref v2 i))
           (loop (+ i 1))))))
    ((f . vs)
     (assert-procedure f 'vector-for-each)
     (assert-vectors vs 'vector-for-each)
     (let ((len (min-length vs)))
       (let loop ((i 0))
         (unless (= i len)
           (apply f i (vectors-ref vs i))
           (loop (+ i 1))))))))

(define vector-count
  (case-lambda
    "(vector-count pred? vec1 vec2 ...) -> exact nonnegative integer

Count the number of indices i for which (PRED? VEC1[i] VEC2[i] ...)
returns true, where i is less than the length of the shortest vector
passed."
    ((pred? v)
     (assert-procedure pred? 'vector-count)
     (assert-vector v 'vector-count)
     (let ((len (vector-length v)))
       (let loop ((i 0) (count 0))
         (cond ((= i len) count)
               ((pred? i (vector-ref v i))
                (loop (+ i 1) (+ count 1)))
               (else
                (loop (+ i 1) count))))))
    ((pred? v1 v2)
     (assert-procedure pred? 'vector-count)
     (assert-vector v1 'vector-count)
     (assert-vector v2 'vector-count)
     (let ((len (min (vector-length v1)
                     (vector-length v2))))
       (let loop ((i 0) (count 0))
         (cond ((= i len) count)
               ((pred? i (vector-ref v1 i) (vector-ref v2 i))
                (loop (+ i 1) (+ count 1)))
               (else
                (loop (+ i 1) count))))))
    ((pred? . vs)
     (assert-procedure pred? 'vector-count)
     (assert-vectors vs 'vector-count)
     (let ((len (min-length vs)))
       (let loop ((i 0) (count 0))
         (cond ((= i len) count)
               ((apply pred? i (vectors-ref vs i))
                (loop (+ i 1) (+ count 1)))
               (else
                (loop (+ i 1) count))))))))

(define vector-index
  (case-lambda
    "(vector-index pred? vec1 vec2 ...) -> exact nonnegative integer or #f

Find and return the index of the first elements in VEC1 VEC2 ... that
satisfy PRED?.  If no matching element is found by the end of the
shortest vector, return #f."
    ((pred? v)
     (assert-procedure pred? 'vector-index)
     (assert-vector v 'vector-index)
     (let ((len (vector-length v)))
       (let loop ((i 0))
         (and (< i len)
              (if (pred? (vector-ref v i))
                  i
                  (loop (+ i 1)))))))
    ((pred? v1 v2)
     (assert-procedure pred? 'vector-index)
     (assert-vector v1 'vector-index)
     (assert-vector v2 'vector-index)
     (let ((len (min (vector-length v1)
                     (vector-length v2))))
       (let loop ((i 0))
         (and (< i len)
              (if (pred? (vector-ref v1 i)
                         (vector-ref v2 i))
                  i
                  (loop (+ i 1)))))))
    ((pred? . vs)
     (assert-procedure pred? 'vector-index)
     (assert-vectors vs 'vector-index)
     (let ((len (min-length vs)))
       (let loop ((i 0))
         (and (< i len)
              (if (apply pred? (vectors-ref vs i))
                  i
                  (loop (+ i 1)))))))))

(define vector-index-right
  (case-lambda
    "(vector-index-right pred? vec1 vec2 ...) -> exact nonnegative integer or #f

Find and return the index of the last elements in VEC1 VEC2 ... that
satisfy PRED?, searching from right-to-left.  If no matching element
is found before the end of the shortest vector, return #f."
    ((pred? v)
     (assert-procedure pred? 'vector-index-right)
     (assert-vector v 'vector-index-right)
     (let ((len (vector-length v)))
       (let loop ((i (- len 1)))
         (and (>= i 0)
              (if (pred? (vector-ref v i))
                  i
                  (loop (- i 1)))))))
    ((pred? v1 v2)
     (assert-procedure pred? 'vector-index-right)
     (assert-vector v1 'vector-index-right)
     (assert-vector v2 'vector-index-right)
     (let ((len (min (vector-length v1)
                     (vector-length v2))))
       (let loop ((i (- len 1)))
         (and (>= i 0)
              (if (pred? (vector-ref v1 i)
                         (vector-ref v2 i))
                  i
                  (loop (- i 1)))))))
    ((pred? . vs)
     (assert-procedure pred? 'vector-index-right)
     (assert-vectors vs 'vector-index-right)
     (let ((len (min-length vs)))
       (let loop ((i (- len 1)))
         (and (>= i 0)
              (if (apply pred? (vectors-ref vs i))
                  i
                  (loop (- i 1)))))))))

(define vector-skip
  (case-lambda
    "(vector-skip pred? vec1 vec2 ...) -> exact nonnegative integer or #f

Find and return the index of the first elements in VEC1 VEC2 ... that
do not satisfy PRED?.  If no matching element is found by the end of
the shortest vector, return #f."
    ((pred? v)
     (assert-procedure pred? 'vector-skip)
     (assert-vector v 'vector-skip)
     (let ((len (vector-length v)))
       (let loop ((i 0))
         (and (< i len)
              (if (pred? (vector-ref v i))
                  (loop (+ i 1))
                  i)))))
    ((pred? v1 v2)
     (assert-procedure pred? 'vector-skip)
     (assert-vector v1 'vector-skip)
     (assert-vector v2 'vector-skip)
     (let ((len (min (vector-length v1)
                     (vector-length v2))))
       (let loop ((i 0))
         (and (< i len)
              (if (pred? (vector-ref v1 i)
                         (vector-ref v2 i))
                  (loop (+ i 1))
                  i)))))
    ((pred? . vs)
     (assert-procedure pred? 'vector-skip)
     (assert-vectors vs 'vector-skip)
     (let ((len (min-length vs)))
       (let loop ((i 0))
         (and (< i len)
              (if (apply pred? (vectors-ref vs i))
                  (loop (+ i 1))
                  i)))))))

(define vector-skip-right
  (case-lambda
    "(vector-skip-right pred? vec1 vec2 ...) -> exact nonnegative integer or #f

Find and return the index of the last elements in VEC1 VEC2 ... that
do not satisfy PRED?, searching from right-to-left.  If no matching
element is found before the end of the shortest vector, return #f."
    ((pred? v)
     (assert-procedure pred? 'vector-skip-right)
     (assert-vector v 'vector-skip-right)
     (let ((len (vector-length v)))
       (let loop ((i (- len 1)))
         (and (not (negative? i))
              (if (pred? (vector-ref v i))
                  (loop (- i 1))
                  i)))))
    ((pred? v1 v2)
     (assert-procedure pred? 'vector-skip-right)
     (assert-vector v1 'vector-skip-right)
     (assert-vector v2 'vector-skip-right)
     (let ((len (min (vector-length v1)
                     (vector-length v2))))
       (let loop ((i (- len 1)))
         (and (not (negative? i))
              (if (pred? (vector-ref v1 i)
                         (vector-ref v2 i))
                  (loop (- i 1))
                  i)))))
    ((pred? . vs)
     (assert-procedure pred? 'vector-skip-right)
     (assert-vectors vs 'vector-skip-right)
     (let ((len (min-length vs)))
       (let loop ((i (- len 1)))
         (and (not (negative? i))
              (if (apply pred? (vectors-ref vs i))
                  (loop (- i 1))
                  i)))))))

(define vector-binary-search
  (let ()
    (define (%vector-binary-search vec value cmp start end)
      (let loop ((lo start) (hi end))
        (and (< lo hi)
             (let* ((i (quotient (+ lo hi) 2))
                    (x (vector-ref vec i))
                    (c (cmp x value)))
               (cond ((zero? c) i)
                     ((positive? c) (loop lo i))
                     ((negative? c) (loop (+ i 1) hi)))))))
    (case-lambda
      "(vector-binary-search vec value cmp [start [end]]) -> exact nonnegative integer or #f

Find and return an index of VEC between START and END whose value is
VALUE using a binary search.  If no matching element is found, return
#f.  The default START is 0 and the default END is the length of VEC.
CMP must be a procedure of two arguments such that (CMP A B) returns
a negative integer if A < B, a positive integer if A > B, or zero if
A = B.  The elements of VEC must be sorted in non-decreasing order
according to CMP."
      ((vec value cmp)
       (assert-vector vec 'vector-binary-search)
       (assert-procedure cmp 'vector-binary-search)
       (%vector-binary-search vec value cmp 0 (vector-length vec)))

      ((vec value cmp start)
       (assert-vector vec 'vector-binary-search)
       (let ((len (vector-length vec)))
         (assert-valid-start start len 'vector-binary-search)
         (%vector-binary-search vec value cmp start len)))

      ((vec value cmp start end)
       (assert-vector vec 'vector-binary-search)
       (let ((len (vector-length vec)))
         (assert-valid-range start end len 'vector-binary-search)
         (%vector-binary-search vec value cmp start end))))))

(define vector-any
  (case-lambda
    "(vector-any pred? vec1 vec2 ...) -> value or #f

Find the first parallel set of elements from VEC1 VEC2 ... for which
PRED? returns a true value.  If such a parallel set of elements
exists, vector-any returns the value that PRED? returned for that set
of elements.  The iteration is strictly left-to-right."
    ((pred? v)
     (assert-procedure pred? 'vector-any)
     (assert-vector v 'vector-any)
     (let ((len (vector-length v)))
       (let loop ((i 0))
         (and (< i len)
              (or (pred? (vector-ref v i))
                  (loop (+ i 1)))))))
    ((pred? v1 v2)
     (assert-procedure pred? 'vector-any)
     (assert-vector v1 'vector-any)
     (assert-vector v2 'vector-any)
     (let ((len (min (vector-length v1)
                     (vector-length v2))))
       (let loop ((i 0))
         (and (< i len)
              (or (pred? (vector-ref v1 i)
                         (vector-ref v2 i))
                  (loop (+ i 1)))))))
    ((pred? . vs)
     (assert-procedure pred? 'vector-any)
     (assert-vectors vs 'vector-any)
     (let ((len (min-length vs)))
       (let loop ((i 0))
         (and (< i len)
              (or (apply pred? (vectors-ref vs i))
                  (loop (+ i 1)))))))))

(define vector-every
  (case-lambda
    "(vector-every pred? vec1 vec2 ...) -> value or #f

If, for every index i less than the length of the shortest vector
argument, the set of elements VEC1[i] VEC2[i] ... satisfies PRED?,
vector-every returns the value that PRED? returned for the last set of
elements, at the last index of the shortest vector.  The iteration is
strictly left-to-right."
    ((pred? v)
     (assert-procedure pred? 'vector-every)
     (assert-vector v 'vector-every)
     (let ((len (vector-length v)))
       (or (zero? len)
           (let loop ((i 0))
             (let ((val (pred? (vector-ref v i)))
                   (next-i (+ i 1)))
               (if (or (not val) (= next-i len))
                   val
                   (loop next-i)))))))
    ((pred? v1 v2)
     (assert-procedure pred? 'vector-every)
     (assert-vector v1 'vector-every)
     (assert-vector v2 'vector-every)
     (let ((len (min (vector-length v1)
                     (vector-length v2))))
       (or (zero? len)
           (let loop ((i 0))
             (let ((val (pred? (vector-ref v1 i)
                               (vector-ref v2 i)))
                   (next-i (+ i 1)))
               (if (or (not val) (= next-i len))
                   val
                   (loop next-i)))))))
    ((pred? . vs)
     (assert-procedure pred? 'vector-every)
     (assert-vectors vs 'vector-every)
     (let ((len (min-length vs)))
       (or (zero? len)
           (let loop ((i 0))
             (let ((val (apply pred? (vectors-ref vs i)))
                   (next-i (+ i 1)))
               (if (or (not val) (= next-i len))
                   val
                   (loop next-i)))))))))

(define (vector-swap! vec i j)
  "(vector-swap! vec i j) -> unspecified

Swap the values of the locations in VEC at I and J."
  (assert-vector vec 'vector-swap!)
  (let ((len (vector-length vec)))
    (assert-valid-index i len 'vector-swap!)
    (assert-valid-index j len 'vector-swap!)
    (let ((tmp (vector-ref vec i)))
      (vector-set! vec i (vector-ref vec j))
      (vector-set! vec j tmp))))

(define (%vector-reverse! vec start end)
  (let loop ((i start) (j (- end 1)))
    (when (< i j)
      (let ((tmp (vector-ref vec i)))
        (vector-set! vec i (vector-ref vec j))
        (vector-set! vec j tmp)
        (loop (+ i 1) (- j 1))))))

(define vector-reverse!
  (case-lambda
    "(vector-reverse! vec [start [end]]) -> unspecified

Destructively reverse the contents of VEC between START and END.
START defaults to 0 and END defaults to the length of VEC."
    ((vec)
     (assert-vector vec 'vector-reverse!)
     (%vector-reverse! vec 0 (vector-length vec)))
    ((vec start)
     (assert-vector vec 'vector-reverse!)
     (let ((len (vector-length vec)))
       (assert-valid-start start len 'vector-reverse!)
       (%vector-reverse! vec start len)))
    ((vec start end)
     (assert-vector vec 'vector-reverse!)
     (let ((len (vector-length vec)))
       (assert-valid-range start end len 'vector-reverse!)
       (%vector-reverse! vec start end)))))

(define-syntax-rule (define-vector-copier! copy! docstring inner-proc)
  (define copy!
    (let ((%copy! inner-proc))
      (case-lambda
        docstring
        ((target tstart source)
         (assert-vector target 'copy!)
         (assert-vector source 'copy!)
         (let ((tlen (vector-length target))
               (slen (vector-length source)))
           (assert-valid-start tstart tlen 'copy!)
           (unless (>= tlen (+ tstart slen))
             (error-from 'copy! "would write past end of target"))
           (%copy! target tstart source 0 slen)))

        ((target tstart source sstart)
         (assert-vector target 'copy!)
         (assert-vector source 'copy!)
         (let ((tlen (vector-length target))
               (slen (vector-length source)))
           (assert-valid-start tstart tlen 'copy!)
           (assert-valid-start sstart slen 'copy!)
           (unless (>= tlen (+ tstart (- slen sstart)))
             (error-from 'copy! "would write past end of target"))
           (%copy! target tstart source sstart slen)))

        ((target tstart source sstart send)
         (assert-vector target 'copy!)
         (assert-vector source 'copy!)
         (let ((tlen (vector-length target))
               (slen (vector-length source)))
           (assert-valid-start tstart tlen 'copy!)
           (assert-valid-range sstart send slen 'copy!)
           (unless (>= tlen (+ tstart (- send sstart)))
             (error-from 'copy! "would write past end of target"))
           (%copy! target tstart source sstart send)))))))

(define-vector-copier! vector-reverse-copy!
  "(vector-reverse-copy! target tstart source [sstart [send]]) -> unspecified

Like vector-copy!, but copy the elements in the reverse order.  It is
an error if TARGET and SOURCE are identical vectors and the TARGET and
SOURCE ranges overlap; however, if TSTART = SSTART,
vector-reverse-copy! behaves as (vector-reverse! TARGET TSTART SEND)
would."
  (lambda (target tstart source sstart send)
    (if (and (eq? target source) (= tstart sstart))
        (%vector-reverse! target sstart send)
        (let loop ((i tstart) (j (- send 1)))
          (when (>= j sstart)
            (vector-set! target i (vector-ref source j))
            (loop (+ i 1) (- j 1)))))))

(define vector->list
  (let ()
    (define (%vector->list vec start end)
      (let loop ((i (- end 1))
                 (result '()))
        (if (< i start)
            result
            (loop (- i 1) (cons (vector-ref vec i) result)))))
    (case-lambda
      "(vector->list vec [start [end]]) -> proper-list

Return a newly allocated list containing the elements in VEC between
START and END.  START defaults to 0 and END defaults to the length of
VEC."
      ((vec)
       (assert-vector vec 'vector->list)
       (%vector->list vec 0 (vector-length vec)))
      ((vec start)
       (assert-vector vec 'vector->list)
       (let ((len (vector-length vec)))
         (assert-valid-start start len 'vector->list)
         (%vector->list vec start len)))
      ((vec start end)
       (assert-vector vec 'vector->list)
       (let ((len (vector-length vec)))
         (assert-valid-range start end len 'vector->list)
         (%vector->list vec start end))))))

(define reverse-vector->list
  (let ()
    (define (%reverse-vector->list vec start end)
      (let loop ((i start)
                 (result '()))
        (if (>= i end)
            result
            (loop (+ i 1) (cons (vector-ref vec i) result)))))
    (case-lambda
      "(reverse-vector->list vec [start [end]]) -> proper-list

Return a newly allocated list containing the elements in VEC between
START and END in reverse order.  START defaults to 0 and END defaults
to the length of VEC."
      ((vec)
       (assert-vector vec 'reverse-vector->list)
       (%reverse-vector->list vec 0 (vector-length vec)))
      ((vec start)
       (assert-vector vec 'reverse-vector->list)
       (let ((len (vector-length vec)))
         (assert-valid-start start len 'reverse-vector->list)
         (%reverse-vector->list vec start len)))
      ((vec start end)
       (assert-vector vec 'reverse-vector->list)
       (let ((len (vector-length vec)))
         (assert-valid-range start end len 'reverse-vector->list)
         (%reverse-vector->list vec start end))))))

;; TODO: change to use 'case-lambda' and improve error checking.
(define* (list->vector lst #:optional (start 0) (end (length lst)))
  "(list->vector proper-list [start [end]]) -> vector

Return a newly allocated vector of the elements from PROPER-LIST with
indices between START and END.  START defaults to 0 and END defaults
to the length of PROPER-LIST."
  (let* ((len (- end start))
         (result (make-vector len)))
    (let loop ((i 0) (lst (drop lst start)))
      (if (= i len)
          result
          (begin (vector-set! result i (car lst))
                 (loop (+ i 1) (cdr lst)))))))

;; TODO: change to use 'case-lambda' and improve error checking.
(define* (reverse-list->vector lst #:optional (start 0) (end (length lst)))
  "(reverse-list->vector proper-list [start [end]]) -> vector

Return a newly allocated vector of the elements from PROPER-LIST with
indices between START and END, in reverse order.  START defaults to 0
and END defaults to the length of PROPER-LIST."
  (let* ((len (- end start))
         (result (make-vector len)))
    (let loop ((i (- len 1)) (lst (drop lst start)))
      (if (negative? i)
          result
          (begin (vector-set! result i (car lst))
                 (loop (- i 1) (cdr lst)))))))