diff options
Diffstat (limited to 'compiler/types')
-rw-r--r-- | compiler/types/Coercion.lhs | 1557 | ||||
-rw-r--r-- | compiler/types/FamInstEnv.lhs | 81 | ||||
-rw-r--r-- | compiler/types/FunDeps.lhs | 6 | ||||
-rw-r--r-- | compiler/types/InstEnv.lhs | 4 | ||||
-rw-r--r-- | compiler/types/Kind.lhs | 232 | ||||
-rw-r--r-- | compiler/types/OptCoercion.lhs | 828 | ||||
-rw-r--r-- | compiler/types/TyCon.lhs | 238 | ||||
-rw-r--r-- | compiler/types/Type.lhs | 679 | ||||
-rw-r--r-- | compiler/types/TypeRep.lhs | 560 | ||||
-rw-r--r-- | compiler/types/TypeRep.lhs-boot | 3 | ||||
-rw-r--r-- | compiler/types/Unify.lhs | 74 |
11 files changed, 2335 insertions, 1927 deletions
diff --git a/compiler/types/Coercion.lhs b/compiler/types/Coercion.lhs index faab463044..7df5b8e38f 100644 --- a/compiler/types/Coercion.lhs +++ b/compiler/types/Coercion.lhs @@ -7,15 +7,9 @@ -- as used in System FC. See 'CoreSyn.Expr' for -- more on System FC and how coercions fit into it. -- --- Coercions are represented as types, and their kinds tell what types the --- coercion works on. The coercion kind constructor is a special TyCon that --- must always be saturated, like so: --- --- > typeKind (symCoercion type) :: TyConApp CoTyCon{...} [type, type] module Coercion ( -- * Main data type - Coercion, Kind, - typeKind, + Coercion(..), Var, CoVar, -- ** Deconstructing Kinds kindFunResult, kindAppResult, synTyConResKind, @@ -24,237 +18,454 @@ module Coercion ( -- ** Predicates on Kinds isLiftedTypeKind, isUnliftedTypeKind, isOpenTypeKind, isUbxTupleKind, isArgTypeKind, isKind, isTySuperKind, - isCoSuperKind, isSuperKind, isCoercionKind, + isSuperKind, isCoercionKind, mkArrowKind, mkArrowKinds, isSubArgTypeKind, isSubOpenTypeKind, isSubKind, defaultKind, eqKind, isSubKindCon, - mkCoKind, mkCoPredTy, coVarKind, coVarKind_maybe, - coercionKind, coercionKinds, isIdentityCoercion, - - -- ** Equality predicates - isEqPred, mkEqPred, getEqPredTys, isEqPredTy, - - -- ** Coercion transformations - mkCoercion, - mkSymCoercion, mkTransCoercion, - mkLeftCoercion, mkRightCoercion, - mkInstCoercion, mkAppCoercion, mkTyConCoercion, mkFunCoercion, - mkForAllCoercion, mkInstsCoercion, mkUnsafeCoercion, - mkNewTypeCoercion, mkFamInstCoercion, mkAppsCoercion, - mkCsel1Coercion, mkCsel2Coercion, mkCselRCoercion, - - mkClassPPredCo, mkIParamPredCo, mkEqPredCo, - mkCoVarCoercion, mkCoPredCo, + mkCoType, coVarKind, coVarKind_maybe, + coercionType, coercionKind, coercionKinds, isReflCo, - - unsafeCoercionTyCon, symCoercionTyCon, - transCoercionTyCon, leftCoercionTyCon, - rightCoercionTyCon, instCoercionTyCon, -- needed by TysWiredIn - csel1CoercionTyCon, csel2CoercionTyCon, cselRCoercionTyCon, + -- ** Constructing coercions + mkReflCo, mkCoVarCo, + mkAxInstCo, mkPiCo, mkPiCos, + mkSymCo, mkTransCo, mkNthCo, + mkInstCo, mkAppCo, mkTyConAppCo, mkFunCo, + mkForAllCo, mkUnsafeCo, + mkNewTypeCo, mkFamInstCo, + mkPredCo, -- ** Decomposition - decompLR_maybe, decompCsel_maybe, decompInst_maybe, splitCoPredTy_maybe, splitNewTypeRepCo_maybe, instNewTyCon_maybe, decomposeCo, - + getCoVar_maybe, + + splitTyConAppCo_maybe, + splitAppCo_maybe, + splitForAllCo_maybe, + + -- ** Coercion variables + mkCoVar, isCoVar, isCoVarType, coVarName, setCoVarName, setCoVarUnique, + + -- ** Free variables + tyCoVarsOfCo, tyCoVarsOfCos, coVarsOfCo, coercionSize, + + -- ** Substitution + CvSubstEnv, emptyCvSubstEnv, + CvSubst(..), emptyCvSubst, Coercion.lookupTyVar, lookupCoVar, + isEmptyCvSubst, zapCvSubstEnv, getCvInScope, + substCo, substCos, substCoVar, substCoVars, + substCoWithTy, substCoWithTys, + cvTvSubst, tvCvSubst, zipOpenCvSubst, + substTy, extendTvSubst, + substTyVarBndr, substCoVarBndr, + + -- ** Lifting + liftCoMatch, liftCoSubst, liftCoSubstTyVar, liftCoSubstWith, + -- ** Comparison coreEqCoercion, coreEqCoercion2, - -- * CoercionI - CoercionI(..), - isIdentityCoI, - mkSymCoI, mkTransCoI, - mkTyConAppCoI, mkAppTyCoI, mkFunTyCoI, - mkForAllTyCoI, - fromCoI, - mkClassPPredCoI, mkIParamPredCoI, mkEqPredCoI, mkCoPredCoI + -- ** Forcing evaluation of coercions + seqCo, + + -- * Pretty-printing + pprCo, pprParendCo, pprCoAxiom, + -- * Other + applyCo, coVarPred + ) where #include "HsVersions.h" +import Unify ( MatchEnv(..), ruleMatchTyX, matchList ) import TypeRep -import Type +import qualified Type +import Type hiding( substTy, substTyVarBndr, extendTvSubst ) +import Kind +import Class ( classTyCon ) import TyCon -import Class import Var import VarEnv import VarSet -import Name -import PrelNames +import UniqFM ( minusUFM ) +import Maybes ( orElse ) +import Name ( Name, NamedThing(..), nameUnique ) +import OccName ( isSymOcc ) import Util import BasicTypes import Outputable +import Unique +import Pair +import TysPrim ( eqPredPrimTyCon ) +import PrelNames ( funTyConKey ) +import Control.Applicative +import Data.Traversable (traverse, sequenceA) +import Control.Arrow (second) import FastString + +import qualified Data.Data as Data hiding ( TyCon ) \end{code} %************************************************************************ %* * - Functions over Kinds + Coercions %* * %************************************************************************ \begin{code} --- | Essentially 'funResultTy' on kinds -kindFunResult :: Kind -> Kind -kindFunResult k = funResultTy k - -kindAppResult :: Kind -> [arg] -> Kind -kindAppResult k [] = k -kindAppResult k (_:as) = kindAppResult (kindFunResult k) as - --- | Essentially 'splitFunTys' on kinds -splitKindFunTys :: Kind -> ([Kind],Kind) -splitKindFunTys k = splitFunTys k - -splitKindFunTy_maybe :: Kind -> Maybe (Kind,Kind) -splitKindFunTy_maybe = splitFunTy_maybe - --- | Essentially 'splitFunTysN' on kinds -splitKindFunTysN :: Int -> Kind -> ([Kind],Kind) -splitKindFunTysN k = splitFunTysN k - --- | Find the result 'Kind' of a type synonym, --- after applying it to its 'arity' number of type variables --- Actually this function works fine on data types too, --- but they'd always return '*', so we never need to ask -synTyConResKind :: TyCon -> Kind -synTyConResKind tycon = kindAppResult (tyConKind tycon) (tyConTyVars tycon) - --- | See "Type#kind_subtyping" for details of the distinction between these 'Kind's -isUbxTupleKind, isOpenTypeKind, isArgTypeKind, isUnliftedTypeKind :: Kind -> Bool -isOpenTypeKindCon, isUbxTupleKindCon, isArgTypeKindCon, - isUnliftedTypeKindCon, isSubArgTypeKindCon :: TyCon -> Bool - -isOpenTypeKindCon tc = tyConUnique tc == openTypeKindTyConKey - -isOpenTypeKind (TyConApp tc _) = isOpenTypeKindCon tc -isOpenTypeKind _ = False - -isUbxTupleKindCon tc = tyConUnique tc == ubxTupleKindTyConKey - -isUbxTupleKind (TyConApp tc _) = isUbxTupleKindCon tc -isUbxTupleKind _ = False - -isArgTypeKindCon tc = tyConUnique tc == argTypeKindTyConKey - -isArgTypeKind (TyConApp tc _) = isArgTypeKindCon tc -isArgTypeKind _ = False - -isUnliftedTypeKindCon tc = tyConUnique tc == unliftedTypeKindTyConKey - -isUnliftedTypeKind (TyConApp tc _) = isUnliftedTypeKindCon tc -isUnliftedTypeKind _ = False - -isSubOpenTypeKind :: Kind -> Bool --- ^ True of any sub-kind of OpenTypeKind (i.e. anything except arrow) -isSubOpenTypeKind (FunTy k1 k2) = ASSERT2 ( isKind k1, text "isSubOpenTypeKind" <+> ppr k1 <+> text "::" <+> ppr (typeKind k1) ) - ASSERT2 ( isKind k2, text "isSubOpenTypeKind" <+> ppr k2 <+> text "::" <+> ppr (typeKind k2) ) - False -isSubOpenTypeKind (TyConApp kc []) = ASSERT( isKind (TyConApp kc []) ) True -isSubOpenTypeKind other = ASSERT( isKind other ) False - -- This is a conservative answer - -- It matters in the call to isSubKind in - -- checkExpectedKind. - -isSubArgTypeKindCon kc - | isUnliftedTypeKindCon kc = True - | isLiftedTypeKindCon kc = True - | isArgTypeKindCon kc = True - | otherwise = False - -isSubArgTypeKind :: Kind -> Bool --- ^ True of any sub-kind of ArgTypeKind -isSubArgTypeKind (TyConApp kc []) = isSubArgTypeKindCon kc -isSubArgTypeKind _ = False - --- | Is this a super-kind (i.e. a type-of-kinds)? -isSuperKind :: Type -> Bool -isSuperKind (TyConApp (skc) []) = isSuperKindTyCon skc -isSuperKind _ = False - --- | Is this a kind (i.e. a type-of-types)? -isKind :: Kind -> Bool -isKind k = isSuperKind (typeKind k) - -isSubKind :: Kind -> Kind -> Bool --- ^ @k1 \`isSubKind\` k2@ checks that @k1@ <: @k2@ -isSubKind (TyConApp kc1 []) (TyConApp kc2 []) = kc1 `isSubKindCon` kc2 -isSubKind (FunTy a1 r1) (FunTy a2 r2) = (a2 `isSubKind` a1) && (r1 `isSubKind` r2) -isSubKind (PredTy (EqPred ty1 ty2)) (PredTy (EqPred ty1' ty2')) - = ty1 `tcEqType` ty1' && ty2 `tcEqType` ty2' -isSubKind _ _ = False - -eqKind :: Kind -> Kind -> Bool -eqKind = tcEqType - -isSubKindCon :: TyCon -> TyCon -> Bool --- ^ @kc1 \`isSubKindCon\` kc2@ checks that @kc1@ <: @kc2@ -isSubKindCon kc1 kc2 - | isLiftedTypeKindCon kc1 && isLiftedTypeKindCon kc2 = True - | isUnliftedTypeKindCon kc1 && isUnliftedTypeKindCon kc2 = True - | isUbxTupleKindCon kc1 && isUbxTupleKindCon kc2 = True - | isOpenTypeKindCon kc2 = True - -- we already know kc1 is not a fun, its a TyCon - | isArgTypeKindCon kc2 && isSubArgTypeKindCon kc1 = True - | otherwise = False - -defaultKind :: Kind -> Kind --- ^ Used when generalising: default kind ? and ?? to *. See "Type#kind_subtyping" for more --- information on what that means - --- When we generalise, we make generic type variables whose kind is --- simple (* or *->* etc). So generic type variables (other than --- built-in constants like 'error') always have simple kinds. This is important; --- consider --- f x = True --- We want f to get type --- f :: forall (a::*). a -> Bool --- Not --- f :: forall (a::??). a -> Bool --- because that would allow a call like (f 3#) as well as (f True), ---and the calling conventions differ. This defaulting is done in TcMType.zonkTcTyVarBndr. -defaultKind k - | isSubOpenTypeKind k = liftedTypeKind - | isSubArgTypeKind k = liftedTypeKind - | otherwise = k +-- | A 'Coercion' is concrete evidence of the equality/convertibility +-- of two types. + +data Coercion + -- These ones mirror the shape of types + = Refl Type -- See Note [Refl invariant] + -- Invariant: applications of (Refl T) to a bunch of identity coercions + -- always show up as Refl. + -- For example (Refl T) (Refl a) (Refl b) shows up as (Refl (T a b)). + + -- Applications of (Refl T) to some coercions, at least one of + -- which is NOT the identity, show up as TyConAppCo. + -- (They may not be fully saturated however.) + -- ConAppCo coercions (like all coercions other than Refl) + -- are NEVER the identity. + + -- These ones simply lift the correspondingly-named + -- Type constructors into Coercions + | TyConAppCo TyCon [Coercion] -- lift TyConApp + -- The TyCon is never a synonym; + -- we expand synonyms eagerly + + | AppCo Coercion Coercion -- lift AppTy + + -- See Note [Forall coercions] + | ForAllCo TyVar Coercion -- forall a. g + + -- These are special + | CoVarCo CoVar + | AxiomInstCo CoAxiom [Coercion] -- The coercion arguments always *precisely* + -- saturate arity of CoAxiom. + -- See [Coercion axioms applied to coercions] + | UnsafeCo Type Type + | SymCo Coercion + | TransCo Coercion Coercion + + -- These are destructors + | NthCo Int Coercion -- Zero-indexed + | InstCo Coercion Type + deriving (Data.Data, Data.Typeable) \end{code} +Note [Refl invariant] +~~~~~~~~~~~~~~~~~~~~~ +Coercions have the following invariant + Refl is always lifted as far as possible. + +You might think that a consequencs is: + Every identity coercions has Refl at the root + +But that's not quite true because of coercion variables. Consider + g where g :: Int~Int + Left h where h :: Maybe Int ~ Maybe Int +etc. So the consequence is only true of coercions that +have no coercion variables. + +Note [Coercion axioms applied to coercions] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The reason coercion axioms can be applied to coercions and not just +types is to allow for better optimization. There are some cases where +we need to be able to "push transitivity inside" an axiom in order to +expose further opportunities for optimization. + +For example, suppose we have + + C a : t[a] ~ F a + g : b ~ c + +and we want to optimize + + sym (C b) ; t[g] ; C c + +which has the kind + + F b ~ F c + +(stopping through t[b] and t[c] along the way). + +We'd like to optimize this to just F g -- but how? The key is +that we need to allow axioms to be instantiated by *coercions*, +not just by types. Then we can (in certain cases) push +transitivity inside the axiom instantiations, and then react +opposite-polarity instantiations of the same axiom. In this +case, e.g., we match t[g] against the LHS of (C c)'s kind, to +obtain the substitution a |-> g (note this operation is sort +of the dual of lifting!) and hence end up with + + C g : t[b] ~ F c + +which indeed has the same kind as t[g] ; C c. + +Now we have + + sym (C b) ; C g + +which can be optimized to F g. + + +Note [Forall coercions] +~~~~~~~~~~~~~~~~~~~~~~~ +Constructing coercions between forall-types can be a bit tricky. +Currently, the situation is as follows: + + ForAllCo TyVar Coercion + +represents a coercion between polymorphic types, with the rule + + v : k g : t1 ~ t2 + ---------------------------------------------- + ForAllCo v g : (all v:k . t1) ~ (all v:k . t2) + +Note that it's only necessary to coerce between polymorphic types +where the type variables have identical kinds, because equality on +kinds is trivial. + +Note [Predicate coercions] +~~~~~~~~~~~~~~~~~~~~~~~~~~ +Suppose we have + g :: a~b +How can we coerce between types + ([c]~a) => [a] -> c +and + ([c]~b) => [b] -> c +where the equality predicate *itself* differs? + +Answer: we simply treat (~) as an ordinary type constructor, so these +types really look like + + ((~) [c] a) -> [a] -> c + ((~) [c] b) -> [b] -> c + +So the coercion between the two is obviously + + ((~) [c] g) -> [g] -> c + +Another way to see this to say that we simply collapse predicates to +their representation type (see Type.coreView and Type.predTypeRep). + +This collapse is done by mkPredCo; there is no PredCo constructor +in Coercion. This is important because we need Nth to work on +predicates too: + Nth 1 ((~) [c] g) = g +See Simplify.simplCoercionF, which generates such selections. + %************************************************************************ %* * - Coercions +\subsection{Coercion variables} +%* * +%************************************************************************ + +\begin{code} +coVarName :: CoVar -> Name +coVarName = varName + +setCoVarUnique :: CoVar -> Unique -> CoVar +setCoVarUnique = setVarUnique + +setCoVarName :: CoVar -> Name -> CoVar +setCoVarName = setVarName + +isCoVar :: Var -> Bool +isCoVar v = isCoVarType (varType v) + +isCoVarType :: Type -> Bool +isCoVarType = isEqPredTy +\end{code} + + +\begin{code} +tyCoVarsOfCo :: Coercion -> VarSet +-- Extracts type and coercion variables from a coercion +tyCoVarsOfCo (Refl ty) = tyVarsOfType ty +tyCoVarsOfCo (TyConAppCo _ cos) = tyCoVarsOfCos cos +tyCoVarsOfCo (AppCo co1 co2) = tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2 +tyCoVarsOfCo (ForAllCo tv co) = tyCoVarsOfCo co `delVarSet` tv +tyCoVarsOfCo (CoVarCo v) = unitVarSet v +tyCoVarsOfCo (AxiomInstCo _ cos) = tyCoVarsOfCos cos +tyCoVarsOfCo (UnsafeCo ty1 ty2) = tyVarsOfType ty1 `unionVarSet` tyVarsOfType ty2 +tyCoVarsOfCo (SymCo co) = tyCoVarsOfCo co +tyCoVarsOfCo (TransCo co1 co2) = tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2 +tyCoVarsOfCo (NthCo _ co) = tyCoVarsOfCo co +tyCoVarsOfCo (InstCo co ty) = tyCoVarsOfCo co `unionVarSet` tyVarsOfType ty + +tyCoVarsOfCos :: [Coercion] -> VarSet +tyCoVarsOfCos cos = foldr (unionVarSet . tyCoVarsOfCo) emptyVarSet cos + +coVarsOfCo :: Coercion -> VarSet +-- Extract *coerction* variables only. Tiresome to repeat the code, but easy. +coVarsOfCo (Refl _) = emptyVarSet +coVarsOfCo (TyConAppCo _ cos) = coVarsOfCos cos +coVarsOfCo (AppCo co1 co2) = coVarsOfCo co1 `unionVarSet` coVarsOfCo co2 +coVarsOfCo (ForAllCo _ co) = coVarsOfCo co +coVarsOfCo (CoVarCo v) = unitVarSet v +coVarsOfCo (AxiomInstCo _ cos) = coVarsOfCos cos +coVarsOfCo (UnsafeCo _ _) = emptyVarSet +coVarsOfCo (SymCo co) = coVarsOfCo co +coVarsOfCo (TransCo co1 co2) = coVarsOfCo co1 `unionVarSet` coVarsOfCo co2 +coVarsOfCo (NthCo _ co) = coVarsOfCo co +coVarsOfCo (InstCo co _) = coVarsOfCo co + +coVarsOfCos :: [Coercion] -> VarSet +coVarsOfCos cos = foldr (unionVarSet . coVarsOfCo) emptyVarSet cos + +coercionSize :: Coercion -> Int +coercionSize (Refl ty) = typeSize ty +coercionSize (TyConAppCo _ cos) = 1 + sum (map coercionSize cos) +coercionSize (AppCo co1 co2) = coercionSize co1 + coercionSize co2 +coercionSize (ForAllCo _ co) = 1 + coercionSize co +coercionSize (CoVarCo _) = 1 +coercionSize (AxiomInstCo _ cos) = 1 + sum (map coercionSize cos) +coercionSize (UnsafeCo ty1 ty2) = typeSize ty1 + typeSize ty2 +coercionSize (SymCo co) = 1 + coercionSize co +coercionSize (TransCo co1 co2) = 1 + coercionSize co1 + coercionSize co2 +coercionSize (NthCo _ co) = 1 + coercionSize co +coercionSize (InstCo co ty) = 1 + coercionSize co + typeSize ty +\end{code} + +%************************************************************************ %* * + Pretty-printing coercions +%* * %************************************************************************ +@pprCo@ is the standard @Coercion@ printer; the overloaded @ppr@ +function is defined to use this. @pprParendCo@ is the same, except it +puts parens around the type, except for the atomic cases. +@pprParendCo@ works just by setting the initial context precedence +very high. \begin{code} --- | A 'Coercion' represents a 'Type' something should be coerced to. -type Coercion = Type +instance Outputable Coercion where + ppr = pprCo + +pprCo, pprParendCo :: Coercion -> SDoc +pprCo co = ppr_co TopPrec co +pprParendCo co = ppr_co TyConPrec co + +ppr_co :: Prec -> Coercion -> SDoc +ppr_co _ (Refl ty) = angles (ppr ty) + +ppr_co p co@(TyConAppCo tc cos) + | tc `hasKey` funTyConKey = ppr_fun_co p co + | otherwise = pprTcApp p ppr_co tc cos + +ppr_co p (AppCo co1 co2) = maybeParen p TyConPrec $ + pprCo co1 <+> ppr_co TyConPrec co2 + +ppr_co p co@(ForAllCo {}) = ppr_forall_co p co + +ppr_co _ (CoVarCo cv) + | isSymOcc (getOccName cv) = parens (ppr cv) + | otherwise = ppr cv + +ppr_co p (AxiomInstCo con cos) = pprTypeNameApp p ppr_co (getName con) cos --- | A 'CoercionKind' is always of form @ty1 ~ ty2@ and indicates the --- types that a 'Coercion' will work on. -type CoercionKind = Kind ------------------------------- +ppr_co p (TransCo co1 co2) = maybeParen p FunPrec $ + ppr_co FunPrec co1 + <+> ptext (sLit ";") + <+> ppr_co FunPrec co2 +ppr_co p (InstCo co ty) = maybeParen p TyConPrec $ + pprParendCo co <> ptext (sLit "@") <> pprType ty --- | This breaks a 'Coercion' with 'CoercionKind' @T A B C ~ T D E F@ into +ppr_co p (UnsafeCo ty1 ty2) = pprPrefixApp p (ptext (sLit "UnsafeCo")) [pprParendType ty1, pprParendType ty2] +ppr_co p (SymCo co) = pprPrefixApp p (ptext (sLit "Sym")) [pprParendCo co] +ppr_co p (NthCo n co) = pprPrefixApp p (ptext (sLit "Nth:") <+> int n) [pprParendCo co] + + +angles :: SDoc -> SDoc +angles p = char '<' <> p <> char '>' + +ppr_fun_co :: Prec -> Coercion -> SDoc +ppr_fun_co p co = pprArrowChain p (split co) + where + split (TyConAppCo f [arg,res]) + | f `hasKey` funTyConKey + = ppr_co FunPrec arg : split res + split co = [ppr_co TopPrec co] + +ppr_forall_co :: Prec -> Coercion -> SDoc +ppr_forall_co p ty + = maybeParen p FunPrec $ + sep [pprForAll tvs, ppr_co TopPrec rho] + where + (tvs, rho) = split1 [] ty + split1 tvs (ForAllCo tv ty) = split1 (tv:tvs) ty + split1 tvs ty = (reverse tvs, ty) +\end{code} + +\begin{code} +pprCoAxiom :: CoAxiom -> SDoc +pprCoAxiom ax + = sep [ ptext (sLit "axiom") <+> ppr ax <+> ppr (co_ax_tvs ax) + , nest 2 (dcolon <+> pprEqPred (Pair (co_ax_lhs ax) (co_ax_rhs ax))) ] +\end{code} + +%************************************************************************ +%* * + Functions over Kinds +%* * +%************************************************************************ + +\begin{code} +-- | This breaks a 'Coercion' with type @T A B C ~ T D E F@ into -- a list of 'Coercion's of kinds @A ~ D@, @B ~ E@ and @E ~ F@. Hence: -- --- > decomposeCo 3 c = [right (left (left c)), right (left c), right c] +-- > decomposeCo 3 c = [nth 0 c, nth 1 c, nth 2 c] decomposeCo :: Arity -> Coercion -> [Coercion] -decomposeCo n co - = go n co [] - where - go 0 _ cos = cos - go n co cos = go (n-1) (mkLeftCoercion co) - (mkRightCoercion co : cos) - +decomposeCo arity co = [mkNthCo n co | n <- [0..(arity-1)] ] + +-- | Attempts to obtain the type variable underlying a 'Coercion' +getCoVar_maybe :: Coercion -> Maybe CoVar +getCoVar_maybe (CoVarCo cv) = Just cv +getCoVar_maybe _ = Nothing + +-- | Attempts to tease a coercion apart into a type constructor and the application +-- of a number of coercion arguments to that constructor +splitTyConAppCo_maybe :: Coercion -> Maybe (TyCon, [Coercion]) +splitTyConAppCo_maybe (Refl ty) = (fmap . second . map) Refl (splitTyConApp_maybe ty) +splitTyConAppCo_maybe (TyConAppCo tc cos) = Just (tc, cos) +splitTyConAppCo_maybe _ = Nothing + +splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion) +-- ^ Attempt to take a coercion application apart. +splitAppCo_maybe (AppCo co1 co2) = Just (co1, co2) +splitAppCo_maybe (TyConAppCo tc cos) + | isDecomposableTyCon tc || cos `lengthExceeds` tyConArity tc + , Just (cos', co') <- snocView cos + = Just (mkTyConAppCo tc cos', co') -- Never create unsaturated type family apps! + -- Use mkTyConAppCo to preserve the invariant + -- that identity coercions are always represented by Refl +splitAppCo_maybe (Refl ty) + | Just (ty1, ty2) <- splitAppTy_maybe ty + = Just (Refl ty1, Refl ty2) +splitAppCo_maybe _ = Nothing + +splitForAllCo_maybe :: Coercion -> Maybe (TyVar, Coercion) +splitForAllCo_maybe (ForAllCo tv co) = Just (tv, co) +splitForAllCo_maybe _ = Nothing ------------------------------------------------------- -- and some coercion kind stuff +coVarPred :: CoVar -> PredType +coVarPred cv + = ASSERT( isCoVar cv ) + case splitPredTy_maybe (varType cv) of + Just pred -> pred + other -> pprPanic "coVarPred" (ppr cv $$ ppr other) + coVarKind :: CoVar -> (Type,Type) -- c :: t1 ~ t2 coVarKind cv = case coVarKind_maybe cv of @@ -262,31 +473,12 @@ coVarKind cv = case coVarKind_maybe cv of Nothing -> pprPanic "coVarKind" (ppr cv $$ ppr (tyVarKind cv)) coVarKind_maybe :: CoVar -> Maybe (Type,Type) -coVarKind_maybe cv = splitCoKind_maybe (tyVarKind cv) - --- | Take a 'CoercionKind' apart into the two types it relates: see also 'mkCoKind'. --- Panics if the argument is not a valid 'CoercionKind' -splitCoKind_maybe :: Kind -> Maybe (Type, Type) -splitCoKind_maybe co | Just co' <- kindView co = splitCoKind_maybe co' -splitCoKind_maybe (PredTy (EqPred ty1 ty2)) = Just (ty1, ty2) -splitCoKind_maybe _ = Nothing +coVarKind_maybe cv = splitEqPredTy_maybe (varType cv) --- | Makes a 'CoercionKind' from two types: the types whose equality +-- | Makes a coercion type from two types: the types whose equality -- is proven by the relevant 'Coercion' -mkCoKind :: Type -> Type -> CoercionKind -mkCoKind ty1 ty2 = PredTy (EqPred ty1 ty2) - --- | (mkCoPredTy s t r) produces the type: (s~t) => r -mkCoPredTy :: Type -> Type -> Type -> Type -mkCoPredTy s t r = ASSERT( not (co_var `elemVarSet` tyVarsOfType r) ) - ForAllTy co_var r - where - co_var = mkWildCoVar (mkCoKind s t) - -mkCoPredCo :: Coercion -> Coercion -> Coercion -> Coercion --- Creates a coercion between (s1~t1) => r1 and (s2~t2) => r2 -mkCoPredCo = mkCoPredTy - +mkCoType :: Type -> Type -> Type +mkCoType ty1 ty2 = PredTy (EqPred ty1 ty2) splitCoPredTy_maybe :: Type -> Maybe (Type, Type, Type) splitCoPredTy_maybe ty @@ -297,25 +489,13 @@ splitCoPredTy_maybe ty | otherwise = Nothing --- | Tests whether a type is just a type equality predicate -isEqPredTy :: Type -> Bool -isEqPredTy (PredTy pred) = isEqPred pred -isEqPredTy _ = False - --- | Creates a type equality predicate -mkEqPred :: (Type, Type) -> PredType -mkEqPred (ty1, ty2) = EqPred ty1 ty2 - --- | Splits apart a type equality predicate, if the supplied 'PredType' is one. --- Panics otherwise -getEqPredTys :: PredType -> (Type,Type) -getEqPredTys (EqPred ty1 ty2) = (ty1, ty2) -getEqPredTys other = pprPanic "getEqPredTys" (ppr other) - -isIdentityCoercion :: Coercion -> Bool -isIdentityCoercion co - = case coercionKind co of - (t1,t2) -> t1 `coreEqType` t2 +isReflCo :: Coercion -> Bool +isReflCo (Refl {}) = True +isReflCo _ = False + +isReflCo_maybe :: Coercion -> Maybe Type +isReflCo_maybe (Refl ty) = Just ty +isReflCo_maybe _ = Nothing \end{code} %************************************************************************ @@ -324,236 +504,157 @@ isIdentityCoercion co %* * %************************************************************************ -Coercion kind and type mk's (make saturated TyConApp CoercionTyCon{...} args) - \begin{code} --- | Make a coercion from the specified coercion 'TyCon' and the 'Type' arguments to --- that coercion. Try to use the @mk*Coercion@ family of functions instead of using this function --- if possible -mkCoercion :: TyCon -> [Type] -> Coercion -mkCoercion coCon args = ASSERT( tyConArity coCon == length args ) - TyConApp coCon args +mkCoVarCo :: CoVar -> Coercion +mkCoVarCo cv + | ty1 `eqType` ty2 = Refl ty1 + | otherwise = CoVarCo cv + where + (ty1, ty2) = ASSERT( isCoVar cv ) coVarKind cv -mkCoVarCoercion :: CoVar -> Coercion -mkCoVarCoercion cv = mkTyVarTy cv +mkReflCo :: Type -> Coercion +mkReflCo = Refl --- | Apply a 'Coercion' to another 'Coercion', which is presumably a --- 'Coercion' constructor of some kind -mkAppCoercion :: Coercion -> Coercion -> Coercion -mkAppCoercion co1 co2 = mkAppTy co1 co2 +mkAxInstCo :: CoAxiom -> [Type] -> Coercion +mkAxInstCo ax tys + | arity == n_tys = AxiomInstCo ax rtys + | otherwise = ASSERT( arity < n_tys ) + foldl AppCo (AxiomInstCo ax (take arity rtys)) + (drop arity rtys) + where + n_tys = length tys + arity = coAxiomArity ax + rtys = map Refl tys + +-- | Apply a 'Coercion' to another 'Coercion'. +mkAppCo :: Coercion -> Coercion -> Coercion +mkAppCo (Refl ty1) (Refl ty2) = Refl (mkAppTy ty1 ty2) +mkAppCo (Refl (TyConApp tc tys)) co = TyConAppCo tc (map Refl tys ++ [co]) +mkAppCo (TyConAppCo tc cos) co = TyConAppCo tc (cos ++ [co]) +mkAppCo co1 co2 = AppCo co1 co2 +-- Note, mkAppCo is careful to maintain invariants regarding +-- where Refl constructors appear; see the comments in the definition +-- of Coercion and the Note [Refl invariant] in types/TypeRep.lhs. -- | Applies multiple 'Coercion's to another 'Coercion', from left to right. --- See also 'mkAppCoercion' -mkAppsCoercion :: Coercion -> [Coercion] -> Coercion -mkAppsCoercion co1 tys = foldl mkAppTy co1 tys +-- See also 'mkAppCo' +mkAppCos :: Coercion -> [Coercion] -> Coercion +mkAppCos co1 tys = foldl mkAppCo co1 tys -- | Apply a type constructor to a list of coercions. -mkTyConCoercion :: TyCon -> [Coercion] -> Coercion -mkTyConCoercion con cos = mkTyConApp con cos +mkTyConAppCo :: TyCon -> [Coercion] -> Coercion +mkTyConAppCo tc cos + -- Expand type synonyms + | Just (tv_co_prs, rhs_ty, leftover_cos) <- tcExpandTyCon_maybe tc cos + = mkAppCos (liftCoSubst (mkTopCvSubst tv_co_prs) rhs_ty) leftover_cos + + | Just tys <- traverse isReflCo_maybe cos + = Refl (mkTyConApp tc tys) -- See Note [Refl invariant] + + | otherwise = TyConAppCo tc cos -- | Make a function 'Coercion' between two other 'Coercion's -mkFunCoercion :: Coercion -> Coercion -> Coercion -mkFunCoercion co1 co2 = mkFunTy co1 co2 -- NB: Handles correctly the forall for eqpreds! +mkFunCo :: Coercion -> Coercion -> Coercion +mkFunCo co1 co2 = mkTyConAppCo funTyCon [co1, co2] -- | Make a 'Coercion' which binds a variable within an inner 'Coercion' -mkForAllCoercion :: Var -> Coercion -> Coercion +mkForAllCo :: Var -> Coercion -> Coercion -- note that a TyVar should be used here, not a CoVar (nor a TcTyVar) -mkForAllCoercion tv co = ASSERT ( isTyCoVar tv ) mkForAllTy tv co +mkForAllCo tv (Refl ty) = ASSERT( isTyVar tv ) Refl (mkForAllTy tv ty) +mkForAllCo tv co = ASSERT ( isTyVar tv ) ForAllCo tv co +mkPredCo :: Pred Coercion -> Coercion +-- See Note [Predicate coercions] +mkPredCo (EqPred co1 co2) = mkTyConAppCo eqPredPrimTyCon [co1,co2] +mkPredCo (ClassP cls cos) = mkTyConAppCo (classTyCon cls) cos +mkPredCo (IParam _ co) = co ------------------------------- -mkSymCoercion :: Coercion -> Coercion --- ^ Create a symmetric version of the given 'Coercion' that asserts equality --- between the same types but in the other "direction", so a kind of @t1 ~ t2@ --- becomes the kind @t2 ~ t1@. -mkSymCoercion g = mkCoercion symCoercionTyCon [g] - -mkTransCoercion :: Coercion -> Coercion -> Coercion --- ^ Create a new 'Coercion' by exploiting transitivity on the two given 'Coercion's. -mkTransCoercion g1 g2 = mkCoercion transCoercionTyCon [g1, g2] - -mkLeftCoercion :: Coercion -> Coercion --- ^ From an application 'Coercion' build a 'Coercion' that asserts the equality of --- the "functions" on either side of the type equality. So if @c@ has kind @f x ~ g y@ then: --- --- > mkLeftCoercion c :: f ~ g -mkLeftCoercion co = mkCoercion leftCoercionTyCon [co] - -mkRightCoercion :: Coercion -> Coercion --- ^ From an application 'Coercion' build a 'Coercion' that asserts the equality of --- the "arguments" on either side of the type equality. So if @c@ has kind @f x ~ g y@ then: --- --- > mkLeftCoercion c :: x ~ y -mkRightCoercion co = mkCoercion rightCoercionTyCon [co] - -mkCsel1Coercion, mkCsel2Coercion, mkCselRCoercion :: Coercion -> Coercion -mkCsel1Coercion co = mkCoercion csel1CoercionTyCon [co] -mkCsel2Coercion co = mkCoercion csel2CoercionTyCon [co] -mkCselRCoercion co = mkCoercion cselRCoercionTyCon [co] - -------------------------------- -mkInstCoercion :: Coercion -> Type -> Coercion --- ^ Instantiates a 'Coercion' with a 'Type' argument. If possible, it immediately performs --- the resulting beta-reduction, otherwise it creates a suspended instantiation. -mkInstCoercion co ty = mkCoercion instCoercionTyCon [co, ty] - -mkInstsCoercion :: Coercion -> [Type] -> Coercion --- ^ As 'mkInstCoercion', but instantiates the coercion with a number of type arguments, left-to-right -mkInstsCoercion co tys = foldl mkInstCoercion co tys - --- | Manufacture a coercion from this air. Needless to say, this is not usually safe, --- but it is used when we know we are dealing with bottom, which is one case in which --- it is safe. This is also used implement the @unsafeCoerce#@ primitive. --- Optimise by pushing down through type constructors -mkUnsafeCoercion :: Type -> Type -> Coercion -mkUnsafeCoercion (TyConApp tc1 tys1) (TyConApp tc2 tys2) +-- | Create a symmetric version of the given 'Coercion' that asserts +-- equality between the same types but in the other "direction", so +-- a kind of @t1 ~ t2@ becomes the kind @t2 ~ t1@. +mkSymCo :: Coercion -> Coercion + +-- Do a few simple optimizations, but don't bother pushing occurrences +-- of symmetry to the leaves; the optimizer will take care of that. +mkSymCo co@(Refl {}) = co +mkSymCo (UnsafeCo ty1 ty2) = UnsafeCo ty2 ty1 +mkSymCo (SymCo co) = co +mkSymCo co = SymCo co + +-- | Create a new 'Coercion' by composing the two given 'Coercion's transitively. +mkTransCo :: Coercion -> Coercion -> Coercion +mkTransCo (Refl _) co = co +mkTransCo co (Refl _) = co +mkTransCo co1 co2 = TransCo co1 co2 + +mkNthCo :: Int -> Coercion -> Coercion +mkNthCo n (Refl ty) = Refl (getNth n ty) +mkNthCo n co = NthCo n co + +-- | Instantiates a 'Coercion' with a 'Type' argument. If possible, it immediately performs +-- the resulting beta-reduction, otherwise it creates a suspended instantiation. +mkInstCo :: Coercion -> Type -> Coercion +mkInstCo (ForAllCo tv co) ty = substCoWithTy tv ty co +mkInstCo co ty = InstCo co ty + +-- | Manufacture a coercion from thin air. Needless to say, this is +-- not usually safe, but it is used when we know we are dealing with +-- bottom, which is one case in which it is safe. This is also used +-- to implement the @unsafeCoerce#@ primitive. Optimise by pushing +-- down through type constructors. +mkUnsafeCo :: Type -> Type -> Coercion +mkUnsafeCo ty1 ty2 | ty1 `eqType` ty2 = Refl ty1 +mkUnsafeCo (TyConApp tc1 tys1) (TyConApp tc2 tys2) | tc1 == tc2 - = TyConApp tc1 (zipWith mkUnsafeCoercion tys1 tys2) + = mkTyConAppCo tc1 (zipWith mkUnsafeCo tys1 tys2) -mkUnsafeCoercion (FunTy a1 r1) (FunTy a2 r2) - = FunTy (mkUnsafeCoercion a1 a2) (mkUnsafeCoercion r1 r2) +mkUnsafeCo (FunTy a1 r1) (FunTy a2 r2) + = mkFunCo (mkUnsafeCo a1 a2) (mkUnsafeCo r1 r2) -mkUnsafeCoercion ty1 ty2 - | ty1 `coreEqType` ty2 = ty1 - | otherwise = mkCoercion unsafeCoercionTyCon [ty1, ty2] +mkUnsafeCo ty1 ty2 = UnsafeCo ty1 ty2 -- See note [Newtype coercions] in TyCon --- | Create a coercion suitable for the given 'TyCon'. The 'Name' should be that of a --- new coercion 'TyCon', the 'TyVar's the arguments expected by the @newtype@ and the --- type the appropriate right hand side of the @newtype@, with the free variables --- a subset of those 'TyVar's. -mkNewTypeCoercion :: Name -> TyCon -> [TyVar] -> Type -> TyCon -mkNewTypeCoercion name tycon tvs rhs_ty - = mkCoercionTyCon name arity desc - where - arity = length tvs - desc = CoAxiom { co_ax_tvs = tvs - , co_ax_lhs = mkTyConApp tycon (mkTyVarTys tvs) - , co_ax_rhs = rhs_ty } +-- | Create a coercion constructor (axiom) suitable for the given +-- newtype 'TyCon'. The 'Name' should be that of a new coercion +-- 'CoAxiom', the 'TyVar's the arguments expected by the @newtype@ and +-- the type the appropriate right hand side of the @newtype@, with +-- the free variables a subset of those 'TyVar's. +mkNewTypeCo :: Name -> TyCon -> [TyVar] -> Type -> CoAxiom +mkNewTypeCo name tycon tvs rhs_ty + = CoAxiom { co_ax_unique = nameUnique name + , co_ax_name = name + , co_ax_tvs = tvs + , co_ax_lhs = mkTyConApp tycon (mkTyVarTys tvs) + , co_ax_rhs = rhs_ty } -- | Create a coercion identifying a @data@, @newtype@ or @type@ representation type -- and its family instance. It has the form @Co tvs :: F ts ~ R tvs@, where @Co@ is --- the coercion tycon built here, @F@ the family tycon and @R@ the (derived) +-- the coercion constructor built here, @F@ the family tycon and @R@ the (derived) -- representation tycon. -mkFamInstCoercion :: Name -- ^ Unique name for the coercion tycon +mkFamInstCo :: Name -- ^ Unique name for the coercion tycon -> [TyVar] -- ^ Type parameters of the coercion (@tvs@) -> TyCon -- ^ Family tycon (@F@) -> [Type] -- ^ Type instance (@ts@) -> TyCon -- ^ Representation tycon (@R@) - -> TyCon -- ^ Coercion tycon (@Co@) -mkFamInstCoercion name tvs family inst_tys rep_tycon - = mkCoercionTyCon name arity desc - where - arity = length tvs - desc = CoAxiom { co_ax_tvs = tvs - , co_ax_lhs = mkTyConApp family inst_tys - , co_ax_rhs = mkTyConApp rep_tycon (mkTyVarTys tvs) } - - -mkClassPPredCo :: Class -> [Coercion] -> Coercion -mkClassPPredCo cls = (PredTy . ClassP cls) - -mkIParamPredCo :: (IPName Name) -> Coercion -> Coercion -mkIParamPredCo ipn = (PredTy . IParam ipn) - -mkEqPredCo :: Coercion -> Coercion -> Coercion -mkEqPredCo co1 co2 = PredTy (EqPred co1 co2) - - + -> CoAxiom -- ^ Coercion constructor (@Co@) +mkFamInstCo name tvs family inst_tys rep_tycon + = CoAxiom { co_ax_unique = nameUnique name + , co_ax_name = name + , co_ax_tvs = tvs + , co_ax_lhs = mkTyConApp family inst_tys + , co_ax_rhs = mkTyConApp rep_tycon (mkTyVarTys tvs) } + +mkPiCos :: [Var] -> Coercion -> Coercion +mkPiCos vs co = foldr mkPiCo co vs + +mkPiCo :: Var -> Coercion -> Coercion +mkPiCo v co | isTyVar v = mkForAllCo v co + | otherwise = mkFunCo (mkReflCo (varType v)) co \end{code} - -%************************************************************************ -%* * - Coercion Type Constructors -%* * -%************************************************************************ - -Example. The coercion ((sym c) (sym d) (sym e)) -will be represented by (TyConApp sym [c, sym d, sym e]) -If sym c :: p1=q1 - sym d :: p2=q2 - sym e :: p3=q3 -then ((sym c) (sym d) (sym e)) :: (p1 p2 p3)=(q1 q2 q3) - -\begin{code} --- | Coercion type constructors: avoid using these directly and instead use --- the @mk*Coercion@ and @split*Coercion@ family of functions if possible. --- --- Each coercion TyCon is built with the special CoercionTyCon record and --- carries its own kinding rule. Such CoercionTyCons must be fully applied --- by any TyConApp in which they are applied, however they may also be over --- applied (see example above) and the kinding function must deal with this. -symCoercionTyCon, transCoercionTyCon, leftCoercionTyCon, - rightCoercionTyCon, instCoercionTyCon, unsafeCoercionTyCon, - csel1CoercionTyCon, csel2CoercionTyCon, cselRCoercionTyCon :: TyCon - -symCoercionTyCon = mkCoercionTyCon symCoercionTyConName 1 CoSym -transCoercionTyCon = mkCoercionTyCon transCoercionTyConName 2 CoTrans -leftCoercionTyCon = mkCoercionTyCon leftCoercionTyConName 1 CoLeft -rightCoercionTyCon = mkCoercionTyCon rightCoercionTyConName 1 CoRight -instCoercionTyCon = mkCoercionTyCon instCoercionTyConName 2 CoInst -csel1CoercionTyCon = mkCoercionTyCon csel1CoercionTyConName 1 CoCsel1 -csel2CoercionTyCon = mkCoercionTyCon csel2CoercionTyConName 1 CoCsel2 -cselRCoercionTyCon = mkCoercionTyCon cselRCoercionTyConName 1 CoCselR -unsafeCoercionTyCon = mkCoercionTyCon unsafeCoercionTyConName 2 CoUnsafe - -transCoercionTyConName, symCoercionTyConName, leftCoercionTyConName, - rightCoercionTyConName, instCoercionTyConName, unsafeCoercionTyConName, - csel1CoercionTyConName, csel2CoercionTyConName, cselRCoercionTyConName :: Name - -transCoercionTyConName = mkCoConName (fsLit "trans") transCoercionTyConKey transCoercionTyCon -symCoercionTyConName = mkCoConName (fsLit "sym") symCoercionTyConKey symCoercionTyCon -leftCoercionTyConName = mkCoConName (fsLit "left") leftCoercionTyConKey leftCoercionTyCon -rightCoercionTyConName = mkCoConName (fsLit "right") rightCoercionTyConKey rightCoercionTyCon -instCoercionTyConName = mkCoConName (fsLit "inst") instCoercionTyConKey instCoercionTyCon -csel1CoercionTyConName = mkCoConName (fsLit "csel1") csel1CoercionTyConKey csel1CoercionTyCon -csel2CoercionTyConName = mkCoConName (fsLit "csel2") csel2CoercionTyConKey csel2CoercionTyCon -cselRCoercionTyConName = mkCoConName (fsLit "cselR") cselRCoercionTyConKey cselRCoercionTyCon -unsafeCoercionTyConName = mkCoConName (fsLit "CoUnsafe") unsafeCoercionTyConKey unsafeCoercionTyCon - -mkCoConName :: FastString -> Unique -> TyCon -> Name -mkCoConName occ key coCon = mkWiredInName gHC_PRIM (mkTcOccFS occ) - key (ATyCon coCon) BuiltInSyntax -\end{code} - -\begin{code} ------------- -decompLR_maybe :: (Type,Type) -> Maybe ((Type,Type), (Type,Type)) --- Helper for left and right. Finds coercion kind of its input and --- returns the left and right projections of the coercion... --- --- if c :: t1 s1 ~ t2 s2 then splitCoercionKindOf c = ((t1, t2), (s1, s2)) -decompLR_maybe (ty1,ty2) - | Just (ty_fun1, ty_arg1) <- splitAppTy_maybe ty1 - , Just (ty_fun2, ty_arg2) <- splitAppTy_maybe ty2 - = Just ((ty_fun1, ty_fun2),(ty_arg1, ty_arg2)) -decompLR_maybe _ = Nothing - ------------- -decompInst_maybe :: (Type, Type) -> Maybe ((TyVar,TyVar), (Type,Type)) -decompInst_maybe (ty1, ty2) - | Just (tv1,r1) <- splitForAllTy_maybe ty1 - , Just (tv2,r2) <- splitForAllTy_maybe ty2 - = Just ((tv1,tv2), (r1,r2)) -decompInst_maybe _ = Nothing - ------------- -decompCsel_maybe :: (Type, Type) -> Maybe ((Type,Type), (Type,Type), (Type,Type)) --- If co :: (s1~t1 => r1) ~ (s2~t2 => r2) --- Then csel1 co :: s1 ~ s2 --- csel2 co :: t1 ~ t2 --- cselR co :: r1 ~ r2 -decompCsel_maybe (ty1, ty2) - | Just (s1, t1, r1) <- splitCoPredTy_maybe ty1 - , Just (s2, t2, r2) <- splitCoPredTy_maybe ty2 - = Just ((s1,s2), (t1,t2), (r1,r2)) -decompCsel_maybe _ = Nothing -\end{code} - - %************************************************************************ %* * Newtypes @@ -561,17 +662,14 @@ decompCsel_maybe _ = Nothing %************************************************************************ \begin{code} -instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, CoercionI) +instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion) -- ^ If @co :: T ts ~ rep_ty@ then: -- -- > instNewTyCon_maybe T ts = Just (rep_ty, co) instNewTyCon_maybe tc tys - | Just (tvs, ty, mb_co_tc) <- unwrapNewTyCon_maybe tc + | Just (tvs, ty, co_tc) <- unwrapNewTyCon_maybe tc = ASSERT( tys `lengthIs` tyConArity tc ) - Just (substTyWith tvs tys ty, - case mb_co_tc of - Nothing -> IdCo (mkTyConApp tc tys) - Just co_tc -> ACo (mkTyConApp co_tc tys)) + Just (substTyWith tvs tys ty, mkAxInstCo co_tc tys) | otherwise = Nothing @@ -588,270 +686,425 @@ splitNewTypeRepCo_maybe :: Type -> Maybe (Type, Coercion) splitNewTypeRepCo_maybe ty | Just ty' <- coreView ty = splitNewTypeRepCo_maybe ty' splitNewTypeRepCo_maybe (TyConApp tc tys) - | Just (ty', coi) <- instNewTyCon_maybe tc tys - = case coi of - ACo co -> Just (ty', co) - IdCo _ -> panic "splitNewTypeRepCo_maybe" + | Just (ty', co) <- instNewTyCon_maybe tc tys + = case co of + Refl _ -> panic "splitNewTypeRepCo_maybe" -- This case handled by coreView + _ -> Just (ty', co) splitNewTypeRepCo_maybe _ = Nothing -- | Determines syntactic equality of coercions coreEqCoercion :: Coercion -> Coercion -> Bool -coreEqCoercion = coreEqType +coreEqCoercion co1 co2 = coreEqCoercion2 rn_env co1 co2 + where rn_env = mkRnEnv2 (mkInScopeSet (tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2)) coreEqCoercion2 :: RnEnv2 -> Coercion -> Coercion -> Bool -coreEqCoercion2 = coreEqType2 -\end{code} +coreEqCoercion2 env (Refl ty1) (Refl ty2) = eqTypeX env ty1 ty2 +coreEqCoercion2 env (TyConAppCo tc1 cos1) (TyConAppCo tc2 cos2) + = tc1 == tc2 && all2 (coreEqCoercion2 env) cos1 cos2 + +coreEqCoercion2 env (AppCo co11 co12) (AppCo co21 co22) + = coreEqCoercion2 env co11 co21 && coreEqCoercion2 env co12 co22 + +coreEqCoercion2 env (ForAllCo v1 co1) (ForAllCo v2 co2) + = coreEqCoercion2 (rnBndr2 env v1 v2) co1 co2 + +coreEqCoercion2 env (CoVarCo cv1) (CoVarCo cv2) + = rnOccL env cv1 == rnOccR env cv2 + +coreEqCoercion2 env (AxiomInstCo con1 cos1) (AxiomInstCo con2 cos2) + = con1 == con2 + && all2 (coreEqCoercion2 env) cos1 cos2 + +coreEqCoercion2 env (UnsafeCo ty11 ty12) (UnsafeCo ty21 ty22) + = eqTypeX env ty11 ty21 && eqTypeX env ty12 ty22 + +coreEqCoercion2 env (SymCo co1) (SymCo co2) + = coreEqCoercion2 env co1 co2 + +coreEqCoercion2 env (TransCo co11 co12) (TransCo co21 co22) + = coreEqCoercion2 env co11 co21 && coreEqCoercion2 env co12 co22 + +coreEqCoercion2 env (NthCo d1 co1) (NthCo d2 co2) + = d1 == d2 && coreEqCoercion2 env co1 co2 + +coreEqCoercion2 env (InstCo co1 ty1) (InstCo co2 ty2) + = coreEqCoercion2 env co1 co2 && eqTypeX env ty1 ty2 +coreEqCoercion2 _ _ _ = False +\end{code} %************************************************************************ %* * - CoercionI and its constructors -%* * + Substitution of coercions +%* * %************************************************************************ --------------------------------------- --- CoercionI smart constructors --- lifted smart constructors of ordinary coercions +\begin{code} +-- | A substitution of 'Coercion's for 'CoVar's (OR 'TyVar's, when +-- doing a \"lifting\" substitution) +type CvSubstEnv = VarEnv Coercion + +emptyCvSubstEnv :: CvSubstEnv +emptyCvSubstEnv = emptyVarEnv + +data CvSubst + = CvSubst InScopeSet -- The in-scope type variables + TvSubstEnv -- Substitution of types + CvSubstEnv -- Substitution of coercions + +instance Outputable CvSubst where + ppr (CvSubst ins tenv cenv) + = brackets $ sep[ ptext (sLit "CvSubst"), + nest 2 (ptext (sLit "In scope:") <+> ppr ins), + nest 2 (ptext (sLit "Type env:") <+> ppr tenv), + nest 2 (ptext (sLit "Coercion env:") <+> ppr cenv) ] + +emptyCvSubst :: CvSubst +emptyCvSubst = CvSubst emptyInScopeSet emptyVarEnv emptyVarEnv + +isEmptyCvSubst :: CvSubst -> Bool +isEmptyCvSubst (CvSubst _ tenv cenv) = isEmptyVarEnv tenv && isEmptyVarEnv cenv + +getCvInScope :: CvSubst -> InScopeSet +getCvInScope (CvSubst in_scope _ _) = in_scope + +zapCvSubstEnv :: CvSubst -> CvSubst +zapCvSubstEnv (CvSubst in_scope _ _) = CvSubst in_scope emptyVarEnv emptyVarEnv + +cvTvSubst :: CvSubst -> TvSubst +cvTvSubst (CvSubst in_scope tvs _) = TvSubst in_scope tvs + +tvCvSubst :: TvSubst -> CvSubst +tvCvSubst (TvSubst in_scope tenv) = CvSubst in_scope tenv emptyCvSubstEnv + +extendTvSubst :: CvSubst -> TyVar -> Type -> CvSubst +extendTvSubst (CvSubst in_scope tenv cenv) tv ty + = CvSubst in_scope (extendVarEnv tenv tv ty) cenv + +substCoVarBndr :: CvSubst -> CoVar -> (CvSubst, CoVar) +substCoVarBndr subst@(CvSubst in_scope tenv cenv) old_var + = ASSERT( isCoVar old_var ) + (CvSubst (in_scope `extendInScopeSet` new_var) tenv new_cenv, new_var) + where + -- When we substitute (co :: t1 ~ t2) we may get the identity (co :: t ~ t) + -- In that case, mkCoVarCo will return a ReflCoercion, and + -- we want to substitute that (not new_var) for old_var + new_co = mkCoVarCo new_var + no_change = new_var == old_var && not (isReflCo new_co) + + new_cenv | no_change = delVarEnv cenv old_var + | otherwise = extendVarEnv cenv old_var new_co + + new_var = uniqAway in_scope subst_old_var + subst_old_var = mkCoVar (varName old_var) (substTy subst (varType old_var)) + -- It's important to do the substitution for coercions, + -- because only they can have free type variables + +substTyVarBndr :: CvSubst -> TyVar -> (CvSubst, TyVar) +substTyVarBndr (CvSubst in_scope tenv cenv) old_var + = case Type.substTyVarBndr (TvSubst in_scope tenv) old_var of + (TvSubst in_scope' tenv', new_var) -> (CvSubst in_scope' tenv' cenv, new_var) + +zipOpenCvSubst :: [Var] -> [Coercion] -> CvSubst +zipOpenCvSubst vs cos + | debugIsOn && (length vs /= length cos) + = pprTrace "zipOpenCvSubst" (ppr vs $$ ppr cos) emptyCvSubst + | otherwise + = CvSubst (mkInScopeSet (tyCoVarsOfCos cos)) emptyTvSubstEnv (zipVarEnv vs cos) + +mkTopCvSubst :: [(Var,Coercion)] -> CvSubst +mkTopCvSubst prs = CvSubst emptyInScopeSet emptyTvSubstEnv (mkVarEnv prs) + +substCoWithTy :: TyVar -> Type -> Coercion -> Coercion +substCoWithTy tv ty = substCoWithTys [tv] [ty] + +substCoWithTys :: [TyVar] -> [Type] -> Coercion -> Coercion +substCoWithTys tvs tys co + | debugIsOn && (length tvs /= length tys) + = pprTrace "substCoWithTys" (ppr tvs $$ ppr tys) co + | otherwise + = ASSERT( length tvs == length tys ) + substCo (CvSubst in_scope (zipVarEnv tvs tys) emptyVarEnv) co + where + in_scope = mkInScopeSet (tyVarsOfTypes tys) + +-- | Substitute within a 'Coercion' +substCo :: CvSubst -> Coercion -> Coercion +substCo subst co | isEmptyCvSubst subst = co + | otherwise = subst_co subst co + +-- | Substitute within several 'Coercion's +substCos :: CvSubst -> [Coercion] -> [Coercion] +substCos subst cos | isEmptyCvSubst subst = cos + | otherwise = map (substCo subst) cos + +substTy :: CvSubst -> Type -> Type +substTy subst = Type.substTy (cvTvSubst subst) + +subst_co :: CvSubst -> Coercion -> Coercion +subst_co subst co + = go co + where + go_ty :: Type -> Type + go_ty = Coercion.substTy subst + + go :: Coercion -> Coercion + go (Refl ty) = Refl $! go_ty ty + go (TyConAppCo tc cos) = let args = map go cos + in args `seqList` TyConAppCo tc args + go (AppCo co1 co2) = mkAppCo (go co1) $! go co2 + go (ForAllCo tv co) = case substTyVarBndr subst tv of + (subst', tv') -> + ForAllCo tv' $! subst_co subst' co + go (CoVarCo cv) = substCoVar subst cv + go (AxiomInstCo con cos) = AxiomInstCo con $! map go cos + go (UnsafeCo ty1 ty2) = (UnsafeCo $! go_ty ty1) $! go_ty ty2 + go (SymCo co) = mkSymCo (go co) + go (TransCo co1 co2) = mkTransCo (go co1) (go co2) + go (NthCo d co) = mkNthCo d (go co) + go (InstCo co ty) = mkInstCo (go co) $! go_ty ty + +substCoVar :: CvSubst -> CoVar -> Coercion +substCoVar (CvSubst in_scope _ cenv) cv + | Just co <- lookupVarEnv cenv cv = co + | Just cv1 <- lookupInScope in_scope cv = ASSERT( isCoVar cv1 ) CoVarCo cv1 + | otherwise = WARN( True, ptext (sLit "substCoVar not in scope") <+> ppr cv ) + ASSERT( isCoVar cv ) CoVarCo cv + +substCoVars :: CvSubst -> [CoVar] -> [Coercion] +substCoVars subst cvs = map (substCoVar subst) cvs + +lookupTyVar :: CvSubst -> TyVar -> Maybe Type +lookupTyVar (CvSubst _ tenv _) tv = lookupVarEnv tenv tv + +lookupCoVar :: CvSubst -> Var -> Maybe Coercion +lookupCoVar (CvSubst _ _ cenv) v = lookupVarEnv cenv v +\end{code} + +%************************************************************************ +%* * + "Lifting" substitution + [(TyVar,Coercion)] -> Type -> Coercion +%* * +%************************************************************************ \begin{code} --- | 'CoercionI' represents a /lifted/ ordinary 'Coercion', in that it --- can represent either one of: --- --- 1. A proper 'Coercion' +liftCoSubstWith :: [TyVar] -> [Coercion] -> Type -> Coercion +liftCoSubstWith tvs cos = liftCoSubst (zipOpenCvSubst tvs cos) + +-- | The \"lifting\" operation which substitutes coercions for type +-- variables in a type to produce a coercion. -- --- 2. The identity coercion -data CoercionI = IdCo Type | ACo Coercion +-- For the inverse operation, see 'liftCoMatch' +liftCoSubst :: CvSubst -> Type -> Coercion +-- The CvSubst maps TyVar -> Type (mainly for cloning foralls) +-- TyVar -> Coercion (this is the payload) +-- The unusual thing is that the *coercion* substitution maps +-- some *type* variables. That's the whole point of this function! +liftCoSubst subst ty | isEmptyCvSubst subst = Refl ty + | otherwise = ty_co_subst subst ty + +ty_co_subst :: CvSubst -> Type -> Coercion +ty_co_subst subst ty + = go ty + where + go (TyVarTy tv) = liftCoSubstTyVar subst tv `orElse` Refl (TyVarTy tv) + go (AppTy ty1 ty2) = mkAppCo (go ty1) (go ty2) + go (TyConApp tc tys) = mkTyConAppCo tc (map go tys) + go (FunTy ty1 ty2) = mkFunCo (go ty1) (go ty2) + go (ForAllTy v ty) = mkForAllCo v' $! (ty_co_subst subst' ty) + where + (subst', v') = liftCoSubstTyVarBndr subst v + go (PredTy p) = mkPredCo (go <$> p) + +liftCoSubstTyVar :: CvSubst -> TyVar -> Maybe Coercion +liftCoSubstTyVar subst@(CvSubst _ tenv cenv) tv + = case (lookupVarEnv tenv tv, lookupVarEnv cenv tv) of + (Nothing, Nothing) -> Nothing + (Just ty, Nothing) -> Just (Refl ty) + (Nothing, Just co) -> Just co + (Just {}, Just {}) -> pprPanic "ty_co_subst" (ppr tv $$ ppr subst) + +liftCoSubstTyVarBndr :: CvSubst -> TyVar -> (CvSubst, TyVar) +liftCoSubstTyVarBndr (CvSubst in_scope tenv cenv) old_var + = (CvSubst (in_scope `extendInScopeSet` new_var) + new_tenv + (delVarEnv cenv old_var) -- See Note [Lifting substitutions] + , new_var) + where + new_tenv | no_change = delVarEnv tenv old_var + | otherwise = extendVarEnv tenv old_var (TyVarTy new_var) + + no_change = new_var == old_var + new_var = uniqAway in_scope old_var +\end{code} -liftCoI :: (Type -> Type) -> CoercionI -> CoercionI -liftCoI f (IdCo ty) = IdCo (f ty) -liftCoI f (ACo ty) = ACo (f ty) +Note [Lifting substitutions] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Consider liftCoSubstWith [a] [co] (a, forall a. a) +Then we want to substitute for the free 'a', but obviously not for +the bound 'a'. hence the (delVarEnv cent old_var) in liftCoSubstTyVarBndr. -liftCoI2 :: (Type -> Type -> Type) -> CoercionI -> CoercionI -> CoercionI -liftCoI2 f (IdCo ty1) (IdCo ty2) = IdCo (f ty1 ty2) -liftCoI2 f coi1 coi2 = ACo (f (fromCoI coi1) (fromCoI coi2)) +This also why we need a full CvSubst when doing lifting substitutions. -liftCoIs :: ([Type] -> Type) -> [CoercionI] -> CoercionI -liftCoIs f cois = go_id [] cois +\begin{code} +-- | 'liftCoMatch' is sort of inverse to 'liftCoSubst'. In particular, if +-- @liftCoMatch vars ty co == Just s@, then @tyCoSubst s ty == co@. +-- That is, it matches a type against a coercion of the same +-- "shape", and returns a lifting substitution which could have been +-- used to produce the given coercion from the given type. +liftCoMatch :: TyVarSet -> Type -> Coercion -> Maybe CvSubst +liftCoMatch tmpls ty co + = case ty_co_match menv (emptyVarEnv, emptyVarEnv) ty co of + Just (tv_env, cv_env) -> Just (CvSubst in_scope tv_env cv_env) + Nothing -> Nothing where - go_id rev_tys [] = IdCo (f (reverse rev_tys)) - go_id rev_tys (IdCo ty : cois) = go_id (ty:rev_tys) cois - go_id rev_tys (ACo co : cois) = go_aco (co:rev_tys) cois - - go_aco rev_tys [] = ACo (f (reverse rev_tys)) - go_aco rev_tys (IdCo ty : cois) = go_aco (ty:rev_tys) cois - go_aco rev_tys (ACo co : cois) = go_aco (co:rev_tys) cois - -instance Outputable CoercionI where - ppr (IdCo _) = ptext (sLit "IdCo") - ppr (ACo co) = ppr co - -isIdentityCoI :: CoercionI -> Bool -isIdentityCoI (IdCo _) = True -isIdentityCoI (ACo _) = False - --- | Return either the 'Coercion' contained within the 'CoercionI' or the given --- 'Type' if the 'CoercionI' is the identity 'Coercion' -fromCoI :: CoercionI -> Type -fromCoI (IdCo ty) = ty -- Identity coercion represented -fromCoI (ACo co) = co -- by the type itself - --- | Smart constructor for @sym@ on 'CoercionI', see also 'mkSymCoercion' -mkSymCoI :: CoercionI -> CoercionI -mkSymCoI (IdCo ty) = IdCo ty -mkSymCoI (ACo co) = ACo $ mkCoercion symCoercionTyCon [co] - -- the smart constructor - -- is too smart with tyvars - --- | Smart constructor for @trans@ on 'CoercionI', see also 'mkTransCoercion' -mkTransCoI :: CoercionI -> CoercionI -> CoercionI -mkTransCoI (IdCo _) aco = aco -mkTransCoI aco (IdCo _) = aco -mkTransCoI (ACo co1) (ACo co2) = ACo $ mkTransCoercion co1 co2 - --- | Smart constructor for type constructor application on 'CoercionI', see also 'mkAppCoercion' -mkTyConAppCoI :: TyCon -> [CoercionI] -> CoercionI -mkTyConAppCoI tyCon cois = liftCoIs (mkTyConApp tyCon) cois - --- | Smart constructor for honest-to-god 'Coercion' application on 'CoercionI', see also 'mkAppCoercion' -mkAppTyCoI :: CoercionI -> CoercionI -> CoercionI -mkAppTyCoI = liftCoI2 mkAppTy - -mkFunTyCoI :: CoercionI -> CoercionI -> CoercionI -mkFunTyCoI = liftCoI2 mkFunTy - --- | Smart constructor for quantified 'Coercion's on 'CoercionI', see also 'mkForAllCoercion' -mkForAllTyCoI :: TyVar -> CoercionI -> CoercionI -mkForAllTyCoI tv = liftCoI (ForAllTy tv) - --- | Smart constructor for class 'Coercion's on 'CoercionI'. Satisfies: --- --- > mkClassPPredCoI cls tys cois :: PredTy (cls tys) ~ PredTy (cls (tys `cast` cois)) -mkClassPPredCoI :: Class -> [CoercionI] -> CoercionI -mkClassPPredCoI cls = liftCoIs (PredTy . ClassP cls) + menv = ME { me_tmpls = tmpls, me_env = mkRnEnv2 in_scope } + in_scope = mkInScopeSet (tmpls `unionVarSet` tyCoVarsOfCo co) + -- Like tcMatchTy, assume all the interesting variables + -- in ty are in tmpls + +type TyCoSubstEnv = (TvSubstEnv, CvSubstEnv) + -- Used locally inside ty_co_match only + +-- | 'ty_co_match' does all the actual work for 'liftCoMatch'. +ty_co_match :: MatchEnv -> TyCoSubstEnv -> Type -> Coercion -> Maybe TyCoSubstEnv +ty_co_match menv subst ty co | Just ty' <- coreView ty = ty_co_match menv subst ty' co + + -- Deal with the Refl case by delegating to type matching +ty_co_match menv (tenv, cenv) ty co + | Just ty' <- isReflCo_maybe co + = case ruleMatchTyX ty_menv tenv ty ty' of + Just tenv' -> Just (tenv', cenv) + Nothing -> Nothing + where + ty_menv = menv { me_tmpls = me_tmpls menv `minusUFM` cenv } + -- Remove from the template set any variables already bound to non-refl coercions + + -- Match a type variable against a non-refl coercion +ty_co_match menv subst@(tenv, cenv) (TyVarTy tv1) co + | Just {} <- lookupVarEnv tenv tv1' -- tv1' is already bound to (Refl ty) + = Nothing -- The coercion 'co' is not Refl + + | Just co1' <- lookupVarEnv cenv tv1' -- tv1' is already bound to co1 + = if coreEqCoercion2 (nukeRnEnvL rn_env) co1' co + then Just subst + else Nothing -- no match since tv1 matches two different coercions + + | tv1' `elemVarSet` me_tmpls menv -- tv1' is a template var + = if any (inRnEnvR rn_env) (varSetElems (tyCoVarsOfCo co)) + then Nothing -- occurs check failed + else return (tenv, extendVarEnv cenv tv1' co) + -- BAY: I don't think we need to do any kind matching here yet + -- (compare 'match'), but we probably will when moving to SHE. + + | otherwise -- tv1 is not a template ty var, so the only thing it + -- can match is a reflexivity coercion for itself. + -- But that case is dealt with already + = Nothing --- | Smart constructor for implicit parameter 'Coercion's on 'CoercionI'. Similar to 'mkClassPPredCoI' -mkIParamPredCoI :: (IPName Name) -> CoercionI -> CoercionI -mkIParamPredCoI ipn = liftCoI (PredTy . IParam ipn) + where + rn_env = me_env menv + tv1' = rnOccL rn_env tv1 --- | Smart constructor for type equality 'Coercion's on 'CoercionI'. Similar to 'mkClassPPredCoI' -mkEqPredCoI :: CoercionI -> CoercionI -> CoercionI -mkEqPredCoI = liftCoI2 (\t1 t2 -> PredTy (EqPred t1 t2)) +ty_co_match menv subst (AppTy ty1 ty2) co + | Just (co1, co2) <- splitAppCo_maybe co -- c.f. Unify.match on AppTy + = do { subst' <- ty_co_match menv subst ty1 co1 + ; ty_co_match menv subst' ty2 co2 } -mkCoPredCoI :: CoercionI -> CoercionI -> CoercionI -> CoercionI -mkCoPredCoI coi1 coi2 coi3 = mkFunTyCoI (mkEqPredCoI coi1 coi2) coi3 +ty_co_match menv subst (TyConApp tc1 tys) (TyConAppCo tc2 cos) + | tc1 == tc2 = ty_co_matches menv subst tys cos +ty_co_match menv subst (FunTy ty1 ty2) (TyConAppCo tc cos) + | tc == funTyCon = ty_co_matches menv subst [ty1,ty2] cos +ty_co_match menv subst (ForAllTy tv1 ty) (ForAllCo tv2 co) + = ty_co_match menv' subst ty co + where + menv' = menv { me_env = rnBndr2 (me_env menv) tv1 tv2 } + +ty_co_match _ _ _ _ = Nothing + +ty_co_matches :: MatchEnv -> TyCoSubstEnv -> [Type] -> [Coercion] -> Maybe TyCoSubstEnv +ty_co_matches menv = matchList (ty_co_match menv) \end{code} %************************************************************************ %* * - The kind of a type, and of a coercion + Sequencing on coercions %* * %************************************************************************ \begin{code} -typeKind :: Type -> Kind -typeKind ty@(TyConApp tc tys) - | isCoercionTyCon tc = typeKind (fst (coercionKind ty)) - | otherwise = kindAppResult (tyConKind tc) tys - -- During coercion optimisation we *do* match a type - -- against a coercion (see OptCoercion.matchesAxiomLhs) - -- So the use of typeKind in Unify.match_kind must work on coercions too - -- Hence the isCoercionTyCon case above - -typeKind (PredTy pred) = predKind pred -typeKind (AppTy fun _) = kindFunResult (typeKind fun) -typeKind (ForAllTy _ ty) = typeKind ty -typeKind (TyVarTy tyvar) = tyVarKind tyvar -typeKind (FunTy _arg res) - -- Hack alert. The kind of (Int -> Int#) is liftedTypeKind (*), - -- not unliftedTypKind (#) - -- The only things that can be after a function arrow are - -- (a) types (of kind openTypeKind or its sub-kinds) - -- (b) kinds (of super-kind TY) (e.g. * -> (* -> *)) - | isTySuperKind k = k - | otherwise = ASSERT( isSubOpenTypeKind k) liftedTypeKind - where - k = typeKind res +seqCo :: Coercion -> () +seqCo (Refl ty) = seqType ty +seqCo (TyConAppCo tc cos) = tc `seq` seqCos cos +seqCo (AppCo co1 co2) = seqCo co1 `seq` seqCo co2 +seqCo (ForAllCo tv co) = tv `seq` seqCo co +seqCo (CoVarCo cv) = cv `seq` () +seqCo (AxiomInstCo con cos) = con `seq` seqCos cos +seqCo (UnsafeCo ty1 ty2) = seqType ty1 `seq` seqType ty2 +seqCo (SymCo co) = seqCo co +seqCo (TransCo co1 co2) = seqCo co1 `seq` seqCo co2 +seqCo (NthCo _ co) = seqCo co +seqCo (InstCo co ty) = seqCo co `seq` seqType ty + +seqCos :: [Coercion] -> () +seqCos [] = () +seqCos (co:cos) = seqCo co `seq` seqCos cos +\end{code} ------------------- -predKind :: PredType -> Kind -predKind (EqPred {}) = coSuperKind -- A coercion kind! -predKind (ClassP {}) = liftedTypeKind -- Class and implicitPredicates are -predKind (IParam {}) = liftedTypeKind -- always represented by lifted types + +%************************************************************************ +%* * + The kind of a type, and of a coercion +%* * +%************************************************************************ + +\begin{code} +coercionType :: Coercion -> Type +coercionType co = case coercionKind co of + Pair ty1 ty2 -> mkCoType ty1 ty2 ------------------ -- | If it is the case that -- -- > c :: (t1 ~ t2) -- --- i.e. the kind of @c@ is a 'CoercionKind' relating @t1@ and @t2@, --- then @coercionKind c = (t1, t2)@. -coercionKind :: Coercion -> (Type, Type) -coercionKind ty@(TyVarTy a) | isCoVar a = coVarKind a - | otherwise = (ty, ty) -coercionKind (AppTy ty1 ty2) - = let (s1, t1) = coercionKind ty1 - (s2, t2) = coercionKind ty2 in - (mkAppTy s1 s2, mkAppTy t1 t2) -coercionKind co@(TyConApp tc args) - | Just (ar, desc) <- isCoercionTyCon_maybe tc - -- CoercionTyCons carry their kinding rule, so we use it here - = WARN( not (length args >= ar), ppr co ) -- Always saturated - (let (ty1, ty2) = coTyConAppKind desc (take ar args) - (tys1, tys2) = coercionKinds (drop ar args) - in (mkAppTys ty1 tys1, mkAppTys ty2 tys2)) - - | otherwise - = let (lArgs, rArgs) = coercionKinds args in - (TyConApp tc lArgs, TyConApp tc rArgs) - -coercionKind (FunTy ty1 ty2) - = let (t1, t2) = coercionKind ty1 - (s1, s2) = coercionKind ty2 in - (mkFunTy t1 s1, mkFunTy t2 s2) - -coercionKind (ForAllTy tv ty) - | isCoVar tv --- c1 :: s1~s2 c2 :: t1~t2 c3 :: r1~r2 --- ---------------------------------------------- --- c1~c2 => c3 :: (s1~t1) => r1 ~ (s2~t2) => r2 --- or --- forall (_:c1~c2) - = let (c1,c2) = coVarKind tv - (s1,s2) = coercionKind c1 - (t1,t2) = coercionKind c2 - (r1,r2) = coercionKind ty - in - (mkCoPredTy s1 t1 r1, mkCoPredTy s2 t2 r2) - - | otherwise --- c1 :: s1~s2 c2 :: t1~t2 c3 :: r1~r2 --- ---------------------------------------------- --- forall a:k. c :: forall a:k. t1 ~ forall a:k. t2 - = let (ty1, ty2) = coercionKind ty in - (ForAllTy tv ty1, ForAllTy tv ty2) - -coercionKind (PredTy (ClassP cl args)) - = let (lArgs, rArgs) = coercionKinds args in - (PredTy (ClassP cl lArgs), PredTy (ClassP cl rArgs)) -coercionKind (PredTy (IParam name ty)) - = let (ty1, ty2) = coercionKind ty in - (PredTy (IParam name ty1), PredTy (IParam name ty2)) -coercionKind (PredTy (EqPred c1 c2)) - = pprTrace "coercionKind" (pprEqPred (c1,c2)) $ - -- These should not show up in coercions at all - -- becuase they are in the form of for-alls - let k1 = coercionKindPredTy c1 - k2 = coercionKindPredTy c2 in - (k1,k2) - where - coercionKindPredTy c = let (t1, t2) = coercionKind c in mkCoKind t1 t2 +-- i.e. the kind of @c@ relates @t1@ and @t2@, then @coercionKind c = Pair t1 t2@. +coercionKind :: Coercion -> Pair Type +coercionKind (Refl ty) = Pair ty ty +coercionKind (TyConAppCo tc cos) = mkTyConApp tc <$> (sequenceA $ map coercionKind cos) +coercionKind (AppCo co1 co2) = mkAppTy <$> coercionKind co1 <*> coercionKind co2 +coercionKind (ForAllCo tv co) = mkForAllTy tv <$> coercionKind co +coercionKind (CoVarCo cv) = ASSERT( isCoVar cv ) toPair $ coVarKind cv +coercionKind (AxiomInstCo ax cos) = let Pair tys1 tys2 = coercionKinds cos + in Pair (substTyWith (co_ax_tvs ax) tys1 (co_ax_lhs ax)) + (substTyWith (co_ax_tvs ax) tys2 (co_ax_rhs ax)) +coercionKind (UnsafeCo ty1 ty2) = Pair ty1 ty2 +coercionKind (SymCo co) = swap $ coercionKind co +coercionKind (TransCo co1 co2) = Pair (pFst $ coercionKind co1) (pSnd $ coercionKind co2) +coercionKind (NthCo d co) = getNth d <$> coercionKind co +coercionKind co@(InstCo aco ty) | Just ks <- splitForAllTy_maybe `traverse` coercionKind aco + = (\(tv, body) -> substTyWith [tv] [ty] body) <$> ks + | otherwise = pprPanic "coercionKind" (ppr co) ------------------- -- | Apply 'coercionKind' to multiple 'Coercion's -coercionKinds :: [Coercion] -> ([Type], [Type]) -coercionKinds tys = unzip $ map coercionKind tys +coercionKinds :: [Coercion] -> Pair [Type] +coercionKinds tys = sequenceA $ map coercionKind tys ------------------- --- | 'coTyConAppKind' is given a list of the type arguments to the 'CoTyCon', --- and constructs the types that the resulting coercion relates. --- Fails (in the monad) if ill-kinded. --- Typically the monad is --- either the Lint monad (with the consistency-check flag = True), --- or the ID monad with a panic on failure (and the consistency-check flag = False) -coTyConAppKind - :: CoTyConDesc - -> [Type] -- Exactly right number of args - -> (Type, Type) -- Kind of this application -coTyConAppKind CoUnsafe (ty1:ty2:_) - = (ty1,ty2) -coTyConAppKind CoSym (co:_) - | (ty1,ty2) <- coercionKind co = (ty2,ty1) -coTyConAppKind CoTrans (co1:co2:_) - = (fst (coercionKind co1), snd (coercionKind co2)) -coTyConAppKind CoLeft (co:_) - | Just (res,_) <- decompLR_maybe (coercionKind co) = res -coTyConAppKind CoRight (co:_) - | Just (_,res) <- decompLR_maybe (coercionKind co) = res -coTyConAppKind CoCsel1 (co:_) - | Just (res,_,_) <- decompCsel_maybe (coercionKind co) = res -coTyConAppKind CoCsel2 (co:_) - | Just (_,res,_) <- decompCsel_maybe (coercionKind co) = res -coTyConAppKind CoCselR (co:_) - | Just (_,_,res) <- decompCsel_maybe (coercionKind co) = res -coTyConAppKind CoInst (co:ty:_) - | Just ((tv1,tv2), (ty1,ty2)) <- decompInst_maybe (coercionKind co) - = (substTyWith [tv1] [ty] ty1, substTyWith [tv2] [ty] ty2) -coTyConAppKind (CoAxiom { co_ax_tvs = tvs - , co_ax_lhs = lhs_ty, co_ax_rhs = rhs_ty }) cos - = (substTyWith tvs tys1 lhs_ty, substTyWith tvs tys2 rhs_ty) - where - (tys1, tys2) = coercionKinds cos -coTyConAppKind desc cos = pprTrace "coTyConAppKind" (ppr desc $$ braces (vcat - [ ppr co <+> dcolon <+> pprEqPred (coercionKind co) - | co <- cos ])) $ - coercionKind (head cos) +getNth :: Int -> Type -> Type +getNth n ty | Just (_, tys) <- splitTyConApp_maybe ty + = ASSERT2( n < length tys, ppr n <+> ppr tys ) tys !! n +getNth n ty = pprPanic "getNth" (ppr n <+> ppr ty) \end{code} + +\begin{code} +applyCo :: Type -> Coercion -> Type +-- Gives the type of (e co) where e :: (a~b) => ty +applyCo ty co | Just ty' <- coreView ty = applyCo ty' co +applyCo (FunTy _ ty) _ = ty +applyCo _ _ = panic "applyCo" +\end{code}
\ No newline at end of file diff --git a/compiler/types/FamInstEnv.lhs b/compiler/types/FamInstEnv.lhs index 93a67a7edd..894da340c7 100644 --- a/compiler/types/FamInstEnv.lhs +++ b/compiler/types/FamInstEnv.lhs @@ -29,7 +29,6 @@ import TypeRep import TyCon import Coercion import VarSet -import Var import Name import UniqFM import Outputable @@ -303,7 +302,7 @@ lookupFamInstEnvConflicts envs fam_inst skol_tvs -- anything else would be difficult to test for at this stage. conflicting old_fam_inst subst | isAlgTyCon fam = True - | otherwise = not (old_rhs `tcEqType` new_rhs) + | otherwise = not (old_rhs `eqType` new_rhs) where old_tycon = famInstTyCon old_fam_inst old_tvs = tyConTyVars old_tycon @@ -439,35 +438,34 @@ topNormaliseType env ty go rec_nts ty | Just ty' <- coreView ty -- Expand synonyms = go rec_nts ty' - go rec_nts (TyConApp tc tys) -- Expand newtypes - | Just co_con <- newTyConCo_maybe tc -- See Note [Expanding newtypes] - = if tc `elem` rec_nts -- in Type.lhs + go rec_nts (TyConApp tc tys) + | isNewTyCon tc -- Expand newtypes + = if tc `elem` rec_nts -- See Note [Expanding newtypes] in Type.lhs then Nothing - else let nt_co = mkTyConApp co_con tys - in add_co nt_co rec_nts' nt_rhs - where - nt_rhs = newTyConInstRhs tc tys - rec_nts' | isRecursiveTyCon tc = tc:rec_nts - | otherwise = rec_nts - - go rec_nts (TyConApp tc tys) -- Expand open tycons - | isFamilyTyCon tc - , (ACo co, ty) <- normaliseTcApp env tc tys - = -- The ACo says "something happened" - -- Note that normaliseType fully normalises, but it has do to so - -- to be sure that - add_co co rec_nts ty + else let nt_co = mkAxInstCo (newTyConCo tc) tys + in add_co nt_co rec_nts' nt_rhs + + | isFamilyTyCon tc -- Expand open tycons + , (co, ty) <- normaliseTcApp env tc tys + -- Note that normaliseType fully normalises, + -- but it has do to so to be sure that + , not (isReflCo co) + = add_co co rec_nts ty + where + nt_rhs = newTyConInstRhs tc tys + rec_nts' | isRecursiveTyCon tc = tc:rec_nts + | otherwise = rec_nts go _ _ = Nothing add_co co rec_nts ty = case go rec_nts ty of Nothing -> Just (co, ty) - Just (co', ty') -> Just (mkTransCoercion co co', ty') + Just (co', ty') -> Just (mkTransCo co co', ty') --------------- -normaliseTcApp :: FamInstEnvs -> TyCon -> [Type] -> (CoercionI, Type) +normaliseTcApp :: FamInstEnvs -> TyCon -> [Type] -> (Coercion, Type) normaliseTcApp env tc tys | isFamilyTyCon tc , tyConArity tc <= length tys -- Unsaturated data families are possible @@ -475,29 +473,30 @@ normaliseTcApp env tc tys = let -- A matching family instance exists rep_tc = famInstTyCon fam_inst co_tycon = expectJust "lookupFamInst" (tyConFamilyCoercion_maybe rep_tc) - co = mkTyConApp co_tycon inst_tys - first_coi = mkTransCoI tycon_coi (ACo co) - (rest_coi, nty) = normaliseType env (mkTyConApp rep_tc inst_tys) - fix_coi = mkTransCoI first_coi rest_coi + co = mkAxInstCo co_tycon inst_tys + first_coi = mkTransCo tycon_coi co + (rest_coi,nty) = normaliseType env (mkTyConApp rep_tc inst_tys) + fix_coi = mkTransCo first_coi rest_coi in (fix_coi, nty) - | otherwise + | otherwise -- No unique matching family instance exists; + -- we do not do anything = (tycon_coi, TyConApp tc ntys) where -- Normalise the arg types so that they'll match -- when we lookup in in the instance envt (cois, ntys) = mapAndUnzip (normaliseType env) tys - tycon_coi = mkTyConAppCoI tc cois + tycon_coi = mkTyConAppCo tc cois --------------- normaliseType :: FamInstEnvs -- environment with family instances -> Type -- old type - -> (CoercionI, Type) -- (coercion,new type), where + -> (Coercion, Type) -- (coercion,new type), where -- co :: old-type ~ new_type -- Normalise the input type, by eliminating *all* type-function redexes --- Returns with IdCo if nothing happens +-- Returns with Refl if nothing happens normaliseType env ty | Just ty' <- coreView ty = normaliseType env ty' @@ -506,29 +505,29 @@ normaliseType env (TyConApp tc tys) normaliseType env (AppTy ty1 ty2) = let (coi1,nty1) = normaliseType env ty1 (coi2,nty2) = normaliseType env ty2 - in (mkAppTyCoI coi1 coi2, mkAppTy nty1 nty2) + in (mkAppCo coi1 coi2, mkAppTy nty1 nty2) normaliseType env (FunTy ty1 ty2) = let (coi1,nty1) = normaliseType env ty1 (coi2,nty2) = normaliseType env ty2 - in (mkFunTyCoI coi1 coi2, mkFunTy nty1 nty2) + in (mkFunCo coi1 coi2, mkFunTy nty1 nty2) normaliseType env (ForAllTy tyvar ty1) = let (coi,nty1) = normaliseType env ty1 - in (mkForAllTyCoI tyvar coi, ForAllTy tyvar nty1) + in (mkForAllCo tyvar coi, ForAllTy tyvar nty1) normaliseType _ ty@(TyVarTy _) - = (IdCo ty,ty) + = (Refl ty,ty) normaliseType env (PredTy predty) = normalisePred env predty --------------- -normalisePred :: FamInstEnvs -> PredType -> (CoercionI,Type) +normalisePred :: FamInstEnvs -> PredType -> (Coercion,Type) normalisePred env (ClassP cls tys) - = let (cois,tys') = mapAndUnzip (normaliseType env) tys - in (mkClassPPredCoI cls cois, PredTy $ ClassP cls tys') + = let (cos,tys') = mapAndUnzip (normaliseType env) tys + in (mkPredCo $ ClassP cls cos, PredTy $ ClassP cls tys') normalisePred env (IParam ipn ty) - = let (coi,ty') = normaliseType env ty - in (mkIParamPredCoI ipn coi, PredTy $ IParam ipn ty') + = let (co,ty') = normaliseType env ty + in (mkPredCo $ (IParam ipn co), PredTy $ IParam ipn ty') normalisePred env (EqPred ty1 ty2) - = let (coi1,ty1') = normaliseType env ty1 - (coi2,ty2') = normaliseType env ty2 - in (mkEqPredCoI coi1 coi2, PredTy $ EqPred ty1' ty2') + = let (co1,ty1') = normaliseType env ty1 + (co2,ty2') = normaliseType env ty2 + in (mkPredCo $ (EqPred co1 co2), PredTy $ EqPred ty1' ty2') \end{code} diff --git a/compiler/types/FunDeps.lhs b/compiler/types/FunDeps.lhs index 6ce932bfe3..f1c934717e 100644 --- a/compiler/types/FunDeps.lhs +++ b/compiler/types/FunDeps.lhs @@ -271,8 +271,8 @@ improveFromAnother pred1@(ClassP cls1 tys1, _) pred2@(ClassP cls2 tys2, _) , fd <- cls_fds , let (ltys1, rs1) = instFD fd cls_tvs tys1 (ltys2, irs2) = instFD_WithPos fd cls_tvs tys2 - , tcEqTypes ltys1 ltys2 -- The LHSs match - , let eqs = zipAndComputeFDEqs tcEqType rs1 irs2 + , eqTypes ltys1 ltys2 -- The LHSs match + , let eqs = zipAndComputeFDEqs eqType rs1 irs2 , not (null eqs) ] improveFromAnother _ _ = [] @@ -386,7 +386,7 @@ checkClsFD qtvs fd clas_tvs tys1 tys2 fdeqs = zipAndComputeFDEqs (\_ _ -> False) rtys1' irs2' -- Don't discard anything! -- We could discard equal types but it's an overkill to call - -- tcEqType again, since we know for sure that /at least one/ + -- eqType again, since we know for sure that /at least one/ -- equation in there is useful) qtvs' = filterVarSet (`notElemTvSubst` subst) qtvs diff --git a/compiler/types/InstEnv.lhs b/compiler/types/InstEnv.lhs index 07f68f7b91..7a2a65e06b 100644 --- a/compiler/types/InstEnv.lhs +++ b/compiler/types/InstEnv.lhs @@ -119,7 +119,7 @@ instanceDFunId = is_dfun setInstanceDFunId :: Instance -> DFunId -> Instance setInstanceDFunId ispec dfun - = ASSERT( idType dfun `tcEqType` idType (is_dfun ispec) ) + = ASSERT( idType dfun `eqType` idType (is_dfun ispec) ) -- We need to create the cached fields afresh from -- the new dfun id. In particular, the is_tvs in -- the Instance must match those in the dfun! @@ -156,7 +156,7 @@ pprInstanceHdr ispec@(Instance { is_flag = flag }) | debugStyle sty = theta | otherwise = drop (dfunNSilent dfun) theta in ptext (sLit "instance") <+> ppr flag - <+> sep [pprThetaArrow theta_to_print, ppr res_ty] + <+> sep [pprThetaArrowTy theta_to_print, ppr res_ty] where dfun = is_dfun ispec (_, theta, res_ty) = tcSplitSigmaTy (idType dfun) diff --git a/compiler/types/Kind.lhs b/compiler/types/Kind.lhs new file mode 100644 index 0000000000..23787d20e2 --- /dev/null +++ b/compiler/types/Kind.lhs @@ -0,0 +1,232 @@ +% +% (c) The University of Glasgow 2006 +% + +\begin{code} +module Kind ( + -- * Main data type + Kind, typeKind, + + -- Kinds + liftedTypeKind, unliftedTypeKind, openTypeKind, + argTypeKind, ubxTupleKind, + mkArrowKind, mkArrowKinds, + + -- Kind constructors... + liftedTypeKindTyCon, openTypeKindTyCon, unliftedTypeKindTyCon, + argTypeKindTyCon, ubxTupleKindTyCon, + + -- Super Kinds + tySuperKind, tySuperKindTyCon, + + pprKind, pprParendKind, + + -- ** Deconstructing Kinds + kindFunResult, kindAppResult, synTyConResKind, + splitKindFunTys, splitKindFunTysN, splitKindFunTy_maybe, + + -- ** Predicates on Kinds + isLiftedTypeKind, isUnliftedTypeKind, isOpenTypeKind, + isUbxTupleKind, isArgTypeKind, isKind, isTySuperKind, + isSuperKind, isCoercionKind, + isLiftedTypeKindCon, + + isSubArgTypeKind, isSubOpenTypeKind, isSubKind, defaultKind, + isSubKindCon, + + ) where + +#include "HsVersions.h" + +import TypeRep +import TysPrim +import TyCon +import Var +import PrelNames +import Outputable +\end{code} + +%************************************************************************ +%* * + Predicates over Kinds +%* * +%************************************************************************ + +\begin{code} +isTySuperKind :: SuperKind -> Bool +isTySuperKind (TyConApp kc []) = kc `hasKey` tySuperKindTyConKey +isTySuperKind _ = False + +------------------- +-- Lastly we need a few functions on Kinds + +isLiftedTypeKindCon :: TyCon -> Bool +isLiftedTypeKindCon tc = tc `hasKey` liftedTypeKindTyConKey +\end{code} + +%************************************************************************ +%* * + The kind of a type +%* * +%************************************************************************ + +\begin{code} +typeKind :: Type -> Kind +typeKind (TyConApp tc tys) + = kindAppResult (tyConKind tc) tys + +typeKind (PredTy pred) = predKind pred +typeKind (AppTy fun _) = kindFunResult (typeKind fun) +typeKind (ForAllTy _ ty) = typeKind ty +typeKind (TyVarTy tyvar) = tyVarKind tyvar +typeKind (FunTy _arg res) + -- Hack alert. The kind of (Int -> Int#) is liftedTypeKind (*), + -- not unliftedTypKind (#) + -- The only things that can be after a function arrow are + -- (a) types (of kind openTypeKind or its sub-kinds) + -- (b) kinds (of super-kind TY) (e.g. * -> (* -> *)) + | isTySuperKind k = k + | otherwise = ASSERT( isSubOpenTypeKind k) liftedTypeKind + where + k = typeKind res + +------------------ +predKind :: PredType -> Kind +predKind (EqPred {}) = unliftedTypeKind -- Coercions are unlifted +predKind (ClassP {}) = liftedTypeKind -- Class and implicitPredicates are +predKind (IParam {}) = liftedTypeKind -- always represented by lifted types +\end{code} + +%************************************************************************ +%* * + Functions over Kinds +%* * +%************************************************************************ + +\begin{code} +-- | Essentially 'funResultTy' on kinds +kindFunResult :: Kind -> Kind +kindFunResult (FunTy _ res) = res +kindFunResult k = pprPanic "kindFunResult" (ppr k) + +kindAppResult :: Kind -> [arg] -> Kind +kindAppResult k [] = k +kindAppResult k (_:as) = kindAppResult (kindFunResult k) as + +-- | Essentially 'splitFunTys' on kinds +splitKindFunTys :: Kind -> ([Kind],Kind) +splitKindFunTys (FunTy a r) = case splitKindFunTys r of + (as, k) -> (a:as, k) +splitKindFunTys k = ([], k) + +splitKindFunTy_maybe :: Kind -> Maybe (Kind,Kind) +splitKindFunTy_maybe (FunTy a r) = Just (a,r) +splitKindFunTy_maybe _ = Nothing + +-- | Essentially 'splitFunTysN' on kinds +splitKindFunTysN :: Int -> Kind -> ([Kind],Kind) +splitKindFunTysN 0 k = ([], k) +splitKindFunTysN n (FunTy a r) = case splitKindFunTysN (n-1) r of + (as, k) -> (a:as, k) +splitKindFunTysN n k = pprPanic "splitKindFunTysN" (ppr n <+> ppr k) + +-- | Find the result 'Kind' of a type synonym, +-- after applying it to its 'arity' number of type variables +-- Actually this function works fine on data types too, +-- but they'd always return '*', so we never need to ask +synTyConResKind :: TyCon -> Kind +synTyConResKind tycon = kindAppResult (tyConKind tycon) (tyConTyVars tycon) + +-- | See "Type#kind_subtyping" for details of the distinction between these 'Kind's +isUbxTupleKind, isOpenTypeKind, isArgTypeKind, isUnliftedTypeKind :: Kind -> Bool +isOpenTypeKindCon, isUbxTupleKindCon, isArgTypeKindCon, + isUnliftedTypeKindCon, isSubArgTypeKindCon :: TyCon -> Bool + +isOpenTypeKindCon tc = tyConUnique tc == openTypeKindTyConKey + +isOpenTypeKind (TyConApp tc _) = isOpenTypeKindCon tc +isOpenTypeKind _ = False + +isUbxTupleKindCon tc = tyConUnique tc == ubxTupleKindTyConKey + +isUbxTupleKind (TyConApp tc _) = isUbxTupleKindCon tc +isUbxTupleKind _ = False + +isArgTypeKindCon tc = tyConUnique tc == argTypeKindTyConKey + +isArgTypeKind (TyConApp tc _) = isArgTypeKindCon tc +isArgTypeKind _ = False + +isUnliftedTypeKindCon tc = tyConUnique tc == unliftedTypeKindTyConKey + +isUnliftedTypeKind (TyConApp tc _) = isUnliftedTypeKindCon tc +isUnliftedTypeKind _ = False + +isSubOpenTypeKind :: Kind -> Bool +-- ^ True of any sub-kind of OpenTypeKind (i.e. anything except arrow) +isSubOpenTypeKind (FunTy k1 k2) = ASSERT2 ( isKind k1, text "isSubOpenTypeKind" <+> ppr k1 <+> text "::" <+> ppr (typeKind k1) ) + ASSERT2 ( isKind k2, text "isSubOpenTypeKind" <+> ppr k2 <+> text "::" <+> ppr (typeKind k2) ) + False +isSubOpenTypeKind (TyConApp kc []) = ASSERT( isKind (TyConApp kc []) ) True +isSubOpenTypeKind other = ASSERT( isKind other ) False + -- This is a conservative answer + -- It matters in the call to isSubKind in + -- checkExpectedKind. + +isSubArgTypeKindCon kc + | isUnliftedTypeKindCon kc = True + | isLiftedTypeKindCon kc = True + | isArgTypeKindCon kc = True + | otherwise = False + +isSubArgTypeKind :: Kind -> Bool +-- ^ True of any sub-kind of ArgTypeKind +isSubArgTypeKind (TyConApp kc []) = isSubArgTypeKindCon kc +isSubArgTypeKind _ = False + +-- | Is this a super-kind (i.e. a type-of-kinds)? +isSuperKind :: Type -> Bool +isSuperKind (TyConApp (skc) []) = isSuperKindTyCon skc +isSuperKind _ = False + +-- | Is this a kind (i.e. a type-of-types)? +isKind :: Kind -> Bool +isKind k = isSuperKind (typeKind k) + +isSubKind :: Kind -> Kind -> Bool +-- ^ @k1 \`isSubKind\` k2@ checks that @k1@ <: @k2@ +isSubKind (TyConApp kc1 []) (TyConApp kc2 []) = kc1 `isSubKindCon` kc2 +isSubKind (FunTy a1 r1) (FunTy a2 r2) = (a2 `isSubKind` a1) && (r1 `isSubKind` r2) +isSubKind _ _ = False + +isSubKindCon :: TyCon -> TyCon -> Bool +-- ^ @kc1 \`isSubKindCon\` kc2@ checks that @kc1@ <: @kc2@ +isSubKindCon kc1 kc2 + | isLiftedTypeKindCon kc1 && isLiftedTypeKindCon kc2 = True + | isUnliftedTypeKindCon kc1 && isUnliftedTypeKindCon kc2 = True + | isUbxTupleKindCon kc1 && isUbxTupleKindCon kc2 = True + | isOpenTypeKindCon kc2 = True + -- we already know kc1 is not a fun, its a TyCon + | isArgTypeKindCon kc2 && isSubArgTypeKindCon kc1 = True + | otherwise = False + +defaultKind :: Kind -> Kind +-- ^ Used when generalising: default kind ? and ?? to *. See "Type#kind_subtyping" for more +-- information on what that means + +-- When we generalise, we make generic type variables whose kind is +-- simple (* or *->* etc). So generic type variables (other than +-- built-in constants like 'error') always have simple kinds. This is important; +-- consider +-- f x = True +-- We want f to get type +-- f :: forall (a::*). a -> Bool +-- Not +-- f :: forall (a::??). a -> Bool +-- because that would allow a call like (f 3#) as well as (f True), +--and the calling conventions differ. This defaulting is done in TcMType.zonkTcTyVarBndr. +defaultKind k + | isSubOpenTypeKind k = liftedTypeKind + | isSubArgTypeKind k = liftedTypeKind + | otherwise = k +\end{code}
\ No newline at end of file diff --git a/compiler/types/OptCoercion.lhs b/compiler/types/OptCoercion.lhs index 26f3295b28..eef1ccf672 100644 --- a/compiler/types/OptCoercion.lhs +++ b/compiler/types/OptCoercion.lhs @@ -1,456 +1,372 @@ -%
-% (c) The University of Glasgow 2006
-%
-
-\begin{code}
-{-# OPTIONS_GHC -w #-}
-module OptCoercion (
- optCoercion
- ) where
-
-#include "HsVersions.h"
-
-import Unify ( tcMatchTy )
-import Coercion
-import Type
-import TypeRep
-import TyCon
-import Var
-import VarSet
-import VarEnv
-import PrelNames
-import StaticFlags ( opt_NoOptCoercion )
-import Util
-import Outputable
-\end{code}
-
-%************************************************************************
-%* *
- Optimising coercions
-%* *
-%************************************************************************
-
-Note [Subtle shadowing in coercions]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Supose we optimising a coercion
- optCoercion (forall (co_X5:t1~t2). ...co_B1...)
-The co_X5 is a wild-card; the bound variable of a coercion for-all
-should never appear in the body of the forall. Indeed we often
-write it like this
- optCoercion ( (t1~t2) => ...co_B1... )
-
-Just because it's a wild-card doesn't mean we are free to choose
-whatever variable we like. For example it'd be wrong for optCoercion
-to return
- forall (co_B1:t1~t2). ...co_B1...
-because now the co_B1 (which is really free) has been captured, and
-subsequent substitutions will go wrong. That's why we can't use
-mkCoPredTy in the ForAll case, where this note appears.
-
-\begin{code}
-optCoercion :: TvSubst -> Coercion -> NormalCo
--- ^ optCoercion applies a substitution to a coercion,
--- *and* optimises it to reduce its size
-optCoercion env co
- | opt_NoOptCoercion = substTy env co
- | otherwise = opt_co env False co
-
-type NormalCo = Coercion
- -- Invariants:
- -- * The substitution has been fully applied
- -- * For trans coercions (co1 `trans` co2)
- -- co1 is not a trans, and neither co1 nor co2 is identity
- -- * If the coercion is the identity, it has no CoVars of CoTyCons in it (just types)
-
-type NormalNonIdCo = NormalCo -- Extra invariant: not the identity
-
-opt_co, opt_co' :: TvSubst
- -> Bool -- True <=> return (sym co)
- -> Coercion
- -> NormalCo
-opt_co = opt_co'
-
-{- Debuggery
-opt_co env sym co
--- = pprTrace "opt_co {" (ppr sym <+> ppr co) $
--- co1 `seq`
--- pprTrace "opt_co done }" (ppr co1)
--- WARN( not same_co_kind, ppr co <+> dcolon <+> pprEqPred (s1,t1)
--- $$ ppr co1 <+> dcolon <+> pprEqPred (s2,t2) )
- = WARN( not (coreEqType co1 simple_result),
- (text "env=" <+> ppr env) $$
- (text "input=" <+> ppr co) $$
- (text "simple=" <+> ppr simple_result) $$
- (text "opt=" <+> ppr co1) )
- co1
- where
- co1 = opt_co' env sym co
- same_co_kind = s1 `coreEqType` s2 && t1 `coreEqType` t2
- (s,t) = coercionKind (substTy env co)
- (s1,t1) | sym = (t,s)
- | otherwise = (s,t)
- (s2,t2) = coercionKind co1
-
- simple_result | sym = mkSymCoercion (substTy env co)
- | otherwise = substTy env co
--}
-
-opt_co' env sym (AppTy ty1 ty2) = mkAppTy (opt_co env sym ty1) (opt_co env sym ty2)
-opt_co' env sym (FunTy ty1 ty2) = FunTy (opt_co env sym ty1) (opt_co env sym ty2)
-opt_co' env sym (PredTy (ClassP cls tys)) = PredTy (ClassP cls (map (opt_co env sym) tys))
-opt_co' env sym (PredTy (IParam n ty)) = PredTy (IParam n (opt_co env sym ty))
-opt_co' _ _ co@(PredTy (EqPred {})) = pprPanic "optCoercion" (ppr co)
-
-opt_co' env sym co@(TyVarTy tv)
- | Just ty <- lookupTyVar env tv = opt_co' (zapTvSubstEnv env) sym ty
- | not (isCoVar tv) = co -- Identity; does not mention a CoVar
- | ty1 `coreEqType` ty2 = ty1 -- Identity; ..ditto..
- | not sym = co
- | otherwise = mkSymCoercion co
- where
- (ty1,ty2) = coVarKind tv
-
-opt_co' env sym (ForAllTy tv cor)
- | isTyVar tv = case substTyVarBndr env tv of
- (env', tv') -> ForAllTy tv' (opt_co' env' sym cor)
-
-opt_co' env sym co@(ForAllTy co_var cor)
- | isCoVar co_var
- = WARN( co_var `elemVarSet` tyVarsOfType cor, ppr co )
- ForAllTy co_var' cor'
- where
- (co1,co2) = coVarKind co_var
- co1' = opt_co' env sym co1
- co2' = opt_co' env sym co2
- cor' = opt_co' env sym cor
- co_var' = uniqAway (getTvInScope env) (mkWildCoVar (mkCoKind co1' co2'))
- -- See Note [Subtle shadowing in coercions]
-
-opt_co' env sym (TyConApp tc cos)
- | Just (arity, desc) <- isCoercionTyCon_maybe tc
- = mkAppTys (opt_co_tc_app env sym tc desc (take arity cos))
- (map (opt_co env sym) (drop arity cos))
- | otherwise
- = TyConApp tc (map (opt_co env sym) cos)
-
---------
-opt_co_tc_app :: TvSubst -> Bool -> TyCon -> CoTyConDesc -> [Coercion] -> NormalCo
--- Used for CoercionTyCons only
--- Arguments are *not* already simplified/substituted
-opt_co_tc_app env sym tc desc cos
- = case desc of
- CoAxiom {} -- Do *not* push sym inside top-level axioms
- -- e.g. if g is a top-level axiom
- -- g a : F a ~ a
- -- Then (sym (g ty)) /= g (sym ty) !!
- | sym -> mkSymCoercion the_co
- | otherwise -> the_co
- where
- the_co = TyConApp tc (map (opt_co env False) cos)
- -- Note that the_co does *not* have sym pushed into it
-
- CoTrans
- | sym -> opt_trans opt_co2 opt_co1 -- sym (g `o` h) = sym h `o` sym g
- | otherwise -> opt_trans opt_co1 opt_co2
-
- CoUnsafe
- | sym -> mkUnsafeCoercion ty2' ty1'
- | otherwise -> mkUnsafeCoercion ty1' ty2'
-
- CoSym -> opt_co env (not sym) co1
- CoLeft -> opt_lr fst
- CoRight -> opt_lr snd
- CoCsel1 -> opt_csel fstOf3
- CoCsel2 -> opt_csel sndOf3
- CoCselR -> opt_csel thirdOf3
-
- CoInst -- See if the first arg is already a forall
- -- ...then we can just extend the current substitution
- | Just (tv, co1_body) <- splitForAllTy_maybe co1
- -> opt_co (extendTvSubst env tv ty2') sym co1_body
-
- -- See if is *now* a forall
- | Just (tv, opt_co1_body) <- splitForAllTy_maybe opt_co1
- -> substTyWith [tv] [ty2'] opt_co1_body -- An inefficient one-variable substitution
-
- | otherwise
- -> TyConApp tc [opt_co1, ty2']
-
- where
- (co1 : cos1) = cos
- (co2 : _) = cos1
-
- ty1' = substTy env co1
- ty2' = substTy env co2
-
- -- These opt_cos have the sym pushed into them
- opt_co1 = opt_co env sym co1
- opt_co2 = opt_co env sym co2
-
- the_unary_opt_co = TyConApp tc [opt_co1]
-
- opt_lr sel = case splitAppTy_maybe opt_co1 of
- Nothing -> the_unary_opt_co
- Just lr -> sel lr
- opt_csel sel = case splitCoPredTy_maybe opt_co1 of
- Nothing -> the_unary_opt_co
- Just lr -> sel lr
-
--------------
-opt_transL :: [NormalCo] -> [NormalCo] -> [NormalCo]
-opt_transL = zipWith opt_trans
-
-opt_trans :: NormalCo -> NormalCo -> NormalCo
-opt_trans co1 co2
- | isIdNormCo co1 = co2
- | otherwise = opt_trans1 co1 co2
-
-opt_trans1 :: NormalNonIdCo -> NormalCo -> NormalCo
--- First arg is not the identity
-opt_trans1 co1 co2
- | isIdNormCo co2 = co1
- | otherwise = opt_trans2 co1 co2
-
-opt_trans2 :: NormalNonIdCo -> NormalNonIdCo -> NormalCo
--- Neither arg is the identity
-opt_trans2 (TyConApp tc [co1a,co1b]) co2
- | tc `hasKey` transCoercionTyConKey
- = opt_trans1 co1a (opt_trans2 co1b co2)
-
-opt_trans2 co1 co2
- | Just co <- opt_trans_rule co1 co2
- = co
-
-opt_trans2 co1 (TyConApp tc [co2a,co2b])
- | tc `hasKey` transCoercionTyConKey
- , Just co1_2a <- opt_trans_rule co1 co2a
- = if isIdNormCo co1_2a
- then co2b
- else opt_trans2 co1_2a co2b
-
-opt_trans2 co1 co2
- = mkTransCoercion co1 co2
-
-------
-opt_trans_rule :: NormalNonIdCo -> NormalNonIdCo -> Maybe NormalCo
-opt_trans_rule (TyConApp tc1 args1) (TyConApp tc2 args2)
- | tc1 == tc2
- = case isCoercionTyCon_maybe tc1 of
- Nothing
- -> Just (TyConApp tc1 (opt_transL args1 args2))
- Just (arity, desc)
- | arity == length args1
- -> opt_trans_rule_equal_tc desc args1 args2
- | otherwise
- -> case opt_trans_rule_equal_tc desc
- (take arity args1)
- (take arity args2) of
- Just co -> Just $ mkAppTys co $
- opt_transL (drop arity args1) (drop arity args2)
- Nothing -> Nothing
-
--- Push transitivity inside apply
-opt_trans_rule co1 co2
- | Just (co1a, co1b) <- splitAppTy_maybe co1
- , Just (co2a, co2b) <- etaApp_maybe co2
- = Just (mkAppTy (opt_trans co1a co2a) (opt_trans co1b co2b))
-
- | Just (co2a, co2b) <- splitAppTy_maybe co2
- , Just (co1a, co1b) <- etaApp_maybe co1
- = Just (mkAppTy (opt_trans co1a co2a) (opt_trans co1b co2b))
-
--- Push transitivity inside (s~t)=>r
--- We re-use the CoVar rather than using mkCoPredTy
--- See Note [Subtle shadowing in coercions]
-opt_trans_rule co1 co2
- | Just (cv1,r1) <- splitForAllTy_maybe co1
- , isCoVar cv1
- , Just (s1,t1) <- coVarKind_maybe cv1
- , Just (s2,t2,r2) <- etaCoPred_maybe co2
- = Just (ForAllTy (mkCoVar (coVarName cv1) (mkCoKind (opt_trans s1 s2) (opt_trans t1 t2)))
- (opt_trans r1 r2))
-
- | Just (cv2,r2) <- splitForAllTy_maybe co2
- , isCoVar cv2
- , Just (s2,t2) <- coVarKind_maybe cv2
- , Just (s1,t1,r1) <- etaCoPred_maybe co1
- = Just (ForAllTy (mkCoVar (coVarName cv2) (mkCoKind (opt_trans s1 s2) (opt_trans t1 t2)))
- (opt_trans r1 r2))
-
--- Push transitivity inside forall
-opt_trans_rule co1 co2
- | Just (tv1,r1) <- splitTypeForAll_maybe co1
- , Just (tv2,r2) <- etaForAll_maybe co2
- , let r2' = substTyWith [tv2] [TyVarTy tv1] r2
- = Just (ForAllTy tv1 (opt_trans2 r1 r2'))
-
- | Just (tv2,r2) <- splitTypeForAll_maybe co2
- , Just (tv1,r1) <- etaForAll_maybe co1
- , let r1' = substTyWith [tv1] [TyVarTy tv2] r1
- = Just (ForAllTy tv1 (opt_trans2 r1' r2))
-
-opt_trans_rule co1 co2
-{- Omitting for now, because unsound
- | Just (sym1, (ax_tc1, ax1_args, ax_tvs, ax_lhs, ax_rhs)) <- co1_is_axiom_maybe
- , Just (sym2, (ax_tc2, ax2_args, _, _, _)) <- co2_is_axiom_maybe
- , ax_tc1 == ax_tc2
- , sym1 /= sym2
- = Just $
- if sym1
- then substTyWith ax_tvs (opt_transL (map mkSymCoercion ax1_args) ax2_args) ax_rhs
- else substTyWith ax_tvs (opt_transL ax1_args (map mkSymCoercion ax2_args)) ax_lhs
--}
-
- | Just (sym, (ax_tc, ax_args, ax_tvs, ax_lhs, _)) <- co1_is_axiom_maybe
- , Just cos <- matchesAxiomLhs ax_tvs ax_lhs co2
- = Just $
- if sym
- then mkSymCoercion $ TyConApp ax_tc (opt_transL (map mkSymCoercion cos) ax_args)
- else TyConApp ax_tc (opt_transL ax_args cos)
-
- | Just (sym, (ax_tc, ax_args, ax_tvs, ax_lhs, _)) <- isAxiom_maybe co2
- , Just cos <- matchesAxiomLhs ax_tvs ax_lhs co1
- = Just $
- if sym
- then mkSymCoercion $ TyConApp ax_tc (opt_transL ax_args (map mkSymCoercion cos))
- else TyConApp ax_tc (opt_transL cos ax_args)
- where
- co1_is_axiom_maybe = isAxiom_maybe co1
- co2_is_axiom_maybe = isAxiom_maybe co2
-
-opt_trans_rule co1 co2 -- Identity rule
- | (ty1,_) <- coercionKind co1
- , (_,ty2) <- coercionKind co2
- , ty1 `coreEqType` ty2
- = Just ty2
-
-opt_trans_rule _ _ = Nothing
-
------------
-isAxiom_maybe :: Coercion -> Maybe (Bool, (TyCon, [Coercion], [TyVar], Type, Type))
-isAxiom_maybe co
- | Just (tc, args) <- splitTyConApp_maybe co
- , Just (_, desc) <- isCoercionTyCon_maybe tc
- = case desc of
- CoAxiom { co_ax_tvs = tvs, co_ax_lhs = lhs, co_ax_rhs = rhs }
- -> Just (False, (tc, args, tvs, lhs, rhs))
- CoSym | (arg1:_) <- args
- -> case isAxiom_maybe arg1 of
- Nothing -> Nothing
- Just (sym, stuff) -> Just (not sym, stuff)
- _ -> Nothing
- | otherwise
- = Nothing
-
-matchesAxiomLhs :: [TyVar] -> Type -> Type -> Maybe [Type]
-matchesAxiomLhs tvs ty_tmpl ty
- = case tcMatchTy (mkVarSet tvs) ty_tmpl ty of
- Nothing -> Nothing
- Just subst -> Just (map (substTyVar subst) tvs)
-
------------
-opt_trans_rule_equal_tc :: CoTyConDesc -> [Coercion] -> [Coercion] -> Maybe Coercion
--- Rules for Coercion TyCons only
-
--- Push transitivity inside instantiation
-opt_trans_rule_equal_tc desc [co1,ty1] [co2,ty2]
- | CoInst <- desc
- , ty1 `coreEqType` ty2
- , co1 `compatible_co` co2
- = Just (mkInstCoercion (opt_trans2 co1 co2) ty1)
-
-opt_trans_rule_equal_tc desc [co1] [co2]
- | CoLeft <- desc, is_compat = Just (mkLeftCoercion res_co)
- | CoRight <- desc, is_compat = Just (mkRightCoercion res_co)
- | CoCsel1 <- desc, is_compat = Just (mkCsel1Coercion res_co)
- | CoCsel2 <- desc, is_compat = Just (mkCsel2Coercion res_co)
- | CoCselR <- desc, is_compat = Just (mkCselRCoercion res_co)
- where
- is_compat = co1 `compatible_co` co2
- res_co = opt_trans2 co1 co2
-
-opt_trans_rule_equal_tc _ _ _ = Nothing
-
--------------
-compatible_co :: Coercion -> Coercion -> Bool
--- Check whether (co1 . co2) will be well-kinded
-compatible_co co1 co2
- = x1 `coreEqType` x2
- where
- (_,x1) = coercionKind co1
- (x2,_) = coercionKind co2
-
--------------
-etaForAll_maybe :: Coercion -> Maybe (TyVar, Coercion)
--- Try to make the coercion be of form (forall tv. co)
-etaForAll_maybe co
- | Just (tv, r) <- splitForAllTy_maybe co
- , not (isCoVar tv) -- Check it is a *type* forall, not a (t1~t2)=>co
- = Just (tv, r)
-
- | (ty1,ty2) <- coercionKind co
- , Just (tv1, _) <- splitTypeForAll_maybe ty1
- , Just (tv2, _) <- splitTypeForAll_maybe ty2
- , tyVarKind tv1 `eqKind` tyVarKind tv2
- = Just (tv1, mkInstCoercion co (mkTyVarTy tv1))
-
- | otherwise
- = Nothing
-
-etaCoPred_maybe :: Coercion -> Maybe (Coercion, Coercion, Coercion)
-etaCoPred_maybe co
- | Just (s,t,r) <- splitCoPredTy_maybe co
- = Just (s,t,r)
-
- -- co :: (s1~t1)=>r1 ~ (s2~t2)=>r2
- | (ty1,ty2) <- coercionKind co -- We know ty1,ty2 have same kind
- , Just (s1,_,_) <- splitCoPredTy_maybe ty1
- , Just (s2,_,_) <- splitCoPredTy_maybe ty2
- , typeKind s1 `eqKind` typeKind s2 -- t1,t2 have same kinds
- = Just (mkCsel1Coercion co, mkCsel2Coercion co, mkCselRCoercion co)
-
- | otherwise
- = Nothing
-
-etaApp_maybe :: Coercion -> Maybe (Coercion, Coercion)
--- Split a coercion g :: t1a t1b ~ t2a t2b
--- into (left g, right g) if possible
-etaApp_maybe co
- | Just (co1, co2) <- splitAppTy_maybe co
- = Just (co1, co2)
-
- | (ty1,ty2) <- coercionKind co
- , Just (ty1a, _) <- splitAppTy_maybe ty1
- , Just (ty2a, _) <- splitAppTy_maybe ty2
- , typeKind ty1a `eqKind` typeKind ty2a
- = Just (mkLeftCoercion co, mkRightCoercion co)
-
- | otherwise
- = Nothing
-
--------------
-splitTypeForAll_maybe :: Type -> Maybe (TyVar, Type)
--- Returns Just only for a *type* forall, not a (t1~t2)=>co
-splitTypeForAll_maybe ty
- | Just (tv, rty) <- splitForAllTy_maybe ty
- , not (isCoVar tv)
- = Just (tv, rty)
-
- | otherwise
- = Nothing
-
--------------
-isIdNormCo :: NormalCo -> Bool
--- Cheap identity test: look for coercions with no coercion variables at all
--- So it'll return False for (sym g `trans` g)
-isIdNormCo ty = go ty
- where
- go (TyVarTy tv) = not (isCoVar tv)
- go (AppTy t1 t2) = go t1 && go t2
- go (FunTy t1 t2) = go t1 && go t2
- go (ForAllTy tv ty) = go (tyVarKind tv) && go ty
- go (TyConApp tc tys) = not (isCoercionTyCon tc) && all go tys
- go (PredTy (IParam _ ty)) = go ty
- go (PredTy (ClassP _ tys)) = all go tys
- go (PredTy (EqPred t1 t2)) = go t1 && go t2
-\end{code}
+% +% (c) The University of Glasgow 2006 +% + +\begin{code} +module OptCoercion ( optCoercion ) where + +#include "HsVersions.h" + +import Coercion +import Type hiding( substTyVarBndr, substTy, extendTvSubst ) +import TyCon +import Var +import VarSet +import VarEnv +import StaticFlags ( opt_NoOptCoercion ) +import Outputable +import Pair +import Maybes( allMaybes ) +import FastString +\end{code} + +%************************************************************************ +%* * + Optimising coercions +%* * +%************************************************************************ + +Note [Subtle shadowing in coercions] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Supose we optimising a coercion + optCoercion (forall (co_X5:t1~t2). ...co_B1...) +The co_X5 is a wild-card; the bound variable of a coercion for-all +should never appear in the body of the forall. Indeed we often +write it like this + optCoercion ( (t1~t2) => ...co_B1... ) + +Just because it's a wild-card doesn't mean we are free to choose +whatever variable we like. For example it'd be wrong for optCoercion +to return + forall (co_B1:t1~t2). ...co_B1... +because now the co_B1 (which is really free) has been captured, and +subsequent substitutions will go wrong. That's why we can't use +mkCoPredTy in the ForAll case, where this note appears. + +\begin{code} +optCoercion :: CvSubst -> Coercion -> NormalCo +-- ^ optCoercion applies a substitution to a coercion, +-- *and* optimises it to reduce its size +optCoercion env co + | opt_NoOptCoercion = substCo env co + | otherwise = opt_co env False co + +type NormalCo = Coercion + -- Invariants: + -- * The substitution has been fully applied + -- * For trans coercions (co1 `trans` co2) + -- co1 is not a trans, and neither co1 nor co2 is identity + -- * If the coercion is the identity, it has no CoVars of CoTyCons in it (just types) + +type NormalNonIdCo = NormalCo -- Extra invariant: not the identity + +opt_co, opt_co' :: CvSubst + -> Bool -- True <=> return (sym co) + -> Coercion + -> NormalCo +opt_co = opt_co' +{- +opt_co env sym co + = pprTrace "opt_co {" (ppr sym <+> ppr co $$ ppr env) $ + co1 `seq` + pprTrace "opt_co done }" (ppr co1) $ + (WARN( not same_co_kind, ppr co <+> dcolon <+> pprEqPred (Pair s1 t1) + $$ ppr co1 <+> dcolon <+> pprEqPred (Pair s2 t2) ) + WARN( not (coreEqCoercion co1 simple_result), + (text "env=" <+> ppr env) $$ + (text "input=" <+> ppr co) $$ + (text "simple=" <+> ppr simple_result) $$ + (text "opt=" <+> ppr co1) ) + co1) + where + co1 = opt_co' env sym co + same_co_kind = s1 `eqType` s2 && t1 `eqType` t2 + Pair s t = coercionKind (substCo env co) + (s1,t1) | sym = (t,s) + | otherwise = (s,t) + Pair s2 t2 = coercionKind co1 + + simple_result | sym = mkSymCo (substCo env co) + | otherwise = substCo env co +-} + +opt_co' env _ (Refl ty) = Refl (substTy env ty) +opt_co' env sym (SymCo co) = opt_co env (not sym) co +opt_co' env sym (TyConAppCo tc cos) = mkTyConAppCo tc (map (opt_co env sym) cos) +opt_co' env sym (AppCo co1 co2) = mkAppCo (opt_co env sym co1) (opt_co env sym co2) +opt_co' env sym (ForAllCo tv co) = case substTyVarBndr env tv of + (env', tv') -> mkForAllCo tv' (opt_co env' sym co) + -- Use the "mk" functions to check for nested Refls + +opt_co' env sym (CoVarCo cv) + | Just co <- lookupCoVar env cv + = opt_co (zapCvSubstEnv env) sym co + + | Just cv1 <- lookupInScope (getCvInScope env) cv + = ASSERT( isCoVar cv1 ) wrapSym sym (CoVarCo cv1) + -- cv1 might have a substituted kind! + + | otherwise = WARN( True, ptext (sLit "opt_co: not in scope:") <+> ppr cv $$ ppr env) + ASSERT( isCoVar cv ) + wrapSym sym (CoVarCo cv) + +opt_co' env sym (AxiomInstCo con cos) + -- Do *not* push sym inside top-level axioms + -- e.g. if g is a top-level axiom + -- g a : f a ~ a + -- then (sym (g ty)) /= g (sym ty) !! + = wrapSym sym $ AxiomInstCo con (map (opt_co env False) cos) + -- Note that the_co does *not* have sym pushed into it + +opt_co' env sym (UnsafeCo ty1 ty2) + | ty1' `eqType` ty2' = Refl ty1' + | sym = mkUnsafeCo ty2' ty1' + | otherwise = mkUnsafeCo ty1' ty2' + where + ty1' = substTy env ty1 + ty2' = substTy env ty2 + +opt_co' env sym (TransCo co1 co2) + | sym = opt_trans opt_co2 opt_co1 -- sym (g `o` h) = sym h `o` sym g + | otherwise = opt_trans opt_co1 opt_co2 + where + opt_co1 = opt_co env sym co1 + opt_co2 = opt_co env sym co2 + +opt_co' env sym (NthCo n co) + | TyConAppCo tc cos <- co' + , isDecomposableTyCon tc -- Not synonym families + = ASSERT( n < length cos ) + cos !! n + | otherwise + = NthCo n co' + where + co' = opt_co env sym co + +opt_co' env sym (InstCo co ty) + -- See if the first arg is already a forall + -- ...then we can just extend the current substitution + | Just (tv, co_body) <- splitForAllCo_maybe co + = opt_co (extendTvSubst env tv ty') sym co_body + + -- See if it is a forall after optimization + | Just (tv, co'_body) <- splitForAllCo_maybe co' + = substCoWithTy tv ty' co'_body -- An inefficient one-variable substitution + + | otherwise = InstCo co' ty' + + where + co' = opt_co env sym co + ty' = substTy env ty + +------------- +opt_transList :: [NormalCo] -> [NormalCo] -> [NormalCo] +opt_transList = zipWith opt_trans + +opt_trans :: NormalCo -> NormalCo -> NormalCo +opt_trans co1 co2 + | isReflCo co1 = co2 + | otherwise = opt_trans1 co1 co2 + +opt_trans1 :: NormalNonIdCo -> NormalCo -> NormalCo +-- First arg is not the identity +opt_trans1 co1 co2 + | isReflCo co2 = co1 + | otherwise = opt_trans2 co1 co2 + +opt_trans2 :: NormalNonIdCo -> NormalNonIdCo -> NormalCo +-- Neither arg is the identity +opt_trans2 (TransCo co1a co1b) co2 + -- Don't know whether the sub-coercions are the identity + = opt_trans co1a (opt_trans co1b co2) + +opt_trans2 co1 co2 + | Just co <- opt_trans_rule co1 co2 + = co + +opt_trans2 co1 (TransCo co2a co2b) + | Just co1_2a <- opt_trans_rule co1 co2a + = if isReflCo co1_2a + then co2b + else opt_trans1 co1_2a co2b + +opt_trans2 co1 co2 + = mkTransCo co1 co2 + +------ +-- Optimize coercions with a top-level use of transitivity. +opt_trans_rule :: NormalNonIdCo -> NormalNonIdCo -> Maybe NormalCo + +-- push transitivity down through matching top-level constructors. +opt_trans_rule in_co1@(TyConAppCo tc1 cos1) in_co2@(TyConAppCo tc2 cos2) + | tc1 == tc2 = fireTransRule "PushTyConApp" in_co1 in_co2 $ + TyConAppCo tc1 (opt_transList cos1 cos2) + +-- push transitivity through matching destructors +opt_trans_rule in_co1@(NthCo d1 co1) in_co2@(NthCo d2 co2) + | d1 == d2 + , co1 `compatible_co` co2 + = fireTransRule "PushNth" in_co1 in_co2 $ + mkNthCo d1 (opt_trans co1 co2) + +-- Push transitivity inside instantiation +opt_trans_rule in_co1@(InstCo co1 ty1) in_co2@(InstCo co2 ty2) + | ty1 `eqType` ty2 + , co1 `compatible_co` co2 + = fireTransRule "TrPushInst" in_co1 in_co2 $ + mkInstCo (opt_trans co1 co2) ty1 + +-- Push transitivity inside apply +opt_trans_rule in_co1@(AppCo co1a co1b) in_co2@(AppCo co2a co2b) + = fireTransRule "TrPushApp" in_co1 in_co2 $ + mkAppCo (opt_trans co1a co2a) (opt_trans co1b co2b) + +opt_trans_rule co1@(TyConAppCo tc cos1) co2 + | Just cos2 <- etaTyConAppCo_maybe tc co2 + = ASSERT( length cos1 == length cos2 ) + fireTransRule "EtaCompL" co1 co2 $ + TyConAppCo tc (zipWith opt_trans cos1 cos2) + +opt_trans_rule co1 co2@(TyConAppCo tc cos2) + | Just cos1 <- etaTyConAppCo_maybe tc co1 + = ASSERT( length cos1 == length cos2 ) + fireTransRule "EtaCompR" co1 co2 $ + TyConAppCo tc (zipWith opt_trans cos1 cos2) + +-- Push transitivity inside forall +opt_trans_rule co1 co2 + | Just (tv1,r1) <- splitForAllCo_maybe co1 + , Just (tv2,r2) <- etaForAllCo_maybe co2 + , let r2' = substCoWithTy tv2 (mkTyVarTy tv1) r2 + = fireTransRule "EtaAllL" co1 co2 $ + mkForAllCo tv1 (opt_trans2 r1 r2') + + | Just (tv2,r2) <- splitForAllCo_maybe co2 + , Just (tv1,r1) <- etaForAllCo_maybe co1 + , let r1' = substCoWithTy tv1 (mkTyVarTy tv2) r1 + = fireTransRule "EtaAllR" co1 co2 $ + mkForAllCo tv1 (opt_trans2 r1' r2) + +-- Push transitivity inside axioms +opt_trans_rule co1 co2 + + -- TrPushAxR/TrPushSymAxR + | Just (sym, con, cos1) <- co1_is_axiom_maybe + , Just cos2 <- matchAxiom sym con co2 + = fireTransRule "TrPushAxR" co1 co2 $ + if sym + then SymCo $ AxiomInstCo con (opt_transList (map mkSymCo cos2) cos1) + else AxiomInstCo con (opt_transList cos1 cos2) + + -- TrPushAxL/TrPushSymAxL + | Just (sym, con, cos2) <- co2_is_axiom_maybe + , Just cos1 <- matchAxiom (not sym) con co1 + = fireTransRule "TrPushAxL" co1 co2 $ + if sym + then SymCo $ AxiomInstCo con (opt_transList cos2 (map mkSymCo cos1)) + else AxiomInstCo con (opt_transList cos1 cos2) + + -- TrPushAxSym/TrPushSymAx + | Just (sym1, con1, cos1) <- co1_is_axiom_maybe + , Just (sym2, con2, cos2) <- co2_is_axiom_maybe + , con1 == con2 + , sym1 == not sym2 + , let qtvs = co_ax_tvs con1 + lhs = co_ax_lhs con1 + rhs = co_ax_rhs con1 + pivot_tvs = exactTyVarsOfType (if sym2 then rhs else lhs) + , all (`elemVarSet` pivot_tvs) qtvs + = fireTransRule "TrPushAxSym" co1 co2 $ + if sym2 + then liftCoSubstWith qtvs (opt_transList cos1 (map mkSymCo cos2)) lhs -- TrPushAxSym + else liftCoSubstWith qtvs (opt_transList (map mkSymCo cos1) cos2) rhs -- TrPushSymAx + where + co1_is_axiom_maybe = isAxiom_maybe co1 + co2_is_axiom_maybe = isAxiom_maybe co2 + +opt_trans_rule co1 co2 -- Identity rule + | Pair ty1 _ <- coercionKind co1 + , Pair _ ty2 <- coercionKind co2 + , ty1 `eqType` ty2 + = fireTransRule "RedTypeDirRefl" co1 co2 $ + Refl ty2 + +opt_trans_rule _ _ = Nothing + +fireTransRule :: String -> Coercion -> Coercion -> Coercion -> Maybe Coercion +fireTransRule _rule _co1 _co2 res + = -- pprTrace ("Trans rule fired: " ++ _rule) (vcat [ppr _co1, ppr _co2, ppr res]) $ + Just res + +----------- +wrapSym :: Bool -> Coercion -> Coercion +wrapSym sym co | sym = SymCo co + | otherwise = co + +----------- +isAxiom_maybe :: Coercion -> Maybe (Bool, CoAxiom, [Coercion]) +isAxiom_maybe (SymCo co) + | Just (sym, con, cos) <- isAxiom_maybe co + = Just (not sym, con, cos) +isAxiom_maybe (AxiomInstCo con cos) + = Just (False, con, cos) +isAxiom_maybe _ = Nothing + +matchAxiom :: Bool -- True = match LHS, False = match RHS + -> CoAxiom -> Coercion -> Maybe [Coercion] +-- If we succeed in matching, then *all the quantified type variables are bound* +-- E.g. if tvs = [a,b], lhs/rhs = [b], we'll fail +matchAxiom sym (CoAxiom { co_ax_tvs = qtvs, co_ax_lhs = lhs, co_ax_rhs = rhs }) co + = case liftCoMatch (mkVarSet qtvs) (if sym then lhs else rhs) co of + Nothing -> Nothing + Just subst -> allMaybes (map (liftCoSubstTyVar subst) qtvs) + +------------- +compatible_co :: Coercion -> Coercion -> Bool +-- Check whether (co1 . co2) will be well-kinded +compatible_co co1 co2 + = x1 `eqType` x2 + where + Pair _ x1 = coercionKind co1 + Pair x2 _ = coercionKind co2 + +------------- +etaForAllCo_maybe :: Coercion -> Maybe (TyVar, Coercion) +-- Try to make the coercion be of form (forall tv. co) +etaForAllCo_maybe co + | Just (tv, r) <- splitForAllCo_maybe co + = Just (tv, r) + + | Pair ty1 ty2 <- coercionKind co + , Just (tv1, _) <- splitForAllTy_maybe ty1 + , Just (tv2, _) <- splitForAllTy_maybe ty2 + , tyVarKind tv1 `eqKind` tyVarKind tv2 + = Just (tv1, mkInstCo co (mkTyVarTy tv1)) + + | otherwise + = Nothing + +etaTyConAppCo_maybe :: TyCon -> Coercion -> Maybe [Coercion] +-- If possible, split a coercion +-- g :: T s1 .. sn ~ T t1 .. tn +-- into [ Nth 0 g :: s1~t1, ..., Nth (n-1) g :: sn~tn ] +etaTyConAppCo_maybe tc (TyConAppCo tc2 cos2) + = ASSERT( tc == tc2 ) Just cos2 + +etaTyConAppCo_maybe tc co + | isDecomposableTyCon tc + , Pair ty1 ty2 <- coercionKind co + , Just (tc1, tys1) <- splitTyConApp_maybe ty1 + , Just (tc2, tys2) <- splitTyConApp_maybe ty2 + , tc1 == tc2 + , let n = length tys1 + = ASSERT( tc == tc1 ) + ASSERT( n == length tys2 ) + Just (decomposeCo n co) + -- NB: n might be <> tyConArity tc + -- e.g. data family T a :: * -> * + -- g :: T a b ~ T c d + + | otherwise + = Nothing +\end{code} diff --git a/compiler/types/TyCon.lhs b/compiler/types/TyCon.lhs index adb04700ca..1d8d48a773 100644 --- a/compiler/types/TyCon.lhs +++ b/compiler/types/TyCon.lhs @@ -13,7 +13,9 @@ module TyCon( AlgTyConRhs(..), visibleDataCons, TyConParent(..), isNoParent, SynTyConRhs(..), - CoTyConDesc(..), + + -- ** Coercion axiom constructors + CoAxiom(..), coAxiomName, coAxiomArity, -- ** Constructing TyCons mkAlgTyCon, @@ -25,7 +27,6 @@ module TyCon( mkTupleTyCon, mkSynTyCon, mkSuperKindTyCon, - mkCoercionTyCon, mkForeignTyCon, mkAnyTyCon, @@ -35,14 +36,13 @@ module TyCon( isFunTyCon, isPrimTyCon, isTupleTyCon, isUnboxedTupleTyCon, isBoxedTupleTyCon, - isSynTyCon, isClosedSynTyCon, + isSynTyCon, isClosedSynTyCon, isSuperKindTyCon, isDecomposableTyCon, - isCoercionTyCon, isCoercionTyCon_maybe, isForeignTyCon, isAnyTyCon, tyConHasKind, isInjectiveTyCon, isDataTyCon, isProductTyCon, isEnumerationTyCon, - isNewTyCon, isAbstractTyCon, + isNewTyCon, isAbstractTyCon, isFamilyTyCon, isSynFamilyTyCon, isDataFamilyTyCon, isUnLiftedTyCon, isGadtSyntaxTyCon, @@ -63,8 +63,8 @@ module TyCon( tyConParent, tyConClass_maybe, tyConFamInst_maybe, tyConFamilyCoercion_maybe,tyConFamInstSig_maybe, - synTyConDefn, synTyConRhs, synTyConType, - tyConExtName, -- External name for foreign types + synTyConDefn, synTyConRhs, synTyConType, + tyConExtName, -- External name for foreign types algTyConRhs, newTyConRhs, newTyConEtadRhs, unwrapNewTyCon_maybe, tupleTyConBoxity, @@ -72,7 +72,7 @@ module TyCon( -- ** Manipulating TyCons tcExpandTyCon_maybe, coreExpandTyCon_maybe, makeTyConAbstract, - newTyConCo_maybe, + newTyConCo, newTyConCo_maybe, -- * Primitive representations of Types PrimRep(..), @@ -113,7 +113,7 @@ Note [Type synonym families] * Reply "yes" to isSynFamilyTyCon, and isFamilyTyCon -* From the user's point of view (F Int) and Bool are simply +* From the user's point of view (F Int) and Bool are simply equivalent types. * A Haskell 98 type synonym is a degenerate form of a type synonym @@ -152,6 +152,23 @@ Note [Type synonym families] TyCon. In turn this means that type and data families can be treated uniformly. +* Translation of type family decl: + type family F a :: * + translates to + a SynTyCon 'F', whose SynTyConRhs is SynFamilyTyCon + +* Translation of type instance decl: + type instance F [a] = Maybe a + translates to + A SynTyCon 'R:FList a', whose + SynTyConRhs is (SynonymTyCon (Maybe a)) + TyConParent is (FamInstTyCon F [a] co) + where co :: F [a] ~ R:FList a + Notice that we introduce a gratuitous vanilla type synonym + type R:FList a = Maybe a + solely so that type and data families can be treated more + uniformly, via a single FamInstTyCon descriptor + * In the future we might want to support * closed type families (esp when we have proper kinds) * injective type families (allow decomposition) @@ -169,6 +186,8 @@ See also Note [Wrappers for data instance tycons] in MkId.lhs * Reply "yes" to isDataFamilyTyCon, and isFamilyTyCon +* Reply "yes" to isDataFamilyTyCon, and isFamilyTyCon + * The user does not see any "equivalent types" as he did with type synonym families. He just sees constructors with types T1 :: T Int @@ -266,9 +285,6 @@ See also Note [Wrappers for data instance tycons] in MkId.lhs -- -- 4) Class declarations: @class Foo where@ creates the @Foo@ type constructor of kind @*@ -- --- 5) Type coercions! This is because we represent a coercion from @t1@ to @t2@ --- as a 'Type', where that type has kind @t1 ~ t2@. See "Coercion" for more on this --- -- This data type also encodes a number of primitive, built in type constructors such as those -- for function and tuple types. data TyCon @@ -381,17 +397,6 @@ data TyCon -- holds the name of the imported thing } - -- | Type coercions, such as @(~)@, @sym@, @trans@, @left@ and @right@. - -- INVARIANT: Coercion TyCons are always fully applied - -- But note that a CoTyCon can be *over*-saturated in a type. - -- E.g. (sym g1) Int will be represented as (TyConApp sym [g1,Int]) - | CoTyCon { - tyConUnique :: Unique, - tyConName :: Name, - tyConArity :: Arity, - coTcDesc :: CoTyConDesc - } - -- | Any types. Like tuples, this is a potentially-infinite family of TyCons -- one for each distinct Kind. They have no values at all. -- Because there are infinitely many of them (like tuples) they are @@ -401,7 +406,7 @@ data TyCon | AnyTyCon { tyConUnique :: Unique, tyConName :: Name, - tc_kind :: Kind -- Never = *; that is done via PrimTyCon + tc_kind :: Kind -- Never = *; that is done via PrimTyCon -- See Note [Any types] in TysPrim } @@ -475,18 +480,14 @@ data AlgTyConRhs -- shorter than the declared arity of the 'TyCon'. -- See Note [Newtype eta] - - nt_co :: Maybe TyCon -- ^ A 'TyCon' (which is always a 'CoTyCon') that can - -- have a 'Coercion' extracted from it to create - -- the @newtype@ from the representation 'Type'. - -- - -- This field is optional for non-recursive @newtype@s only. - - -- See Note [Newtype coercions] - -- Invariant: arity = #tvs in nt_etad_rhs; - -- See Note [Newtype eta] - -- Watch out! If any newtypes become transparent - -- again check Trac #1072. + nt_co :: CoAxiom -- The axiom coercion that creates the @newtype@ from + -- the representation 'Type'. + + -- See Note [Newtype coercions] + -- Invariant: arity = #tvs in nt_etad_rhs; + -- See Note [Newtype eta] + -- Watch out! If any newtypes become transparent + -- again check Trac #1072. } -- | Extract those 'DataCon's that we are able to learn about. Note @@ -546,7 +547,7 @@ data TyConParent -- and Note [Type synonym families] TyCon -- The family TyCon [Type] -- Argument types (mentions the tyConTyVars of this TyCon) - TyCon -- The coercion constructor + CoAxiom -- The coercion constructor -- E.g. data intance T [a] = ... -- gives a representation tycon: @@ -577,20 +578,6 @@ data SynTyConRhs -- | A type synonym family e.g. @type family F x y :: * -> *@ | SynFamilyTyCon - --------------------- -data CoTyConDesc - = CoSym | CoTrans - | CoLeft | CoRight - | CoCsel1 | CoCsel2 | CoCselR - | CoInst - - | CoAxiom -- C tvs : F lhs-tys ~ rhs-ty - { co_ax_tvs :: [TyVar] - , co_ax_lhs :: Type - , co_ax_rhs :: Type } - - | CoUnsafe \end{code} Note [Enumeration types] @@ -689,6 +676,31 @@ so the coercion tycon CoT must have %************************************************************************ %* * + Coercion axioms +%* * +%************************************************************************ + +\begin{code} +-- | A 'CoAxiom' is a \"coercion constructor\", i.e. a named equality axiom. +data CoAxiom + = CoAxiom -- type equality axiom. + { co_ax_unique :: Unique -- unique identifier + , co_ax_name :: Name -- name for pretty-printing + , co_ax_tvs :: [TyVar] -- bound type variables + , co_ax_lhs :: Type -- left-hand side of the equality + , co_ax_rhs :: Type -- right-hand side of the equality + } + +coAxiomArity :: CoAxiom -> Arity +coAxiomArity ax = length (co_ax_tvs ax) + +coAxiomName :: CoAxiom -> Name +coAxiomName = co_ax_name +\end{code} + + +%************************************************************************ +%* * \subsection{PrimRep} %* * %************************************************************************ @@ -880,17 +892,6 @@ mkSynTyCon name kind tyvars rhs parent synTcParent = parent } --- | Create a coercion 'TyCon' -mkCoercionTyCon :: Name -> Arity - -> CoTyConDesc - -> TyCon -mkCoercionTyCon name arity desc - = CoTyCon { - tyConName = name, - tyConUnique = nameUnique name, - tyConArity = arity, - coTcDesc = desc } - mkAnyTyCon :: Name -> Kind -> TyCon mkAnyTyCon name kind = AnyTyCon { tyConName = name, @@ -968,11 +969,11 @@ isNewTyCon _ = False -- | Take a 'TyCon' apart into the 'TyVar's it scopes over, the 'Type' it expands -- into, and (possibly) a coercion from the representation type to the @newtype@. -- Returns @Nothing@ if this is not possible. -unwrapNewTyCon_maybe :: TyCon -> Maybe ([TyVar], Type, Maybe TyCon) +unwrapNewTyCon_maybe :: TyCon -> Maybe ([TyVar], Type, CoAxiom) unwrapNewTyCon_maybe (AlgTyCon { tyConTyVars = tvs, - algTcRhs = NewTyCon { nt_co = mb_co, + algTcRhs = NewTyCon { nt_co = co, nt_rhs = rhs }}) - = Just (tvs, rhs, mb_co) + = Just (tvs, rhs, co) unwrapNewTyCon_maybe _ = Nothing isProductTyCon :: TyCon -> Bool @@ -1004,9 +1005,8 @@ isSynTyCon _ = False isDecomposableTyCon :: TyCon -> Bool -- True iff we can decompose (T a b c) into ((T a b) c) --- Specifically NOT true of synonyms (open and otherwise) and coercions +-- Specifically NOT true of synonyms (open and otherwise) isDecomposableTyCon (SynTyCon {}) = False -isDecomposableTyCon (CoTyCon {}) = False isDecomposableTyCon _other = True -- | Is this an algebraic 'TyCon' declared with the GADT syntax? @@ -1048,7 +1048,7 @@ isInjectiveTyCon tc = not (isSynTyCon tc) -- Ultimately we may have injective associated types -- in which case this test will become more interesting -- - -- It'd be unusual to call isInjectiveTyCon on a regular H98 + -- It'd be unusual to call isInjectiveTyCon on a regular H98 -- type synonym, because you should probably have expanded it first -- But regardless, it's not injective! @@ -1113,19 +1113,6 @@ isAnyTyCon :: TyCon -> Bool isAnyTyCon (AnyTyCon {}) = True isAnyTyCon _ = False --- | Attempt to pull a 'TyCon' apart into the arity and 'coKindFun' of --- a coercion 'TyCon'. Returns @Nothing@ if the 'TyCon' is not of the --- appropriate kind -isCoercionTyCon_maybe :: TyCon -> Maybe (Arity, CoTyConDesc) -isCoercionTyCon_maybe (CoTyCon {tyConArity = ar, coTcDesc = desc}) - = Just (ar, desc) -isCoercionTyCon_maybe _ = Nothing - --- | Is this a 'TyCon' that represents a coercion? -isCoercionTyCon :: TyCon -> Bool -isCoercionTyCon (CoTyCon {}) = True -isCoercionTyCon _ = False - -- | Identifies implicit tycons that, in particular, do not go into interface -- files (because they are implicitly reconstructed when the interface is -- read). @@ -1155,14 +1142,15 @@ isImplicitTyCon _other = True \begin{code} tcExpandTyCon_maybe, coreExpandTyCon_maybe :: TyCon - -> [Type] -- ^ Arguments to 'TyCon' - -> Maybe ([(TyVar,Type)], + -> [tyco] -- ^ Arguments to 'TyCon' + -> Maybe ([(TyVar,tyco)], Type, - [Type]) -- ^ Returns a 'TyVar' substitution, the body type - -- of the synonym (not yet substituted) and any arguments - -- remaining from the application + [tyco]) -- ^ Returns a 'TyVar' substitution, the body type + -- of the synonym (not yet substituted) and any arguments + -- remaining from the application --- ^ Used to create the view the /typechecker/ has on 'TyCon's. We expand (closed) synonyms only, cf. 'coreExpandTyCon_maybe' +-- ^ Used to create the view the /typechecker/ has on 'TyCon's. +-- We expand (closed) synonyms only, cf. 'coreExpandTyCon_maybe' tcExpandTyCon_maybe (SynTyCon {tyConTyVars = tvs, synTcRhs = SynonymTyCon rhs }) tys = expand tvs rhs tys @@ -1170,26 +1158,21 @@ tcExpandTyCon_maybe _ _ = Nothing --------------- --- ^ Used to create the view /Core/ has on 'TyCon's. We expand not only closed synonyms like 'tcExpandTyCon_maybe', +-- ^ Used to create the view /Core/ has on 'TyCon's. We expand +-- not only closed synonyms like 'tcExpandTyCon_maybe', -- but also non-recursive @newtype@s -coreExpandTyCon_maybe (AlgTyCon { - algTcRhs = NewTyCon { nt_etad_rhs = etad_rhs, nt_co = Nothing }}) tys - = case etad_rhs of -- Don't do this in the pattern match, lest we accidentally - -- match the etad_rhs of a *recursive* newtype - (tvs,rhs) -> expand tvs rhs tys - coreExpandTyCon_maybe tycon tys = tcExpandTyCon_maybe tycon tys ---------------- -expand :: [TyVar] -> Type -- Template - -> [Type] -- Args - -> Maybe ([(TyVar,Type)], Type, [Type]) -- Expansion +expand :: [TyVar] -> Type -- Template + -> [a] -- Args + -> Maybe ([(TyVar,a)], Type, [a]) -- Expansion expand tvs rhs tys = case n_tvs `compare` length tys of LT -> Just (tvs `zip` tys, rhs, drop n_tvs tys) EQ -> Just (tvs `zip` tys, rhs, []) - GT -> Nothing + GT -> Nothing where n_tvs = length tvs \end{code} @@ -1212,7 +1195,6 @@ tyConKind tc = pprPanic "tyConKind" (ppr tc) -- SuperKindTyCon and CoTyCon tyConHasKind :: TyCon -> Bool tyConHasKind (SuperKindTyCon {}) = False -tyConHasKind (CoTyCon {}) = False tyConHasKind _ = True -- | As 'tyConDataCons_maybe', but returns the empty list of constructors if no constructors @@ -1265,9 +1247,14 @@ newTyConEtadRhs tycon = pprPanic "newTyConEtadRhs" (ppr tycon) -- | Extracts the @newtype@ coercion from such a 'TyCon', which can be used to construct something -- with the @newtype@s type from its representation type (right hand side). If the supplied 'TyCon' -- is not a @newtype@, returns @Nothing@ -newTyConCo_maybe :: TyCon -> Maybe TyCon -newTyConCo_maybe (AlgTyCon {algTcRhs = NewTyCon { nt_co = co }}) = co -newTyConCo_maybe _ = Nothing +newTyConCo_maybe :: TyCon -> Maybe CoAxiom +newTyConCo_maybe (AlgTyCon {algTcRhs = NewTyCon { nt_co = co }}) = Just co +newTyConCo_maybe _ = Nothing + +newTyConCo :: TyCon -> CoAxiom +newTyConCo tc = case newTyConCo_maybe tc of + Just co -> co + Nothing -> pprPanic "newTyConCo" (ppr tc) -- | Find the primitive representation of a 'TyCon' tyConPrimRep :: TyCon -> PrimRep @@ -1337,6 +1324,7 @@ tyConParent (AlgTyCon {algTcParent = parent}) = parent tyConParent (SynTyCon {synTcParent = parent}) = parent tyConParent _ = NoParentTyCon +---------------------------------------------------------------------------- -- | Is this 'TyCon' that for a family instance, be that for a synonym or an -- algebraic family instance? isFamInstTyCon :: TyCon -> Bool @@ -1344,7 +1332,7 @@ isFamInstTyCon tc = case tyConParent tc of FamInstTyCon {} -> True _ -> False -tyConFamInstSig_maybe :: TyCon -> Maybe (TyCon, [Type], TyCon) +tyConFamInstSig_maybe :: TyCon -> Maybe (TyCon, [Type], CoAxiom) tyConFamInstSig_maybe tc = case tyConParent tc of FamInstTyCon f ts co_tc -> Just (f, ts, co_tc) @@ -1361,7 +1349,7 @@ tyConFamInst_maybe tc -- | If this 'TyCon' is that of a family instance, return a 'TyCon' which represents -- a coercion identifying the representation type with the type instance family. -- Otherwise, return @Nothing@ -tyConFamilyCoercion_maybe :: TyCon -> Maybe TyCon +tyConFamilyCoercion_maybe :: TyCon -> Maybe CoAxiom tyConFamilyCoercion_maybe tc = case tyConParent tc of FamInstTyCon _ _ co -> Just co @@ -1395,18 +1383,6 @@ instance Ord TyCon where instance Uniquable TyCon where getUnique tc = tyConUnique tc -instance Outputable CoTyConDesc where - ppr CoSym = ptext (sLit "SYM") - ppr CoTrans = ptext (sLit "TRANS") - ppr CoLeft = ptext (sLit "LEFT") - ppr CoRight = ptext (sLit "RIGHT") - ppr CoCsel1 = ptext (sLit "CSEL1") - ppr CoCsel2 = ptext (sLit "CSEL2") - ppr CoCselR = ptext (sLit "CSELR") - ppr CoInst = ptext (sLit "INST") - ppr CoUnsafe = ptext (sLit "UNSAFE") - ppr (CoAxiom {}) = ptext (sLit "AXIOM") - instance Outputable TyCon where ppr tc = ppr (getName tc) @@ -1421,4 +1397,34 @@ instance Data.Data TyCon where toConstr _ = abstractConstr "TyCon" gunfold _ _ = error "gunfold" dataTypeOf _ = mkNoRepType "TyCon" + +------------------- +instance Eq CoAxiom where + a == b = case (a `compare` b) of { EQ -> True; _ -> False } + a /= b = case (a `compare` b) of { EQ -> False; _ -> True } + +instance Ord CoAxiom where + a <= b = case (a `compare` b) of { LT -> True; EQ -> True; GT -> False } + a < b = case (a `compare` b) of { LT -> True; EQ -> False; GT -> False } + a >= b = case (a `compare` b) of { LT -> False; EQ -> True; GT -> True } + a > b = case (a `compare` b) of { LT -> False; EQ -> False; GT -> True } + compare a b = getUnique a `compare` getUnique b + +instance Uniquable CoAxiom where + getUnique = co_ax_unique + +instance Outputable CoAxiom where + ppr = ppr . getName + +instance NamedThing CoAxiom where + getName = co_ax_name + +instance Data.Typeable CoAxiom where + typeOf _ = Data.mkTyConApp (Data.mkTyCon "CoAxiom") [] + +instance Data.Data CoAxiom where + -- don't traverse? + toConstr _ = abstractConstr "CoAxiom" + gunfold _ _ = error "gunfold" + dataTypeOf _ = mkNoRepType "CoAxiom" \end{code} diff --git a/compiler/types/Type.lhs b/compiler/types/Type.lhs index 5f348efd35..3a8675edca 100644 --- a/compiler/types/Type.lhs +++ b/compiler/types/Type.lhs @@ -20,7 +20,8 @@ module Type ( -- $type_classification -- $representation_types - TyThing(..), Type, PredType(..), ThetaType, + TyThing(..), Type, Pred(..), PredType, ThetaType, + Var, TyVar, isTyVar, -- ** Constructing and deconstructing types mkTyVarTy, mkTyVarTys, getTyVar, getTyVar_maybe, @@ -45,14 +46,20 @@ module Type ( -- (Type families) tyFamInsts, predFamInsts, - -- (Source types) - mkPredTy, mkPredTys, mkFamilyTyConApp, isEqPred, coVarPred, + -- Pred types + mkPredTy, mkPredTys, mkFamilyTyConApp, + mkDictTy, isDictLikeTy, isClassPred, + isEqPred, allPred, mkEqPred, + mkClassPred, getClassPredTys, getClassPredTys_maybe, + isTyVarClassPred, + mkIPPred, isIPPred, -- ** Common type constructors funTyCon, -- ** Predicates on types - isTyVarTy, isFunTy, isDictTy, + isTyVarTy, isFunTy, isPredTy, + isDictTy, isEqPredTy, isReflPredTy, splitPredTy_maybe, splitEqPredTy_maybe, -- (Lifting and boxity) isUnLiftedType, isUnboxedTupleType, isAlgType, isClosedAlgType, @@ -65,8 +72,7 @@ module Type ( -- ** Common Kinds and SuperKinds liftedTypeKind, unliftedTypeKind, openTypeKind, argTypeKind, ubxTupleKind, - - tySuperKind, coSuperKind, + tySuperKind, -- ** Common Kind type constructors liftedTypeKindTyCon, openTypeKindTyCon, unliftedTypeKindTyCon, @@ -74,19 +80,18 @@ module Type ( -- * Type free variables tyVarsOfType, tyVarsOfTypes, tyVarsOfPred, tyVarsOfTheta, - expandTypeSynonyms, + exactTyVarsOfType, exactTyVarsOfTypes, expandTypeSynonyms, typeSize, -- * Type comparison - coreEqType, coreEqType2, - tcEqType, tcEqTypes, tcCmpType, tcCmpTypes, - tcEqPred, tcEqPredX, tcCmpPred, tcEqTypeX, tcPartOfType, tcPartOfPred, + eqType, eqTypeX, eqTypes, cmpType, cmpTypes, + eqPred, eqPredX, cmpPred, eqKind, -- * Forcing evaluation of types - seqType, seqTypes, + seqType, seqTypes, seqPred, -- * Other views onto Types - coreView, tcView, kindView, + coreView, tcView, repType, @@ -103,18 +108,22 @@ module Type ( emptyTvSubstEnv, emptyTvSubst, mkTvSubst, mkOpenTvSubst, zipOpenTvSubst, zipTopTvSubst, mkTopTvSubst, notElemTvSubst, - getTvSubstEnv, setTvSubstEnv, zapTvSubstEnv, getTvInScope, + getTvSubstEnv, setTvSubstEnv, + zapTvSubstEnv, getTvInScope, extendTvInScope, extendTvInScopeList, - extendTvSubst, extendTvSubstList, isInScope, composeTvSubst, zipTyEnv, + extendTvSubst, extendTvSubstList, + isInScope, composeTvSubst, zipTyEnv, isEmptyTvSubst, unionTvSubst, -- ** Performing substitution on types substTy, substTys, substTyWith, substTysWith, substTheta, - substPred, substTyVar, substTyVars, substTyVarBndr, deShadowTy, lookupTyVar, + substPred, substTyVar, substTyVars, substTyVarBndr, + deShadowTy, lookupTyVar, -- * Pretty-printing pprType, pprParendType, pprTypeApp, pprTyThingCategory, pprTyThing, pprForAll, - pprPred, pprEqPred, pprTheta, pprThetaArrow, pprClassPred, pprKind, pprParendKind, + pprPred, pprPredTy, pprEqPred, pprTheta, pprThetaArrowTy, pprClassPred, + pprKind, pprParendKind, pprSourceTyCon ) where @@ -133,8 +142,11 @@ import VarSet import Class import TyCon +import TysPrim -- others +import BasicTypes ( IPName ) +import Name ( Name ) import StaticFlags import Util import Outputable @@ -219,31 +231,9 @@ coreView :: Type -> Maybe Type -- its underlying representation type. -- Returns Nothing if there is nothing to look through. -- --- In the case of @newtype@s, it returns one of: --- --- 1) A vanilla 'TyConApp' (recursive newtype, or non-saturated) --- --- 2) The newtype representation (otherwise), meaning the --- type written in the RHS of the newtype declaration, --- which may itself be a newtype --- --- For example, with: --- --- > newtype R = MkR S --- > newtype S = MkS T --- > newtype T = MkT (T -> T) --- --- 'expandNewTcApp' on: --- --- * @R@ gives @Just S@ --- * @S@ gives @Just T@ --- * @T@ gives @Nothing@ (no expansion) - -- By being non-recursive and inlined, this case analysis gets efficiently -- joined onto the case analysis that the caller is already doing -coreView (PredTy p) - | isEqPred p = Nothing - | otherwise = Just (predTypeRep p) +coreView (PredTy p) = Just (predTypeRep p) coreView (TyConApp tc tys) | Just (tenv, rhs, tys') <- coreExpandTyCon_maybe tc tys = Just (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys') -- Its important to use mkAppTys, rather than (foldl AppTy), @@ -252,7 +242,6 @@ coreView (TyConApp tc tys) | Just (tenv, rhs, tys') <- coreExpandTyCon_maybe tc coreView _ = Nothing - ----------------------------------------------- {-# INLINE tcView #-} tcView :: Type -> Maybe Type @@ -283,14 +272,6 @@ expandTypeSynonyms ty go_pred (ClassP c ts) = ClassP c (map go ts) go_pred (IParam ip t) = IParam ip (go t) go_pred (EqPred t1 t2) = EqPred (go t1) (go t2) - ------------------------------------------------ -{-# INLINE kindView #-} -kindView :: Kind -> Maybe Kind --- ^ Similar to 'coreView' or 'tcView', but works on 'Kind's - --- For the moment, we don't even handle synonyms in kinds -kindView _ = Nothing \end{code} @@ -305,12 +286,6 @@ kindView _ = Nothing TyVarTy ~~~~~~~ \begin{code} -mkTyVarTy :: TyVar -> Type -mkTyVarTy = TyVarTy - -mkTyVarTys :: [TyVar] -> [Type] -mkTyVarTys = map mkTyVarTy -- a common use of mkTyVarTy - -- | Attempts to obtain the type variable underlying a 'Type', and panics with the -- given message if this is not a type variable type. See also 'getTyVar_maybe' getTyVar :: String -> Type -> TyVar @@ -384,10 +359,9 @@ repSplitAppTy_maybe :: Type -> Maybe (Type,Type) repSplitAppTy_maybe (FunTy ty1 ty2) = Just (TyConApp funTyCon [ty1], ty2) repSplitAppTy_maybe (AppTy ty1 ty2) = Just (ty1, ty2) repSplitAppTy_maybe (TyConApp tc tys) - | isDecomposableTyCon tc || length tys > tyConArity tc - = case snocView tys of -- never create unsaturated type family apps - Just (tys', ty') -> Just (TyConApp tc tys', ty') - Nothing -> Nothing + | isDecomposableTyCon tc || tys `lengthExceeds` tyConArity tc + , Just (tys', ty') <- snocView tys + = Just (TyConApp tc tys', ty') -- Never create unsaturated type family apps! repSplitAppTy_maybe _other = Nothing ------------- splitAppTy :: Type -> (Type, Type) @@ -427,8 +401,7 @@ splitAppTys ty = split ty ty [] \begin{code} mkFunTy :: Type -> Type -> Type -- ^ Creates a function type from the given argument and result type -mkFunTy arg@(PredTy (EqPred {})) res = ForAllTy (mkWildCoVar arg) res -mkFunTy arg res = FunTy arg res +mkFunTy arg res = FunTy arg res mkFunTys :: [Type] -> Type -> Type mkFunTys tys ty = foldr mkFunTy ty tys @@ -496,20 +469,6 @@ funArgTy ty = pprPanic "funArgTy" (ppr ty) ~~~~~~~~ \begin{code} --- | A key function: builds a 'TyConApp' or 'FunTy' as apppropriate to its arguments. --- Applies its arguments to the constructor from left to right -mkTyConApp :: TyCon -> [Type] -> Type -mkTyConApp tycon tys - | isFunTyCon tycon, [ty1,ty2] <- tys - = FunTy ty1 ty2 - - | otherwise - = TyConApp tycon tys - --- | Create the plain type constructor type which has been applied to no type arguments at all. -mkTyConTy :: TyCon -> Type -mkTyConTy tycon = mkTyConApp tycon [] - -- splitTyConApp "looks through" synonyms, because they don't -- mean a distinct type, but all other type-constructor applications -- including functions are returned as Just .. @@ -612,13 +571,16 @@ repType ty = go [] ty where go :: [TyCon] -> Type -> Type - go rec_nts ty | Just ty' <- coreView ty -- Expand synonyms - = go rec_nts ty' - - go rec_nts (ForAllTy _ ty) -- Look through foralls + go rec_nts (ForAllTy _ ty) -- Look through foralls = go rec_nts ty - go rec_nts (TyConApp tc tys) -- Expand newtypes + go rec_nts (PredTy p) -- Expand predicates + = go rec_nts (predTypeRep p) + + go rec_nts (TyConApp tc tys) -- Expand newtypes and synonyms + | Just (tenv, rhs, tys') <- coreExpandTyCon_maybe tc tys + = go rec_nts (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys') + | Just (rec_nts', ty') <- carefullySplitNewType_maybe rec_nts tc tys = go rec_nts' ty' @@ -756,13 +718,32 @@ applyTysD doc orig_fun_ty arg_tys %************************************************************************ %* * -\subsection{Source types} + Pred %* * %************************************************************************ -Source types are always lifted. +Polymorphic functions over Pred -The key function is predTypeRep which gives the representation of a source type: +\begin{code} +allPred :: (a -> Bool) -> Pred a -> Bool +allPred p (ClassP _ ts) = all p ts +allPred p (IParam _ t) = p t +allPred p (EqPred t1 t2) = p t1 && p t2 + +isClassPred :: Pred a -> Bool +isClassPred (ClassP {}) = True +isClassPred _ = False + +isEqPred :: Pred a -> Bool +isEqPred (EqPred {}) = True +isEqPred _ = False + +isIPPred :: Pred a -> Bool +isIPPred (IParam {}) = True +isIPPred _ = False +\end{code} + +Make PredTypes \begin{code} mkPredTy :: PredType -> Type @@ -771,91 +752,115 @@ mkPredTy pred = PredTy pred mkPredTys :: ThetaType -> [Type] mkPredTys preds = map PredTy preds -isEqPred :: PredType -> Bool -isEqPred (EqPred _ _) = True -isEqPred _ = False - predTypeRep :: PredType -> Type -- ^ Convert a 'PredType' to its representation type. However, it unwraps -- only the outermost level; for example, the result might be a newtype application predTypeRep (IParam _ ty) = ty predTypeRep (ClassP clas tys) = mkTyConApp (classTyCon clas) tys - -- Result might be a newtype application, but the consumer will - -- look through that too if necessary -predTypeRep (EqPred ty1 ty2) = pprPanic "predTypeRep" (ppr (EqPred ty1 ty2)) +predTypeRep (EqPred ty1 ty2) = mkTyConApp eqPredPrimTyCon [ty1,ty2] -mkFamilyTyConApp :: TyCon -> [Type] -> Type --- ^ Given a family instance TyCon and its arg types, return the --- corresponding family type. E.g: --- --- > data family T a --- > data instance T (Maybe b) = MkT b --- --- Where the instance tycon is :RTL, so: --- --- > mkFamilyTyConApp :RTL Int = T (Maybe Int) -mkFamilyTyConApp tc tys - | Just (fam_tc, fam_tys) <- tyConFamInst_maybe tc - , let fam_subst = zipTopTvSubst (tyConTyVars tc) tys - = mkTyConApp fam_tc (substTys fam_subst fam_tys) - | otherwise - = mkTyConApp tc tys +splitPredTy_maybe :: Type -> Maybe PredType +-- Returns Just for predicates only +splitPredTy_maybe ty | Just ty' <- tcView ty = splitPredTy_maybe ty' +splitPredTy_maybe (PredTy p) = Just p +splitPredTy_maybe _ = Nothing --- | Pretty prints a 'TyCon', using the family instance in case of a --- representation tycon. For example: --- --- > data T [a] = ... --- --- In that case we want to print @T [a]@, where @T@ is the family 'TyCon' -pprSourceTyCon :: TyCon -> SDoc -pprSourceTyCon tycon - | Just (fam_tc, tys) <- tyConFamInst_maybe tycon - = ppr $ fam_tc `TyConApp` tys -- can't be FunTyCon - | otherwise - = ppr tycon - -isDictTy :: Type -> Bool -isDictTy ty = case splitTyConApp_maybe ty of - Just (tc, _) -> isClassTyCon tc - Nothing -> False +isPredTy :: Type -> Bool +isPredTy ty = isJust (splitPredTy_maybe ty) \end{code} +--------------------- Equality types --------------------------------- +\begin{code} +isReflPredTy :: Type -> Bool +isReflPredTy ty = case splitPredTy_maybe ty of + Just (EqPred ty1 ty2) -> ty1 `eqType` ty2 + _ -> False + +splitEqPredTy_maybe :: Type -> Maybe (Type,Type) +splitEqPredTy_maybe ty = case splitPredTy_maybe ty of + Just (EqPred ty1 ty2) -> Just (ty1,ty2) + _ -> Nothing + +isEqPredTy :: Type -> Bool +isEqPredTy ty = case splitPredTy_maybe ty of + Just (EqPred {}) -> True + _ -> False + +-- | Creates a type equality predicate +mkEqPred :: (a, a) -> Pred a +mkEqPred (ty1, ty2) = EqPred ty1 ty2 +\end{code} -%************************************************************************ -%* * - The free variables of a type -%* * -%************************************************************************ - +--------------------- Dictionary types --------------------------------- \begin{code} -tyVarsOfType :: Type -> TyVarSet --- ^ NB: for type synonyms tyVarsOfType does /not/ expand the synonym -tyVarsOfType (TyVarTy tv) = unitVarSet tv -tyVarsOfType (TyConApp _ tys) = tyVarsOfTypes tys -tyVarsOfType (PredTy sty) = tyVarsOfPred sty -tyVarsOfType (FunTy arg res) = tyVarsOfType arg `unionVarSet` tyVarsOfType res -tyVarsOfType (AppTy fun arg) = tyVarsOfType fun `unionVarSet` tyVarsOfType arg -tyVarsOfType (ForAllTy tv ty) -- The kind of a coercion binder - -- can mention type variables! - | isTyVar tv = inner_tvs `delVarSet` tv - | otherwise {- Coercion -} = -- ASSERT( not (tv `elemVarSet` inner_tvs) ) - inner_tvs `unionVarSet` tyVarsOfType (tyVarKind tv) - where - inner_tvs = tyVarsOfType ty +mkClassPred :: Class -> [Type] -> PredType +mkClassPred clas tys = ClassP clas tys -tyVarsOfTypes :: [Type] -> TyVarSet -tyVarsOfTypes tys = foldr (unionVarSet.tyVarsOfType) emptyVarSet tys +isDictTy :: Type -> Bool +isDictTy ty = case splitPredTy_maybe ty of + Just p -> isClassPred p + Nothing -> False + +isTyVarClassPred :: PredType -> Bool +isTyVarClassPred (ClassP _ tys) = all isTyVarTy tys +isTyVarClassPred _ = False + +getClassPredTys_maybe :: PredType -> Maybe (Class, [Type]) +getClassPredTys_maybe (ClassP clas tys) = Just (clas, tys) +getClassPredTys_maybe _ = Nothing + +getClassPredTys :: PredType -> (Class, [Type]) +getClassPredTys (ClassP clas tys) = (clas, tys) +getClassPredTys _ = panic "getClassPredTys" + +mkDictTy :: Class -> [Type] -> Type +mkDictTy clas tys = mkPredTy (ClassP clas tys) + +isDictLikeTy :: Type -> Bool +-- Note [Dictionary-like types] +isDictLikeTy ty | Just ty' <- tcView ty = isDictTy ty' +isDictLikeTy (PredTy p) = isClassPred p +isDictLikeTy (TyConApp tc tys) + | isTupleTyCon tc = all isDictLikeTy tys +isDictLikeTy _ = False +\end{code} -tyVarsOfPred :: PredType -> TyVarSet -tyVarsOfPred (IParam _ ty) = tyVarsOfType ty -tyVarsOfPred (ClassP _ tys) = tyVarsOfTypes tys -tyVarsOfPred (EqPred ty1 ty2) = tyVarsOfType ty1 `unionVarSet` tyVarsOfType ty2 +Note [Dictionary-like types] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Being "dictionary-like" means either a dictionary type or a tuple thereof. +In GHC 6.10 we build implication constraints which construct such tuples, +and if we land up with a binding + t :: (C [a], Eq [a]) + t = blah +then we want to treat t as cheap under "-fdicts-cheap" for example. +(Implication constraints are normally inlined, but sadly not if the +occurrence is itself inside an INLINE function! Until we revise the +handling of implication constraints, that is.) This turned out to +be important in getting good arities in DPH code. Example: + + class C a + class D a where { foo :: a -> a } + instance C a => D (Maybe a) where { foo x = x } + + bar :: (C a, C b) => a -> b -> (Maybe a, Maybe b) + {-# INLINE bar #-} + bar x y = (foo (Just x), foo (Just y)) + +Then 'bar' should jolly well have arity 4 (two dicts, two args), but +we ended up with something like + bar = __inline_me__ (\d1,d2. let t :: (D (Maybe a), D (Maybe b)) = ... + in \x,y. <blah>) + +This is all a bit ad-hoc; eg it relies on knowing that implication +constraints build tuples. + +--------------------- Implicit parameters --------------------------------- -tyVarsOfTheta :: ThetaType -> TyVarSet -tyVarsOfTheta = foldr (unionVarSet . tyVarsOfPred) emptyVarSet +\begin{code} +mkIPPred :: IPName Name -> Type -> PredType +mkIPPred ip ty = IParam ip ty \end{code} - %************************************************************************ %* * Size @@ -867,14 +872,9 @@ typeSize :: Type -> Int typeSize (TyVarTy _) = 1 typeSize (AppTy t1 t2) = typeSize t1 + typeSize t2 typeSize (FunTy t1 t2) = typeSize t1 + typeSize t2 -typeSize (PredTy p) = predSize p +typeSize (PredTy p) = predSize typeSize p typeSize (ForAllTy _ t) = 1 + typeSize t typeSize (TyConApp _ ts) = 1 + sum (map typeSize ts) - -predSize :: PredType -> Int -predSize (IParam _ t) = 1 + typeSize t -predSize (ClassP _ ts) = 1 + sum (map typeSize ts) -predSize (EqPred t1 t2) = typeSize t1 + typeSize t2 \end{code} @@ -904,8 +904,37 @@ predFamInsts :: PredType -> [(TyCon, [Type])] predFamInsts (ClassP _cla tys) = concat (map tyFamInsts tys) predFamInsts (IParam _ ty) = tyFamInsts ty predFamInsts (EqPred ty1 ty2) = tyFamInsts ty1 ++ tyFamInsts ty2 -\end{code} +mkFamilyTyConApp :: TyCon -> [Type] -> Type +-- ^ Given a family instance TyCon and its arg types, return the +-- corresponding family type. E.g: +-- +-- > data family T a +-- > data instance T (Maybe b) = MkT b +-- +-- Where the instance tycon is :RTL, so: +-- +-- > mkFamilyTyConApp :RTL Int = T (Maybe Int) +mkFamilyTyConApp tc tys + | Just (fam_tc, fam_tys) <- tyConFamInst_maybe tc + , let fam_subst = zipTopTvSubst (tyConTyVars tc) tys + = mkTyConApp fam_tc (substTys fam_subst fam_tys) + | otherwise + = mkTyConApp tc tys + +-- | Pretty prints a 'TyCon', using the family instance in case of a +-- representation tycon. For example: +-- +-- > data T [a] = ... +-- +-- In that case we want to print @T [a]@, where @T@ is the family 'TyCon' +pprSourceTyCon :: TyCon -> SDoc +pprSourceTyCon tycon + | Just (fam_tc, tys) <- tyConFamInst_maybe tycon + = ppr $ fam_tc `TyConApp` tys -- can't be FunTyCon + | otherwise + = ppr tycon +\end{code} %************************************************************************ %* * @@ -924,6 +953,7 @@ isUnLiftedType :: Type -> Bool isUnLiftedType ty | Just ty' <- coreView ty = isUnLiftedType ty' isUnLiftedType (ForAllTy _ ty) = isUnLiftedType ty +isUnLiftedType (PredTy p) = isEqPred p isUnLiftedType (TyConApp tc _) = isUnLiftedTyCon tc isUnLiftedType _ = False @@ -977,7 +1007,8 @@ isStrictType _ = False -- poking the dictionary component, which is wrong.) isStrictPred :: PredType -> Bool isStrictPred (ClassP clas _) = opt_DictsStrict && not (isNewTyCon (classTyCon clas)) -isStrictPred _ = False +isStrictPred (EqPred {}) = True +isStrictPred (IParam {}) = False \end{code} \begin{code} @@ -994,6 +1025,64 @@ isPrimitiveType ty = case splitTyConApp_maybe ty of %************************************************************************ %* * + The "exact" free variables of a type +%* * +%************************************************************************ + +Note [Silly type synonym] +~~~~~~~~~~~~~~~~~~~~~~~~~ +Consider + type T a = Int +What are the free tyvars of (T x)? Empty, of course! +Here's the example that Ralf Laemmel showed me: + foo :: (forall a. C u a -> C u a) -> u + mappend :: Monoid u => u -> u -> u + + bar :: Monoid u => u + bar = foo (\t -> t `mappend` t) +We have to generalise at the arg to f, and we don't +want to capture the constraint (Monad (C u a)) because +it appears to mention a. Pretty silly, but it was useful to him. + +exactTyVarsOfType is used by the type checker to figure out exactly +which type variables are mentioned in a type. It's also used in the +smart-app checking code --- see TcExpr.tcIdApp + +On the other hand, consider a *top-level* definition + f = (\x -> x) :: T a -> T a +If we don't abstract over 'a' it'll get fixed to GHC.Prim.Any, and then +if we have an application like (f "x") we get a confusing error message +involving Any. So the conclusion is this: when generalising + - at top level use tyVarsOfType + - in nested bindings use exactTyVarsOfType +See Trac #1813 for example. + +\begin{code} +exactTyVarsOfType :: Type -> TyVarSet +-- Find the free type variables (of any kind) +-- but *expand* type synonyms. See Note [Silly type synonym] above. +exactTyVarsOfType ty + = go ty + where + go ty | Just ty' <- tcView ty = go ty' -- This is the key line + go (TyVarTy tv) = unitVarSet tv + go (TyConApp _ tys) = exactTyVarsOfTypes tys + go (PredTy ty) = go_pred ty + go (FunTy arg res) = go arg `unionVarSet` go res + go (AppTy fun arg) = go fun `unionVarSet` go arg + go (ForAllTy tyvar ty) = delVarSet (go ty) tyvar + + go_pred (IParam _ ty) = go ty + go_pred (ClassP _ tys) = exactTyVarsOfTypes tys + go_pred (EqPred ty1 ty2) = go ty1 `unionVarSet` go ty2 + +exactTyVarsOfTypes :: [Type] -> TyVarSet +exactTyVarsOfTypes tys = foldr (unionVarSet . exactTyVarsOfType) emptyVarSet tys +\end{code} + + +%************************************************************************ +%* * \subsection{Sequencing on types} %* * %************************************************************************ @@ -1003,7 +1092,7 @@ seqType :: Type -> () seqType (TyVarTy tv) = tv `seq` () seqType (AppTy t1 t2) = seqType t1 `seq` seqType t2 seqType (FunTy t1 t2) = seqType t1 `seq` seqType t2 -seqType (PredTy p) = seqPred p +seqType (PredTy p) = seqPred seqType p seqType (TyConApp tc tys) = tc `seq` seqTypes tys seqType (ForAllTy tv ty) = tv `seq` seqType ty @@ -1011,115 +1100,40 @@ seqTypes :: [Type] -> () seqTypes [] = () seqTypes (ty:tys) = seqType ty `seq` seqTypes tys -seqPred :: PredType -> () -seqPred (ClassP c tys) = c `seq` seqTypes tys -seqPred (IParam n ty) = n `seq` seqType ty -seqPred (EqPred ty1 ty2) = seqType ty1 `seq` seqType ty2 +seqPred :: (a -> ()) -> Pred a -> () +seqPred seqt (ClassP c tys) = c `seq` foldr (seq . seqt) () tys +seqPred seqt (IParam n ty) = n `seq` seqt ty +seqPred seqt (EqPred ty1 ty2) = seqt ty1 `seq` seqt ty2 \end{code} %************************************************************************ %* * - Equality for Core types + Comparision for types (We don't use instances so that we know where it happens) %* * %************************************************************************ -Note that eqType works right even for partial applications of newtypes. -See Note [Newtype eta] in TyCon.lhs - \begin{code} --- | Type equality test for Core types (i.e. ignores predicate-types, synonyms etc.) -coreEqType :: Type -> Type -> Bool -coreEqType t1 t2 = coreEqType2 rn_env t1 t2 - where - rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType t1 `unionVarSet` tyVarsOfType t2)) - -coreEqType2 :: RnEnv2 -> Type -> Type -> Bool -coreEqType2 rn_env t1 t2 - = eq rn_env t1 t2 - where - eq env (TyVarTy tv1) (TyVarTy tv2) = rnOccL env tv1 == rnOccR env tv2 - eq env (ForAllTy tv1 t1) (ForAllTy tv2 t2) = eq (rnBndr2 env tv1 tv2) t1 t2 - eq env (AppTy s1 t1) (AppTy s2 t2) = eq env s1 s2 && eq env t1 t2 - eq env (FunTy s1 t1) (FunTy s2 t2) = eq env s1 s2 && eq env t1 t2 - eq env (TyConApp tc1 tys1) (TyConApp tc2 tys2) - | tc1 == tc2, all2 (eq env) tys1 tys2 = True - -- The lengths should be equal because - -- the two types have the same kind - -- NB: if the type constructors differ that does not - -- necessarily mean that the types aren't equal - -- (synonyms, newtypes) - -- Even if the type constructors are the same, but the arguments - -- differ, the two types could be the same (e.g. if the arg is just - -- ignored in the RHS). In both these cases we fall through to an - -- attempt to expand one side or the other. - - -- Now deal with newtypes, synonyms, pred-tys - eq env t1 t2 | Just t1' <- coreView t1 = eq env t1' t2 - | Just t2' <- coreView t2 = eq env t1 t2' - - -- Fall through case; not equal! - eq _ _ _ = False -\end{code} - +eqKind :: Kind -> Kind -> Bool +eqKind = eqType -%************************************************************************ -%* * - Comparision for source types - (We don't use instances so that we know where it happens) -%* * -%************************************************************************ - -\begin{code} -tcEqType :: Type -> Type -> Bool +eqType :: Type -> Type -> Bool -- ^ Type equality on source types. Does not look through @newtypes@ or -- 'PredType's, but it does look through type synonyms. -tcEqType t1 t2 = isEqual $ cmpType t1 t2 - -tcEqTypes :: [Type] -> [Type] -> Bool -tcEqTypes tys1 tys2 = isEqual $ cmpTypes tys1 tys2 - -tcCmpType :: Type -> Type -> Ordering --- ^ Type ordering on source types. Does not look through @newtypes@ or --- 'PredType's, but it does look through type synonyms. -tcCmpType t1 t2 = cmpType t1 t2 +eqType t1 t2 = isEqual $ cmpType t1 t2 -tcCmpTypes :: [Type] -> [Type] -> Ordering -tcCmpTypes tys1 tys2 = cmpTypes tys1 tys2 +eqTypeX :: RnEnv2 -> Type -> Type -> Bool +eqTypeX env t1 t2 = isEqual $ cmpTypeX env t1 t2 -tcEqPred :: PredType -> PredType -> Bool -tcEqPred p1 p2 = isEqual $ cmpPred p1 p2 +eqTypes :: [Type] -> [Type] -> Bool +eqTypes tys1 tys2 = isEqual $ cmpTypes tys1 tys2 -tcEqPredX :: RnEnv2 -> PredType -> PredType -> Bool -tcEqPredX env p1 p2 = isEqual $ cmpPredX env p1 p2 +eqPred :: PredType -> PredType -> Bool +eqPred p1 p2 = isEqual $ cmpPred p1 p2 -tcCmpPred :: PredType -> PredType -> Ordering -tcCmpPred p1 p2 = cmpPred p1 p2 - -tcEqTypeX :: RnEnv2 -> Type -> Type -> Bool -tcEqTypeX env t1 t2 = isEqual $ cmpTypeX env t1 t2 -\end{code} - -\begin{code} --- | Checks whether the second argument is a subterm of the first. (We don't care --- about binders, as we are only interested in syntactic subterms.) -tcPartOfType :: Type -> Type -> Bool -tcPartOfType t1 t2 - | tcEqType t1 t2 = True -tcPartOfType t1 t2 - | Just t2' <- tcView t2 = tcPartOfType t1 t2' -tcPartOfType _ (TyVarTy _) = False -tcPartOfType t1 (ForAllTy _ t2) = tcPartOfType t1 t2 -tcPartOfType t1 (AppTy s2 t2) = tcPartOfType t1 s2 || tcPartOfType t1 t2 -tcPartOfType t1 (FunTy s2 t2) = tcPartOfType t1 s2 || tcPartOfType t1 t2 -tcPartOfType t1 (PredTy p2) = tcPartOfPred t1 p2 -tcPartOfType t1 (TyConApp _ ts) = any (tcPartOfType t1) ts - -tcPartOfPred :: Type -> PredType -> Bool -tcPartOfPred t1 (IParam _ t2) = tcPartOfType t1 t2 -tcPartOfPred t1 (ClassP _ ts) = any (tcPartOfType t1) ts -tcPartOfPred t1 (EqPred s2 t2) = tcPartOfType t1 s2 || tcPartOfType t1 t2 +eqPredX :: RnEnv2 -> PredType -> PredType -> Bool +eqPredX env p1 p2 = isEqual $ cmpPredX env p1 p2 \end{code} Now here comes the real worker @@ -1141,8 +1155,13 @@ cmpPred p1 p2 = cmpPredX rn_env p1 p2 rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfPred p1 `unionVarSet` tyVarsOfPred p2)) cmpTypeX :: RnEnv2 -> Type -> Type -> Ordering -- Main workhorse -cmpTypeX env t1 t2 | Just t1' <- tcView t1 = cmpTypeX env t1' t2 - | Just t2' <- tcView t2 = cmpTypeX env t1 t2' +cmpTypeX env t1 t2 | Just t1' <- coreView t1 = cmpTypeX env t1' t2 + | Just t2' <- coreView t2 = cmpTypeX env t1 t2' +-- We expand predicate types, because in Core-land we have +-- lots of definitions like +-- fOrdBool :: Ord Bool +-- fOrdBool = D:Ord .. .. .. +-- So the RHS has a data type cmpTypeX env (TyVarTy tv1) (TyVarTy tv2) = rnOccL env tv1 `compare` rnOccR env tv2 cmpTypeX env (ForAllTy tv1 t1) (ForAllTy tv2 t2) = cmpTypeX (rnBndr2 env tv1 tv2) t1 t2 @@ -1199,8 +1218,8 @@ PredTypes are used as a FM key in TcSimplify, so we take the easy path and make them an instance of Ord \begin{code} -instance Eq PredType where { (==) = tcEqPred } -instance Ord PredType where { compare = tcCmpPred } +instance Eq PredType where { (==) = eqPred } +instance Ord PredType where { compare = cmpPred } \end{code} @@ -1211,81 +1230,6 @@ instance Ord PredType where { compare = tcCmpPred } %************************************************************************ \begin{code} --- | Type substitution --- --- #tvsubst_invariant# --- The following invariants must hold of a 'TvSubst': --- --- 1. The in-scope set is needed /only/ to --- guide the generation of fresh uniques --- --- 2. In particular, the /kind/ of the type variables in --- the in-scope set is not relevant --- --- 3. The substition is only applied ONCE! This is because --- in general such application will not reached a fixed point. -data TvSubst - = TvSubst InScopeSet -- The in-scope type variables - TvSubstEnv -- The substitution itself - -- See Note [Apply Once] - -- and Note [Extending the TvSubstEnv] - -{- ---------------------------------------------------------- - -Note [Apply Once] -~~~~~~~~~~~~~~~~~ -We use TvSubsts to instantiate things, and we might instantiate - forall a b. ty -\with the types - [a, b], or [b, a]. -So the substition might go [a->b, b->a]. A similar situation arises in Core -when we find a beta redex like - (/\ a /\ b -> e) b a -Then we also end up with a substition that permutes type variables. Other -variations happen to; for example [a -> (a, b)]. - - *************************************************** - *** So a TvSubst must be applied precisely once *** - *************************************************** - -A TvSubst is not idempotent, but, unlike the non-idempotent substitution -we use during unifications, it must not be repeatedly applied. - -Note [Extending the TvSubst] -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -See #tvsubst_invariant# for the invariants that must hold. - -This invariant allows a short-cut when the TvSubstEnv is empty: -if the TvSubstEnv is empty --- i.e. (isEmptyTvSubt subst) holds --- -then (substTy subst ty) does nothing. - -For example, consider: - (/\a. /\b:(a~Int). ...b..) Int -We substitute Int for 'a'. The Unique of 'b' does not change, but -nevertheless we add 'b' to the TvSubstEnv, because b's kind does change - -This invariant has several crucial consequences: - -* In substTyVarBndr, we need extend the TvSubstEnv - - if the unique has changed - - or if the kind has changed - -* In substTyVar, we do not need to consult the in-scope set; - the TvSubstEnv is enough - -* In substTy, substTheta, we can short-circuit when the TvSubstEnv is empty - - --------------------------------------------------------------- -} - --- | A substitition of 'Type's for 'TyVar's -type TvSubstEnv = TyVarEnv Type - -- A TvSubstEnv is used both inside a TvSubst (with the apply-once - -- invariant discussed in Note [Apply Once]), and also independently - -- in the middle of matching, and unification (see Types.Unify) - -- So you have to look at the context to know if it's idempotent or - -- apply-once or whatever - emptyTvSubstEnv :: TvSubstEnv emptyTvSubstEnv = emptyVarEnv @@ -1303,11 +1247,11 @@ composeTvSubst in_scope env1 env2 subst1 = TvSubst in_scope env1 emptyTvSubst :: TvSubst -emptyTvSubst = TvSubst emptyInScopeSet emptyVarEnv +emptyTvSubst = TvSubst emptyInScopeSet emptyTvSubstEnv isEmptyTvSubst :: TvSubst -> Bool -- See Note [Extending the TvSubstEnv] -isEmptyTvSubst (TvSubst _ env) = isEmptyVarEnv env +isEmptyTvSubst (TvSubst _ tenv) = isEmptyVarEnv tenv mkTvSubst :: InScopeSet -> TvSubstEnv -> TvSubst mkTvSubst = TvSubst @@ -1321,34 +1265,34 @@ getTvInScope (TvSubst in_scope _) = in_scope isInScope :: Var -> TvSubst -> Bool isInScope v (TvSubst in_scope _) = v `elemInScopeSet` in_scope -notElemTvSubst :: TyVar -> TvSubst -> Bool -notElemTvSubst tv (TvSubst _ env) = not (tv `elemVarEnv` env) +notElemTvSubst :: TyCoVar -> TvSubst -> Bool +notElemTvSubst v (TvSubst _ tenv) = not (v `elemVarEnv` tenv) setTvSubstEnv :: TvSubst -> TvSubstEnv -> TvSubst -setTvSubstEnv (TvSubst in_scope _) env = TvSubst in_scope env +setTvSubstEnv (TvSubst in_scope _) tenv = TvSubst in_scope tenv zapTvSubstEnv :: TvSubst -> TvSubst zapTvSubstEnv (TvSubst in_scope _) = TvSubst in_scope emptyVarEnv extendTvInScope :: TvSubst -> Var -> TvSubst -extendTvInScope (TvSubst in_scope env) var = TvSubst (extendInScopeSet in_scope var) env +extendTvInScope (TvSubst in_scope tenv) var = TvSubst (extendInScopeSet in_scope var) tenv extendTvInScopeList :: TvSubst -> [Var] -> TvSubst -extendTvInScopeList (TvSubst in_scope env) vars = TvSubst (extendInScopeSetList in_scope vars) env +extendTvInScopeList (TvSubst in_scope tenv) vars = TvSubst (extendInScopeSetList in_scope vars) tenv extendTvSubst :: TvSubst -> TyVar -> Type -> TvSubst -extendTvSubst (TvSubst in_scope env) tv ty = TvSubst in_scope (extendVarEnv env tv ty) +extendTvSubst (TvSubst in_scope tenv) tv ty = TvSubst in_scope (extendVarEnv tenv tv ty) extendTvSubstList :: TvSubst -> [TyVar] -> [Type] -> TvSubst -extendTvSubstList (TvSubst in_scope env) tvs tys - = TvSubst in_scope (extendVarEnvList env (tvs `zip` tys)) +extendTvSubstList (TvSubst in_scope tenv) tvs tys + = TvSubst in_scope (extendVarEnvList tenv (tvs `zip` tys)) unionTvSubst :: TvSubst -> TvSubst -> TvSubst -- Works when the ranges are disjoint -unionTvSubst (TvSubst in_scope1 env1) (TvSubst in_scope2 env2) - = ASSERT( not (env1 `intersectsVarEnv` env2) ) +unionTvSubst (TvSubst in_scope1 tenv1) (TvSubst in_scope2 tenv2) + = ASSERT( not (tenv1 `intersectsVarEnv` tenv2) ) TvSubst (in_scope1 `unionInScope` in_scope2) - (env1 `plusVarEnv` env2) + (tenv1 `plusVarEnv` tenv2) -- mkOpenTvSubst and zipOpenTvSubst generate the in-scope set from -- the types given; but it's just a thunk so with a bit of luck @@ -1370,7 +1314,7 @@ unionTvSubst (TvSubst in_scope1 env1) (TvSubst in_scope2 env2) -- | Generates the in-scope set for the 'TvSubst' from the types in the incoming -- environment, hence "open" mkOpenTvSubst :: TvSubstEnv -> TvSubst -mkOpenTvSubst env = TvSubst (mkInScopeSet (tyVarsOfTypes (varEnvElts env))) env +mkOpenTvSubst tenv = TvSubst (mkInScopeSet (tyVarsOfTypes (varEnvElts tenv))) tenv -- | Generates the in-scope set for the 'TvSubst' from the types in the incoming -- environment, hence "open" @@ -1396,7 +1340,7 @@ zipTopTvSubst tyvars tys zipTyEnv :: [TyVar] -> [Type] -> TvSubstEnv zipTyEnv tyvars tys | debugIsOn && (length tyvars /= length tys) - = pprTrace "mkTopTvSubst" (ppr tyvars $$ ppr tys) emptyVarEnv + = pprTrace "zipTyEnv" (ppr tyvars $$ ppr tys) emptyVarEnv | otherwise = zip_ty_env tyvars tys emptyVarEnv @@ -1421,10 +1365,10 @@ zip_ty_env tvs tys env = pprTrace "Var/Type length mismatch: " (ppr -- zip_ty_env _ _ env = env instance Outputable TvSubst where - ppr (TvSubst ins env) + ppr (TvSubst ins tenv) = brackets $ sep[ ptext (sLit "TvSubst"), nest 2 (ptext (sLit "In scope:") <+> ppr ins), - nest 2 (ptext (sLit "Env:") <+> ppr env) ] + nest 2 (ptext (sLit "Type env:") <+> ppr tenv) ] \end{code} %************************************************************************ @@ -1499,29 +1443,34 @@ subst_ty subst ty ForAllTy tv' $! (subst_ty subst' ty) substTyVar :: TvSubst -> TyVar -> Type -substTyVar subst@(TvSubst _ _) tv - = case lookupTyVar subst tv of { - Nothing -> TyVarTy tv; - Just ty -> ty -- See Note [Apply Once] - } +substTyVar (TvSubst _ tenv) tv + | Just ty <- lookupVarEnv tenv tv = ty -- See Note [Apply Once] + | otherwise = ASSERT( isTyVar tv ) TyVarTy tv + -- We do not require that the tyvar is in scope + -- Reason: we do quite a bit of (substTyWith [tv] [ty] tau) + -- and it's a nuisance to bring all the free vars of tau into + -- scope --- and then force that thunk at every tyvar + -- Instead we have an ASSERT in substTyVarBndr to check for capture substTyVars :: TvSubst -> [TyVar] -> [Type] substTyVars subst tvs = map (substTyVar subst) tvs lookupTyVar :: TvSubst -> TyVar -> Maybe Type -- See Note [Extending the TvSubst] -lookupTyVar (TvSubst _ env) tv = lookupVarEnv env tv +lookupTyVar (TvSubst _ tenv) tv = lookupVarEnv tenv tv -substTyVarBndr :: TvSubst -> TyVar -> (TvSubst, TyVar) -substTyVarBndr subst@(TvSubst in_scope env) old_var - = (TvSubst (in_scope `extendInScopeSet` new_var) new_env, new_var) +substTyVarBndr :: TvSubst -> TyVar -> (TvSubst, TyVar) +substTyVarBndr subst@(TvSubst in_scope tenv) old_var + = ASSERT2( _no_capture, ppr old_var $$ ppr subst ) + (TvSubst (in_scope `extendInScopeSet` new_var) new_env, new_var) where - is_co_var = isCoVar old_var + new_env | no_change = delVarEnv tenv old_var + | otherwise = extendVarEnv tenv old_var (TyVarTy new_var) - new_env | no_change = delVarEnv env old_var - | otherwise = extendVarEnv env old_var (TyVarTy new_var) + _no_capture = not (new_var `elemVarSet` tyVarsOfTypes (varEnvElts tenv)) + -- Check that we are not capturing something in the substitution - no_change = new_var == old_var && not is_co_var + no_change = new_var == old_var -- no_change means that the new_var is identical in -- all respects to the old_var (same unique, same kind) -- See Note [Extending the TvSubst] @@ -1532,14 +1481,8 @@ substTyVarBndr subst@(TvSubst in_scope env) old_var -- (\x.e) with id_subst = [x |-> e'] -- Here we must simply zap the substitution for x - new_var = uniqAway in_scope subst_old_var + new_var = uniqAway in_scope old_var -- The uniqAway part makes sure the new variable is not already in scope - - subst_old_var -- subst_old_var is old_var with the substitution applied to its kind - -- It's only worth doing the substitution for coercions, - -- becuase only they can have free type variables - | is_co_var = setTyVarKind old_var (substTy subst (tyVarKind old_var)) - | otherwise = old_var \end{code} ---------------------------------------------------- diff --git a/compiler/types/TypeRep.lhs b/compiler/types/TypeRep.lhs index 7fdf4ae4df..db41403a4b 100644 --- a/compiler/types/TypeRep.lhs +++ b/compiler/types/TypeRep.lhs @@ -7,44 +7,35 @@ \begin{code} -- We expose the relevant stuff from this module via the Type module {-# OPTIONS_HADDOCK hide #-} -{-# LANGUAGE DeriveDataTypeable #-} - +{-# LANGUAGE DeriveDataTypeable, DeriveFunctor, DeriveFoldable, DeriveTraversable #-} module TypeRep ( TyThing(..), Type(..), - PredType(..), -- to friends + Pred(..), -- to friends - Kind, ThetaType, -- Synonyms + Kind, SuperKind, + PredType, ThetaType, -- Synonyms - funTyCon, funTyConName, + -- Functions over types + mkTyConApp, mkTyConTy, mkTyVarTy, mkTyVarTys, + isLiftedTypeKind, isCoercionKind, - -- Pretty-printing + -- Pretty-printing pprType, pprParendType, pprTypeApp, pprTyThing, pprTyThingCategory, - pprPred, pprEqPred, pprTheta, pprForAll, pprThetaArrow, pprClassPred, - - -- Kinds - liftedTypeKind, unliftedTypeKind, openTypeKind, - argTypeKind, ubxTupleKind, - isLiftedTypeKindCon, isLiftedTypeKind, - mkArrowKind, mkArrowKinds, isCoercionKind, - coVarPred, - - -- Kind constructors... - liftedTypeKindTyCon, openTypeKindTyCon, unliftedTypeKindTyCon, - argTypeKindTyCon, ubxTupleKindTyCon, - - -- And their names - unliftedTypeKindTyConName, openTypeKindTyConName, - ubxTupleKindTyConName, argTypeKindTyConName, - liftedTypeKindTyConName, - - -- Super Kinds - tySuperKind, coSuperKind, - isTySuperKind, isCoSuperKind, - tySuperKindTyCon, coSuperKindTyCon, - - pprKind, pprParendKind + pprPredTy, pprEqPred, pprTheta, pprForAll, pprThetaArrowTy, pprClassPred, + pprKind, pprParendKind, + Prec(..), maybeParen, pprTcApp, pprTypeNameApp, + pprPrefixApp, pprPred, pprArrowChain, pprThetaArrow, + + -- Free variables + tyVarsOfType, tyVarsOfTypes, + tyVarsOfPred, tyVarsOfTheta, + varsOfPred, varsOfTheta, + predSize, + + -- Substitutions + TvSubst(..), TvSubstEnv ) where #include "HsVersions.h" @@ -53,6 +44,8 @@ import {-# SOURCE #-} DataCon( DataCon, dataConName ) -- friends: import Var +import VarEnv +import VarSet import Name import BasicTypes import TyCon @@ -62,9 +55,12 @@ import Class import PrelNames import Outputable import FastString +import Pair -- libraries -import Data.Data hiding ( TyCon ) +import qualified Data.Data as Data hiding ( TyCon ) +import qualified Data.Foldable as Data +import qualified Data.Traversable as Data \end{code} ---------------------- @@ -120,13 +116,14 @@ to cut all loops. The other members of the loop may be marked 'non-recursive'. \begin{code} -- | The key representation of types within the compiler data Type - = TyVarTy TyVar -- ^ Vanilla type variable + = TyVarTy TyVar -- ^ Vanilla type variable (*never* a coercion variable) | AppTy Type Type -- ^ Type application to something other than a 'TyCon'. Parameters: -- - -- 1) Function: must /not/ be a 'TyConApp', must be another 'AppTy', or 'TyVarTy' + -- 1) Function: must /not/ be a 'TyConApp', + -- must be another 'AppTy', or 'TyVarTy' -- -- 2) Argument type @@ -135,31 +132,35 @@ data Type [Type] -- ^ Application of a 'TyCon', including newtypes /and/ synonyms. -- Invariant: saturated appliations of 'FunTyCon' must -- use 'FunTy' and saturated synonyms must use their own - -- constructors. However, /unsaturated/ 'FunTyCon's do appear as 'TyConApp's. + -- constructors. However, /unsaturated/ 'FunTyCon's + -- do appear as 'TyConApp's. -- Parameters: -- -- 1) Type constructor being applied to. -- - -- 2) Type arguments. Might not have enough type arguments here to saturate the constructor. - -- Even type synonyms are not necessarily saturated; for example unsaturated type synonyms - -- can appear as the right hand side of a type synonym. + -- 2) Type arguments. Might not have enough type arguments + -- here to saturate the constructor. + -- Even type synonyms are not necessarily saturated; + -- for example unsaturated type synonyms + -- can appear as the right hand side of a type synonym. | FunTy - Type + Type Type -- ^ Special case of 'TyConApp': @TyConApp FunTyCon [t1, t2]@ + -- See Note [Equality-constrained types] | ForAllTy - TyVar + TyCoVar -- Type variable Type -- ^ A polymorphic type | PredTy PredType -- ^ The type of evidence for a type predictate. -- Note that a @PredTy (EqPred _ _)@ can appear only as the kind - -- of a coercion variable; never as the argument or result - -- of a 'FunTy' (unlike the 'PredType' constructors 'ClassP' or 'IParam') + -- of a coercion variable; never as the argument or result of a + -- 'FunTy' (unlike the 'PredType' constructors 'ClassP' or 'IParam') -- See Note [PredTy], and Note [Equality predicates] - deriving (Data, Typeable) + deriving (Data.Data, Data.Typeable) -- | The key type representing kinds in the compiler. -- Invariant: a kind is always in one of these forms: @@ -177,6 +178,15 @@ type Kind = Type type SuperKind = Type \end{code} +Note [Equality-constrained types] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The type forall ab. (a ~ [b]) => blah +is encoded like this: + + ForAllTy (a:*) $ ForAllTy (b:*) $ + FunTy (PredTy (EqPred a [b]) $ + blah + ------------------------------------- Note [PredTy] @@ -197,11 +207,13 @@ type SuperKind = Type -- > h :: (r\l) => {r} => {l::Int | r} -- -- Here the @Eq a@ and @?x :: Int -> Int@ and @r\l@ are all called \"predicates\" -data PredType - = ClassP Class [Type] -- ^ Class predicate e.g. @Eq a@ - | IParam (IPName Name) Type -- ^ Implicit parameter e.g. @?x :: Int@ - | EqPred Type Type -- ^ Equality predicate e.g @ty1 ~ ty2@ - deriving (Data, Typeable) +type PredType = Pred Type + +data Pred a -- Typically 'a' is instantiated with Type or Coercion + = ClassP Class [a] -- ^ Class predicate e.g. @Eq a@ + | IParam (IPName Name) a -- ^ Implicit parameter e.g. @?x :: Int@ + | EqPred a a -- ^ Equality predicate e.g @ty1 ~ ty2@ + deriving (Data.Data, Data.Typeable, Data.Foldable, Data.Traversable, Functor) -- | A collection of 'PredType's type ThetaType = [PredType] @@ -240,6 +252,89 @@ name (wildCoVarName), since it's not mentioned. %************************************************************************ %* * + Simple constructors +%* * +%************************************************************************ + +These functions are here so that they can be used by TysPrim, +which in turn is imported by Type + +\begin{code} +mkTyVarTy :: TyVar -> Type +mkTyVarTy = TyVarTy + +mkTyVarTys :: [TyVar] -> [Type] +mkTyVarTys = map mkTyVarTy -- a common use of mkTyVarTy + +-- | A key function: builds a 'TyConApp' or 'FunTy' as apppropriate to its arguments. +-- Applies its arguments to the constructor from left to right +mkTyConApp :: TyCon -> [Type] -> Type +mkTyConApp tycon tys + | isFunTyCon tycon, [ty1,ty2] <- tys + = FunTy ty1 ty2 + + | otherwise + = TyConApp tycon tys + +-- | Create the plain type constructor type which has been applied to no type arguments at all. +mkTyConTy :: TyCon -> Type +mkTyConTy tycon = mkTyConApp tycon [] + +isLiftedTypeKind :: Kind -> Bool +-- This function is here because it's used in the pretty printer +isLiftedTypeKind (TyConApp tc []) = tc `hasKey` liftedTypeKindTyConKey +isLiftedTypeKind _ = False + +isCoercionKind :: Kind -> Bool +-- All coercions are of form (ty1 ~ ty2) +-- This function is here rather than in Coercion, because it +-- is used in a knot-tied way to enforce invariants in Var +isCoercionKind (PredTy (EqPred {})) = True +isCoercionKind _ = False +\end{code} + + +%************************************************************************ +%* * + Free variables of types and coercions +%* * +%************************************************************************ + +\begin{code} +tyVarsOfPred :: PredType -> TyCoVarSet +tyVarsOfPred = varsOfPred tyVarsOfType + +tyVarsOfTheta :: ThetaType -> TyCoVarSet +tyVarsOfTheta = varsOfTheta tyVarsOfType + +tyVarsOfType :: Type -> VarSet +-- ^ NB: for type synonyms tyVarsOfType does /not/ expand the synonym +tyVarsOfType (TyVarTy v) = unitVarSet v +tyVarsOfType (TyConApp _ tys) = tyVarsOfTypes tys +tyVarsOfType (PredTy sty) = varsOfPred tyVarsOfType sty +tyVarsOfType (FunTy arg res) = tyVarsOfType arg `unionVarSet` tyVarsOfType res +tyVarsOfType (AppTy fun arg) = tyVarsOfType fun `unionVarSet` tyVarsOfType arg +tyVarsOfType (ForAllTy tyvar ty) = delVarSet (tyVarsOfType ty) tyvar + +tyVarsOfTypes :: [Type] -> TyVarSet +tyVarsOfTypes tys = foldr (unionVarSet . tyVarsOfType) emptyVarSet tys + +varsOfPred :: (a -> VarSet) -> Pred a -> VarSet +varsOfPred f (IParam _ ty) = f ty +varsOfPred f (ClassP _ tys) = foldr (unionVarSet . f) emptyVarSet tys +varsOfPred f (EqPred ty1 ty2) = f ty1 `unionVarSet` f ty2 + +varsOfTheta :: (a -> VarSet) -> [Pred a] -> VarSet +varsOfTheta f = foldr (unionVarSet . varsOfPred f) emptyVarSet + +predSize :: (a -> Int) -> Pred a -> Int +predSize size (IParam _ t) = 1 + size t +predSize size (ClassP _ ts) = 1 + sum (map size ts) +predSize size (EqPred t1 t2) = size t1 + size t2 +\end{code} + +%************************************************************************ +%* * TyThing %* * %************************************************************************ @@ -253,6 +348,7 @@ funTyCon and all the types in TysPrim. data TyThing = AnId Id | ADataCon DataCon | ATyCon TyCon + | ACoAxiom CoAxiom | AClass Class instance Outputable TyThing where @@ -263,6 +359,7 @@ pprTyThing thing = pprTyThingCategory thing <+> quotes (ppr (getName thing)) pprTyThingCategory :: TyThing -> SDoc pprTyThingCategory (ATyCon _) = ptext (sLit "Type constructor") +pprTyThingCategory (ACoAxiom _) = ptext (sLit "Coercion axiom") pprTyThingCategory (AClass _) = ptext (sLit "Class") pprTyThingCategory (AnId _) = ptext (sLit "Identifier") pprTyThingCategory (ADataCon _) = ptext (sLit "Data constructor") @@ -270,6 +367,7 @@ pprTyThingCategory (ADataCon _) = ptext (sLit "Data constructor") instance NamedThing TyThing where -- Can't put this with the type getName (AnId id) = getName id -- decl, because the DataCon instance getName (ATyCon tc) = getName tc -- isn't visible there + getName (ACoAxiom cc) = getName cc getName (AClass cl) = getName cl getName (ADataCon dc) = dataConName dc \end{code} @@ -277,131 +375,92 @@ instance NamedThing TyThing where -- Can't put this with the type %************************************************************************ %* * - Wired-in type constructors + Substitutions + Data type defined here to avoid unnecessary mutual recursion %* * %************************************************************************ -We define a few wired-in type constructors here to avoid module knots - \begin{code} --------------------------- --- First the TyCons... - --- | See "Type#kind_subtyping" for details of the distinction between the 'Kind' 'TyCon's -funTyCon, tySuperKindTyCon, coSuperKindTyCon, liftedTypeKindTyCon, - openTypeKindTyCon, unliftedTypeKindTyCon, - ubxTupleKindTyCon, argTypeKindTyCon - :: TyCon -funTyConName, tySuperKindTyConName, coSuperKindTyConName, liftedTypeKindTyConName, - openTypeKindTyConName, unliftedTypeKindTyConName, - ubxTupleKindTyConName, argTypeKindTyConName - :: Name - -funTyCon = mkFunTyCon funTyConName (mkArrowKinds [argTypeKind, openTypeKind] liftedTypeKind) - -- You might think that (->) should have type (?? -> ? -> *), and you'd be right - -- But if we do that we get kind errors when saying - -- instance Control.Arrow (->) - -- becuase the expected kind is (*->*->*). The trouble is that the - -- expected/actual stuff in the unifier does not go contra-variant, whereas - -- the kind sub-typing does. Sigh. It really only matters if you use (->) in - -- a prefix way, thus: (->) Int# Int#. And this is unusual. - - -tySuperKindTyCon = mkSuperKindTyCon tySuperKindTyConName -coSuperKindTyCon = mkSuperKindTyCon coSuperKindTyConName - -liftedTypeKindTyCon = mkKindTyCon liftedTypeKindTyConName tySuperKind -openTypeKindTyCon = mkKindTyCon openTypeKindTyConName tySuperKind -unliftedTypeKindTyCon = mkKindTyCon unliftedTypeKindTyConName tySuperKind -ubxTupleKindTyCon = mkKindTyCon ubxTupleKindTyConName tySuperKind -argTypeKindTyCon = mkKindTyCon argTypeKindTyConName tySuperKind - --------------------------- --- ... and now their names - -tySuperKindTyConName = mkPrimTyConName (fsLit "BOX") tySuperKindTyConKey tySuperKindTyCon -coSuperKindTyConName = mkPrimTyConName (fsLit "COERCION") coSuperKindTyConKey coSuperKindTyCon -liftedTypeKindTyConName = mkPrimTyConName (fsLit "*") liftedTypeKindTyConKey liftedTypeKindTyCon -openTypeKindTyConName = mkPrimTyConName (fsLit "?") openTypeKindTyConKey openTypeKindTyCon -unliftedTypeKindTyConName = mkPrimTyConName (fsLit "#") unliftedTypeKindTyConKey unliftedTypeKindTyCon -ubxTupleKindTyConName = mkPrimTyConName (fsLit "(#)") ubxTupleKindTyConKey ubxTupleKindTyCon -argTypeKindTyConName = mkPrimTyConName (fsLit "??") argTypeKindTyConKey argTypeKindTyCon -funTyConName = mkPrimTyConName (fsLit "(->)") funTyConKey funTyCon - -mkPrimTyConName :: FastString -> Unique -> TyCon -> Name -mkPrimTyConName occ key tycon = mkWiredInName gHC_PRIM (mkTcOccFS occ) - key - (ATyCon tycon) - BuiltInSyntax - -- All of the super kinds and kinds are defined in Prim and use BuiltInSyntax, - -- because they are never in scope in the source - ------------------- --- We also need Kinds and SuperKinds, locally and in TyCon - -kindTyConType :: TyCon -> Type -kindTyConType kind = TyConApp kind [] - --- | See "Type#kind_subtyping" for details of the distinction between these 'Kind's -liftedTypeKind, unliftedTypeKind, openTypeKind, argTypeKind, ubxTupleKind :: Kind - -liftedTypeKind = kindTyConType liftedTypeKindTyCon -unliftedTypeKind = kindTyConType unliftedTypeKindTyCon -openTypeKind = kindTyConType openTypeKindTyCon -argTypeKind = kindTyConType argTypeKindTyCon -ubxTupleKind = kindTyConType ubxTupleKindTyCon +-- | Type substitution +-- +-- #tvsubst_invariant# +-- The following invariants must hold of a 'TvSubst': +-- +-- 1. The in-scope set is needed /only/ to +-- guide the generation of fresh uniques +-- +-- 2. In particular, the /kind/ of the type variables in +-- the in-scope set is not relevant +-- +-- 3. The substition is only applied ONCE! This is because +-- in general such application will not reached a fixed point. +data TvSubst + = TvSubst InScopeSet -- The in-scope type variables + TvSubstEnv -- Substitution of types + -- See Note [Apply Once] + -- and Note [Extending the TvSubstEnv] + +-- | A substitition of 'Type's for 'TyVar's +type TvSubstEnv = TyVarEnv Type + -- A TvSubstEnv is used both inside a TvSubst (with the apply-once + -- invariant discussed in Note [Apply Once]), and also independently + -- in the middle of matching, and unification (see Types.Unify) + -- So you have to look at the context to know if it's idempotent or + -- apply-once or whatever +\end{code} --- | Given two kinds @k1@ and @k2@, creates the 'Kind' @k1 -> k2@ -mkArrowKind :: Kind -> Kind -> Kind -mkArrowKind k1 k2 = FunTy k1 k2 +Note [Apply Once] +~~~~~~~~~~~~~~~~~ +We use TvSubsts to instantiate things, and we might instantiate + forall a b. ty +\with the types + [a, b], or [b, a]. +So the substition might go [a->b, b->a]. A similar situation arises in Core +when we find a beta redex like + (/\ a /\ b -> e) b a +Then we also end up with a substition that permutes type variables. Other +variations happen to; for example [a -> (a, b)]. --- | Iterated application of 'mkArrowKind' -mkArrowKinds :: [Kind] -> Kind -> Kind -mkArrowKinds arg_kinds result_kind = foldr mkArrowKind result_kind arg_kinds + *************************************************** + *** So a TvSubst must be applied precisely once *** + *************************************************** -tySuperKind, coSuperKind :: SuperKind -tySuperKind = kindTyConType tySuperKindTyCon -coSuperKind = kindTyConType coSuperKindTyCon +A TvSubst is not idempotent, but, unlike the non-idempotent substitution +we use during unifications, it must not be repeatedly applied. -isTySuperKind :: SuperKind -> Bool -isTySuperKind (TyConApp kc []) = kc `hasKey` tySuperKindTyConKey -isTySuperKind _ = False +Note [Extending the TvSubst] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +See #tvsubst_invariant# for the invariants that must hold. -isCoSuperKind :: SuperKind -> Bool -isCoSuperKind (TyConApp kc []) = kc `hasKey` coSuperKindTyConKey -isCoSuperKind _ = False +This invariant allows a short-cut when the TvSubstEnv is empty: +if the TvSubstEnv is empty --- i.e. (isEmptyTvSubt subst) holds --- +then (substTy subst ty) does nothing. -------------------- --- Lastly we need a few functions on Kinds +For example, consider: + (/\a. /\b:(a~Int). ...b..) Int +We substitute Int for 'a'. The Unique of 'b' does not change, but +nevertheless we add 'b' to the TvSubstEnv, because b's kind does change -isLiftedTypeKindCon :: TyCon -> Bool -isLiftedTypeKindCon tc = tc `hasKey` liftedTypeKindTyConKey +This invariant has several crucial consequences: -isLiftedTypeKind :: Kind -> Bool -isLiftedTypeKind (TyConApp tc []) = isLiftedTypeKindCon tc -isLiftedTypeKind _ = False +* In substTyVarBndr, we need extend the TvSubstEnv + - if the unique has changed + - or if the kind has changed -isCoercionKind :: Kind -> Bool --- All coercions are of form (ty1 ~ ty2) --- This function is here rather than in Coercion, --- because it's used in a knot-tied way to enforce invariants in Var -isCoercionKind (PredTy (EqPred {})) = True -isCoercionKind _ = False +* In substTyVar, we do not need to consult the in-scope set; + the TvSubstEnv is enough -coVarPred :: CoVar -> PredType -coVarPred tv - = ASSERT( isCoVar tv ) - case tyVarKind tv of - PredTy eq -> eq - other -> pprPanic "coVarPred" (ppr tv $$ ppr other) +* In substTy, substTheta, we can short-circuit when the TvSubstEnv is empty \end{code} %************************************************************************ %* * -\subsection{The external interface} -%* * + Pretty-printing types + + Defined very early because of debug printing in assertions +%* * %************************************************************************ @pprType@ is the standard @Type@ printer; the overloaded @ppr@ function is @@ -422,43 +481,58 @@ maybeParen ctxt_prec inner_prec pretty ------------------ pprType, pprParendType :: Type -> SDoc -pprType ty = ppr_type TopPrec ty +pprType ty = ppr_type TopPrec ty pprParendType ty = ppr_type TyConPrec ty -pprTypeApp :: NamedThing a => a -> [Type] -> SDoc --- The first arg is the tycon, or sometimes class --- Print infix if the tycon/class looks like an operator -pprTypeApp tc tys = ppr_type_app TopPrec (getName tc) tys +pprKind, pprParendKind :: Kind -> SDoc +pprKind = pprType +pprParendKind = pprParendType ------------------ -pprPred :: PredType -> SDoc -pprPred (ClassP cls tys) = pprClassPred cls tys -pprPred (IParam ip ty) = ppr ip <> dcolon <> pprType ty -pprPred (EqPred ty1 ty2) = pprEqPred (ty1,ty2) - -pprEqPred :: (Type,Type) -> SDoc -pprEqPred (ty1,ty2) = sep [ ppr_type FunPrec ty1 - , nest 2 (ptext (sLit "~")) - , ppr_type FunPrec ty2] +pprPredTy :: PredType -> SDoc +pprPredTy = pprPred ppr_type + +pprPred :: (Prec -> a -> SDoc) -> Pred a -> SDoc +pprPred pp (ClassP cls tys) = ppr_class_pred pp cls tys +pprPred pp (IParam ip ty) = ppr ip <> dcolon <> pp TopPrec ty +pprPred pp (EqPred ty1 ty2) = ppr_eq_pred pp (Pair ty1 ty2) + +------------ +pprEqPred :: Pair Type -> SDoc +pprEqPred = ppr_eq_pred ppr_type + +ppr_eq_pred :: (Prec -> a -> SDoc) -> Pair a -> SDoc +ppr_eq_pred pp (Pair ty1 ty2) = sep [ pp FunPrec ty1 + , nest 2 (ptext (sLit "~")) + , pp FunPrec ty2] -- Precedence looks like (->) so that we get -- Maybe a ~ Bool -- (a->a) ~ Bool -- Note parens on the latter! +------------ pprClassPred :: Class -> [Type] -> SDoc -pprClassPred clas tys = ppr_type_app TopPrec (getName clas) tys +pprClassPred = ppr_class_pred ppr_type + +ppr_class_pred :: (Prec -> a -> SDoc) -> Class -> [a] -> SDoc +ppr_class_pred pp clas tys = pprTypeNameApp TopPrec pp (getName clas) tys +------------ pprTheta :: ThetaType -> SDoc -- pprTheta [pred] = pprPred pred -- I'm in two minds about this -pprTheta theta = parens (sep (punctuate comma (map pprPred theta))) +pprTheta theta = parens (sep (punctuate comma (map pprPredTy theta))) + +pprThetaArrowTy :: ThetaType -> SDoc +pprThetaArrowTy = pprThetaArrow ppr_type -pprThetaArrow :: ThetaType -> SDoc -pprThetaArrow [] = empty -pprThetaArrow [pred] - | noParenPred pred = pprPred pred <+> darrow -pprThetaArrow preds = parens (sep (punctuate comma (map pprPred preds))) <+> darrow +pprThetaArrow :: (Prec -> a -> SDoc) -> [Pred a] -> SDoc +pprThetaArrow _ [] = empty +pprThetaArrow pp [pred] + | noParenPred pred = pprPred pp pred <+> darrow +pprThetaArrow pp preds = parens (sep (punctuate comma (map (pprPred pp) preds))) + <+> darrow -noParenPred :: PredType -> Bool +noParenPred :: Pred a -> Bool -- A predicate that can appear without parens before a "=>" -- C a => a -> a -- a~b => a -> b @@ -471,8 +545,9 @@ noParenPred (IParam {}) = False instance Outputable Type where ppr ty = pprType ty -instance Outputable PredType where - ppr = pprPred +instance Outputable (Pred Type) where + ppr = pprPredTy -- Not for arbitrary (Pred a), because the + -- (Outputable a) doesn't give precedence instance Outputable name => OutputableBndr (IPName name) where pprBndr _ n = ppr n -- Simple for now @@ -480,94 +555,43 @@ instance Outputable name => OutputableBndr (IPName name) where ------------------ -- OK, here's the main printer -pprKind, pprParendKind :: Kind -> SDoc -pprKind = pprType -pprParendKind = pprParendType - ppr_type :: Prec -> Type -> SDoc ppr_type _ (TyVarTy tv) = ppr_tvar tv ppr_type p (PredTy pred) = maybeParen p TyConPrec $ - ifPprDebug (ptext (sLit "<pred>")) <> (ppr pred) -ppr_type p (TyConApp tc tys) = ppr_tc_app p tc tys + ifPprDebug (ptext (sLit "<pred>")) <> (pprPredTy pred) +ppr_type p (TyConApp tc tys) = pprTcApp p ppr_type tc tys ppr_type p (AppTy t1 t2) = maybeParen p TyConPrec $ pprType t1 <+> ppr_type TyConPrec t2 -ppr_type p ty@(ForAllTy _ _) = ppr_forall_type p ty +ppr_type p ty@(ForAllTy {}) = ppr_forall_type p ty ppr_type p ty@(FunTy (PredTy _) _) = ppr_forall_type p ty ppr_type p (FunTy ty1 ty2) - = -- We don't want to lose synonyms, so we mustn't use splitFunTys here. - maybeParen p FunPrec $ - sep (ppr_type FunPrec ty1 : ppr_fun_tail ty2) + = pprArrowChain p (ppr_type FunPrec ty1 : ppr_fun_tail ty2) where - ppr_fun_tail (FunTy ty1 ty2) - | not (is_pred ty1) = (arrow <+> ppr_type FunPrec ty1) : ppr_fun_tail ty2 - ppr_fun_tail other_ty = [arrow <+> pprType other_ty] + -- We don't want to lose synonyms, so we mustn't use splitFunTys here. + ppr_fun_tail (FunTy ty1 ty2) + | not (is_pred ty1) = ppr_type FunPrec ty1 : ppr_fun_tail ty2 + ppr_fun_tail other_ty = [ppr_type TopPrec other_ty] + is_pred (PredTy {}) = True is_pred _ = False ppr_forall_type :: Prec -> Type -> SDoc ppr_forall_type p ty = maybeParen p FunPrec $ - sep [pprForAll tvs, pprThetaArrow ctxt, pprType tau] + sep [pprForAll tvs, pprThetaArrowTy ctxt, pprType tau] where (tvs, rho) = split1 [] ty (ctxt, tau) = split2 [] rho - -- We need to be extra careful here as equality constraints will occur as - -- type variables with an equality kind. So, while collecting quantified - -- variables, we separate the coercion variables out and turn them into - -- equality predicates. - split1 tvs (ForAllTy tv ty) - | not (isCoVar tv) = split1 (tv:tvs) ty - split1 tvs ty = (reverse tvs, ty) + split1 tvs (ForAllTy tv ty) = split1 (tv:tvs) ty + split1 tvs ty = (reverse tvs, ty) split2 ps (PredTy p `FunTy` ty) = split2 (p:ps) ty - split2 ps (ForAllTy tv ty) - | isCoVar tv = split2 (coVarPred tv : ps) ty split2 ps ty = (reverse ps, ty) -ppr_tc_app :: Prec -> TyCon -> [Type] -> SDoc -ppr_tc_app _ tc [] - = ppr_tc tc -ppr_tc_app _ tc [ty] - | tc `hasKey` listTyConKey = brackets (pprType ty) - | tc `hasKey` parrTyConKey = ptext (sLit "[:") <> pprType ty <> ptext (sLit ":]") - | tc `hasKey` liftedTypeKindTyConKey = ptext (sLit "*") - | tc `hasKey` unliftedTypeKindTyConKey = ptext (sLit "#") - | tc `hasKey` openTypeKindTyConKey = ptext (sLit "(?)") - | tc `hasKey` ubxTupleKindTyConKey = ptext (sLit "(#)") - | tc `hasKey` argTypeKindTyConKey = ptext (sLit "??") - -ppr_tc_app p tc tys - | isTupleTyCon tc && tyConArity tc == length tys - = tupleParens (tupleTyConBoxity tc) (sep (punctuate comma (map pprType tys))) - | otherwise - = ppr_type_app p (getName tc) tys - -ppr_type_app :: Prec -> Name -> [Type] -> SDoc --- Used for classes as well as types; that's why it's separate from ppr_tc_app -ppr_type_app p tc tys - | is_sym_occ -- Print infix if possible - , [ty1,ty2] <- tys -- We know nothing of precedence though - = maybeParen p FunPrec (sep [ppr_type FunPrec ty1, - pprInfixVar True (ppr tc) <+> ppr_type FunPrec ty2]) - | otherwise - = maybeParen p TyConPrec (hang (pprPrefixVar is_sym_occ (ppr tc)) - 2 (sep (map pprParendType tys))) - where - is_sym_occ = isSymOcc (getOccName tc) - -ppr_tc :: TyCon -> SDoc -- No brackets for SymOcc -ppr_tc tc - = pp_nt_debug <> ppr tc - where - pp_nt_debug | isNewTyCon tc = ifPprDebug (if isRecursiveTyCon tc - then ptext (sLit "<recnt>") - else ptext (sLit "<nt>")) - | otherwise = empty - ppr_tvar :: TyVar -> SDoc ppr_tvar tv -- Note [Infix type variables] | isSymOcc (getOccName tv) = parens (ppr tv) @@ -579,8 +603,9 @@ pprForAll [] = empty pprForAll tvs = ptext (sLit "forall") <+> sep (map pprTvBndr tvs) <> dot pprTvBndr :: TyVar -> SDoc -pprTvBndr tv | isLiftedTypeKind kind = ppr_tvar tv - | otherwise = parens (ppr_tvar tv <+> dcolon <+> pprKind kind) +pprTvBndr tv + | isLiftedTypeKind kind = ppr_tvar tv + | otherwise = parens (ppr_tvar tv <+> dcolon <+> pprKind kind) where kind = tyVarKind tv \end{code} @@ -603,6 +628,59 @@ remember to parenthesise the operator, thus See Trac #2766. +\begin{code} +pprTcApp :: Prec -> (Prec -> a -> SDoc) -> TyCon -> [a] -> SDoc +pprTcApp _ _ tc [] -- No brackets for SymOcc + = pp_nt_debug <> ppr tc + where + pp_nt_debug | isNewTyCon tc = ifPprDebug (if isRecursiveTyCon tc + then ptext (sLit "<recnt>") + else ptext (sLit "<nt>")) + | otherwise = empty +pprTcApp _ pp tc [ty] + | tc `hasKey` listTyConKey = brackets (pp TopPrec ty) + | tc `hasKey` parrTyConKey = ptext (sLit "[:") <> pp TopPrec ty <> ptext (sLit ":]") + | tc `hasKey` liftedTypeKindTyConKey = ptext (sLit "*") + | tc `hasKey` unliftedTypeKindTyConKey = ptext (sLit "#") + | tc `hasKey` openTypeKindTyConKey = ptext (sLit "(?)") + | tc `hasKey` ubxTupleKindTyConKey = ptext (sLit "(#)") + | tc `hasKey` argTypeKindTyConKey = ptext (sLit "??") +pprTcApp p pp tc tys + | isTupleTyCon tc && tyConArity tc == length tys + = tupleParens (tupleTyConBoxity tc) (sep (punctuate comma (map (pp TopPrec) tys))) + | otherwise + = pprTypeNameApp p pp (getName tc) tys + +---------------- +pprTypeApp :: NamedThing a => a -> [Type] -> SDoc +-- The first arg is the tycon, or sometimes class +-- Print infix if the tycon/class looks like an operator +pprTypeApp tc tys = pprTypeNameApp TopPrec ppr_type (getName tc) tys + +pprTypeNameApp :: Prec -> (Prec -> a -> SDoc) -> Name -> [a] -> SDoc +-- Used for classes and coercions as well as types; that's why it's separate from pprTcApp +pprTypeNameApp p pp tc tys + | is_sym_occ -- Print infix if possible + , [ty1,ty2] <- tys -- We know nothing of precedence though + = maybeParen p FunPrec $ + sep [pp FunPrec ty1, pprInfixVar True (ppr tc) <+> pp FunPrec ty2] + | otherwise + = pprPrefixApp p (pprPrefixVar is_sym_occ (ppr tc)) (map (pp TyConPrec) tys) + where + is_sym_occ = isSymOcc (getOccName tc) + +---------------- +pprPrefixApp :: Prec -> SDoc -> [SDoc] -> SDoc +pprPrefixApp p pp_fun pp_tys = maybeParen p TyConPrec $ + hang pp_fun 2 (sep pp_tys) + +---------------- +pprArrowChain :: Prec -> [SDoc] -> SDoc +-- pprArrowChain p [a,b,c] generates a -> b -> c +pprArrowChain _ [] = empty +pprArrowChain p (arg:args) = maybeParen p FunPrec $ + sep [arg, sep (map (arrow <+>) args)] +\end{code} diff --git a/compiler/types/TypeRep.lhs-boot b/compiler/types/TypeRep.lhs-boot index d519f62d2d..fe8fd59d1b 100644 --- a/compiler/types/TypeRep.lhs-boot +++ b/compiler/types/TypeRep.lhs-boot @@ -2,9 +2,10 @@ module TypeRep where data Type -data PredType +data Pred a data TyThing +type PredType = Pred Type type Kind = Type isCoercionKind :: Kind -> Bool diff --git a/compiler/types/Unify.lhs b/compiler/types/Unify.lhs index 2acf71efa6..9c448ce065 100644 --- a/compiler/types/Unify.lhs +++ b/compiler/types/Unify.lhs @@ -8,9 +8,11 @@ module Unify ( -- the "tc" prefix indicates that matching always -- respects newtypes (rather than looking through them) tcMatchTy, tcMatchTys, tcMatchTyX, - ruleMatchTyX, tcMatchPreds, MatchEnv(..), - - dataConCannotMatch, + ruleMatchTyX, tcMatchPreds, + + MatchEnv(..), matchList, + + typesCantMatch, -- Side-effect free unification tcUnifyTys, BindFlag(..), @@ -23,16 +25,17 @@ module Unify ( import Var import VarEnv import VarSet +import Kind import Type -import Coercion import TyCon -import DataCon import TypeRep import Outputable import ErrUtils import Util import Maybes import FastString + +import Control.Monad (guard) \end{code} @@ -67,9 +70,11 @@ Matching is much tricker than you might think. \begin{code} data MatchEnv - = ME { me_tmpls :: VarSet -- Template tyvars + = ME { me_tmpls :: VarSet -- Template variables , me_env :: RnEnv2 -- Renaming envt for nested foralls - } -- In-scope set includes template tyvars + } -- In-scope set includes template variables + -- Nota Bene: MatchEnv isn't specific to Types. It is used + -- for matching terms and coercions as well as types tcMatchTy :: TyVarSet -- Template tyvars -> Type -- Template @@ -121,7 +126,7 @@ tcMatchPreds -> [PredType] -> [PredType] -> Maybe TvSubstEnv tcMatchPreds tmpls ps1 ps2 - = match_list (match_pred menv) emptyTvSubstEnv ps1 ps2 + = matchList (match_pred menv) emptyTvSubstEnv ps1 ps2 where menv = ME { me_tmpls = mkVarSet tmpls, me_env = mkRnEnv2 in_scope_tyvars } in_scope_tyvars = mkInScopeSet (tyVarsOfTheta ps1 `unionVarSet` tyVarsOfTheta ps2) @@ -155,9 +160,8 @@ match menv subst ty1 ty2 | Just ty1' <- coreView ty1 = match menv subst ty1' ty2 match menv subst (TyVarTy tv1) ty2 | Just ty1' <- lookupVarEnv subst tv1' -- tv1' is already bound - = if tcEqTypeX (nukeRnEnvL rn_env) ty1' ty2 + = if eqTypeX (nukeRnEnvL rn_env) ty1' ty2 -- ty1 has no locally-bound variables, hence nukeRnEnvL - -- Note tcEqType...we are doing source-type matching here then Just subst else Nothing -- ty2 doesn't match @@ -201,14 +205,8 @@ match _ _ _ _ match_kind :: MatchEnv -> TvSubstEnv -> TyVar -> Type -> Maybe TvSubstEnv -- Match the kind of the template tyvar with the kind of Type -- Note [Matching kinds] -match_kind menv subst tv ty - | isCoVar tv = do { let (ty1,ty2) = coVarKind tv - (ty3,ty4) = coercionKind ty - ; subst1 <- match menv subst ty1 ty3 - ; match menv subst1 ty2 ty4 } - | otherwise = if typeKind ty `isSubKind` tyVarKind tv - then Just subst - else Nothing +match_kind _ subst tv ty + = guard (typeKind ty `isSubKind` tyVarKind tv) >> return subst -- Note [Matching kinds] -- ~~~~~~~~~~~~~~~~~~~~~ @@ -226,15 +224,15 @@ match_kind menv subst tv ty -------------- match_tys :: MatchEnv -> TvSubstEnv -> [Type] -> [Type] -> Maybe TvSubstEnv -match_tys menv subst tys1 tys2 = match_list (match menv) subst tys1 tys2 +match_tys menv subst tys1 tys2 = matchList (match menv) subst tys1 tys2 -------------- -match_list :: (TvSubstEnv -> a -> a -> Maybe TvSubstEnv) - -> TvSubstEnv -> [a] -> [a] -> Maybe TvSubstEnv -match_list _ subst [] [] = Just subst -match_list fn subst (ty1:tys1) (ty2:tys2) = do { subst' <- fn subst ty1 ty2 - ; match_list fn subst' tys1 tys2 } -match_list _ _ _ _ = Nothing +matchList :: (env -> a -> b -> Maybe env) + -> env -> [a] -> [b] -> Maybe env +matchList _ subst [] [] = Just subst +matchList fn subst (a:as) (b:bs) = do { subst' <- fn subst a b + ; matchList fn subst' as bs } +matchList _ _ _ _ = Nothing -------------- match_pred :: MatchEnv -> TvSubstEnv -> PredType -> PredType -> Maybe TvSubstEnv @@ -318,26 +316,9 @@ anything, type functions (incl newtypes) match anything, and only distinct data types fail to match. We can elaborate later. \begin{code} -dataConCannotMatch :: [Type] -> DataCon -> Bool --- Returns True iff the data con *definitely cannot* match a --- scrutinee of type (T tys) --- where T is the type constructor for the data con --- -dataConCannotMatch tys con - | null eq_spec = False -- Common - | all isTyVarTy tys = False -- Also common - | otherwise - = cant_match_s (map (substTyVar subst . fst) eq_spec) - (map snd eq_spec) +typesCantMatch :: [(Type,Type)] -> Bool +typesCantMatch prs = any (\(s,t) -> cant_match s t) prs where - dc_tvs = dataConUnivTyVars con - eq_spec = dataConEqSpec con - subst = zipTopTvSubst dc_tvs tys - - cant_match_s :: [Type] -> [Type] -> Bool - cant_match_s tys1 tys2 = ASSERT( equalLength tys1 tys2 ) - or (zipWith cant_match tys1 tys2) - cant_match :: Type -> Type -> Bool cant_match t1 t2 | Just t1' <- coreView t1 = cant_match t1' t2 @@ -348,7 +329,7 @@ dataConCannotMatch tys con cant_match (TyConApp tc1 tys1) (TyConApp tc2 tys2) | isDataTyCon tc1 && isDataTyCon tc2 - = tc1 /= tc2 || cant_match_s tys1 tys2 + = tc1 /= tc2 || typesCantMatch (zipEqual "typesCantMatch" tys1 tys2) cant_match (FunTy {}) (TyConApp tc _) = isDataTyCon tc cant_match (TyConApp tc _) (FunTy {}) = isDataTyCon tc @@ -370,7 +351,6 @@ dataConCannotMatch tys con \end{code} - %************************************************************************ %* * Unification @@ -415,7 +395,7 @@ niFixTvSubst env = f env | otherwise = subst where range_tvs = foldVarEnv (unionVarSet . tyVarsOfType) emptyVarSet e - subst = mkTvSubst (mkInScopeSet range_tvs) e + subst = mkTvSubst (mkInScopeSet range_tvs) e not_fixpoint = foldVarSet ((||) . in_domain) False range_tvs in_domain tv = tv `elemVarEnv` e |