| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
| |
In subsequent MRs (#23409) we want to remove the TcLclEnv argument from
a CtLoc. This MR prepares us for that by removing the one place where
the entire TcLclEnv is used, by using it more precisely to just set the
contexts source location.
Fixes #23390
|
|
|
|
| |
Implements #22702
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit migrates the errors in GHC.Tc.Module to use the new
diagnostic infrastructure.
It required a significant overhaul of the compatibility checks between
an hs-boot or signature module and its implementation; we now use
a Writer monad to accumulate errors; see the BootMismatch datatype
in GHC.Tc.Errors.Types, with its panoply of subtypes.
For the sake of readability, several local functions inside the
'checkBootTyCon' function were split off into top-level functions.
We split off GHC.Types.HscSource into a "boot or sig" vs "normal hs file"
datatype, as this mirrors the logic in several other places where we
want to treat hs-boot and hsig files in a similar fashion.
This commit also refactors the Backpack checks for type synonyms
implementing abstract data, to correctly reject implementations that
contain qualified or quantified types (this fixes #23342 and #23344).
|
|
|
|
|
|
|
| |
This commit moves tyThingToIfaceDecl and coAxiomToIfaceDecl
from GHC.Iface.Make into GHC.Iface.Decl.
This avoids GHC.Types.TyThing.Ppr, which needs tyThingToIfaceDecl,
transitively depending on e.g. GHC.Iface.Load and GHC.Tc.Utils.Monad.
|
|
|
|
|
| |
This will allow to make command line parsing to depend on
diagnostic system (which depends on dynflags)
|
|
|
|
|
|
|
|
|
| |
This error was sometimes a bit confusing, especially when data families
were involved. This commit improves the general presentation of the
"ambiguous occurrence" error, and adds a bit of extra context in the
case of data families.
Fixes #23301
|
|
|
|
| |
The deprecation warnings are normally emitted whenever the name's GRE is being looked up, which calls the GHC.Rename.Env.addUsedGRE function. We do not want those warnings to be emitted when renaming export lists, so they are artificially turned off by removing all warning categories from DynFlags at the beginning of GHC.Tc.Gen.Export.rnExports. This commit removes that dependency by unifying the function used for GRE lookup in lookup_ie to lookupGreAvailRn and disabling the call to addUsedGRE in said function (the warnings are also disabled in a call to lookupSubBndrOcc_helper in lookupChildrenExport), as per #17957. This commit also changes the setting for whether to warn about deprecated names in addUsedGREs to be an explicit enum instead of a boolean.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch continues the refactoring of the constraint solver
described in #23070.
The Big Deal in this patch is to call the regular, eager unifier from the
constraint solver, when we want to create new equalities. This
replaces the existing, unifyWanted which amounted to
yet-another-unifier, so it reduces duplication of a rather subtle
piece of technology. See
* Note [The eager unifier] in GHC.Tc.Utils.Unify
* GHC.Tc.Solver.Monad.wrapUnifierTcS
I did lots of other refactoring along the way
* I simplified the treatment of right hand sides that contain CoercionHoles.
Now, a constraint that contains a hetero-kind CoercionHole is non-canonical,
and cannot be used for rewriting or unification alike. This required me
to add the ch_hertero_kind flag to CoercionHole, with consequent knock-on
effects. See wrinkle (2) of `Note [Equalities with incompatible kinds]` in
GHC.Tc.Solver.Equality.
* I refactored the StopOrContinue type to add StartAgain, so that after a
fundep improvement (for example) we can simply start the pipeline again.
* I got rid of the unpleasant (and inefficient) rewriterSetFromType/Co functions.
With Richard I concluded that they are never needed.
* I discovered Wrinkle (W1) in Note [Wanteds rewrite Wanteds] in
GHC.Tc.Types.Constraint, and therefore now prioritise non-rewritten equalities.
Quite a few error messages change, I think always for the better.
Compiler runtime stays about the same, with one outlier: a 17% improvement in T17836
Metric Decrease:
T17836
T18223
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This function could come across invalid newtype constructors, as we
only perform validity checking of newtypes once we are outside the
knot-tied typechecking loop.
This patch changes this function to fake up a stub type in the case of
an invalid newtype, instead of panicking.
This patch also changes "checkNewDataCon" so that it reports as many
errors as possible at once.
Fixes #23308
|
|
|
|
| |
Since !10123 we now reject this program.
|
|
|
|
|
| |
When looking up (t1 ~# t2) in the quantified constraints,
check both orientations. Forgetting this led to #23333.
|
|
|
|
|
|
|
|
|
|
|
| |
Tracking ticket: #20115
MR: !10361
This converts uses of `mkTcRnUnknownMessage` to newly added constructors
of `TcRnMessage`.
Only addresses the single warning missing from the previous MR.
|
|
|
|
|
|
|
|
|
| |
Tracking ticket: #20115
MR: !10350
This converts uses of `mkTcRnUnknownMessage` to newly added constructors
of `TcRnMessage`.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, `gen_Newtype_fam_insts` was substituting the type variable binders
of a type family instance using `substTyVars`, which failed to take type
variable dependencies into account. There is similar code in
`GHC.Tc.TyCl.Class.tcATDefault` that _does_ perform this substitution properly,
so this patch:
1. Factors out this code into a top-level `substATBndrs` function, and
2. Uses `substATBndrs` in `gen_Newtype_fam_insts`.
Fixes #23329.
|
|
|
|
| |
This has no observable effect, but avoids storing useless data.
|
|
|
|
|
|
|
|
| |
Commit 3f374399 introduced a bug which caused us to forget to include
the parent of an export item of the form T(..) (that is, IEThingAll)
when checking for duplicate exports.
Fixes #23318
|
|
|
|
|
|
|
|
|
| |
Tracking ticket: #20115
MR: !10336
This converts uses of `mkTcRnUnknownMessage` to newly added constructors
of `TcRnMessage`.
|
|
|
|
|
|
|
|
|
| |
This commit implements GHC proposal #433, adding the Unsatisfiable
class to the GHC.TypeError module. This provides an alternative to
TypeError for which error reporting is more predictable: we report it
when we are reporting unsolved Wanted constraints.
Fixes #14983 #16249 #16906 #18310 #20835
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The function GHC.Tc.Utils.TcType.ltPatersonSize would panic when it
encountered a type family on the RHS, as usually these are not allowed
(type families are not allowed on the RHS of class instances or of
quantified constraints). However, it is possible to still encounter
type families on the RHS after doing a bit of constraint solving, as
seen in test case T23171. This could trigger the panic in the call to
ltPatersonSize in GHC.Tc.Solver.Canonical.mk_strict_superclasses, which
is involved in avoiding loopy superclass constraints.
This patch simply changes ltPatersonSize to return "I don't know, because
there's a type family involved" in these cases.
Fixes #23171
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch converts all the errors to do with loading interface files
into proper structured diagnostics.
* DriverMessage: Sometimes in the driver we attempt to load an interface
file so we embed the IfaceMessage into the DriverMessage.
* TcRnMessage: Most the time we are loading interface files during
typechecking, so we embed the IfaceMessage
This patch also removes the TcRnInterfaceLookupError constructor which
is superceded by the IfaceMessage, which is now structured compared to
just storing an SDoc before.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This brings the `IrredPred` case in sync with the treatment of `ClassPred`s as
described in `Note [Valid 'deriving' predicate]` in `GHC.Tc.Validity`. Namely,
we should reject `IrredPred`s that are inferred from `deriving` clauses whose
arguments contain other type constructors, as described in `(VD2) Reject exotic
constraints` of that Note. This has the nice property that `deriving` clauses
whose inferred instance context mention `TypeError` will now emit the type
error in the resulting error message, which better matches existing intuitions
about how `TypeError` should work.
While I was in town, I noticed that much of `Note [Valid 'deriving' predicate]`
was duplicated in a separate `Note [Exotic derived instance contexts]` in
`GHC.Tc.Deriv.Infer`. I decided to fold the latter Note into the former so that
there is a single authority on describing the conditions under which an
inferred `deriving` constraint can be considered valid.
This changes the behavior of `deriving` in a way that existing code might
break, so I have made a mention of this in the GHC User's Guide. It seems very,
very unlikely that much code is relying on this strange behavior, however, and
even if there is, there is a clear, backwards-compatible migration path using
`StandaloneDeriving`.
Fixes #22696.
|
|
|
|
|
|
| |
Related to https://gitlab.haskell.org/ghc/ghc/-/issues/23261.
There are a lot of GHC.Driver.Session which only use DynFlags,
but not the parsing code.
|
|
|
|
|
|
|
|
|
|
| |
inferResultToType was discarding the ir_frr information, which meant
some metavariables ended up being MetaTvs instead of ConcreteTvs.
This function now creates new ConcreteTvs as necessary, instead of
always creating MetaTvs.
Fixes #23154
|
|
|
|
| |
Fixes #23153
|
|
|
|
|
|
|
|
|
|
|
| |
This MR fixes #23224: making approximateWC more clever
See the long `Note [ApproximateWC]` in GHC.Tc.Solver
All this is delicate and ad-hoc -- but it /has/ to be: we are
talking about inferring a type for a binding in the presence of
GADTs, type families and whatnot: known difficult territory.
We just try as hard as we can.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MR fixes #23223. The changes are in two places:
* GHC.Tc.Bind.checkMonomorphismRestriction
See the new `Note [When the MR applies]`
We now no longer stupidly attempt to apply the MR when the user
specifies a context, e.g. f :: Eq a => _ -> _
* GHC.Tc.Solver.decideQuantification
See rewritten `Note [Constraints in partial type signatures]`
Fixing this bug apparently breaks three tests:
* partial-sigs/should_compile/T11192
* partial-sigs/should_fail/Defaulting1MROff
* partial-sigs/should_fail/T11122
However they are all symptoms of #23232, so I'm marking them as
expect_broken(23232).
I feel happy about this MR. Nice.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MR substantially refactors the way in which the constraint
solver deals with equality constraints. The big thing is:
* Intead of a pipeline in which we /first/ canonicalise and /then/
interact (the latter including performing unification) the two steps
are more closely integreated into one. That avoids the current
rather indirect communication between the two steps.
The proximate cause for this refactoring is fixing #22194, which involve
solving [W] alpha[2] ~ Maybe (F beta[4])
by doing this:
alpha[2] := Maybe delta[2]
[W] delta[2] ~ F beta[4]
That is, we don't promote beta[4]! This is very like introducing a cycle
breaker, and was very awkward to do before, but now it is all nice.
See GHC.Tc.Utils.Unify Note [Promotion and level-checking] and
Note [Family applications in canonical constraints].
The big change is this:
* Several canonicalisation checks (occurs-check, cycle-breaking,
checking for concreteness) are combined into one new function:
GHC.Tc.Utils.Unify.checkTyEqRhs
This function is controlled by `TyEqFlags`, which says what to do
for foralls, type families etc.
* `canEqCanLHSFinish` now sees if unification is possible, and if so,
actually does it: see `canEqCanLHSFinish_try_unification`.
There are loads of smaller changes:
* The on-the-fly unifier `GHC.Tc.Utils.Unify.unifyType` has a
cheap-and-cheerful version of `checkTyEqRhs`, called
`simpleUnifyCheck`. If `simpleUnifyCheck` succeeds, it can unify,
otherwise it defers by emitting a constraint. This is simpler than
before.
* I simplified the swapping code in `GHC.Tc.Solver.Equality.canEqCanLHS`.
Especially the nasty stuff involving `swap_for_occurs` and
`canEqTyVarFunEq`. Much nicer now. See
Note [Orienting TyVarLHS/TyFamLHS]
Note [Orienting TyFamLHS/TyFamLHS]
* Added `cteSkolemOccurs`, `cteConcrete`, and `cteCoercionHole` to the
problems that can be discovered by `checkTyEqRhs`.
* I fixed #23199 `pickQuantifiablePreds`, which actually allows GHC to
to accept both cases in #22194 rather than rejecting both.
Yet smaller:
* Added a `synIsConcrete` flag to `SynonymTyCon` (alongside `synIsFamFree`)
to reduce the need for synonym expansion when checking concreteness.
Use it in `isConcreteType`.
* Renamed `isConcrete` to `isConcreteType`
* Defined `GHC.Core.TyCo.FVs.isInjectiveInType` as a more efficient
way to find if a particular type variable is used injectively than
finding all the injective variables. It is called in
`GHC.Tc.Utils.Unify.definitely_poly`, which in turn is used quite a
lot.
* Moved `rewriterView` to `GHC.Core.Type`, so we can use it from the
constraint solver.
Fixes #22194, #23199
Compile times decrease by an average of 0.1%; but there is a 7.4%
drop in compiler allocation on T15703.
Metric Decrease:
T15703
|
|
|
|
|
|
|
|
|
| |
Otherwise we get knock-on errors, such as #23252.
This makes GHC fail a bit sooner, and I have not attempted to add
recovery code, to add a fake TyCon place of the erroneous one,
in an attempt to get more type errors in one pass. We could
do that (perhaps) if there was a call for it.
|
|
|
|
|
|
|
|
|
| |
Tracking ticket: #20117
MR: !10251
This converts uses of `mkTcRnUnknownMessage` to newly added constructors
of `TcRnMessage`.
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. `unsafeCoerce#` was documented in `GHC.Prim`. But since the overhaul
in 74ad75e87317, `unsafeCoerce#` is no longer defined there.
I've combined the documentation in `GHC.Prim` with the `Unsafe.Coerce` module.
2. The documentation of `unsafeCoerce#` stated that you should not
cast a function to an algebraic type, even if you later cast it back
before applying it. But ghci was doing that type of cast, as can be seen
with 'ghci -ddump-ds' and typing 'x = not'. I've changed it to use Any
following the documentation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I've turned all occurrences of TcRnUnknownMessage in GHC.Rename.HsType
module into a proper TcRnMessage.
Instead, these TcRnMessage messages were introduced:
TcRnDataKindsError
TcRnUnusedQuantifiedTypeVar
TcRnIllegalKindSignature
TcRnUnexpectedPatSigType
TcRnSectionPrecedenceError
TcRnPrecedenceParsingError
TcRnIllegalKind
TcRnNegativeNumTypeLiteral
TcRnUnexpectedKindVar
TcRnBindMultipleVariables
TcRnBindVarAlreadyInScope
|
|
|
|
|
|
|
| |
Commit 3f374399 included a breaking-change to the template-haskell
library when it made the GadtC and RecGadtC constructors take non-empty
lists of names. As this has the potential to break many users' packages,
we decided to revert these changes for now.
|
|
|
|
|
|
|
|
|
| |
Tracking ticket: #20117
MR: !10183
This converts uses of `mkTcRnUnknownMessage` to newly added constructors
of `TcRnMessage`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In pursuit of #22426. The driver and unit state are major contributors.
This commit also bumps the haddock submodule to reflect the API changes in
UniqMap.
-------------------------
Metric Decrease:
MultiComponentModules
MultiComponentModulesRecomp
T10421
T10547
T12150
T12234
T12425
T13035
T16875
T18140
T18304
T18698a
T18698b
T18923
T20049
T5837
T6048
T9198
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch moves the field-based logic for disambiguating record updates
to the renamer. The type-directed logic, scheduled for removal, remains
in the typechecker.
To do this properly (and fix the myriad of bugs surrounding the treatment
of duplicate record fields), we took the following main steps:
1. Create GREInfo, a renamer-level equivalent to TyThing which stores
information pertinent to the renamer.
This allows us to uniformly treat imported and local Names in the
renamer, as described in Note [GREInfo].
2. Remove GreName. Instead of a GlobalRdrElt storing GreNames, which
distinguished between normal names and field names, we now store
simple Names in GlobalRdrElt, along with the new GREInfo information
which allows us to recover the FieldLabel for record fields.
3. Add namespacing for record fields, within the OccNames themselves.
This allows us to remove the mangling of duplicate field selectors.
This change ensures we don't print mangled names to the user in
error messages, and allows us to handle duplicate record fields
in Template Haskell.
4. Move record disambiguation to the renamer, and operate on the
level of data constructors instead, to handle #21443.
The error message text for ambiguous record updates has also been
changed to reflect that type-directed disambiguation is on the way
out.
(3) means that OccEnv is now a bit more complex: we first key on the
textual name, which gives an inner map keyed on NameSpace:
OccEnv a ~ FastStringEnv (UniqFM NameSpace a)
Note that this change, along with (2), both increase the memory residency
of GlobalRdrEnv = OccEnv [GlobalRdrElt], which causes a few tests to
regress somewhat in compile-time allocation.
Even though (3) simplified a lot of code (in particular the treatment of
field selectors within Template Haskell and in error messages), it came
with one important wrinkle: in the situation of
-- M.hs-boot
module M where { data A; foo :: A -> Int }
-- M.hs
module M where { data A = MkA { foo :: Int } }
we have that M.hs-boot exports a variable foo, which is supposed to match
with the record field foo that M exports. To solve this issue, we add a
new impedance-matching binding to M
foo{var} = foo{fld}
This mimics the logic that existed already for impedance-binding DFunIds,
but getting it right was a bit tricky.
See Note [Record field impedance matching] in GHC.Tc.Module.
We also needed to be careful to avoid introducing space leaks in GHCi.
So we dehydrate the GlobalRdrEnv before storing it anywhere, e.g. in
ModIface. This means stubbing out all the GREInfo fields, with the
function forceGlobalRdrEnv.
When we read it back in, we rehydrate with rehydrateGlobalRdrEnv.
This robustly avoids any space leaks caused by retaining old type
environments.
Fixes #13352 #14848 #17381 #17551 #19664 #21443 #21444 #21720 #21898 #21946 #21959 #22125 #22160 #23010 #23062 #23063
Updates haddock submodule
-------------------------
Metric Increase:
MultiComponentModules
MultiLayerModules
MultiLayerModulesDefsGhci
MultiLayerModulesNoCode
T13701
T14697
hard_hole_fits
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Closes #17209. This implements GHC Proposal 541, allowing a WARNING
pragma to be annotated with a category like so:
{-# WARNING in "x-partial" head "This function is undefined on empty lists." #-}
The user can then enable, disable and set the severity of such warnings
using command-line flags `-Wx-partial`, `-Werror=x-partial` and so on. There
is a new warning group `-Wextended-warnings` containing all these warnings.
Warnings without a category are treated as if the category was `deprecations`,
and are (still) controlled by the flags `-Wdeprecations`
and `-Wwarnings-deprecations`.
Updates Haddock submodule.
|
|
|
|
|
|
|
|
|
| |
Tracking ticket: #20117
MR: !10158
This converts uses of `mkTcRnUnknownMessage` to newly added constructors
of `TcRnMessage`.
|
|
|
|
|
|
|
|
|
| |
Tracking ticket: #20119
MR: !10138
This converts uses of `mkTcRnUnknownMessage` to newly added constructors
of `TcRnMessage`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The big change is to put the entire type-equality solver into
GHC.Tc.Solver.Equality, rather than scattering it over Canonical
and Interact. Other changes
* EqCt becomes its own data type, a bit like QCInst. This is
great because EqualCtList is then just [EqCt]
* New module GHC.Tc.Solver.Dict has come of the class-contraint
solver. In due course it will be all. One step at a time.
This MR is intended to have zero change in behaviour: it is a
pure refactor. It opens the way to subsequent tidying up, we
believe.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MR is driven by #23051. It does several things:
* It is guided by the generalisation plan described in #20686.
But it is still far from a complete implementation of that plan.
* Add Note [Inferred type with escaping kind] to GHC.Tc.Gen.Bind.
This explains that we don't (yet, pending #20686) directly
prevent generalising over escaping kinds.
* In `GHC.Tc.Utils.TcMType.defaultTyVar` we default RuntimeRep
and Multiplicity variables, beause we don't want to quantify over
them. We want to do the same for a Concrete tyvar, but there is
nothing sensible to default it to (unless it has kind RuntimeRep,
in which case it'll be caught by an earlier case). So we promote
instead.
* Pure refactoring in GHC.Tc.Solver:
* Rename decideMonoTyVars to decidePromotedTyVars, since that's
what it does.
* Move the actual promotion of the tyvars-to-promote from
`defaultTyVarsAndSimplify` to `decidePromotedTyVars`. This is a
no-op; just tidies up the code. E.g then we don't need to
return the promoted tyvars from `decidePromotedTyVars`.
* A little refactoring in `defaultTyVarsAndSimplify`, but no
change in behaviour.
* When making a TauTv unification variable into a ConcreteTv
(in GHC.Tc.Utils.Concrete.makeTypeConcrete), preserve the occ-name
of the type variable. This just improves error messages.
* Kill off dead code: GHC.Tc.Utils.TcMType.newConcreteHole
|
|
|
|
|
|
|
|
|
| |
Tracking ticket: #20119
MR: !10129
This converts uses of `mkTcRnUnknownMessage` to newly added constructors
of `TcRnMessage`.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Tracking ticket: #20119
MR: !10127
This converts uses of `mkTcRnUnknownMessage` to newly added constructors
of `TcRnMessage`.
One occurrence, when handing a nested error from the interface loading
machinery, was omitted. It will be handled by a subsequent changeset
that addresses interface errors.
|
|
|
|
|
|
|
|
|
| |
Previously the solver failed with an unhelpful "solver reached too may iterations" error.
With the fix for #21909 in place we no longer have the possibility of generating such an error if we have `-fconstraint-solver-iteration` > `-fgivens-fuel > `-fwanteds-fuel`. This is true by default, and the said fix also gives programmers a knob to control how hard the solver should try before giving up.
This commit adds:
* Reference to ticket #19627 in the Note [Expanding Recursive Superclasses and ExpansionFuel]
* Test `typecheck/should_fail/T19627.hs` for regression purposes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
instead of a boolean flag for `CDictCan.cc_pend_sc`.
Pending givens get a fuel of 3 while Wanted and quantified constraints get a fuel of 1.
This helps pending given constraints to keep up with pending wanted constraints in case of
`UndecidableSuperClasses` and superclass expansions while simplifying the infered type.
Adds 3 dynamic flags for controlling the fuels for each type of constraints
`-fgivens-expansion-fuel` for givens `-fwanteds-expansion-fuel` for wanteds and `-fqcs-expansion-fuel` for quantified constraints
Fixes #21909
Added Tests T21909, T21909b
Added Note [Expanding Recursive Superclasses and ExpansionFuel]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I've turned almost all occurrences of TcRnUnknownMessage in GHC.Rename.Module
module into a proper TcRnMessage.
Instead, these TcRnMessage messages were introduced:
TcRnIllegalInstanceHeadDecl
TcRnUnexpectedStandaloneDerivingDecl
TcRnUnusedVariableInRuleDecl
TcRnUnexpectedStandaloneKindSig
TcRnIllegalRuleLhs
TcRnBadAssocRhs
TcRnDuplicateRoleAnnot
TcRnDuplicateKindSig
TcRnIllegalDerivStrategy
TcRnIllegalMultipleDerivClauses
TcRnNoDerivStratSpecified
TcRnStupidThetaInGadt
TcRnBadImplicitSplice
TcRnShadowedTyVarNameInFamResult
TcRnIncorrectTyVarOnLhsOfInjCond
TcRnUnknownTyVarsOnRhsOfInjCond
Was introduced one helper type:
RuleLhsErrReason
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MR fixes #23022 and #23023. Specifically
* Beef up Note [Type data declarations] in GHC.Rename.Module,
to make invariant (I1) explicit, and to name the several
wrinkles.
And add references to these specific wrinkles.
* Add a Lint check for invariant (I1) above.
See GHC.Core.Lint.checkTypeDataConOcc
* Disable the `caseRules` for dataToTag# for `type data` values.
See Wrinkle (W2c) in the Note above. Fixes #23023.
* Refine the assertion in dataConRepArgTys, so that it does not
complain about the absence of a wrapper for a `type data` constructor
Fixes #23022.
Acked-by: Simon Peyton Jones <simon.peytonjones@gmail.com>
|
|
|
|
|
|
|
|
|
| |
GHC was accepting `foreign import javascript` declarations
on non-JavaScript platforms. This adds a check so that these
are only supported on an platform that supports the JavaScript
calling convention.
Fixes #22774
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Code in GHC.Tc.Errors.reportWanteds suppresses a Wanted if its
rewriters have unfilled coercion holes; see
Note [Wanteds rewrite Wanteds] in GHC.Tc.Types.Constraint.
But if we thereby suppress *all* errors that's really confusing,
and as #22707 shows, GHC goes on without even realising that the
program is broken. Disaster.
This MR arranges to un-suppress them all if they all get suppressed.
Close #22707
|