summaryrefslogtreecommitdiff
path: root/compiler/GHC/Unit/Module/Status.hs
Commit message (Collapse)AuthorAgeFilesLines
* Interface Files with Core DefinitionsMatthew Pickering2022-10-111-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds three new flags * -fwrite-if-simplified-core: Writes the whole core program into an interface file * -fbyte-code-and-object-code: Generate both byte code and object code when compiling a file * -fprefer-byte-code: Prefer to use byte-code if it's available when running TH splices. The goal for including the core bindings in an interface file is to be able to restart the compiler pipeline at the point just after simplification and before code generation. Once compilation is restarted then code can be created for the byte code backend. This can significantly speed up start-times for projects in GHCi. HLS already implements its own version of these extended interface files for this reason. Preferring to use byte-code means that we can avoid some potentially expensive code generation steps (see #21700) * Producing object code is much slower than producing bytecode, and normally you need to compile with `-dynamic-too` to produce code in the static and dynamic way, the dynamic way just for Template Haskell execution when using a dynamically linked compiler. * Linking many large object files, which happens once per splice, can be quite expensive compared to linking bytecode. And you can get GHC to compile the necessary byte code so `-fprefer-byte-code` has access to it by using `-fbyte-code-and-object-code`. Fixes #21067
* Driver Rework PatchMatthew Pickering2021-06-031-1/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | This patch comprises of four different but closely related ideas. The net result is fixing a large number of open issues with the driver whilst making it simpler to understand. 1. Use the hash of the source file to determine whether the source file has changed or not. This makes the recompilation checking more robust to modern build systems which are liable to copy files around changing their modification times. 2. Remove the concept of a "stable module", a stable module was one where the object file was older than the source file, and all transitive dependencies were also stable. Now we don't rely on the modification time of the source file, the notion of stability is moot. 3. Fix TH/plugin recompilation after the removal of stable modules. The TH recompilation check used to rely on stable modules. Now there is a uniform and simple way, we directly track the linkables which were loaded into the interpreter whilst compiling a module. This is an over-approximation but more robust wrt package dependencies changing. 4. Fix recompilation checking for dynamic object files. Now we actually check if the dynamic object file exists when compiling with -dynamic-too Fixes #19774 #19771 #19758 #17434 #11556 #9121 #8211 #16495 #7277 #16093
* Refactor driver code; de-duplicate and split APIs (#14095, !5555)Divam2021-05-251-11/+13
| | | | | | | | | | | | | | | | | This commit does some de-duplication of logic between the one-shot and --make modes, and splitting of some of the APIs so that its easier to do the fine-grained parallelism implementation. This is the first part of the implementation plan as described in #14095 * compileOne now uses the runPhase pipeline for most of the work. The Interpreter backend handling has been moved to the runPhase. * hscIncrementalCompile has been broken down into multiple APIs. * haddock submodule bump: Rename of variables in html-test ref: This is caused by a change in ModDetails in case of NoBackend. Now the initModDetails is used to recreate the ModDetails from interface and in-memory ModDetails is not used.
* Always generate ModDetails from ModIfaceMatthew Pickering2021-04-141-1/+0
| | | | | | | | | | | | | | | | | | This vastly reduces memory usage when compiling with `--make` mode, from about 900M when compiling Cabal to about 300M. As a matter of uniformity, it also ensures that reading from an interface performs the same as using the in-memory cache. We can also delete all the horrible knot-tying in updateIdInfos. Goes some way to fixing #13586 Accept new output of tests fixing some bugs along the way ------------------------- Metric Decrease: T12545 -------------------------
* Refactor -dynamic-too handlingSylvain Henry2020-11-061-7/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | 1) Don't modify DynFlags (too much) for -dynamic-too: now when we generate dynamic outputs for "-dynamic-too", we only set "dynamicNow" boolean field in DynFlags instead of modifying several other fields. These fields now have accessors that take dynamicNow into account. 2) Use DynamicTooState ADT to represent -dynamic-too state. It's much clearer than the undocumented "DynamicTooConditional" that was used before. As a result, we can finally remove the hscs_iface_dflags field in HscRecomp. There was a comment on this field saying: "FIXME (osa): I don't understand why this is necessary, but I spent almost two days trying to figure this out and I couldn't .. perhaps someone who understands this code better will remove this later." I don't fully understand the details, but it was needed because of the changes made to the DynFlags for -dynamic-too. There is still something very dubious in GHC.Iface.Recomp: we have to disable the "dynamicNow" flag at some point for some Backpack's "heinous hack" to continue to work. It may be because interfaces for indefinite units are always non-dynamic, or because we mix and match dynamic and non-dynamic interfaces (#9176), or something else, who knows?
* Split GHC.Driver.TypesSylvain Henry2020-10-291-0/+46
I was working on making DynFlags stateless (#17957), especially by storing loaded plugins into HscEnv instead of DynFlags. It turned out to be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I didn't feel like introducing yet another hs-boot file to break the loop. Additionally I remember that while we introduced the module hierarchy (#13009) we talked about splitting GHC.Driver.Types because it contained various unrelated types and functions, but we never executed. I didn't feel like making GHC.Driver.Types bigger with more unrelated Plugins related types, so finally I bit the bullet and split GHC.Driver.Types. As a consequence this patch moves a lot of things. I've tried to put them into appropriate modules but nothing is set in stone. Several other things moved to avoid loops. * Removed Binary instances from GHC.Utils.Binary for random compiler things * Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they import a lot of things that users of GHC.Utils.Binary don't want to depend on. * put everything related to Units/Modules under GHC.Unit: GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.} * Created several modules under GHC.Types: GHC.Types.Fixity, SourceText, etc. * Split GHC.Utils.Error (into GHC.Types.Error) * Finally removed GHC.Driver.Types Note that this patch doesn't put loaded plugins into HscEnv. It's left for another patch. Bump haddock submodule