1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
|
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-
(c) The University of Glasgow 2006
-}
-- | Module for (a) type kinds and (b) type coercions,
-- as used in System FC. See 'GHC.Core.Expr' for
-- more on System FC and how coercions fit into it.
--
module GHC.Core.Coercion (
-- * Main data type
Coercion, CoercionN, CoercionR, CoercionP, MCoercion(..), MCoercionN, MCoercionR,
UnivCoProvenance, CoercionHole(..),
coHoleCoVar, setCoHoleCoVar,
LeftOrRight(..),
Var, CoVar, TyCoVar,
Role(..), ltRole,
-- ** Functions over coercions
coVarRType, coVarLType, coVarTypes,
coVarKind, coVarKindsTypesRole, coVarRole,
coercionType, mkCoercionType,
coercionKind, coercionLKind, coercionRKind,coercionKinds,
coercionRole, coercionKindRole,
-- ** Constructing coercions
mkGReflCo, mkReflCo, mkRepReflCo, mkNomReflCo,
mkCoVarCo, mkCoVarCos,
mkAxInstCo, mkUnbranchedAxInstCo,
mkAxInstRHS, mkUnbranchedAxInstRHS,
mkAxInstLHS, mkUnbranchedAxInstLHS,
mkPiCo, mkPiCos, mkCoCast,
mkSymCo, mkTransCo,
mkNthCo, mkNthCoFunCo, nthCoRole, mkLRCo,
mkInstCo, mkAppCo, mkAppCos, mkTyConAppCo, mkFunCo, mkFunResCo,
mkForAllCo, mkForAllCos, mkHomoForAllCos,
mkPhantomCo,
mkHoleCo, mkUnivCo, mkSubCo,
mkAxiomInstCo, mkProofIrrelCo,
downgradeRole, mkAxiomRuleCo,
mkGReflRightCo, mkGReflLeftCo, mkCoherenceLeftCo, mkCoherenceRightCo,
mkKindCo,
castCoercionKind, castCoercionKind1, castCoercionKind2,
mkPrimEqPred, mkReprPrimEqPred, mkPrimEqPredRole,
mkHeteroPrimEqPred, mkHeteroReprPrimEqPred,
-- ** Decomposition
instNewTyCon_maybe,
NormaliseStepper, NormaliseStepResult(..), composeSteppers,
mapStepResult, unwrapNewTypeStepper,
topNormaliseNewType_maybe, topNormaliseTypeX,
decomposeCo, decomposeFunCo, decomposePiCos, getCoVar_maybe,
splitTyConAppCo_maybe,
splitAppCo_maybe,
splitFunCo_maybe,
splitForAllCo_maybe,
splitForAllCo_ty_maybe, splitForAllCo_co_maybe,
nthRole, tyConRolesX, tyConRolesRepresentational, setNominalRole_maybe,
pickLR,
isGReflCo, isReflCo, isReflCo_maybe, isGReflCo_maybe, isReflexiveCo, isReflexiveCo_maybe,
isReflCoVar_maybe, isGReflMCo, mkGReflLeftMCo, mkGReflRightMCo,
mkCoherenceRightMCo,
coToMCo, mkTransMCo, mkTransMCoL, mkTransMCoR, mkCastTyMCo, mkSymMCo,
mkHomoForAllMCo, mkFunResMCo, mkPiMCos,
isReflMCo, checkReflexiveMCo,
-- ** Coercion variables
mkCoVar, isCoVar, coVarName, setCoVarName, setCoVarUnique,
-- ** Free variables
tyCoVarsOfCo, tyCoVarsOfCos, coVarsOfCo,
tyCoFVsOfCo, tyCoFVsOfCos, tyCoVarsOfCoDSet,
coercionSize, anyFreeVarsOfCo,
-- ** Substitution
CvSubstEnv, emptyCvSubstEnv,
lookupCoVar,
substCo, substCos, substCoVar, substCoVars, substCoWith,
substCoVarBndr,
extendTvSubstAndInScope, getCvSubstEnv,
-- ** Lifting
liftCoSubst, liftCoSubstTyVar, liftCoSubstWith, liftCoSubstWithEx,
emptyLiftingContext, extendLiftingContext, extendLiftingContextAndInScope,
liftCoSubstVarBndrUsing, isMappedByLC,
mkSubstLiftingContext, zapLiftingContext,
substForAllCoBndrUsingLC, lcSubst, lcInScopeSet,
LiftCoEnv, LiftingContext(..), liftEnvSubstLeft, liftEnvSubstRight,
substRightCo, substLeftCo, swapLiftCoEnv, lcSubstLeft, lcSubstRight,
-- ** Comparison
eqCoercion, eqCoercionX,
-- ** Forcing evaluation of coercions
seqCo,
-- * Pretty-printing
pprCo, pprParendCo,
pprCoAxiom, pprCoAxBranch, pprCoAxBranchLHS,
pprCoAxBranchUser, tidyCoAxBndrsForUser,
etaExpandCoAxBranch,
-- * Tidying
tidyCo, tidyCos,
-- * Other
promoteCoercion, buildCoercion,
multToCo,
hasCoercionHoleTy, hasCoercionHoleCo, hasThisCoercionHoleTy,
setCoHoleType
) where
import {-# SOURCE #-} GHC.CoreToIface (toIfaceTyCon, tidyToIfaceTcArgs)
import GHC.Prelude
import GHC.Iface.Type
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.FVs
import GHC.Core.TyCo.Ppr
import GHC.Core.TyCo.Subst
import GHC.Core.TyCo.Tidy
import GHC.Core.Type
import GHC.Core.TyCon
import GHC.Core.TyCon.RecWalk
import GHC.Core.Coercion.Axiom
import {-# SOURCE #-} GHC.Core.Utils ( mkFunctionType )
import GHC.Types.Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Name hiding ( varName )
import GHC.Types.Basic
import GHC.Types.Unique
import GHC.Data.Pair
import GHC.Types.SrcLoc
import GHC.Builtin.Names
import GHC.Builtin.Types.Prim
import GHC.Data.List.SetOps
import GHC.Data.Maybe
import GHC.Types.Unique.FM
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import Control.Monad (foldM, zipWithM)
import Data.Function ( on )
import Data.Char( isDigit )
import qualified Data.Monoid as Monoid
{-
%************************************************************************
%* *
-- The coercion arguments always *precisely* saturate
-- arity of (that branch of) the CoAxiom. If there are
-- any left over, we use AppCo. See
-- See [Coercion axioms applied to coercions] in GHC.Core.TyCo.Rep
\subsection{Coercion variables}
%* *
%************************************************************************
-}
coVarName :: CoVar -> Name
coVarName = varName
setCoVarUnique :: CoVar -> Unique -> CoVar
setCoVarUnique = setVarUnique
setCoVarName :: CoVar -> Name -> CoVar
setCoVarName = setVarName
{-
%************************************************************************
%* *
Pretty-printing CoAxioms
%* *
%************************************************************************
Defined here to avoid module loops. CoAxiom is loaded very early on.
-}
etaExpandCoAxBranch :: CoAxBranch -> ([TyVar], [Type], Type)
-- Return the (tvs,lhs,rhs) after eta-expanding,
-- to the way in which the axiom was originally written
-- See Note [Eta reduction for data families] in GHC.Core.Coercion.Axiom
etaExpandCoAxBranch (CoAxBranch { cab_tvs = tvs
, cab_eta_tvs = eta_tvs
, cab_lhs = lhs
, cab_rhs = rhs })
-- ToDo: what about eta_cvs?
= (tvs ++ eta_tvs, lhs ++ eta_tys, mkAppTys rhs eta_tys)
where
eta_tys = mkTyVarTys eta_tvs
pprCoAxiom :: CoAxiom br -> SDoc
-- Used in debug-printing only
pprCoAxiom ax@(CoAxiom { co_ax_tc = tc, co_ax_branches = branches })
= hang (text "axiom" <+> ppr ax <+> dcolon)
2 (vcat (map (pprCoAxBranchUser tc) (fromBranches branches)))
pprCoAxBranchUser :: TyCon -> CoAxBranch -> SDoc
-- Used when printing injectivity errors (FamInst.reportInjectivityErrors)
-- and inaccessible branches (GHC.Tc.Validity.inaccessibleCoAxBranch)
-- This happens in error messages: don't print the RHS of a data
-- family axiom, which is meaningless to a user
pprCoAxBranchUser tc br
| isDataFamilyTyCon tc = pprCoAxBranchLHS tc br
| otherwise = pprCoAxBranch tc br
pprCoAxBranchLHS :: TyCon -> CoAxBranch -> SDoc
-- Print the family-instance equation when reporting
-- a conflict between equations (FamInst.conflictInstErr)
-- For type families the RHS is important; for data families not so.
-- Indeed for data families the RHS is a mysterious internal
-- type constructor, so we suppress it (#14179)
-- See FamInstEnv Note [Family instance overlap conflicts]
pprCoAxBranchLHS = ppr_co_ax_branch pp_rhs
where
pp_rhs _ _ = empty
pprCoAxBranch :: TyCon -> CoAxBranch -> SDoc
pprCoAxBranch = ppr_co_ax_branch ppr_rhs
where
ppr_rhs env rhs = equals <+> pprPrecTypeX env topPrec rhs
ppr_co_ax_branch :: (TidyEnv -> Type -> SDoc)
-> TyCon -> CoAxBranch -> SDoc
ppr_co_ax_branch ppr_rhs fam_tc branch
= foldr1 (flip hangNotEmpty 2)
[ pprUserForAll (mkTyCoVarBinders Inferred bndrs')
-- See Note [Printing foralls in type family instances] in GHC.Iface.Type
, pp_lhs <+> ppr_rhs tidy_env ee_rhs
, text "-- Defined" <+> pp_loc ]
where
loc = coAxBranchSpan branch
pp_loc | isGoodSrcSpan loc = text "at" <+> ppr (srcSpanStart loc)
| otherwise = text "in" <+> ppr loc
-- Eta-expand LHS and RHS types, because sometimes data family
-- instances are eta-reduced.
-- See Note [Eta reduction for data families] in GHC.Core.Coercion.Axiom.
(ee_tvs, ee_lhs, ee_rhs) = etaExpandCoAxBranch branch
pp_lhs = pprIfaceTypeApp topPrec (toIfaceTyCon fam_tc)
(tidyToIfaceTcArgs tidy_env fam_tc ee_lhs)
(tidy_env, bndrs') = tidyCoAxBndrsForUser emptyTidyEnv ee_tvs
tidyCoAxBndrsForUser :: TidyEnv -> [Var] -> (TidyEnv, [Var])
-- Tidy wildcards "_1", "_2" to "_", and do not return them
-- in the list of binders to be printed
-- This is so that in error messages we see
-- forall a. F _ [a] _ = ...
-- rather than
-- forall a _1 _2. F _1 [a] _2 = ...
--
-- This is a rather disgusting function
-- See Note [Wildcard names] in GHC.Tc.Gen.HsType
tidyCoAxBndrsForUser init_env tcvs
= (tidy_env, reverse tidy_bndrs)
where
(tidy_env, tidy_bndrs) = foldl tidy_one (init_env, []) tcvs
tidy_one (env@(occ_env, subst), rev_bndrs') bndr
| is_wildcard bndr = (env_wild, rev_bndrs')
| otherwise = (env', bndr' : rev_bndrs')
where
(env', bndr') = tidyVarBndr env bndr
env_wild = (occ_env, extendVarEnv subst bndr wild_bndr)
wild_bndr = setVarName bndr $
tidyNameOcc (varName bndr) (mkTyVarOcc "_")
-- Tidy the binder to "_"
is_wildcard :: Var -> Bool
is_wildcard tv = case occNameString (getOccName tv) of
('_' : rest) -> all isDigit rest
_ -> False
{- *********************************************************************
* *
MCoercion
* *
********************************************************************* -}
coToMCo :: Coercion -> MCoercion
-- Convert a coercion to a MCoercion,
-- It's not clear whether or not isReflexiveCo would be better here
-- See #19815 for a bit of data and dicussion on this point
coToMCo co | isReflCo co = MRefl
| otherwise = MCo co
checkReflexiveMCo :: MCoercion -> MCoercion
checkReflexiveMCo MRefl = MRefl
checkReflexiveMCo (MCo co) | isReflexiveCo co = MRefl
| otherwise = MCo co
-- | Tests if this MCoercion is obviously generalized reflexive
-- Guaranteed to work very quickly.
isGReflMCo :: MCoercion -> Bool
isGReflMCo MRefl = True
isGReflMCo (MCo co) | isGReflCo co = True
isGReflMCo _ = False
-- | Make a generalized reflexive coercion
mkGReflCo :: Role -> Type -> MCoercionN -> Coercion
mkGReflCo r ty mco
| isGReflMCo mco = if r == Nominal then Refl ty
else GRefl r ty MRefl
| otherwise = GRefl r ty mco
-- | Compose two MCoercions via transitivity
mkTransMCo :: MCoercion -> MCoercion -> MCoercion
mkTransMCo MRefl co2 = co2
mkTransMCo co1 MRefl = co1
mkTransMCo (MCo co1) (MCo co2) = MCo (mkTransCo co1 co2)
mkTransMCoL :: MCoercion -> Coercion -> MCoercion
mkTransMCoL MRefl co2 = coToMCo co2
mkTransMCoL (MCo co1) co2 = MCo (mkTransCo co1 co2)
mkTransMCoR :: Coercion -> MCoercion -> MCoercion
mkTransMCoR co1 MRefl = coToMCo co1
mkTransMCoR co1 (MCo co2) = MCo (mkTransCo co1 co2)
-- | Get the reverse of an 'MCoercion'
mkSymMCo :: MCoercion -> MCoercion
mkSymMCo MRefl = MRefl
mkSymMCo (MCo co) = MCo (mkSymCo co)
-- | Cast a type by an 'MCoercion'
mkCastTyMCo :: Type -> MCoercion -> Type
mkCastTyMCo ty MRefl = ty
mkCastTyMCo ty (MCo co) = ty `mkCastTy` co
mkHomoForAllMCo :: TyCoVar -> MCoercion -> MCoercion
mkHomoForAllMCo _ MRefl = MRefl
mkHomoForAllMCo tcv (MCo co) = MCo (mkHomoForAllCos [tcv] co)
mkPiMCos :: [Var] -> MCoercion -> MCoercion
mkPiMCos _ MRefl = MRefl
mkPiMCos vs (MCo co) = MCo (mkPiCos Representational vs co)
mkFunResMCo :: Scaled Type -> MCoercionR -> MCoercionR
mkFunResMCo _ MRefl = MRefl
mkFunResMCo arg_ty (MCo co) = MCo (mkFunResCo Representational arg_ty co)
mkGReflLeftMCo :: Role -> Type -> MCoercionN -> Coercion
mkGReflLeftMCo r ty MRefl = mkReflCo r ty
mkGReflLeftMCo r ty (MCo co) = mkGReflLeftCo r ty co
mkGReflRightMCo :: Role -> Type -> MCoercionN -> Coercion
mkGReflRightMCo r ty MRefl = mkReflCo r ty
mkGReflRightMCo r ty (MCo co) = mkGReflRightCo r ty co
-- | Like 'mkCoherenceRightCo', but with an 'MCoercion'
mkCoherenceRightMCo :: Role -> Type -> MCoercionN -> Coercion -> Coercion
mkCoherenceRightMCo _ _ MRefl co2 = co2
mkCoherenceRightMCo r ty (MCo co) co2 = mkCoherenceRightCo r ty co co2
isReflMCo :: MCoercion -> Bool
isReflMCo MRefl = True
isReflMCo _ = False
{-
%************************************************************************
%* *
Destructing coercions
%* *
%************************************************************************
Note [Function coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~
Remember that
(->) :: forall {r1} {r2}. TYPE r1 -> TYPE r2 -> TYPE LiftedRep
whose `RuntimeRep' arguments are intentionally marked inferred to
avoid type application.
Hence
FunCo r mult co1 co2 :: (s1->t1) ~r (s2->t2)
is short for
TyConAppCo (->) mult co_rep1 co_rep2 co1 co2
where co_rep1, co_rep2 are the coercions on the representations.
-}
-- | This breaks a 'Coercion' with type @T A B C ~ T D E F@ into
-- a list of 'Coercion's of kinds @A ~ D@, @B ~ E@ and @E ~ F@. Hence:
--
-- > decomposeCo 3 c [r1, r2, r3] = [nth r1 0 c, nth r2 1 c, nth r3 2 c]
decomposeCo :: Arity -> Coercion
-> [Role] -- the roles of the output coercions
-- this must have at least as many
-- entries as the Arity provided
-> [Coercion]
decomposeCo arity co rs
= [mkNthCo r n co | (n,r) <- [0..(arity-1)] `zip` rs ]
-- Remember, Nth is zero-indexed
decomposeFunCo :: HasDebugCallStack
=> Role -- Role of the input coercion
-> Coercion -- Input coercion
-> (CoercionN, Coercion, Coercion)
-- Expects co :: (s1 -> t1) ~ (s2 -> t2)
-- Returns (co1 :: s1~s2, co2 :: t1~t2)
-- See Note [Function coercions] for the "3" and "4"
decomposeFunCo _ (FunCo _ w co1 co2) = (w, co1, co2)
-- Short-circuits the calls to mkNthCo
decomposeFunCo r co = assertPpr all_ok (ppr co)
(mkNthCo Nominal 0 co, mkNthCo r 3 co, mkNthCo r 4 co)
where
Pair s1t1 s2t2 = coercionKind co
all_ok = isFunTy s1t1 && isFunTy s2t2
{- Note [Pushing a coercion into a pi-type]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have this:
(f |> co) t1 .. tn
Then we want to push the coercion into the arguments, so as to make
progress. For example of why you might want to do so, see Note
[Respecting definitional equality] in GHC.Core.TyCo.Rep.
This is done by decomposePiCos. Specifically, if
decomposePiCos co [t1,..,tn] = ([co1,...,cok], cor)
then
(f |> co) t1 .. tn = (f (t1 |> co1) ... (tk |> cok)) |> cor) t(k+1) ... tn
Notes:
* k can be smaller than n! That is decomposePiCos can return *fewer*
coercions than there are arguments (ie k < n), if the kind provided
doesn't have enough binders.
* If there is a type error, we might see
(f |> co) t1
where co :: (forall a. ty) ~ (ty1 -> ty2)
Here 'co' is insoluble, but we don't want to crash in decoposePiCos.
So decomposePiCos carefully tests both sides of the coercion to check
they are both foralls or both arrows. Not doing this caused #15343.
-}
decomposePiCos :: HasDebugCallStack
=> CoercionN -> Pair Type -- Coercion and its kind
-> [Type]
-> ([CoercionN], CoercionN)
-- See Note [Pushing a coercion into a pi-type]
decomposePiCos orig_co (Pair orig_k1 orig_k2) orig_args
= go [] (orig_subst,orig_k1) orig_co (orig_subst,orig_k2) orig_args
where
orig_subst = mkEmptySubst $ mkInScopeSet $
tyCoVarsOfTypes orig_args `unionVarSet` tyCoVarsOfCo orig_co
go :: [CoercionN] -- accumulator for argument coercions, reversed
-> (Subst,Kind) -- Lhs kind of coercion
-> CoercionN -- coercion originally applied to the function
-> (Subst,Kind) -- Rhs kind of coercion
-> [Type] -- Arguments to that function
-> ([CoercionN], Coercion)
-- Invariant: co :: subst1(k1) ~ subst2(k2)
go acc_arg_cos (subst1,k1) co (subst2,k2) (ty:tys)
| Just (a, t1) <- splitForAllTyCoVar_maybe k1
, Just (b, t2) <- splitForAllTyCoVar_maybe k2
-- know co :: (forall a:s1.t1) ~ (forall b:s2.t2)
-- function :: forall a:s1.t1 (the function is not passed to decomposePiCos)
-- a :: s1
-- b :: s2
-- ty :: s2
-- need arg_co :: s2 ~ s1
-- res_co :: t1[ty |> arg_co / a] ~ t2[ty / b]
= let arg_co = mkNthCo Nominal 0 (mkSymCo co)
res_co = mkInstCo co (mkGReflLeftCo Nominal ty arg_co)
subst1' = extendTCvSubst subst1 a (ty `CastTy` arg_co)
subst2' = extendTCvSubst subst2 b ty
in
go (arg_co : acc_arg_cos) (subst1', t1) res_co (subst2', t2) tys
| Just (_w1, _s1, t1) <- splitFunTy_maybe k1
, Just (_w1, _s2, t2) <- splitFunTy_maybe k2
-- know co :: (s1 -> t1) ~ (s2 -> t2)
-- function :: s1 -> t1
-- ty :: s2
-- need arg_co :: s2 ~ s1
-- res_co :: t1 ~ t2
= let (_, sym_arg_co, res_co) = decomposeFunCo Nominal co
-- It should be fine to ignore the multiplicity bit of the coercion
-- for a Nominal coercion.
arg_co = mkSymCo sym_arg_co
in
go (arg_co : acc_arg_cos) (subst1,t1) res_co (subst2,t2) tys
| not (isEmptyTCvSubst subst1) || not (isEmptyTCvSubst subst2)
= go acc_arg_cos (zapSubst subst1, substTy subst1 k1)
co
(zapSubst subst2, substTy subst1 k2)
(ty:tys)
-- tys might not be empty, if the left-hand type of the original coercion
-- didn't have enough binders
go acc_arg_cos _ki1 co _ki2 _tys = (reverse acc_arg_cos, co)
-- | Extract a covar, if possible. This check is dirty. Be ashamed
-- of yourself. (It's dirty because it cares about the structure of
-- a coercion, which is morally reprehensible.)
getCoVar_maybe :: Coercion -> Maybe CoVar
getCoVar_maybe (CoVarCo cv) = Just cv
getCoVar_maybe _ = Nothing
-- | Attempts to tease a coercion apart into a type constructor and the application
-- of a number of coercion arguments to that constructor
splitTyConAppCo_maybe :: Coercion -> Maybe (TyCon, [Coercion])
splitTyConAppCo_maybe co
| Just (ty, r) <- isReflCo_maybe co
= do { (tc, tys) <- splitTyConApp_maybe ty
; let args = zipWith mkReflCo (tyConRolesX r tc) tys
; return (tc, args) }
splitTyConAppCo_maybe (TyConAppCo _ tc cos) = Just (tc, cos)
splitTyConAppCo_maybe (FunCo _ w arg res) = Just (funTyCon, cos)
where cos = [w, mkRuntimeRepCo arg, mkRuntimeRepCo res, arg, res]
splitTyConAppCo_maybe _ = Nothing
multToCo :: Mult -> Coercion
multToCo r = mkNomReflCo r
-- first result has role equal to input; third result is Nominal
splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
-- ^ Attempt to take a coercion application apart.
splitAppCo_maybe (AppCo co arg) = Just (co, arg)
splitAppCo_maybe (TyConAppCo r tc args)
| args `lengthExceeds` tyConArity tc
, Just (args', arg') <- snocView args
= Just ( mkTyConAppCo r tc args', arg' )
| not (mustBeSaturated tc)
-- Never create unsaturated type family apps!
, Just (args', arg') <- snocView args
, Just arg'' <- setNominalRole_maybe (nthRole r tc (length args')) arg'
= Just ( mkTyConAppCo r tc args', arg'' )
-- Use mkTyConAppCo to preserve the invariant
-- that identity coercions are always represented by Refl
splitAppCo_maybe co
| Just (ty, r) <- isReflCo_maybe co
, Just (ty1, ty2) <- splitAppTy_maybe ty
= Just (mkReflCo r ty1, mkNomReflCo ty2)
splitAppCo_maybe _ = Nothing
-- Only used in specialise/Rules
splitFunCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
splitFunCo_maybe (FunCo _ _ arg res) = Just (arg, res)
splitFunCo_maybe _ = Nothing
splitForAllCo_maybe :: Coercion -> Maybe (TyCoVar, Coercion, Coercion)
splitForAllCo_maybe (ForAllCo tv k_co co) = Just (tv, k_co, co)
splitForAllCo_maybe _ = Nothing
-- | Like 'splitForAllCo_maybe', but only returns Just for tyvar binder
splitForAllCo_ty_maybe :: Coercion -> Maybe (TyVar, Coercion, Coercion)
splitForAllCo_ty_maybe (ForAllCo tv k_co co)
| isTyVar tv = Just (tv, k_co, co)
splitForAllCo_ty_maybe _ = Nothing
-- | Like 'splitForAllCo_maybe', but only returns Just for covar binder
splitForAllCo_co_maybe :: Coercion -> Maybe (CoVar, Coercion, Coercion)
splitForAllCo_co_maybe (ForAllCo cv k_co co)
| isCoVar cv = Just (cv, k_co, co)
splitForAllCo_co_maybe _ = Nothing
-------------------------------------------------------
-- and some coercion kind stuff
coVarLType, coVarRType :: HasDebugCallStack => CoVar -> Type
coVarLType cv | (_, _, ty1, _, _) <- coVarKindsTypesRole cv = ty1
coVarRType cv | (_, _, _, ty2, _) <- coVarKindsTypesRole cv = ty2
coVarTypes :: HasDebugCallStack => CoVar -> Pair Type
coVarTypes cv
| (_, _, ty1, ty2, _) <- coVarKindsTypesRole cv
= Pair ty1 ty2
coVarKindsTypesRole :: HasDebugCallStack => CoVar -> (Kind,Kind,Type,Type,Role)
coVarKindsTypesRole cv
| Just (tc, [k1,k2,ty1,ty2]) <- splitTyConApp_maybe (varType cv)
= (k1, k2, ty1, ty2, eqTyConRole tc)
| otherwise
= pprPanic "coVarKindsTypesRole, non coercion variable"
(ppr cv $$ ppr (varType cv))
coVarKind :: CoVar -> Type
coVarKind cv
= assert (isCoVar cv )
varType cv
coVarRole :: CoVar -> Role
coVarRole cv
= eqTyConRole (case tyConAppTyCon_maybe (varType cv) of
Just tc0 -> tc0
Nothing -> pprPanic "coVarRole: not tyconapp" (ppr cv))
eqTyConRole :: TyCon -> Role
-- Given (~#) or (~R#) return the Nominal or Representational respectively
eqTyConRole tc
| tc `hasKey` eqPrimTyConKey
= Nominal
| tc `hasKey` eqReprPrimTyConKey
= Representational
| otherwise
= pprPanic "eqTyConRole: unknown tycon" (ppr tc)
-- | Given a coercion @co1 :: (a :: TYPE r1) ~ (b :: TYPE r2)@,
-- produce a coercion @rep_co :: r1 ~ r2@.
mkRuntimeRepCo :: HasDebugCallStack => Coercion -> Coercion
mkRuntimeRepCo co
= mkNthCo Nominal 0 kind_co
where
kind_co = mkKindCo co -- kind_co :: TYPE r1 ~ TYPE r2
-- (up to silliness with Constraint)
isReflCoVar_maybe :: Var -> Maybe Coercion
-- If cv :: t~t then isReflCoVar_maybe cv = Just (Refl t)
-- Works on all kinds of Vars, not just CoVars
isReflCoVar_maybe cv
| isCoVar cv
, Pair ty1 ty2 <- coVarTypes cv
, ty1 `eqType` ty2
= Just (mkReflCo (coVarRole cv) ty1)
| otherwise
= Nothing
-- | Tests if this coercion is obviously a generalized reflexive coercion.
-- Guaranteed to work very quickly.
isGReflCo :: Coercion -> Bool
isGReflCo (GRefl{}) = True
isGReflCo (Refl{}) = True -- Refl ty == GRefl N ty MRefl
isGReflCo _ = False
-- | Tests if this coercion is obviously reflexive. Guaranteed to work
-- very quickly. Sometimes a coercion can be reflexive, but not obviously
-- so. c.f. 'isReflexiveCo'
isReflCo :: Coercion -> Bool
isReflCo (Refl{}) = True
isReflCo (GRefl _ _ mco) | isGReflMCo mco = True
isReflCo _ = False
-- | Returns the type coerced if this coercion is a generalized reflexive
-- coercion. Guaranteed to work very quickly.
isGReflCo_maybe :: Coercion -> Maybe (Type, Role)
isGReflCo_maybe (GRefl r ty _) = Just (ty, r)
isGReflCo_maybe (Refl ty) = Just (ty, Nominal)
isGReflCo_maybe _ = Nothing
-- | Returns the type coerced if this coercion is reflexive. Guaranteed
-- to work very quickly. Sometimes a coercion can be reflexive, but not
-- obviously so. c.f. 'isReflexiveCo_maybe'
isReflCo_maybe :: Coercion -> Maybe (Type, Role)
isReflCo_maybe (Refl ty) = Just (ty, Nominal)
isReflCo_maybe (GRefl r ty mco) | isGReflMCo mco = Just (ty, r)
isReflCo_maybe _ = Nothing
-- | Slowly checks if the coercion is reflexive. Don't call this in a loop,
-- as it walks over the entire coercion.
isReflexiveCo :: Coercion -> Bool
isReflexiveCo = isJust . isReflexiveCo_maybe
-- | Extracts the coerced type from a reflexive coercion. This potentially
-- walks over the entire coercion, so avoid doing this in a loop.
isReflexiveCo_maybe :: Coercion -> Maybe (Type, Role)
isReflexiveCo_maybe (Refl ty) = Just (ty, Nominal)
isReflexiveCo_maybe (GRefl r ty mco) | isGReflMCo mco = Just (ty, r)
isReflexiveCo_maybe co
| ty1 `eqType` ty2
= Just (ty1, r)
| otherwise
= Nothing
where (Pair ty1 ty2, r) = coercionKindRole co
{-
%************************************************************************
%* *
Building coercions
%* *
%************************************************************************
These "smart constructors" maintain the invariants listed in the definition
of Coercion, and they perform very basic optimizations.
Note [Role twiddling functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are a plethora of functions for twiddling roles:
mkSubCo: Requires a nominal input coercion and always produces a
representational output. This is used when you (the programmer) are sure you
know exactly that role you have and what you want.
downgradeRole_maybe: This function takes both the input role and the output role
as parameters. (The *output* role comes first!) It can only *downgrade* a
role -- that is, change it from N to R or P, or from R to P. This one-way
behavior is why there is the "_maybe". If an upgrade is requested, this
function produces Nothing. This is used when you need to change the role of a
coercion, but you're not sure (as you're writing the code) of which roles are
involved.
This function could have been written using coercionRole to ascertain the role
of the input. But, that function is recursive, and the caller of downgradeRole_maybe
often knows the input role. So, this is more efficient.
downgradeRole: This is just like downgradeRole_maybe, but it panics if the
conversion isn't a downgrade.
setNominalRole_maybe: This is the only function that can *upgrade* a coercion.
The result (if it exists) is always Nominal. The input can be at any role. It
works on a "best effort" basis, as it should never be strictly necessary to
upgrade a coercion during compilation. It is currently only used within GHC in
splitAppCo_maybe. In order to be a proper inverse of mkAppCo, the second
coercion that splitAppCo_maybe returns must be nominal. But, it's conceivable
that splitAppCo_maybe is operating over a TyConAppCo that uses a
representational coercion. Hence the need for setNominalRole_maybe.
splitAppCo_maybe, in turn, is used only within coercion optimization -- thus,
it is not absolutely critical that setNominalRole_maybe be complete.
Note that setNominalRole_maybe will never upgrade a phantom UnivCo. Phantom
UnivCos are perfectly type-safe, whereas representational and nominal ones are
not. (Nominal ones are no worse than representational ones, so this function *will*
change a UnivCo Representational to a UnivCo Nominal.)
Conal Elliott also came across a need for this function while working with the
GHC API, as he was decomposing Core casts. The Core casts use representational
coercions, as they must, but his use case required nominal coercions (he was
building a GADT). So, that's why this function is exported from this module.
One might ask: shouldn't downgradeRole_maybe just use setNominalRole_maybe as
appropriate? I (Richard E.) have decided not to do this, because upgrading a
role is bizarre and a caller should have to ask for this behavior explicitly.
-}
-- | Make a reflexive coercion
mkReflCo :: Role -> Type -> Coercion
mkReflCo Nominal ty = Refl ty
mkReflCo r ty = GRefl r ty MRefl
-- | Make a representational reflexive coercion
mkRepReflCo :: Type -> Coercion
mkRepReflCo ty = GRefl Representational ty MRefl
-- | Make a nominal reflexive coercion
mkNomReflCo :: Type -> Coercion
mkNomReflCo = Refl
-- | Apply a type constructor to a list of coercions. It is the
-- caller's responsibility to get the roles correct on argument coercions.
mkTyConAppCo :: HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo r tc cos
| [w, _rep1, _rep2, co1, co2] <- cos -- See Note [Function coercions]
, isFunTyCon tc
= -- (a :: TYPE ra) -> (b :: TYPE rb) ~ (c :: TYPE rc) -> (d :: TYPE rd)
-- rep1 :: ra ~ rc rep2 :: rb ~ rd
-- co1 :: a ~ c co2 :: b ~ d
mkFunCo r w co1 co2
-- Expand type synonyms
| Just (tv_co_prs, rhs_ty, leftover_cos) <- expandSynTyCon_maybe tc cos
= mkAppCos (liftCoSubst r (mkLiftingContext tv_co_prs) rhs_ty) leftover_cos
| Just tys_roles <- traverse isReflCo_maybe cos
= mkReflCo r (mkTyConApp tc (map fst tys_roles))
-- See Note [Refl invariant]
| otherwise = TyConAppCo r tc cos
-- | Build a function 'Coercion' from two other 'Coercion's. That is,
-- given @co1 :: a ~ b@ and @co2 :: x ~ y@ produce @co :: (a -> x) ~ (b -> y)@
-- or @(a => x) ~ (b => y)@, depending on the kind of @a@/@b@.
mkFunCo :: Role -> CoercionN -> Coercion -> Coercion -> Coercion
mkFunCo r w co1 co2
-- See Note [Refl invariant]
| Just (ty1, _) <- isReflCo_maybe co1
, Just (ty2, _) <- isReflCo_maybe co2
, Just (w, _) <- isReflCo_maybe w
= mkReflCo r (mkFunctionType w ty1 ty2)
| otherwise = FunCo r w co1 co2
-- | Apply a 'Coercion' to another 'Coercion'.
-- The second coercion must be Nominal, unless the first is Phantom.
-- If the first is Phantom, then the second can be either Phantom or Nominal.
mkAppCo :: Coercion -- ^ :: t1 ~r t2
-> Coercion -- ^ :: s1 ~N s2, where s1 :: k1, s2 :: k2
-> Coercion -- ^ :: t1 s1 ~r t2 s2
mkAppCo co arg
| Just (ty1, r) <- isReflCo_maybe co
, Just (ty2, _) <- isReflCo_maybe arg
= mkReflCo r (mkAppTy ty1 ty2)
| Just (ty1, r) <- isReflCo_maybe co
, Just (tc, tys) <- splitTyConApp_maybe ty1
-- Expand type synonyms; a TyConAppCo can't have a type synonym (#9102)
= mkTyConAppCo r tc (zip_roles (tyConRolesX r tc) tys)
where
zip_roles (r1:_) [] = [downgradeRole r1 Nominal arg]
zip_roles (r1:rs) (ty1:tys) = mkReflCo r1 ty1 : zip_roles rs tys
zip_roles _ _ = panic "zip_roles" -- but the roles are infinite...
mkAppCo (TyConAppCo r tc args) arg
= case r of
Nominal -> mkTyConAppCo Nominal tc (args ++ [arg])
Representational -> mkTyConAppCo Representational tc (args ++ [arg'])
where new_role = (tyConRolesRepresentational tc) !! (length args)
arg' = downgradeRole new_role Nominal arg
Phantom -> mkTyConAppCo Phantom tc (args ++ [toPhantomCo arg])
mkAppCo co arg = AppCo co arg
-- Note, mkAppCo is careful to maintain invariants regarding
-- where Refl constructors appear; see the comments in the definition
-- of Coercion and the Note [Refl invariant] in GHC.Core.TyCo.Rep.
-- | Applies multiple 'Coercion's to another 'Coercion', from left to right.
-- See also 'mkAppCo'.
mkAppCos :: Coercion
-> [Coercion]
-> Coercion
mkAppCos co1 cos = foldl' mkAppCo co1 cos
{- Note [Unused coercion variable in ForAllCo]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See Note [Unused coercion variable in ForAllTy] in GHC.Core.TyCo.Rep for the
motivation for checking coercion variable in types.
To lift the design choice to (ForAllCo cv kind_co body_co), we have two options:
(1) In mkForAllCo, we check whether cv is a coercion variable
and whether it is not used in body_co. If so we construct a FunCo.
(2) We don't do this check in mkForAllCo.
In coercionKind, we use mkTyCoForAllTy to perform the check and construct
a FunTy when necessary.
We chose (2) for two reasons:
* for a coercion, all that matters is its kind, So ForAllCo or FunCo does not
make a difference.
* even if cv occurs in body_co, it is possible that cv does not occur in the kind
of body_co. Therefore the check in coercionKind is inevitable.
The last wrinkle is that there are restrictions around the use of the cv in the
coercion, as described in Section 5.8.5.2 of Richard's thesis. The idea is that
we cannot prove that the type system is consistent with unrestricted use of this
cv; the consistency proof uses an untyped rewrite relation that works over types
with all coercions and casts removed. So, we can allow the cv to appear only in
positions that are erased. As an approximation of this (and keeping close to the
published theory), we currently allow the cv only within the type in a Refl node
and under a GRefl node (including in the Coercion stored in a GRefl). It's
possible other places are OK, too, but this is a safe approximation.
Sadly, with heterogeneous equality, this restriction might be able to be violated;
Richard's thesis is unable to prove that it isn't. Specifically, the liftCoSubst
function might create an invalid coercion. Because a violation of the
restriction might lead to a program that "goes wrong", it is checked all the time,
even in a production compiler and without -dcore-list. We *have* proved that the
problem does not occur with homogeneous equality, so this check can be dropped
once ~# is made to be homogeneous.
-}
-- | Make a Coercion from a tycovar, a kind coercion, and a body coercion.
-- The kind of the tycovar should be the left-hand kind of the kind coercion.
-- See Note [Unused coercion variable in ForAllCo]
mkForAllCo :: TyCoVar -> CoercionN -> Coercion -> Coercion
mkForAllCo v kind_co co
| assert (varType v `eqType` (coercionLKind kind_co)) True
, assert (isTyVar v || almostDevoidCoVarOfCo v co) True
, Just (ty, r) <- isReflCo_maybe co
, isGReflCo kind_co
= mkReflCo r (mkTyCoInvForAllTy v ty)
| otherwise
= ForAllCo v kind_co co
-- | Like 'mkForAllCo', but the inner coercion shouldn't be an obvious
-- reflexive coercion. For example, it is guaranteed in 'mkForAllCos'.
-- The kind of the tycovar should be the left-hand kind of the kind coercion.
mkForAllCo_NoRefl :: TyCoVar -> CoercionN -> Coercion -> Coercion
mkForAllCo_NoRefl v kind_co co
| assert (varType v `eqType` (coercionLKind kind_co)) True
, assert (isTyVar v || almostDevoidCoVarOfCo v co) True
, assert (not (isReflCo co)) True
, isCoVar v
, not (v `elemVarSet` tyCoVarsOfCo co)
= FunCo (coercionRole co) (multToCo Many) kind_co co
-- Functions from coercions are always unrestricted
| otherwise
= ForAllCo v kind_co co
-- | Make nested ForAllCos
mkForAllCos :: [(TyCoVar, CoercionN)] -> Coercion -> Coercion
mkForAllCos bndrs co
| Just (ty, r ) <- isReflCo_maybe co
= let (refls_rev'd, non_refls_rev'd) = span (isReflCo . snd) (reverse bndrs) in
foldl' (flip $ uncurry mkForAllCo_NoRefl)
(mkReflCo r (mkTyCoInvForAllTys (reverse (map fst refls_rev'd)) ty))
non_refls_rev'd
| otherwise
= foldr (uncurry mkForAllCo_NoRefl) co bndrs
-- | Make a Coercion quantified over a type/coercion variable;
-- the variable has the same type in both sides of the coercion
mkHomoForAllCos :: [TyCoVar] -> Coercion -> Coercion
mkHomoForAllCos vs co
| Just (ty, r) <- isReflCo_maybe co
= mkReflCo r (mkTyCoInvForAllTys vs ty)
| otherwise
= mkHomoForAllCos_NoRefl vs co
-- | Like 'mkHomoForAllCos', but the inner coercion shouldn't be an obvious
-- reflexive coercion. For example, it is guaranteed in 'mkHomoForAllCos'.
mkHomoForAllCos_NoRefl :: [TyCoVar] -> Coercion -> Coercion
mkHomoForAllCos_NoRefl vs orig_co
= assert (not (isReflCo orig_co))
foldr go orig_co vs
where
go v co = mkForAllCo_NoRefl v (mkNomReflCo (varType v)) co
mkCoVarCo :: CoVar -> Coercion
-- cv :: s ~# t
-- See Note [mkCoVarCo]
mkCoVarCo cv = CoVarCo cv
mkCoVarCos :: [CoVar] -> [Coercion]
mkCoVarCos = map mkCoVarCo
{- Note [mkCoVarCo]
~~~~~~~~~~~~~~~~~~~
In the past, mkCoVarCo optimised (c :: t~t) to (Refl t). That is
valid (although see Note [Unbound RULE binders] in GHC.Core.Rules), but
it's a relatively expensive test and perhaps better done in
optCoercion. Not a big deal either way.
-}
mkAxInstCo :: Role -> CoAxiom br -> BranchIndex -> [Type] -> [Coercion]
-> Coercion
-- mkAxInstCo can legitimately be called over-staturated;
-- i.e. with more type arguments than the coercion requires
mkAxInstCo role ax index tys cos
| arity == n_tys = downgradeRole role ax_role $
mkAxiomInstCo ax_br index (rtys `chkAppend` cos)
| otherwise = assert (arity < n_tys) $
downgradeRole role ax_role $
mkAppCos (mkAxiomInstCo ax_br index
(ax_args `chkAppend` cos))
leftover_args
where
n_tys = length tys
ax_br = toBranchedAxiom ax
branch = coAxiomNthBranch ax_br index
tvs = coAxBranchTyVars branch
arity = length tvs
arg_roles = coAxBranchRoles branch
rtys = zipWith mkReflCo (arg_roles ++ repeat Nominal) tys
(ax_args, leftover_args)
= splitAt arity rtys
ax_role = coAxiomRole ax
-- worker function
mkAxiomInstCo :: CoAxiom Branched -> BranchIndex -> [Coercion] -> Coercion
mkAxiomInstCo ax index args
= assert (args `lengthIs` coAxiomArity ax index) $
AxiomInstCo ax index args
-- to be used only with unbranched axioms
mkUnbranchedAxInstCo :: Role -> CoAxiom Unbranched
-> [Type] -> [Coercion] -> Coercion
mkUnbranchedAxInstCo role ax tys cos
= mkAxInstCo role ax 0 tys cos
mkAxInstRHS :: CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type
-- Instantiate the axiom with specified types,
-- returning the instantiated RHS
-- A companion to mkAxInstCo:
-- mkAxInstRhs ax index tys = snd (coercionKind (mkAxInstCo ax index tys))
mkAxInstRHS ax index tys cos
= assert (tvs `equalLength` tys1) $
mkAppTys rhs' tys2
where
branch = coAxiomNthBranch ax index
tvs = coAxBranchTyVars branch
cvs = coAxBranchCoVars branch
(tys1, tys2) = splitAtList tvs tys
rhs' = substTyWith tvs tys1 $
substTyWithCoVars cvs cos $
coAxBranchRHS branch
mkUnbranchedAxInstRHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type
mkUnbranchedAxInstRHS ax = mkAxInstRHS ax 0
-- | Return the left-hand type of the axiom, when the axiom is instantiated
-- at the types given.
mkAxInstLHS :: CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type
mkAxInstLHS ax index tys cos
= assert (tvs `equalLength` tys1) $
mkTyConApp fam_tc (lhs_tys `chkAppend` tys2)
where
branch = coAxiomNthBranch ax index
tvs = coAxBranchTyVars branch
cvs = coAxBranchCoVars branch
(tys1, tys2) = splitAtList tvs tys
lhs_tys = substTysWith tvs tys1 $
substTysWithCoVars cvs cos $
coAxBranchLHS branch
fam_tc = coAxiomTyCon ax
-- | Instantiate the left-hand side of an unbranched axiom
mkUnbranchedAxInstLHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type
mkUnbranchedAxInstLHS ax = mkAxInstLHS ax 0
-- | Make a coercion from a coercion hole
mkHoleCo :: CoercionHole -> Coercion
mkHoleCo h = HoleCo h
-- | Make a universal coercion between two arbitrary types.
mkUnivCo :: UnivCoProvenance
-> Role -- ^ role of the built coercion, "r"
-> Type -- ^ t1 :: k1
-> Type -- ^ t2 :: k2
-> Coercion -- ^ :: t1 ~r t2
mkUnivCo prov role ty1 ty2
| ty1 `eqType` ty2 = mkReflCo role ty1
| otherwise = UnivCo prov role ty1 ty2
-- | Create a symmetric version of the given 'Coercion' that asserts
-- equality between the same types but in the other "direction", so
-- a kind of @t1 ~ t2@ becomes the kind @t2 ~ t1@.
mkSymCo :: Coercion -> Coercion
-- Do a few simple optimizations, but don't bother pushing occurrences
-- of symmetry to the leaves; the optimizer will take care of that.
mkSymCo co | isReflCo co = co
mkSymCo (SymCo co) = co
mkSymCo (SubCo (SymCo co)) = SubCo co
mkSymCo co = SymCo co
-- | Create a new 'Coercion' by composing the two given 'Coercion's transitively.
-- (co1 ; co2)
mkTransCo :: Coercion -> Coercion -> Coercion
mkTransCo co1 co2 | isReflCo co1 = co2
| isReflCo co2 = co1
mkTransCo (GRefl r t1 (MCo co1)) (GRefl _ _ (MCo co2))
= GRefl r t1 (MCo $ mkTransCo co1 co2)
mkTransCo co1 co2 = TransCo co1 co2
mkNthCo :: HasDebugCallStack
=> Role -- The role of the coercion you're creating
-> Int -- Zero-indexed
-> Coercion
-> Coercion
mkNthCo r n co
= assertPpr good_call bad_call_msg $
go n co
where
Pair ty1 ty2 = coercionKind co
go 0 co
| Just (ty, _) <- isReflCo_maybe co
, Just (tv, _) <- splitForAllTyCoVar_maybe ty
= -- works for both tyvar and covar
assert (r == Nominal) $
mkNomReflCo (varType tv)
go n co
| Just (ty, r0) <- isReflCo_maybe co
, let tc = tyConAppTyCon ty
= assertPpr (ok_tc_app ty n) (ppr n $$ ppr ty) $
assert (nthRole r0 tc n == r) $
mkReflCo r (tyConAppArgN n ty)
where ok_tc_app :: Type -> Int -> Bool
ok_tc_app ty n
| Just (_, tys) <- splitTyConApp_maybe ty
= tys `lengthExceeds` n
| isForAllTy ty -- nth:0 pulls out a kind coercion from a hetero forall
= n == 0
| otherwise
= False
go 0 (ForAllCo _ kind_co _)
= assert (r == Nominal)
kind_co
-- If co :: (forall a1:k1. t1) ~ (forall a2:k2. t2)
-- then (nth 0 co :: k1 ~N k2)
-- If co :: (forall a1:t1 ~ t2. t1) ~ (forall a2:t3 ~ t4. t2)
-- then (nth 0 co :: (t1 ~ t2) ~N (t3 ~ t4))
go n (FunCo _ w arg res)
= mkNthCoFunCo n w arg res
go n (TyConAppCo r0 tc arg_cos) = assertPpr (r == nthRole r0 tc n)
(vcat [ ppr tc
, ppr arg_cos
, ppr r0
, ppr n
, ppr r ]) $
arg_cos `getNth` n
go n (SymCo co) -- Recurse, hoping to get to a TyConAppCo or FunCo
= mkSymCo (go n co)
go n co
= NthCo r n co
-- Assertion checking
bad_call_msg = vcat [ text "Coercion =" <+> ppr co
, text "LHS ty =" <+> ppr ty1
, text "RHS ty =" <+> ppr ty2
, text "n =" <+> ppr n, text "r =" <+> ppr r
, text "coercion role =" <+> ppr (coercionRole co) ]
good_call
-- If the Coercion passed in is between forall-types, then the Int must
-- be 0 and the role must be Nominal.
| Just (_tv1, _) <- splitForAllTyCoVar_maybe ty1
, Just (_tv2, _) <- splitForAllTyCoVar_maybe ty2
= n == 0 && r == Nominal
-- If the Coercion passed in is between T tys and T tys', then the Int
-- must be less than the length of tys/tys' (which must be the same
-- lengths).
--
-- If the role of the Coercion is nominal, then the role passed in must
-- be nominal. If the role of the Coercion is representational, then the
-- role passed in must be tyConRolesRepresentational T !! n. If the role
-- of the Coercion is Phantom, then the role passed in must be Phantom.
--
-- See also Note [NthCo Cached Roles] if you're wondering why it's
-- blaringly obvious that we should be *computing* this role instead of
-- passing it in.
| Just (tc1, tys1) <- splitTyConApp_maybe ty1
, Just (tc2, tys2) <- splitTyConApp_maybe ty2
, tc1 == tc2
= let len1 = length tys1
len2 = length tys2
good_role = case coercionRole co of
Nominal -> r == Nominal
Representational -> r == (tyConRolesRepresentational tc1 !! n)
Phantom -> r == Phantom
in len1 == len2 && n < len1 && good_role
| otherwise
= True
-- | Extract the nth field of a FunCo
mkNthCoFunCo :: Int -- ^ "n"
-> CoercionN -- ^ multiplicity coercion
-> Coercion -- ^ argument coercion
-> Coercion -- ^ result coercion
-> Coercion -- ^ nth coercion from a FunCo
-- See Note [Function coercions]
-- If FunCo _ mult arg_co res_co :: (s1:TYPE sk1 :mult-> s2:TYPE sk2)
-- ~ (t1:TYPE tk1 :mult-> t2:TYPE tk2)
-- Then we want to behave as if co was
-- TyConAppCo mult argk_co resk_co arg_co res_co
-- where
-- argk_co :: sk1 ~ tk1 = mkNthCo 0 (mkKindCo arg_co)
-- resk_co :: sk2 ~ tk2 = mkNthCo 0 (mkKindCo res_co)
-- i.e. mkRuntimeRepCo
mkNthCoFunCo n w co1 co2 = case n of
0 -> w
1 -> mkRuntimeRepCo co1
2 -> mkRuntimeRepCo co2
3 -> co1
4 -> co2
_ -> pprPanic "mkNthCo(FunCo)" (ppr n $$ ppr w $$ ppr co1 $$ ppr co2)
-- | If you're about to call @mkNthCo r n co@, then @r@ should be
-- whatever @nthCoRole n co@ returns.
nthCoRole :: Int -> Coercion -> Role
nthCoRole n co
| Just (tc, _) <- splitTyConApp_maybe lty
= nthRole r tc n
| Just _ <- splitForAllTyCoVar_maybe lty
= Nominal
| otherwise
= pprPanic "nthCoRole" (ppr co)
where
lty = coercionLKind co
r = coercionRole co
mkLRCo :: LeftOrRight -> Coercion -> Coercion
mkLRCo lr co
| Just (ty, eq) <- isReflCo_maybe co
= mkReflCo eq (pickLR lr (splitAppTy ty))
| otherwise
= LRCo lr co
-- | Instantiates a 'Coercion'.
mkInstCo :: Coercion -> Coercion -> Coercion
mkInstCo (ForAllCo tcv _kind_co body_co) co
| Just (arg, _) <- isReflCo_maybe co
-- works for both tyvar and covar
= substCoUnchecked (zipTCvSubst [tcv] [arg]) body_co
mkInstCo co arg = InstCo co arg
-- | Given @ty :: k1@, @co :: k1 ~ k2@,
-- produces @co' :: ty ~r (ty |> co)@
mkGReflRightCo :: Role -> Type -> CoercionN -> Coercion
mkGReflRightCo r ty co
| isGReflCo co = mkReflCo r ty
-- the kinds of @k1@ and @k2@ are the same, thus @isGReflCo@
-- instead of @isReflCo@
| otherwise = GRefl r ty (MCo co)
-- | Given @ty :: k1@, @co :: k1 ~ k2@,
-- produces @co' :: (ty |> co) ~r ty@
mkGReflLeftCo :: Role -> Type -> CoercionN -> Coercion
mkGReflLeftCo r ty co
| isGReflCo co = mkReflCo r ty
-- the kinds of @k1@ and @k2@ are the same, thus @isGReflCo@
-- instead of @isReflCo@
| otherwise = mkSymCo $ GRefl r ty (MCo co)
-- | Given @ty :: k1@, @co :: k1 ~ k2@, @co2:: ty ~r ty'@,
-- produces @co' :: (ty |> co) ~r ty'
-- It is not only a utility function, but it saves allocation when co
-- is a GRefl coercion.
mkCoherenceLeftCo :: Role -> Type -> CoercionN -> Coercion -> Coercion
mkCoherenceLeftCo r ty co co2
| isGReflCo co = co2
| otherwise = (mkSymCo $ GRefl r ty (MCo co)) `mkTransCo` co2
-- | Given @ty :: k1@, @co :: k1 ~ k2@, @co2:: ty' ~r ty@,
-- produces @co' :: ty' ~r (ty |> co)
-- It is not only a utility function, but it saves allocation when co
-- is a GRefl coercion.
mkCoherenceRightCo :: Role -> Type -> CoercionN -> Coercion -> Coercion
mkCoherenceRightCo r ty co co2
| isGReflCo co = co2
| otherwise = co2 `mkTransCo` GRefl r ty (MCo co)
-- | Given @co :: (a :: k) ~ (b :: k')@ produce @co' :: k ~ k'@.
mkKindCo :: Coercion -> Coercion
mkKindCo co | Just (ty, _) <- isReflCo_maybe co = Refl (typeKind ty)
mkKindCo (GRefl _ _ (MCo co)) = co
mkKindCo (UnivCo (PhantomProv h) _ _ _) = h
mkKindCo (UnivCo (ProofIrrelProv h) _ _ _) = h
mkKindCo co
| Pair ty1 ty2 <- coercionKind co
-- generally, calling coercionKind during coercion creation is a bad idea,
-- as it can lead to exponential behavior. But, we don't have nested mkKindCos,
-- so it's OK here.
, let tk1 = typeKind ty1
tk2 = typeKind ty2
, tk1 `eqType` tk2
= Refl tk1
| otherwise
= KindCo co
mkSubCo :: HasDebugCallStack => Coercion -> Coercion
-- Input coercion is Nominal, result is Representational
-- see also Note [Role twiddling functions]
mkSubCo (Refl ty) = GRefl Representational ty MRefl
mkSubCo (GRefl Nominal ty co) = GRefl Representational ty co
mkSubCo (TyConAppCo Nominal tc cos)
= TyConAppCo Representational tc (applyRoles tc cos)
mkSubCo (FunCo Nominal w arg res)
= FunCo Representational w
(downgradeRole Representational Nominal arg)
(downgradeRole Representational Nominal res)
mkSubCo co = assertPpr (coercionRole co == Nominal) (ppr co <+> ppr (coercionRole co)) $
SubCo co
-- | Changes a role, but only a downgrade. See Note [Role twiddling functions]
downgradeRole_maybe :: Role -- ^ desired role
-> Role -- ^ current role
-> Coercion -> Maybe Coercion
-- In (downgradeRole_maybe dr cr co) it's a precondition that
-- cr = coercionRole co
downgradeRole_maybe Nominal Nominal co = Just co
downgradeRole_maybe Nominal _ _ = Nothing
downgradeRole_maybe Representational Nominal co = Just (mkSubCo co)
downgradeRole_maybe Representational Representational co = Just co
downgradeRole_maybe Representational Phantom _ = Nothing
downgradeRole_maybe Phantom Phantom co = Just co
downgradeRole_maybe Phantom _ co = Just (toPhantomCo co)
-- | Like 'downgradeRole_maybe', but panics if the change isn't a downgrade.
-- See Note [Role twiddling functions]
downgradeRole :: Role -- desired role
-> Role -- current role
-> Coercion -> Coercion
downgradeRole r1 r2 co
= case downgradeRole_maybe r1 r2 co of
Just co' -> co'
Nothing -> pprPanic "downgradeRole" (ppr co)
mkAxiomRuleCo :: CoAxiomRule -> [Coercion] -> Coercion
mkAxiomRuleCo = AxiomRuleCo
-- | Make a "coercion between coercions".
mkProofIrrelCo :: Role -- ^ role of the created coercion, "r"
-> CoercionN -- ^ :: phi1 ~N phi2
-> Coercion -- ^ g1 :: phi1
-> Coercion -- ^ g2 :: phi2
-> Coercion -- ^ :: g1 ~r g2
-- if the two coercion prove the same fact, I just don't care what
-- the individual coercions are.
mkProofIrrelCo r co g _ | isGReflCo co = mkReflCo r (mkCoercionTy g)
-- kco is a kind coercion, thus @isGReflCo@ rather than @isReflCo@
mkProofIrrelCo r kco g1 g2 = mkUnivCo (ProofIrrelProv kco) r
(mkCoercionTy g1) (mkCoercionTy g2)
{-
%************************************************************************
%* *
Roles
%* *
%************************************************************************
-}
-- | Converts a coercion to be nominal, if possible.
-- See Note [Role twiddling functions]
setNominalRole_maybe :: Role -- of input coercion
-> Coercion -> Maybe Coercion
setNominalRole_maybe r co
| r == Nominal = Just co
| otherwise = setNominalRole_maybe_helper co
where
setNominalRole_maybe_helper (SubCo co) = Just co
setNominalRole_maybe_helper co@(Refl _) = Just co
setNominalRole_maybe_helper (GRefl _ ty co) = Just $ GRefl Nominal ty co
setNominalRole_maybe_helper (TyConAppCo Representational tc cos)
= do { cos' <- zipWithM setNominalRole_maybe (tyConRolesX Representational tc) cos
; return $ TyConAppCo Nominal tc cos' }
setNominalRole_maybe_helper (FunCo Representational w co1 co2)
= do { co1' <- setNominalRole_maybe Representational co1
; co2' <- setNominalRole_maybe Representational co2
; return $ FunCo Nominal w co1' co2'
}
setNominalRole_maybe_helper (SymCo co)
= SymCo <$> setNominalRole_maybe_helper co
setNominalRole_maybe_helper (TransCo co1 co2)
= TransCo <$> setNominalRole_maybe_helper co1 <*> setNominalRole_maybe_helper co2
setNominalRole_maybe_helper (AppCo co1 co2)
= AppCo <$> setNominalRole_maybe_helper co1 <*> pure co2
setNominalRole_maybe_helper (ForAllCo tv kind_co co)
= ForAllCo tv kind_co <$> setNominalRole_maybe_helper co
setNominalRole_maybe_helper (NthCo _r n co)
-- NB, this case recurses via setNominalRole_maybe, not
-- setNominalRole_maybe_helper!
= NthCo Nominal n <$> setNominalRole_maybe (coercionRole co) co
setNominalRole_maybe_helper (InstCo co arg)
= InstCo <$> setNominalRole_maybe_helper co <*> pure arg
setNominalRole_maybe_helper (UnivCo prov _ co1 co2)
| case prov of PhantomProv _ -> False -- should always be phantom
ProofIrrelProv _ -> True -- it's always safe
PluginProv _ -> False -- who knows? This choice is conservative.
CorePrepProv _ -> True
= Just $ UnivCo prov Nominal co1 co2
setNominalRole_maybe_helper _ = Nothing
-- | Make a phantom coercion between two types. The coercion passed
-- in must be a nominal coercion between the kinds of the
-- types.
mkPhantomCo :: Coercion -> Type -> Type -> Coercion
mkPhantomCo h t1 t2
= mkUnivCo (PhantomProv h) Phantom t1 t2
-- takes any coercion and turns it into a Phantom coercion
toPhantomCo :: Coercion -> Coercion
toPhantomCo co
= mkPhantomCo (mkKindCo co) ty1 ty2
where Pair ty1 ty2 = coercionKind co
-- Convert args to a TyConAppCo Nominal to the same TyConAppCo Representational
applyRoles :: TyCon -> [Coercion] -> [Coercion]
applyRoles tc cos
= zipWith (\r -> downgradeRole r Nominal) (tyConRolesRepresentational tc) cos
-- the Role parameter is the Role of the TyConAppCo
-- defined here because this is intimately concerned with the implementation
-- of TyConAppCo
-- Always returns an infinite list (with a infinite tail of Nominal)
tyConRolesX :: Role -> TyCon -> [Role]
tyConRolesX Representational tc = tyConRolesRepresentational tc
tyConRolesX role _ = repeat role
-- Returns the roles of the parameters of a tycon, with an infinite tail
-- of Nominal
tyConRolesRepresentational :: TyCon -> [Role]
tyConRolesRepresentational tc = tyConRoles tc ++ repeat Nominal
nthRole :: Role -> TyCon -> Int -> Role
nthRole Nominal _ _ = Nominal
nthRole Phantom _ _ = Phantom
nthRole Representational tc n
= (tyConRolesRepresentational tc) `getNth` n
ltRole :: Role -> Role -> Bool
-- Is one role "less" than another?
-- Nominal < Representational < Phantom
ltRole Phantom _ = False
ltRole Representational Phantom = True
ltRole Representational _ = False
ltRole Nominal Nominal = False
ltRole Nominal _ = True
-------------------------------
-- | like mkKindCo, but aggressively & recursively optimizes to avoid using
-- a KindCo constructor. The output role is nominal.
promoteCoercion :: Coercion -> CoercionN
-- First cases handles anything that should yield refl.
promoteCoercion co = case co of
_ | ki1 `eqType` ki2
-> mkNomReflCo (typeKind ty1)
-- no later branch should return refl
-- The assert (False )s throughout
-- are these cases explicitly, but they should never fire.
Refl _ -> assert False $
mkNomReflCo ki1
GRefl _ _ MRefl -> assert False $
mkNomReflCo ki1
GRefl _ _ (MCo co) -> co
TyConAppCo _ tc args
| Just co' <- instCoercions (mkNomReflCo (tyConKind tc)) args
-> co'
| otherwise
-> mkKindCo co
AppCo co1 arg
| Just co' <- instCoercion (coercionKind (mkKindCo co1))
(promoteCoercion co1) arg
-> co'
| otherwise
-> mkKindCo co
ForAllCo tv _ g
| isTyVar tv
-> promoteCoercion g
ForAllCo _ _ _
-> assert False $
mkNomReflCo liftedTypeKind
-- See Note [Weird typing rule for ForAllTy] in GHC.Core.TyCo.Rep
FunCo _ _ _ _
-> assert False $
mkNomReflCo liftedTypeKind
CoVarCo {} -> mkKindCo co
HoleCo {} -> mkKindCo co
AxiomInstCo {} -> mkKindCo co
AxiomRuleCo {} -> mkKindCo co
UnivCo (PhantomProv kco) _ _ _ -> kco
UnivCo (ProofIrrelProv kco) _ _ _ -> kco
UnivCo (PluginProv _) _ _ _ -> mkKindCo co
UnivCo (CorePrepProv _) _ _ _ -> mkKindCo co
SymCo g
-> mkSymCo (promoteCoercion g)
TransCo co1 co2
-> mkTransCo (promoteCoercion co1) (promoteCoercion co2)
NthCo _ n co1
| Just (_, args) <- splitTyConAppCo_maybe co1
, args `lengthExceeds` n
-> promoteCoercion (args !! n)
| Just _ <- splitForAllCo_maybe co
, n == 0
-> assert False $ mkNomReflCo liftedTypeKind
| otherwise
-> mkKindCo co
LRCo lr co1
| Just (lco, rco) <- splitAppCo_maybe co1
-> case lr of
CLeft -> promoteCoercion lco
CRight -> promoteCoercion rco
| otherwise
-> mkKindCo co
InstCo g _
| isForAllTy_ty ty1
-> assert (isForAllTy_ty ty2) $
promoteCoercion g
| otherwise
-> assert False $
mkNomReflCo liftedTypeKind
-- See Note [Weird typing rule for ForAllTy] in GHC.Core.TyCo.Rep
KindCo _
-> assert False $
mkNomReflCo liftedTypeKind
SubCo g
-> promoteCoercion g
where
Pair ty1 ty2 = coercionKind co
ki1 = typeKind ty1
ki2 = typeKind ty2
-- | say @g = promoteCoercion h@. Then, @instCoercion g w@ yields @Just g'@,
-- where @g' = promoteCoercion (h w)@.
-- fails if this is not possible, if @g@ coerces between a forall and an ->
-- or if second parameter has a representational role and can't be used
-- with an InstCo.
instCoercion :: Pair Type -- g :: lty ~ rty
-> CoercionN -- ^ must be nominal
-> Coercion
-> Maybe CoercionN
instCoercion (Pair lty rty) g w
| (isForAllTy_ty lty && isForAllTy_ty rty)
|| (isForAllTy_co lty && isForAllTy_co rty)
, Just w' <- setNominalRole_maybe (coercionRole w) w
-- g :: (forall t1. t2) ~ (forall t1. t3)
-- w :: s1 ~ s2
-- returns mkInstCo g w' :: t2 [t1 |-> s1 ] ~ t3 [t1 |-> s2]
= Just $ mkInstCo g w'
| isFunTy lty && isFunTy rty
-- g :: (t1 -> t2) ~ (t3 -> t4)
-- returns t2 ~ t4
= Just $ mkNthCo Nominal 4 g -- extract result type, which is the 5th argument to (->)
| otherwise -- one forall, one funty...
= Nothing
-- | Repeated use of 'instCoercion'
instCoercions :: CoercionN -> [Coercion] -> Maybe CoercionN
instCoercions g ws
= let arg_ty_pairs = map coercionKind ws in
snd <$> foldM go (coercionKind g, g) (zip arg_ty_pairs ws)
where
go :: (Pair Type, Coercion) -> (Pair Type, Coercion)
-> Maybe (Pair Type, Coercion)
go (g_tys, g) (w_tys, w)
= do { g' <- instCoercion g_tys g w
; return (piResultTy <$> g_tys <*> w_tys, g') }
-- | Creates a new coercion with both of its types casted by different casts
-- @castCoercionKind2 g r t1 t2 h1 h2@, where @g :: t1 ~r t2@,
-- has type @(t1 |> h1) ~r (t2 |> h2)@.
-- @h1@ and @h2@ must be nominal.
castCoercionKind2 :: Coercion -> Role -> Type -> Type
-> CoercionN -> CoercionN -> Coercion
castCoercionKind2 g r t1 t2 h1 h2
= mkCoherenceRightCo r t2 h2 (mkCoherenceLeftCo r t1 h1 g)
-- | @castCoercionKind1 g r t1 t2 h@ = @coercionKind g r t1 t2 h h@
-- That is, it's a specialised form of castCoercionKind, where the two
-- kind coercions are identical
-- @castCoercionKind1 g r t1 t2 h@, where @g :: t1 ~r t2@,
-- has type @(t1 |> h) ~r (t2 |> h)@.
-- @h@ must be nominal.
-- See Note [castCoercionKind1]
castCoercionKind1 :: Coercion -> Role -> Type -> Type
-> CoercionN -> Coercion
castCoercionKind1 g r t1 t2 h
= case g of
Refl {} -> assert (r == Nominal) $ -- Refl is always Nominal
mkNomReflCo (mkCastTy t2 h)
GRefl _ _ mco -> case mco of
MRefl -> mkReflCo r (mkCastTy t2 h)
MCo kind_co -> GRefl r (mkCastTy t1 h) $
MCo (mkSymCo h `mkTransCo` kind_co `mkTransCo` h)
_ -> castCoercionKind2 g r t1 t2 h h
-- | Creates a new coercion with both of its types casted by different casts
-- @castCoercionKind g h1 h2@, where @g :: t1 ~r t2@,
-- has type @(t1 |> h1) ~r (t2 |> h2)@.
-- @h1@ and @h2@ must be nominal.
-- It calls @coercionKindRole@, so it's quite inefficient (which 'I' stands for)
-- Use @castCoercionKind2@ instead if @t1@, @t2@, and @r@ are known beforehand.
castCoercionKind :: Coercion -> CoercionN -> CoercionN -> Coercion
castCoercionKind g h1 h2
= castCoercionKind2 g r t1 t2 h1 h2
where
(Pair t1 t2, r) = coercionKindRole g
mkPiCos :: Role -> [Var] -> Coercion -> Coercion
mkPiCos r vs co = foldr (mkPiCo r) co vs
-- | Make a forall 'Coercion', where both types related by the coercion
-- are quantified over the same variable.
mkPiCo :: Role -> Var -> Coercion -> Coercion
mkPiCo r v co | isTyVar v = mkHomoForAllCos [v] co
| isCoVar v = assert (not (v `elemVarSet` tyCoVarsOfCo co)) $
-- We didn't call mkForAllCo here because if v does not appear
-- in co, the argement coercion will be nominal. But here we
-- want it to be r. It is only called in 'mkPiCos', which is
-- only used in GHC.Core.Opt.Simplify.Utils, where we are sure for
-- now (Aug 2018) v won't occur in co.
mkFunResCo r scaled_ty co
| otherwise = mkFunResCo r scaled_ty co
where
scaled_ty = Scaled (varMult v) (varType v)
mkFunResCo :: Role -> Scaled Type -> Coercion -> Coercion
-- Given res_co :: res1 -> res2,
-- mkFunResCo r m arg res_co :: (arg -> res1) ~r (arg -> res2)
-- Reflexive in the multiplicity argument
mkFunResCo role (Scaled mult arg_ty) res_co
= mkFunCo role (multToCo mult) (mkReflCo role arg_ty) res_co
-- mkCoCast (c :: s1 ~?r t1) (g :: (s1 ~?r t1) ~#R (s2 ~?r t2)) :: s2 ~?r t2
-- The first coercion might be lifted or unlifted; thus the ~? above
-- Lifted and unlifted equalities take different numbers of arguments,
-- so we have to make sure to supply the right parameter to decomposeCo.
-- Also, note that the role of the first coercion is the same as the role of
-- the equalities related by the second coercion. The second coercion is
-- itself always representational.
mkCoCast :: Coercion -> CoercionR -> Coercion
mkCoCast c g
| (g2:g1:_) <- reverse co_list
= mkSymCo g1 `mkTransCo` c `mkTransCo` g2
| otherwise
= pprPanic "mkCoCast" (ppr g $$ ppr (coercionKind g))
where
-- g :: (s1 ~# t1) ~# (s2 ~# t2)
-- g1 :: s1 ~# s2
-- g2 :: t1 ~# t2
(tc, _) = splitTyConApp (coercionLKind g)
co_list = decomposeCo (tyConArity tc) g (tyConRolesRepresentational tc)
{- Note [castCoercionKind1]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
castCoercionKind1 deals with the very important special case of castCoercionKind2
where the two kind coercions are identical. In that case we can exploit the
situation where the main coercion is reflexive, via the special cases for Refl
and GRefl.
This is important when rewriting (ty |> co). We rewrite ty, yielding
fco :: ty ~ ty'
and now we want a coercion xco between
xco :: (ty |> co) ~ (ty' |> co)
That's exactly what castCoercionKind1 does. And it's very very common for
fco to be Refl. In that case we do NOT want to get some terrible composition
of mkLeftCoherenceCo and mkRightCoherenceCo, which is what castCoercionKind2
has to do in its full generality. See #18413.
-}
{-
%************************************************************************
%* *
Newtypes
%* *
%************************************************************************
-}
-- | If `instNewTyCon_maybe T ts = Just (rep_ty, co)`
-- then `co :: T ts ~R# rep_ty`
--
-- Checks for a newtype, and for being saturated
instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion)
instNewTyCon_maybe tc tys
| Just (tvs, ty, co_tc) <- unwrapNewTyConEtad_maybe tc -- Check for newtype
, tvs `leLength` tys -- Check saturated enough
= Just (applyTysX tvs ty tys, mkUnbranchedAxInstCo Representational co_tc tys [])
| otherwise
= Nothing
{-
************************************************************************
* *
Type normalisation
* *
************************************************************************
-}
-- | A function to check if we can reduce a type by one step. Used
-- with 'topNormaliseTypeX'.
type NormaliseStepper ev = RecTcChecker
-> TyCon -- tc
-> [Type] -- tys
-> NormaliseStepResult ev
-- | The result of stepping in a normalisation function.
-- See 'topNormaliseTypeX'.
data NormaliseStepResult ev
= NS_Done -- ^ Nothing more to do
| NS_Abort -- ^ Utter failure. The outer function should fail too.
| NS_Step RecTcChecker Type ev -- ^ We stepped, yielding new bits;
-- ^ ev is evidence;
-- Usually a co :: old type ~ new type
instance Outputable ev => Outputable (NormaliseStepResult ev) where
ppr NS_Done = text "NS_Done"
ppr NS_Abort = text "NS_Abort"
ppr (NS_Step _ ty ev) = sep [text "NS_Step", ppr ty, ppr ev]
mapStepResult :: (ev1 -> ev2)
-> NormaliseStepResult ev1 -> NormaliseStepResult ev2
mapStepResult f (NS_Step rec_nts ty ev) = NS_Step rec_nts ty (f ev)
mapStepResult _ NS_Done = NS_Done
mapStepResult _ NS_Abort = NS_Abort
-- | Try one stepper and then try the next, if the first doesn't make
-- progress.
-- So if it returns NS_Done, it means that both steppers are satisfied
composeSteppers :: NormaliseStepper ev -> NormaliseStepper ev
-> NormaliseStepper ev
composeSteppers step1 step2 rec_nts tc tys
= case step1 rec_nts tc tys of
success@(NS_Step {}) -> success
NS_Done -> step2 rec_nts tc tys
NS_Abort -> NS_Abort
-- | A 'NormaliseStepper' that unwraps newtypes, careful not to fall into
-- a loop. If it would fall into a loop, it produces 'NS_Abort'.
unwrapNewTypeStepper :: NormaliseStepper Coercion
unwrapNewTypeStepper rec_nts tc tys
| Just (ty', co) <- instNewTyCon_maybe tc tys
= -- pprTrace "unNS" (ppr tc <+> ppr (getUnique tc) <+> ppr tys $$ ppr ty' $$ ppr rec_nts) $
case checkRecTc rec_nts tc of
Just rec_nts' -> NS_Step rec_nts' ty' co
Nothing -> NS_Abort
| otherwise
= NS_Done
-- | A general function for normalising the top-level of a type. It continues
-- to use the provided 'NormaliseStepper' until that function fails, and then
-- this function returns. The roles of the coercions produced by the
-- 'NormaliseStepper' must all be the same, which is the role returned from
-- the call to 'topNormaliseTypeX'.
--
-- Typically ev is Coercion.
--
-- If topNormaliseTypeX step plus ty = Just (ev, ty')
-- then ty ~ev1~ t1 ~ev2~ t2 ... ~evn~ ty'
-- and ev = ev1 `plus` ev2 `plus` ... `plus` evn
-- If it returns Nothing then no newtype unwrapping could happen
topNormaliseTypeX :: NormaliseStepper ev
-> (ev -> ev -> ev)
-> Type -> Maybe (ev, Type)
topNormaliseTypeX stepper plus ty
| Just (tc, tys) <- splitTyConApp_maybe ty
-- SPJ: The default threshold for initRecTc is 100 which is extremely dangerous
-- for certain type synonyms, we should think about reducing it (see #20990)
, NS_Step rec_nts ty' ev <- stepper initRecTc tc tys
= go rec_nts ev ty'
| otherwise
= Nothing
where
go rec_nts ev ty
| Just (tc, tys) <- splitTyConApp_maybe ty
= case stepper rec_nts tc tys of
NS_Step rec_nts' ty' ev' -> go rec_nts' (ev `plus` ev') ty'
NS_Done -> Just (ev, ty)
NS_Abort -> Nothing
| otherwise
= Just (ev, ty)
topNormaliseNewType_maybe :: Type -> Maybe (Coercion, Type)
-- ^ Sometimes we want to look through a @newtype@ and get its associated coercion.
-- This function strips off @newtype@ layers enough to reveal something that isn't
-- a @newtype@. Specifically, here's the invariant:
--
-- > topNormaliseNewType_maybe rec_nts ty = Just (co, ty')
--
-- then (a) @co : ty ~ ty'@.
-- (b) ty' is not a newtype.
--
-- The function returns @Nothing@ for non-@newtypes@,
-- or unsaturated applications
--
-- This function does *not* look through type families, because it has no access to
-- the type family environment. If you do have that at hand, consider to use
-- topNormaliseType_maybe, which should be a drop-in replacement for
-- topNormaliseNewType_maybe
-- If topNormliseNewType_maybe ty = Just (co, ty'), then co : ty ~R ty'
topNormaliseNewType_maybe ty
= topNormaliseTypeX unwrapNewTypeStepper mkTransCo ty
{-
%************************************************************************
%* *
Comparison of coercions
%* *
%************************************************************************
-}
-- | Syntactic equality of coercions
eqCoercion :: Coercion -> Coercion -> Bool
eqCoercion = eqType `on` coercionType
-- | Compare two 'Coercion's, with respect to an RnEnv2
eqCoercionX :: RnEnv2 -> Coercion -> Coercion -> Bool
eqCoercionX env = eqTypeX env `on` coercionType
{-
%************************************************************************
%* *
"Lifting" substitution
[(TyCoVar,Coercion)] -> Type -> Coercion
%* *
%************************************************************************
Note [Lifting coercions over types: liftCoSubst]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The KPUSH rule deals with this situation
data T a = K (a -> Maybe a)
g :: T t1 ~ T t2
x :: t1 -> Maybe t1
case (K @t1 x) |> g of
K (y:t2 -> Maybe t2) -> rhs
We want to push the coercion inside the constructor application.
So we do this
g' :: t1~t2 = Nth 0 g
case K @t2 (x |> g' -> Maybe g') of
K (y:t2 -> Maybe t2) -> rhs
The crucial operation is that we
* take the type of K's argument: a -> Maybe a
* and substitute g' for a
thus giving *coercion*. This is what liftCoSubst does.
In the presence of kind coercions, this is a bit
of a hairy operation. So, we refer you to the paper introducing kind coercions,
available at www.cis.upenn.edu/~sweirich/papers/fckinds-extended.pdf
Note [extendLiftingContextEx]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider we have datatype
K :: \/k. \/a::k. P -> T k -- P be some type
g :: T k1 ~ T k2
case (K @k1 @t1 x) |> g of
K y -> rhs
We want to push the coercion inside the constructor application.
We first get the coercion mapped by the universal type variable k:
lc = k |-> Nth 0 g :: k1~k2
Here, the important point is that the kind of a is coerced, and P might be
dependent on the existential type variable a.
Thus we first get the coercion of a's kind
g2 = liftCoSubst lc k :: k1 ~ k2
Then we store a new mapping into the lifting context
lc2 = a |-> (t1 ~ t1 |> g2), lc
So later when we can correctly deal with the argument type P
liftCoSubst lc2 P :: P [k|->k1][a|->t1] ~ P[k|->k2][a |-> (t1|>g2)]
This is exactly what extendLiftingContextEx does.
* For each (tyvar:k, ty) pair, we product the mapping
tyvar |-> (ty ~ ty |> (liftCoSubst lc k))
* For each (covar:s1~s2, ty) pair, we produce the mapping
covar |-> (co ~ co')
co' = Sym (liftCoSubst lc s1) ;; covar ;; liftCoSubst lc s2 :: s1'~s2'
This follows the lifting context extension definition in the
"FC with Explicit Kind Equality" paper.
-}
-- ----------------------------------------------------
-- See Note [Lifting coercions over types: liftCoSubst]
-- ----------------------------------------------------
data LiftingContext = LC Subst LiftCoEnv
-- in optCoercion, we need to lift when optimizing InstCo.
-- See Note [Optimising InstCo] in GHC.Core.Coercion.Opt
-- We thus propagate the substitution from GHC.Core.Coercion.Opt here.
instance Outputable LiftingContext where
ppr (LC _ env) = hang (text "LiftingContext:") 2 (ppr env)
type LiftCoEnv = VarEnv Coercion
-- Maps *type variables* to *coercions*.
-- That's the whole point of this function!
-- Also maps coercion variables to ProofIrrelCos.
-- like liftCoSubstWith, but allows for existentially-bound types as well
liftCoSubstWithEx :: Role -- desired role for output coercion
-> [TyVar] -- universally quantified tyvars
-> [Coercion] -- coercions to substitute for those
-> [TyCoVar] -- existentially quantified tycovars
-> [Type] -- types and coercions to be bound to ex vars
-> (Type -> Coercion, [Type]) -- (lifting function, converted ex args)
liftCoSubstWithEx role univs omegas exs rhos
= let theta = mkLiftingContext (zipEqual "liftCoSubstWithExU" univs omegas)
psi = extendLiftingContextEx theta (zipEqual "liftCoSubstWithExX" exs rhos)
in (ty_co_subst psi role, substTys (lcSubstRight psi) (mkTyCoVarTys exs))
liftCoSubstWith :: Role -> [TyCoVar] -> [Coercion] -> Type -> Coercion
liftCoSubstWith r tvs cos ty
= liftCoSubst r (mkLiftingContext $ zipEqual "liftCoSubstWith" tvs cos) ty
-- | @liftCoSubst role lc ty@ produces a coercion (at role @role@)
-- that coerces between @lc_left(ty)@ and @lc_right(ty)@, where
-- @lc_left@ is a substitution mapping type variables to the left-hand
-- types of the mapped coercions in @lc@, and similar for @lc_right@.
liftCoSubst :: HasDebugCallStack => Role -> LiftingContext -> Type -> Coercion
{-# INLINE liftCoSubst #-}
-- Inlining this function is worth 2% of allocation in T9872d,
liftCoSubst r lc@(LC subst env) ty
| isEmptyVarEnv env = mkReflCo r (substTy subst ty)
| otherwise = ty_co_subst lc r ty
emptyLiftingContext :: InScopeSet -> LiftingContext
emptyLiftingContext in_scope = LC (mkEmptySubst in_scope) emptyVarEnv
mkLiftingContext :: [(TyCoVar,Coercion)] -> LiftingContext
mkLiftingContext pairs
= LC (mkEmptySubst $ mkInScopeSet $ tyCoVarsOfCos (map snd pairs))
(mkVarEnv pairs)
mkSubstLiftingContext :: Subst -> LiftingContext
mkSubstLiftingContext subst = LC subst emptyVarEnv
-- | Extend a lifting context with a new mapping.
extendLiftingContext :: LiftingContext -- ^ original LC
-> TyCoVar -- ^ new variable to map...
-> Coercion -- ^ ...to this lifted version
-> LiftingContext
-- mappings to reflexive coercions are just substitutions
extendLiftingContext (LC subst env) tv arg
| Just (ty, _) <- isReflCo_maybe arg
= LC (extendTCvSubst subst tv ty) env
| otherwise
= LC subst (extendVarEnv env tv arg)
-- | Extend a lifting context with a new mapping, and extend the in-scope set
extendLiftingContextAndInScope :: LiftingContext -- ^ Original LC
-> TyCoVar -- ^ new variable to map...
-> Coercion -- ^ to this coercion
-> LiftingContext
extendLiftingContextAndInScope (LC subst env) tv co
= extendLiftingContext (LC (extendSubstInScopeSet subst (tyCoVarsOfCo co)) env) tv co
-- | Extend a lifting context with existential-variable bindings.
-- See Note [extendLiftingContextEx]
extendLiftingContextEx :: LiftingContext -- ^ original lifting context
-> [(TyCoVar,Type)] -- ^ ex. var / value pairs
-> LiftingContext
-- Note that this is more involved than extendLiftingContext. That function
-- takes a coercion to extend with, so it's assumed that the caller has taken
-- into account any of the kind-changing stuff worried about here.
extendLiftingContextEx lc [] = lc
extendLiftingContextEx lc@(LC subst env) ((v,ty):rest)
-- This function adds bindings for *Nominal* coercions. Why? Because it
-- works with existentially bound variables, which are considered to have
-- nominal roles.
| isTyVar v
= let lc' = LC (subst `extendSubstInScopeSet` tyCoVarsOfType ty)
(extendVarEnv env v $
mkGReflRightCo Nominal
ty
(ty_co_subst lc Nominal (tyVarKind v)))
in extendLiftingContextEx lc' rest
| CoercionTy co <- ty
= -- co :: s1 ~r s2
-- lift_s1 :: s1 ~r s1'
-- lift_s2 :: s2 ~r s2'
-- kco :: (s1 ~r s2) ~N (s1' ~r s2')
assert (isCoVar v) $
let (_, _, s1, s2, r) = coVarKindsTypesRole v
lift_s1 = ty_co_subst lc r s1
lift_s2 = ty_co_subst lc r s2
kco = mkTyConAppCo Nominal (equalityTyCon r)
[ mkKindCo lift_s1, mkKindCo lift_s2
, lift_s1 , lift_s2 ]
lc' = LC (subst `extendSubstInScopeSet` tyCoVarsOfCo co)
(extendVarEnv env v
(mkProofIrrelCo Nominal kco co $
(mkSymCo lift_s1) `mkTransCo` co `mkTransCo` lift_s2))
in extendLiftingContextEx lc' rest
| otherwise
= pprPanic "extendLiftingContextEx" (ppr v <+> text "|->" <+> ppr ty)
-- | Erase the environments in a lifting context
zapLiftingContext :: LiftingContext -> LiftingContext
zapLiftingContext (LC subst _) = LC (zapSubst subst) emptyVarEnv
-- | Like 'substForAllCoBndr', but works on a lifting context
substForAllCoBndrUsingLC :: Bool
-> (Coercion -> Coercion)
-> LiftingContext -> TyCoVar -> Coercion
-> (LiftingContext, TyCoVar, Coercion)
substForAllCoBndrUsingLC sym sco (LC subst lc_env) tv co
= (LC subst' lc_env, tv', co')
where
(subst', tv', co') = substForAllCoBndrUsing sym sco subst tv co
-- | The \"lifting\" operation which substitutes coercions for type
-- variables in a type to produce a coercion.
--
-- For the inverse operation, see 'liftCoMatch'
ty_co_subst :: LiftingContext -> Role -> Type -> Coercion
ty_co_subst !lc role ty
-- !lc: making this function strict in lc allows callers to
-- pass its two components separately, rather than boxing them.
-- Unfortunately, Boxity Analysis concludes that we need lc boxed
-- because it's used that way in liftCoSubstTyVarBndrUsing.
= go role ty
where
go :: Role -> Type -> Coercion
go r ty | Just ty' <- coreView ty
= go r ty'
go Phantom ty = lift_phantom ty
go r (TyVarTy tv) = expectJust "ty_co_subst bad roles" $
liftCoSubstTyVar lc r tv
go r (AppTy ty1 ty2) = mkAppCo (go r ty1) (go Nominal ty2)
go r (TyConApp tc tys) = mkTyConAppCo r tc (zipWith go (tyConRolesX r tc) tys)
go r (FunTy _ w ty1 ty2) = mkFunCo r (go Nominal w) (go r ty1) (go r ty2)
go r t@(ForAllTy (Bndr v _) ty)
= let (lc', v', h) = liftCoSubstVarBndr lc v
body_co = ty_co_subst lc' r ty in
if isTyVar v' || almostDevoidCoVarOfCo v' body_co
-- Lifting a ForAllTy over a coercion variable could fail as ForAllCo
-- imposes an extra restriction on where a covar can appear. See last
-- wrinkle in Note [Unused coercion variable in ForAllCo].
-- We specifically check for this and panic because we know that
-- there's a hole in the type system here, and we'd rather panic than
-- fall into it.
then mkForAllCo v' h body_co
else pprPanic "ty_co_subst: covar is not almost devoid" (ppr t)
go r ty@(LitTy {}) = assert (r == Nominal) $
mkNomReflCo ty
go r (CastTy ty co) = castCoercionKind (go r ty) (substLeftCo lc co)
(substRightCo lc co)
go r (CoercionTy co) = mkProofIrrelCo r kco (substLeftCo lc co)
(substRightCo lc co)
where kco = go Nominal (coercionType co)
lift_phantom ty = mkPhantomCo (go Nominal (typeKind ty))
(substTy (lcSubstLeft lc) ty)
(substTy (lcSubstRight lc) ty)
{-
Note [liftCoSubstTyVar]
~~~~~~~~~~~~~~~~~~~~~~~~~
This function can fail if a coercion in the environment is of too low a role.
liftCoSubstTyVar is called from two places: in liftCoSubst (naturally), and
also in matchAxiom in GHC.Core.Coercion.Opt. From liftCoSubst, the so-called lifting
lemma guarantees that the roles work out. If we fail in this
case, we really should panic -- something is deeply wrong. But, in matchAxiom,
failing is fine. matchAxiom is trying to find a set of coercions
that match, but it may fail, and this is healthy behavior.
-}
-- See Note [liftCoSubstTyVar]
liftCoSubstTyVar :: LiftingContext -> Role -> TyVar -> Maybe Coercion
liftCoSubstTyVar (LC subst env) r v
| Just co_arg <- lookupVarEnv env v
= downgradeRole_maybe r (coercionRole co_arg) co_arg
| otherwise
= Just $ mkReflCo r (substTyVar subst v)
{- Note [liftCoSubstVarBndr]
~~~~~~~~~~~~~~~~~~~~~~~~~
callback:
'liftCoSubstVarBndrUsing' needs to be general enough to work in two
situations:
- in this module, which manipulates 'Coercion's, and
- in GHC.Core.FamInstEnv, where we work with 'Reduction's, which contain
a coercion as well as a type.
To achieve this, we require that the return type of the 'callback' function
contain a coercion within it. This is witnessed by the first argument
to 'liftCoSubstVarBndrUsing': a getter, which allows us to retrieve
the coercion inside the return type. Thus:
- in this module, we simply pass 'id' as the getter,
- in GHC.Core.FamInstEnv, we pass 'reductionCoercion' as the getter.
liftCoSubstTyVarBndrUsing:
Given
forall tv:k. t
We want to get
forall (tv:k1) (kind_co :: k1 ~ k2) body_co
We lift the kind k to get the kind_co
kind_co = ty_co_subst k :: k1 ~ k2
Now in the LiftingContext, we add the new mapping
tv |-> (tv :: k1) ~ ((tv |> kind_co) :: k2)
liftCoSubstCoVarBndrUsing:
Given
forall cv:(s1 ~ s2). t
We want to get
forall (cv:s1'~s2') (kind_co :: (s1'~s2') ~ (t1 ~ t2)) body_co
We lift s1 and s2 respectively to get
eta1 :: s1' ~ t1
eta2 :: s2' ~ t2
And
kind_co = TyConAppCo Nominal (~#) eta1 eta2
Now in the liftingContext, we add the new mapping
cv |-> (cv :: s1' ~ s2') ~ ((sym eta1;cv;eta2) :: t1 ~ t2)
-}
-- See Note [liftCoSubstVarBndr]
liftCoSubstVarBndr :: LiftingContext -> TyCoVar
-> (LiftingContext, TyCoVar, Coercion)
liftCoSubstVarBndr lc tv
= liftCoSubstVarBndrUsing id callback lc tv
where
callback lc' ty' = ty_co_subst lc' Nominal ty'
-- the callback must produce a nominal coercion
liftCoSubstVarBndrUsing :: (r -> CoercionN) -- ^ coercion getter
-> (LiftingContext -> Type -> r) -- ^ callback
-> LiftingContext -> TyCoVar
-> (LiftingContext, TyCoVar, r)
liftCoSubstVarBndrUsing view_co fun lc old_var
| isTyVar old_var
= liftCoSubstTyVarBndrUsing view_co fun lc old_var
| otherwise
= liftCoSubstCoVarBndrUsing view_co fun lc old_var
-- Works for tyvar binder
liftCoSubstTyVarBndrUsing :: (r -> CoercionN) -- ^ coercion getter
-> (LiftingContext -> Type -> r) -- ^ callback
-> LiftingContext -> TyVar
-> (LiftingContext, TyVar, r)
liftCoSubstTyVarBndrUsing view_co fun lc@(LC subst cenv) old_var
= assert (isTyVar old_var) $
( LC (subst `extendSubstInScope` new_var) new_cenv
, new_var, stuff )
where
old_kind = tyVarKind old_var
stuff = fun lc old_kind
eta = view_co stuff
k1 = coercionLKind eta
new_var = uniqAway (getSubstInScope subst) (setVarType old_var k1)
lifted = mkGReflRightCo Nominal (TyVarTy new_var) eta
-- :: new_var ~ new_var |> eta
new_cenv = extendVarEnv cenv old_var lifted
-- Works for covar binder
liftCoSubstCoVarBndrUsing :: (r -> CoercionN) -- ^ coercion getter
-> (LiftingContext -> Type -> r) -- ^ callback
-> LiftingContext -> CoVar
-> (LiftingContext, CoVar, r)
liftCoSubstCoVarBndrUsing view_co fun lc@(LC subst cenv) old_var
= assert (isCoVar old_var) $
( LC (subst `extendSubstInScope` new_var) new_cenv
, new_var, stuff )
where
old_kind = coVarKind old_var
stuff = fun lc old_kind
eta = view_co stuff
k1 = coercionLKind eta
new_var = uniqAway (getSubstInScope subst) (setVarType old_var k1)
-- old_var :: s1 ~r s2
-- eta :: (s1' ~r s2') ~N (t1 ~r t2)
-- eta1 :: s1' ~r t1
-- eta2 :: s2' ~r t2
-- co1 :: s1' ~r s2'
-- co2 :: t1 ~r t2
-- lifted :: co1 ~N co2
role = coVarRole old_var
eta' = downgradeRole role Nominal eta
eta1 = mkNthCo role 2 eta'
eta2 = mkNthCo role 3 eta'
co1 = mkCoVarCo new_var
co2 = mkSymCo eta1 `mkTransCo` co1 `mkTransCo` eta2
lifted = mkProofIrrelCo Nominal eta co1 co2
new_cenv = extendVarEnv cenv old_var lifted
-- | Is a var in the domain of a lifting context?
isMappedByLC :: TyCoVar -> LiftingContext -> Bool
isMappedByLC tv (LC _ env) = tv `elemVarEnv` env
-- If [a |-> g] is in the substitution and g :: t1 ~ t2, substitute a for t1
-- If [a |-> (g1, g2)] is in the substitution, substitute a for g1
substLeftCo :: LiftingContext -> Coercion -> Coercion
substLeftCo lc co
= substCo (lcSubstLeft lc) co
-- Ditto, but for t2 and g2
substRightCo :: LiftingContext -> Coercion -> Coercion
substRightCo lc co
= substCo (lcSubstRight lc) co
-- | Apply "sym" to all coercions in a 'LiftCoEnv'
swapLiftCoEnv :: LiftCoEnv -> LiftCoEnv
swapLiftCoEnv = mapVarEnv mkSymCo
lcSubstLeft :: LiftingContext -> Subst
lcSubstLeft (LC subst lc_env) = liftEnvSubstLeft subst lc_env
lcSubstRight :: LiftingContext -> Subst
lcSubstRight (LC subst lc_env) = liftEnvSubstRight subst lc_env
liftEnvSubstLeft :: Subst -> LiftCoEnv -> Subst
liftEnvSubstLeft = liftEnvSubst pFst
liftEnvSubstRight :: Subst -> LiftCoEnv -> Subst
liftEnvSubstRight = liftEnvSubst pSnd
liftEnvSubst :: (forall a. Pair a -> a) -> Subst -> LiftCoEnv -> Subst
liftEnvSubst selector subst lc_env
= composeTCvSubst (Subst emptyInScopeSet emptyIdSubstEnv tenv cenv) subst
where
pairs = nonDetUFMToList lc_env
-- It's OK to use nonDetUFMToList here because we
-- immediately forget the ordering by creating
-- a VarEnv
(tpairs, cpairs) = partitionWith ty_or_co pairs
tenv = mkVarEnv_Directly tpairs
cenv = mkVarEnv_Directly cpairs
ty_or_co :: (Unique, Coercion) -> Either (Unique, Type) (Unique, Coercion)
ty_or_co (u, co)
| Just equality_co <- isCoercionTy_maybe equality_ty
= Right (u, equality_co)
| otherwise
= Left (u, equality_ty)
where
equality_ty = selector (coercionKind co)
-- | Extract the underlying substitution from the LiftingContext
lcSubst :: LiftingContext -> Subst
lcSubst (LC subst _) = subst
-- | Get the 'InScopeSet' from a 'LiftingContext'
lcInScopeSet :: LiftingContext -> InScopeSet
lcInScopeSet (LC subst _) = getSubstInScope subst
{-
%************************************************************************
%* *
Sequencing on coercions
%* *
%************************************************************************
-}
seqMCo :: MCoercion -> ()
seqMCo MRefl = ()
seqMCo (MCo co) = seqCo co
seqCo :: Coercion -> ()
seqCo (Refl ty) = seqType ty
seqCo (GRefl r ty mco) = r `seq` seqType ty `seq` seqMCo mco
seqCo (TyConAppCo r tc cos) = r `seq` tc `seq` seqCos cos
seqCo (AppCo co1 co2) = seqCo co1 `seq` seqCo co2
seqCo (ForAllCo tv k co) = seqType (varType tv) `seq` seqCo k
`seq` seqCo co
seqCo (FunCo r w co1 co2) = r `seq` seqCo w `seq` seqCo co1 `seq` seqCo co2
seqCo (CoVarCo cv) = cv `seq` ()
seqCo (HoleCo h) = coHoleCoVar h `seq` ()
seqCo (AxiomInstCo con ind cos) = con `seq` ind `seq` seqCos cos
seqCo (UnivCo p r t1 t2)
= seqProv p `seq` r `seq` seqType t1 `seq` seqType t2
seqCo (SymCo co) = seqCo co
seqCo (TransCo co1 co2) = seqCo co1 `seq` seqCo co2
seqCo (NthCo r n co) = r `seq` n `seq` seqCo co
seqCo (LRCo lr co) = lr `seq` seqCo co
seqCo (InstCo co arg) = seqCo co `seq` seqCo arg
seqCo (KindCo co) = seqCo co
seqCo (SubCo co) = seqCo co
seqCo (AxiomRuleCo _ cs) = seqCos cs
seqProv :: UnivCoProvenance -> ()
seqProv (PhantomProv co) = seqCo co
seqProv (ProofIrrelProv co) = seqCo co
seqProv (PluginProv _) = ()
seqProv (CorePrepProv _) = ()
seqCos :: [Coercion] -> ()
seqCos [] = ()
seqCos (co:cos) = seqCo co `seq` seqCos cos
{-
%************************************************************************
%* *
The kind of a type, and of a coercion
%* *
%************************************************************************
-}
-- | Apply 'coercionKind' to multiple 'Coercion's
coercionKinds :: [Coercion] -> Pair [Type]
coercionKinds tys = sequenceA $ map coercionKind tys
-- | Get a coercion's kind and role.
coercionKindRole :: Coercion -> (Pair Type, Role)
coercionKindRole co = (coercionKind co, coercionRole co)
coercionType :: Coercion -> Type
coercionType co = case coercionKindRole co of
(Pair ty1 ty2, r) -> mkCoercionType r ty1 ty2
------------------
-- | If it is the case that
--
-- > c :: (t1 ~ t2)
--
-- i.e. the kind of @c@ relates @t1@ and @t2@, then @coercionKind c = Pair t1 t2@.
coercionKind :: Coercion -> Pair Type
coercionKind co = Pair (coercionLKind co) (coercionRKind co)
coercionLKind :: Coercion -> Type
coercionLKind co
= go co
where
go (Refl ty) = ty
go (GRefl _ ty _) = ty
go (TyConAppCo _ tc cos) = mkTyConApp tc (map go cos)
go (AppCo co1 co2) = mkAppTy (go co1) (go co2)
go (ForAllCo tv1 _ co1) = mkTyCoInvForAllTy tv1 (go co1)
go (FunCo _ w co1 co2) = mkFunctionType (go w) (go co1) (go co2)
go (CoVarCo cv) = coVarLType cv
go (HoleCo h) = coVarLType (coHoleCoVar h)
go (UnivCo _ _ ty1 _) = ty1
go (SymCo co) = coercionRKind co
go (TransCo co1 _) = go co1
go (LRCo lr co) = pickLR lr (splitAppTy (go co))
go (InstCo aco arg) = go_app aco [go arg]
go (KindCo co) = typeKind (go co)
go (SubCo co) = go co
go (NthCo _ d co) = go_nth d (go co)
go (AxiomInstCo ax ind cos) = go_ax_inst ax ind (map go cos)
go (AxiomRuleCo ax cos) = pFst $ expectJust "coercionKind" $
coaxrProves ax $ map coercionKind cos
go_ax_inst ax ind tys
| CoAxBranch { cab_tvs = tvs, cab_cvs = cvs
, cab_lhs = lhs } <- coAxiomNthBranch ax ind
, let (tys1, cotys1) = splitAtList tvs tys
cos1 = map stripCoercionTy cotys1
= assert (tys `equalLength` (tvs ++ cvs)) $
-- Invariant of AxiomInstCo: cos should
-- exactly saturate the axiom branch
substTyWith tvs tys1 $
substTyWithCoVars cvs cos1 $
mkTyConApp (coAxiomTyCon ax) lhs
go_app :: Coercion -> [Type] -> Type
-- Collect up all the arguments and apply all at once
-- See Note [Nested InstCos]
go_app (InstCo co arg) args = go_app co (go arg:args)
go_app co args = piResultTys (go co) args
go_nth :: Int -> Type -> Type
go_nth d ty
| Just args <- tyConAppArgs_maybe ty
= assert (args `lengthExceeds` d) $
args `getNth` d
| d == 0
, Just (tv,_) <- splitForAllTyCoVar_maybe ty
= tyVarKind tv
| otherwise
= pprPanic "coercionLKind:nth" (ppr d <+> ppr ty)
coercionRKind :: Coercion -> Type
coercionRKind co
= go co
where
go (Refl ty) = ty
go (GRefl _ ty MRefl) = ty
go (GRefl _ ty (MCo co1)) = mkCastTy ty co1
go (TyConAppCo _ tc cos) = mkTyConApp tc (map go cos)
go (AppCo co1 co2) = mkAppTy (go co1) (go co2)
go (CoVarCo cv) = coVarRType cv
go (HoleCo h) = coVarRType (coHoleCoVar h)
go (FunCo _ w co1 co2) = mkFunctionType (go w) (go co1) (go co2)
go (UnivCo _ _ _ ty2) = ty2
go (SymCo co) = coercionLKind co
go (TransCo _ co2) = go co2
go (LRCo lr co) = pickLR lr (splitAppTy (go co))
go (InstCo aco arg) = go_app aco [go arg]
go (KindCo co) = typeKind (go co)
go (SubCo co) = go co
go (NthCo _ d co) = go_nth d (go co)
go (AxiomInstCo ax ind cos) = go_ax_inst ax ind (map go cos)
go (AxiomRuleCo ax cos) = pSnd $ expectJust "coercionKind" $
coaxrProves ax $ map coercionKind cos
go co@(ForAllCo tv1 k_co co1) -- works for both tyvar and covar
| isGReflCo k_co = mkTyCoInvForAllTy tv1 (go co1)
-- kind_co always has kind @Type@, thus @isGReflCo@
| otherwise = go_forall empty_subst co
where
empty_subst = mkEmptySubst (mkInScopeSet $ tyCoVarsOfCo co)
go_ax_inst ax ind tys
| CoAxBranch { cab_tvs = tvs, cab_cvs = cvs
, cab_rhs = rhs } <- coAxiomNthBranch ax ind
, let (tys2, cotys2) = splitAtList tvs tys
cos2 = map stripCoercionTy cotys2
= assert (tys `equalLength` (tvs ++ cvs)) $
-- Invariant of AxiomInstCo: cos should
-- exactly saturate the axiom branch
substTyWith tvs tys2 $
substTyWithCoVars cvs cos2 rhs
go_app :: Coercion -> [Type] -> Type
-- Collect up all the arguments and apply all at once
-- See Note [Nested InstCos]
go_app (InstCo co arg) args = go_app co (go arg:args)
go_app co args = piResultTys (go co) args
go_forall subst (ForAllCo tv1 k_co co)
-- See Note [Nested ForAllCos]
| isTyVar tv1
= mkInfForAllTy tv2 (go_forall subst' co)
where
k2 = coercionRKind k_co
tv2 = setTyVarKind tv1 (substTy subst k2)
subst' | isGReflCo k_co = extendSubstInScope subst tv1
-- kind_co always has kind @Type@, thus @isGReflCo@
| otherwise = extendTvSubst (extendSubstInScope subst tv2) tv1 $
TyVarTy tv2 `mkCastTy` mkSymCo k_co
go_forall subst (ForAllCo cv1 k_co co)
| isCoVar cv1
= mkTyCoInvForAllTy cv2 (go_forall subst' co)
where
k2 = coercionRKind k_co
r = coVarRole cv1
eta1 = mkNthCo r 2 (downgradeRole r Nominal k_co)
eta2 = mkNthCo r 3 (downgradeRole r Nominal k_co)
-- k_co :: (t1 ~r t2) ~N (s1 ~r s2)
-- k1 = t1 ~r t2
-- k2 = s1 ~r s2
-- cv1 :: t1 ~r t2
-- cv2 :: s1 ~r s2
-- eta1 :: t1 ~r s1
-- eta2 :: t2 ~r s2
-- n_subst = (eta1 ; cv2 ; sym eta2) :: t1 ~r t2
cv2 = setVarType cv1 (substTy subst k2)
n_subst = eta1 `mkTransCo` (mkCoVarCo cv2) `mkTransCo` (mkSymCo eta2)
subst' | isReflCo k_co = extendSubstInScope subst cv1
| otherwise = extendCvSubst (extendSubstInScope subst cv2)
cv1 n_subst
go_forall subst other_co
-- when other_co is not a ForAllCo
= substTy subst (go other_co)
{-
Note [Nested ForAllCos]
~~~~~~~~~~~~~~~~~~~~~~~
Suppose we need `coercionKind (ForAllCo a1 (ForAllCo a2 ... (ForAllCo an
co)...) )`. We do not want to perform `n` single-type-variable
substitutions over the kind of `co`; rather we want to do one substitution
which substitutes for all of `a1`, `a2` ... simultaneously. If we do one
at a time we get the performance hole reported in #11735.
Solution: gather up the type variables for nested `ForAllCos`, and
substitute for them all at once. Remarkably, for #11735 this single
change reduces /total/ compile time by a factor of more than ten.
-}
-- | Retrieve the role from a coercion.
coercionRole :: Coercion -> Role
coercionRole = go
where
go (Refl _) = Nominal
go (GRefl r _ _) = r
go (TyConAppCo r _ _) = r
go (AppCo co1 _) = go co1
go (ForAllCo _ _ co) = go co
go (FunCo r _ _ _) = r
go (CoVarCo cv) = coVarRole cv
go (HoleCo h) = coVarRole (coHoleCoVar h)
go (AxiomInstCo ax _ _) = coAxiomRole ax
go (UnivCo _ r _ _) = r
go (SymCo co) = go co
go (TransCo co1 _co2) = go co1
go (NthCo r _d _co) = r
go (LRCo {}) = Nominal
go (InstCo co _) = go co
go (KindCo {}) = Nominal
go (SubCo _) = Representational
go (AxiomRuleCo ax _) = coaxrRole ax
{-
Note [Nested InstCos]
~~~~~~~~~~~~~~~~~~~~~
In #5631 we found that 70% of the entire compilation time was
being spent in coercionKind! The reason was that we had
(g @ ty1 @ ty2 .. @ ty100) -- The "@s" are InstCos
where
g :: forall a1 a2 .. a100. phi
If we deal with the InstCos one at a time, we'll do this:
1. Find the kind of (g @ ty1 .. @ ty99) : forall a100. phi'
2. Substitute phi'[ ty100/a100 ], a single tyvar->type subst
But this is a *quadratic* algorithm, and the blew up #5631.
So it's very important to do the substitution simultaneously;
cf Type.piResultTys (which in fact we call here).
-}
-- | Makes a coercion type from two types: the types whose equality
-- is proven by the relevant 'Coercion'
mkCoercionType :: Role -> Type -> Type -> Type
mkCoercionType Nominal = mkPrimEqPred
mkCoercionType Representational = mkReprPrimEqPred
mkCoercionType Phantom = \ty1 ty2 ->
let ki1 = typeKind ty1
ki2 = typeKind ty2
in
TyConApp eqPhantPrimTyCon [ki1, ki2, ty1, ty2]
-- | Creates a primitive type equality predicate.
-- Invariant: the types are not Coercions
mkPrimEqPred :: Type -> Type -> Type
mkPrimEqPred ty1 ty2
= mkTyConApp eqPrimTyCon [k1, k2, ty1, ty2]
where
k1 = typeKind ty1
k2 = typeKind ty2
-- | Makes a lifted equality predicate at the given role
mkPrimEqPredRole :: Role -> Type -> Type -> PredType
mkPrimEqPredRole Nominal = mkPrimEqPred
mkPrimEqPredRole Representational = mkReprPrimEqPred
mkPrimEqPredRole Phantom = panic "mkPrimEqPredRole phantom"
-- | Creates a primitive type equality predicate with explicit kinds
mkHeteroPrimEqPred :: Kind -> Kind -> Type -> Type -> Type
mkHeteroPrimEqPred k1 k2 ty1 ty2 = mkTyConApp eqPrimTyCon [k1, k2, ty1, ty2]
-- | Creates a primitive representational type equality predicate
-- with explicit kinds
mkHeteroReprPrimEqPred :: Kind -> Kind -> Type -> Type -> Type
mkHeteroReprPrimEqPred k1 k2 ty1 ty2
= mkTyConApp eqReprPrimTyCon [k1, k2, ty1, ty2]
mkReprPrimEqPred :: Type -> Type -> Type
mkReprPrimEqPred ty1 ty2
= mkTyConApp eqReprPrimTyCon [k1, k2, ty1, ty2]
where
k1 = typeKind ty1
k2 = typeKind ty2
-- | Assuming that two types are the same, ignoring coercions, find
-- a nominal coercion between the types. This is useful when optimizing
-- transitivity over coercion applications, where splitting two
-- AppCos might yield different kinds. See Note [EtaAppCo] in
-- "GHC.Core.Coercion.Opt".
buildCoercion :: Type -> Type -> CoercionN
buildCoercion orig_ty1 orig_ty2 = go orig_ty1 orig_ty2
where
go ty1 ty2 | Just ty1' <- coreView ty1 = go ty1' ty2
| Just ty2' <- coreView ty2 = go ty1 ty2'
go (CastTy ty1 co) ty2
= let co' = go ty1 ty2
r = coercionRole co'
in mkCoherenceLeftCo r ty1 co co'
go ty1 (CastTy ty2 co)
= let co' = go ty1 ty2
r = coercionRole co'
in mkCoherenceRightCo r ty2 co co'
go ty1@(TyVarTy tv1) _tyvarty
= assert (case _tyvarty of
{ TyVarTy tv2 -> tv1 == tv2
; _ -> False }) $
mkNomReflCo ty1
go (FunTy { ft_mult = w1, ft_arg = arg1, ft_res = res1 })
(FunTy { ft_mult = w2, ft_arg = arg2, ft_res = res2 })
= mkFunCo Nominal (go w1 w2) (go arg1 arg2) (go res1 res2)
go (TyConApp tc1 args1) (TyConApp tc2 args2)
= assert (tc1 == tc2) $
mkTyConAppCo Nominal tc1 (zipWith go args1 args2)
go (AppTy ty1a ty1b) ty2
| Just (ty2a, ty2b) <- repSplitAppTy_maybe ty2
= mkAppCo (go ty1a ty2a) (go ty1b ty2b)
go ty1 (AppTy ty2a ty2b)
| Just (ty1a, ty1b) <- repSplitAppTy_maybe ty1
= mkAppCo (go ty1a ty2a) (go ty1b ty2b)
go (ForAllTy (Bndr tv1 _flag1) ty1) (ForAllTy (Bndr tv2 _flag2) ty2)
| isTyVar tv1
= assert (isTyVar tv2) $
mkForAllCo tv1 kind_co (go ty1 ty2')
where kind_co = go (tyVarKind tv1) (tyVarKind tv2)
in_scope = mkInScopeSet $ tyCoVarsOfType ty2 `unionVarSet` tyCoVarsOfCo kind_co
ty2' = substTyWithInScope in_scope [tv2]
[mkTyVarTy tv1 `mkCastTy` kind_co]
ty2
go (ForAllTy (Bndr cv1 _flag1) ty1) (ForAllTy (Bndr cv2 _flag2) ty2)
= assert (isCoVar cv1 && isCoVar cv2) $
mkForAllCo cv1 kind_co (go ty1 ty2')
where s1 = varType cv1
s2 = varType cv2
kind_co = go s1 s2
-- s1 = t1 ~r t2
-- s2 = t3 ~r t4
-- kind_co :: (t1 ~r t2) ~N (t3 ~r t4)
-- eta1 :: t1 ~r t3
-- eta2 :: t2 ~r t4
r = coVarRole cv1
kind_co' = downgradeRole r Nominal kind_co
eta1 = mkNthCo r 2 kind_co'
eta2 = mkNthCo r 3 kind_co'
subst = mkEmptySubst $ mkInScopeSet $
tyCoVarsOfType ty2 `unionVarSet` tyCoVarsOfCo kind_co
ty2' = substTy (extendCvSubst subst cv2 $ mkSymCo eta1 `mkTransCo`
mkCoVarCo cv1 `mkTransCo`
eta2)
ty2
go ty1@(LitTy lit1) _lit2
= assert (case _lit2 of
{ LitTy lit2 -> lit1 == lit2
; _ -> False }) $
mkNomReflCo ty1
go (CoercionTy co1) (CoercionTy co2)
= mkProofIrrelCo Nominal kind_co co1 co2
where
kind_co = go (coercionType co1) (coercionType co2)
go ty1 ty2
= pprPanic "buildKindCoercion" (vcat [ ppr orig_ty1, ppr orig_ty2
, ppr ty1, ppr ty2 ])
{-
%************************************************************************
%* *
Coercion holes
%* *
%************************************************************************
-}
has_co_hole_ty :: Type -> Monoid.Any
has_co_hole_co :: Coercion -> Monoid.Any
(has_co_hole_ty, _, has_co_hole_co, _)
= foldTyCo folder ()
where
folder = TyCoFolder { tcf_view = noView
, tcf_tyvar = const2 (Monoid.Any False)
, tcf_covar = const2 (Monoid.Any False)
, tcf_hole = const2 (Monoid.Any True)
, tcf_tycobinder = const2
}
-- | Is there a coercion hole in this type?
hasCoercionHoleTy :: Type -> Bool
hasCoercionHoleTy = Monoid.getAny . has_co_hole_ty
-- | Is there a coercion hole in this coercion?
hasCoercionHoleCo :: Coercion -> Bool
hasCoercionHoleCo = Monoid.getAny . has_co_hole_co
hasThisCoercionHoleTy :: Type -> CoercionHole -> Bool
hasThisCoercionHoleTy ty hole = Monoid.getAny (f ty)
where
(f, _, _, _) = foldTyCo folder ()
folder = TyCoFolder { tcf_view = noView
, tcf_tyvar = const2 (Monoid.Any False)
, tcf_covar = const2 (Monoid.Any False)
, tcf_hole = \ _ h -> Monoid.Any (getUnique h == getUnique hole)
, tcf_tycobinder = const2
}
-- | Set the type of a 'CoercionHole'
setCoHoleType :: CoercionHole -> Type -> CoercionHole
setCoHoleType h t = setCoHoleCoVar h (setVarType (coHoleCoVar h) t)
|