1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
-- (c) The University of Glasgow 2006
--
-- FamInstEnv: Type checked family instance declarations
module GHC.Core.FamInstEnv (
FamInst(..), FamFlavor(..), famInstAxiom, famInstTyCon, famInstRHS,
famInstsRepTyCons, famInstRepTyCon_maybe, dataFamInstRepTyCon,
pprFamInst, pprFamInsts,
mkImportedFamInst,
FamInstEnvs, FamInstEnv, emptyFamInstEnv, emptyFamInstEnvs,
extendFamInstEnv, extendFamInstEnvList,
famInstEnvElts, famInstEnvSize, familyInstances,
-- * CoAxioms
mkCoAxBranch, mkBranchedCoAxiom, mkUnbranchedCoAxiom, mkSingleCoAxiom,
mkNewTypeCoAxiom,
FamInstMatch(..),
lookupFamInstEnv, lookupFamInstEnvConflicts, lookupFamInstEnvByTyCon,
isDominatedBy, apartnessCheck,
-- Injectivity
InjectivityCheckResult(..),
lookupFamInstEnvInjectivityConflicts, injectiveBranches,
-- Normalisation
topNormaliseType, topNormaliseType_maybe,
normaliseType, normaliseTcApp,
topReduceTyFamApp_maybe, reduceTyFamApp_maybe
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Core.Unify
import GHC.Core.Type as Type
import GHC.Core.TyCo.Rep
import GHC.Core.TyCon
import GHC.Core.Coercion
import GHC.Core.Coercion.Axiom
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Types.Name
import GHC.Types.Unique.DFM
import GHC.Data.Maybe
import GHC.Types.Var
import GHC.Types.SrcLoc
import Control.Monad
import Data.List( mapAccumL )
import Data.Array( Array, assocs )
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
{-
************************************************************************
* *
Type checked family instance heads
* *
************************************************************************
Note [FamInsts and CoAxioms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* CoAxioms and FamInsts are just like
DFunIds and ClsInsts
* A CoAxiom is a System-FC thing: it can relate any two types
* A FamInst is a Haskell source-language thing, corresponding
to a type/data family instance declaration.
- The FamInst contains a CoAxiom, which is the evidence
for the instance
- The LHS of the CoAxiom is always of form F ty1 .. tyn
where F is a type family
-}
data FamInst -- See Note [FamInsts and CoAxioms]
= FamInst { fi_axiom :: CoAxiom Unbranched -- The new coercion axiom
-- introduced by this family
-- instance
-- INVARIANT: apart from freshening (see below)
-- fi_tvs = cab_tvs of the (single) axiom branch
-- fi_cvs = cab_cvs ...ditto...
-- fi_tys = cab_lhs ...ditto...
-- fi_rhs = cab_rhs ...ditto...
, fi_flavor :: FamFlavor
-- Everything below here is a redundant,
-- cached version of the two things above
-- except that the TyVars are freshened
, fi_fam :: Name -- Family name
-- Used for "rough matching"; same idea as for class instances
-- See Note [Rough-match field] in GHC.Core.InstEnv
, fi_tcs :: [Maybe Name] -- Top of type args
-- INVARIANT: fi_tcs = roughMatchTcs fi_tys
-- Used for "proper matching"; ditto
, fi_tvs :: [TyVar] -- Template tyvars for full match
, fi_cvs :: [CoVar] -- Template covars for full match
-- Like ClsInsts, these variables are always fresh
-- See Note [Template tyvars are fresh] in GHC.Core.InstEnv
, fi_tys :: [Type] -- The LHS type patterns
-- May be eta-reduced; see Note [Eta reduction for data families]
-- in GHC.Core.Coercion.Axiom
, fi_rhs :: Type -- the RHS, with its freshened vars
}
data FamFlavor
= SynFamilyInst -- A synonym family
| DataFamilyInst TyCon -- A data family, with its representation TyCon
{-
Note [Arity of data families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Data family instances might legitimately be over- or under-saturated.
Under-saturation has two potential causes:
U1) Eta reduction. See Note [Eta reduction for data families] in
GHC.Core.Coercion.Axiom.
U2) When the user has specified a return kind instead of written out patterns.
Example:
data family Sing (a :: k)
data instance Sing :: Bool -> Type
The data family tycon Sing has an arity of 2, the k and the a. But
the data instance has only one pattern, Bool (standing in for k).
This instance is equivalent to `data instance Sing (a :: Bool)`, but
without the last pattern, we have an under-saturated data family instance.
On its own, this example is not compelling enough to add support for
under-saturation, but U1 makes this feature more compelling.
Over-saturation is also possible:
O1) If the data family's return kind is a type variable (see also #12369),
an instance might legitimately have more arguments than the family.
Example:
data family Fix :: (Type -> k) -> k
data instance Fix f = MkFix1 (f (Fix f))
data instance Fix f x = MkFix2 (f (Fix f x) x)
In the first instance here, the k in the data family kind is chosen to
be Type. In the second, it's (Type -> Type).
However, we require that any over-saturation is eta-reducible. That is,
we require that any extra patterns be bare unrepeated type variables;
see Note [Eta reduction for data families] in GHC.Core.Coercion.Axiom.
Accordingly, the FamInst is never over-saturated.
Why can we allow such flexibility for data families but not for type families?
Because data families can be decomposed -- that is, they are generative and
injective. A Type family is neither and so always must be applied to all its
arguments.
-}
-- Obtain the axiom of a family instance
famInstAxiom :: FamInst -> CoAxiom Unbranched
famInstAxiom = fi_axiom
-- Split the left-hand side of the FamInst
famInstSplitLHS :: FamInst -> (TyCon, [Type])
famInstSplitLHS (FamInst { fi_axiom = axiom, fi_tys = lhs })
= (coAxiomTyCon axiom, lhs)
-- Get the RHS of the FamInst
famInstRHS :: FamInst -> Type
famInstRHS = fi_rhs
-- Get the family TyCon of the FamInst
famInstTyCon :: FamInst -> TyCon
famInstTyCon = coAxiomTyCon . famInstAxiom
-- Return the representation TyCons introduced by data family instances, if any
famInstsRepTyCons :: [FamInst] -> [TyCon]
famInstsRepTyCons fis = [tc | FamInst { fi_flavor = DataFamilyInst tc } <- fis]
-- Extracts the TyCon for this *data* (or newtype) instance
famInstRepTyCon_maybe :: FamInst -> Maybe TyCon
famInstRepTyCon_maybe fi
= case fi_flavor fi of
DataFamilyInst tycon -> Just tycon
SynFamilyInst -> Nothing
dataFamInstRepTyCon :: FamInst -> TyCon
dataFamInstRepTyCon fi
= case fi_flavor fi of
DataFamilyInst tycon -> tycon
SynFamilyInst -> pprPanic "dataFamInstRepTyCon" (ppr fi)
{-
************************************************************************
* *
Pretty printing
* *
************************************************************************
-}
instance NamedThing FamInst where
getName = coAxiomName . fi_axiom
instance Outputable FamInst where
ppr = pprFamInst
pprFamInst :: FamInst -> SDoc
-- Prints the FamInst as a family instance declaration
-- NB: This function, FamInstEnv.pprFamInst, is used only for internal,
-- debug printing. See GHC.Types.TyThing.Ppr.pprFamInst for printing for the user
pprFamInst (FamInst { fi_flavor = flavor, fi_axiom = ax
, fi_tvs = tvs, fi_tys = tys, fi_rhs = rhs })
= hang (ppr_tc_sort <+> text "instance"
<+> pprCoAxBranchUser (coAxiomTyCon ax) (coAxiomSingleBranch ax))
2 (whenPprDebug debug_stuff)
where
ppr_tc_sort = case flavor of
SynFamilyInst -> text "type"
DataFamilyInst tycon
| isDataTyCon tycon -> text "data"
| isNewTyCon tycon -> text "newtype"
| isAbstractTyCon tycon -> text "data"
| otherwise -> text "WEIRD" <+> ppr tycon
debug_stuff = vcat [ text "Coercion axiom:" <+> ppr ax
, text "Tvs:" <+> ppr tvs
, text "LHS:" <+> ppr tys
, text "RHS:" <+> ppr rhs ]
pprFamInsts :: [FamInst] -> SDoc
pprFamInsts finsts = vcat (map pprFamInst finsts)
{-
Note [Lazy axiom match]
~~~~~~~~~~~~~~~~~~~~~~~
It is Vitally Important that mkImportedFamInst is *lazy* in its axiom
parameter. The axiom is loaded lazily, via a forkM, in GHC.IfaceToCore. Sometime
later, mkImportedFamInst is called using that axiom. However, the axiom
may itself depend on entities which are not yet loaded as of the time
of the mkImportedFamInst. Thus, if mkImportedFamInst eagerly looks at the
axiom, a dependency loop spontaneously appears and GHC hangs. The solution
is simply for mkImportedFamInst never, ever to look inside of the axiom
until everything else is good and ready to do so. We can assume that this
readiness has been achieved when some other code pulls on the axiom in the
FamInst. Thus, we pattern match on the axiom lazily (in the where clause,
not in the parameter list) and we assert the consistency of names there
also.
-}
-- Make a family instance representation from the information found in an
-- interface file. In particular, we get the rough match info from the iface
-- (instead of computing it here).
mkImportedFamInst :: Name -- Name of the family
-> [Maybe Name] -- Rough match info
-> CoAxiom Unbranched -- Axiom introduced
-> FamInst -- Resulting family instance
mkImportedFamInst fam mb_tcs axiom
= FamInst {
fi_fam = fam,
fi_tcs = mb_tcs,
fi_tvs = tvs,
fi_cvs = cvs,
fi_tys = tys,
fi_rhs = rhs,
fi_axiom = axiom,
fi_flavor = flavor }
where
-- See Note [Lazy axiom match]
~(CoAxBranch { cab_lhs = tys
, cab_tvs = tvs
, cab_cvs = cvs
, cab_rhs = rhs }) = coAxiomSingleBranch axiom
-- Derive the flavor for an imported FamInst rather disgustingly
-- Maybe we should store it in the IfaceFamInst?
flavor = case splitTyConApp_maybe rhs of
Just (tc, _)
| Just ax' <- tyConFamilyCoercion_maybe tc
, ax' == axiom
-> DataFamilyInst tc
_ -> SynFamilyInst
{-
************************************************************************
* *
FamInstEnv
* *
************************************************************************
Note [FamInstEnv]
~~~~~~~~~~~~~~~~~
A FamInstEnv maps a family name to the list of known instances for that family.
The same FamInstEnv includes both 'data family' and 'type family' instances.
Type families are reduced during type inference, but not data families;
the user explains when to use a data family instance by using constructors
and pattern matching.
Nevertheless it is still useful to have data families in the FamInstEnv:
- For finding overlaps and conflicts
- For finding the representation type...see FamInstEnv.topNormaliseType
and its call site in GHC.Core.Opt.Simplify
- In standalone deriving instance Eq (T [Int]) we need to find the
representation type for T [Int]
Note [Varying number of patterns for data family axioms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For data families, the number of patterns may vary between instances.
For example
data family T a b
data instance T Int a = T1 a | T2
data instance T Bool [a] = T3 a
Then we get a data type for each instance, and an axiom:
data TInt a = T1 a | T2
data TBoolList a = T3 a
axiom ax7 :: T Int ~ TInt -- Eta-reduced
axiom ax8 a :: T Bool [a] ~ TBoolList a
These two axioms for T, one with one pattern, one with two;
see Note [Eta reduction for data families] in GHC.Core.Coercion.Axiom
Note [FamInstEnv determinism]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We turn FamInstEnvs into a list in some places that don't directly affect
the ABI. That happens in family consistency checks and when producing output
for `:info`. Unfortunately that nondeterminism is nonlocal and it's hard
to tell what it affects without following a chain of functions. It's also
easy to accidentally make that nondeterminism affect the ABI. Furthermore
the envs should be relatively small, so it should be free to use deterministic
maps here. Testing with nofib and validate detected no difference between
UniqFM and UniqDFM.
See Note [Deterministic UniqFM].
-}
-- Internally we sometimes index by Name instead of TyCon despite
-- of what the type says. This is safe since
-- getUnique (tyCon) == getUniqe (tcName tyCon)
type FamInstEnv = UniqDFM TyCon FamilyInstEnv -- Maps a family to its instances
-- See Note [FamInstEnv]
-- See Note [FamInstEnv determinism]
type FamInstEnvs = (FamInstEnv, FamInstEnv)
-- External package inst-env, Home-package inst-env
newtype FamilyInstEnv
= FamIE [FamInst] -- The instances for a particular family, in any order
instance Outputable FamilyInstEnv where
ppr (FamIE fs) = text "FamIE" <+> vcat (map ppr fs)
-- | Index a FamInstEnv by the tyCons name.
toNameInstEnv :: FamInstEnv -> UniqDFM Name FamilyInstEnv
toNameInstEnv = unsafeCastUDFMKey
-- | Create a FamInstEnv from Name indices.
fromNameInstEnv :: UniqDFM Name FamilyInstEnv -> FamInstEnv
fromNameInstEnv = unsafeCastUDFMKey
-- INVARIANTS:
-- * The fs_tvs are distinct in each FamInst
-- of a range value of the map (so we can safely unify them)
emptyFamInstEnvs :: (FamInstEnv, FamInstEnv)
emptyFamInstEnvs = (emptyFamInstEnv, emptyFamInstEnv)
emptyFamInstEnv :: FamInstEnv
emptyFamInstEnv = emptyUDFM
famInstEnvElts :: FamInstEnv -> [FamInst]
famInstEnvElts fi = [elt | FamIE elts <- eltsUDFM fi, elt <- elts]
-- See Note [FamInstEnv determinism]
famInstEnvSize :: FamInstEnv -> Int
famInstEnvSize = nonDetStrictFoldUDFM (\(FamIE elt) sum -> sum + length elt) 0
-- It's OK to use nonDetStrictFoldUDFM here since we're just computing the
-- size.
familyInstances :: (FamInstEnv, FamInstEnv) -> TyCon -> [FamInst]
familyInstances (pkg_fie, home_fie) fam
= get home_fie ++ get pkg_fie
where
get env = case lookupUDFM env fam of
Just (FamIE insts) -> insts
Nothing -> []
extendFamInstEnvList :: FamInstEnv -> [FamInst] -> FamInstEnv
extendFamInstEnvList inst_env fis = foldl' extendFamInstEnv inst_env fis
extendFamInstEnv :: FamInstEnv -> FamInst -> FamInstEnv
extendFamInstEnv inst_env
ins_item@(FamInst {fi_fam = cls_nm})
= fromNameInstEnv $ addToUDFM_C add (toNameInstEnv inst_env) cls_nm (FamIE [ins_item])
where
add (FamIE items) _ = FamIE (ins_item:items)
{-
************************************************************************
* *
Compatibility
* *
************************************************************************
Note [Apartness]
~~~~~~~~~~~~~~~~
In dealing with closed type families, we must be able to check that one type
will never reduce to another. This check is called /apartness/. The check
is always between a target (which may be an arbitrary type) and a pattern.
Here is how we do it:
apart(target, pattern) = not (unify(flatten(target), pattern))
where flatten (implemented in flattenTys, below) converts all type-family
applications into fresh variables. (See Note [Flattening] in GHC.Core.Unify.)
Note [Compatibility]
~~~~~~~~~~~~~~~~~~~~
Two patterns are /compatible/ if either of the following conditions hold:
1) The patterns are apart.
2) The patterns unify with a substitution S, and their right hand sides
equal under that substitution.
For open type families, only compatible instances are allowed. For closed
type families, the story is slightly more complicated. Consider the following:
type family F a where
F Int = Bool
F a = Int
g :: Show a => a -> F a
g x = length (show x)
Should that type-check? No. We need to allow for the possibility that 'a'
might be Int and therefore 'F a' should be Bool. We can simplify 'F a' to Int
only when we can be sure that 'a' is not Int.
To achieve this, after finding a possible match within the equations, we have to
go back to all previous equations and check that, under the
substitution induced by the match, other branches are surely apart. (See
Note [Apartness].) This is similar to what happens with class
instance selection, when we need to guarantee that there is only a match and
no unifiers. The exact algorithm is different here because the
potentially-overlapping group is closed.
As another example, consider this:
type family G x where
G Int = Bool
G a = Double
type family H y
-- no instances
Now, we want to simplify (G (H Char)). We can't, because (H Char) might later
simplify to be Int. So, (G (H Char)) is stuck, for now.
While everything above is quite sound, it isn't as expressive as we'd like.
Consider this:
type family J a where
J Int = Int
J a = a
Can we simplify (J b) to b? Sure we can. Yes, the first equation matches if
b is instantiated with Int, but the RHSs coincide there, so it's all OK.
So, the rule is this: when looking up a branch in a closed type family, we
find a branch that matches the target, but then we make sure that the target
is apart from every previous *incompatible* branch. We don't check the
branches that are compatible with the matching branch, because they are either
irrelevant (clause 1 of compatible) or benign (clause 2 of compatible).
Note [Compatibility of eta-reduced axioms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In newtype instances of data families we eta-reduce the axioms,
See Note [Eta reduction for data families] in GHC.Core.Coercion.Axiom. This means that
we sometimes need to test compatibility of two axioms that were eta-reduced to
different degrees, e.g.:
data family D a b c
newtype instance D a Int c = DInt (Maybe a)
-- D a Int ~ Maybe
-- lhs = [a, Int]
newtype instance D Bool Int Char = DIntChar Float
-- D Bool Int Char ~ Float
-- lhs = [Bool, Int, Char]
These are obviously incompatible. We could detect this by saturating
(eta-expanding) the shorter LHS with fresh tyvars until the lists are of
equal length, but instead we can just remove the tail of the longer list, as
those types will simply unify with the freshly introduced tyvars.
By doing this, in case the LHS are unifiable, the yielded substitution won't
mention the tyvars that appear in the tail we dropped off, and we might try
to test equality RHSes of different kinds, but that's fine since this case
occurs only for data families, where the RHS is a unique tycon and the equality
fails anyway.
-}
-- See Note [Compatibility]
compatibleBranches :: CoAxBranch -> CoAxBranch -> Bool
compatibleBranches (CoAxBranch { cab_lhs = lhs1, cab_rhs = rhs1 })
(CoAxBranch { cab_lhs = lhs2, cab_rhs = rhs2 })
= let (commonlhs1, commonlhs2) = zipAndUnzip lhs1 lhs2
-- See Note [Compatibility of eta-reduced axioms]
in case tcUnifyTysFG (const BindMe) commonlhs1 commonlhs2 of
SurelyApart -> True
Unifiable subst
| Type.substTyAddInScope subst rhs1 `eqType`
Type.substTyAddInScope subst rhs2
-> True
_ -> False
-- | Result of testing two type family equations for injectiviy.
data InjectivityCheckResult
= InjectivityAccepted
-- ^ Either RHSs are distinct or unification of RHSs leads to unification of
-- LHSs
| InjectivityUnified CoAxBranch CoAxBranch
-- ^ RHSs unify but LHSs don't unify under that substitution. Relevant for
-- closed type families where equation after unification might be
-- overlpapped (in which case it is OK if they don't unify). Constructor
-- stores axioms after unification.
-- | Check whether two type family axioms don't violate injectivity annotation.
injectiveBranches :: [Bool] -> CoAxBranch -> CoAxBranch
-> InjectivityCheckResult
injectiveBranches injectivity
ax1@(CoAxBranch { cab_lhs = lhs1, cab_rhs = rhs1 })
ax2@(CoAxBranch { cab_lhs = lhs2, cab_rhs = rhs2 })
-- See Note [Verifying injectivity annotation], case 1.
= let getInjArgs = filterByList injectivity
in case tcUnifyTyWithTFs True rhs1 rhs2 of -- True = two-way pre-unification
Nothing -> InjectivityAccepted
-- RHS are different, so equations are injective.
-- This is case 1A from Note [Verifying injectivity annotation]
Just subst -> -- RHS unify under a substitution
let lhs1Subst = Type.substTys subst (getInjArgs lhs1)
lhs2Subst = Type.substTys subst (getInjArgs lhs2)
-- If LHSs are equal under the substitution used for RHSs then this pair
-- of equations does not violate injectivity annotation. If LHSs are not
-- equal under that substitution then this pair of equations violates
-- injectivity annotation, but for closed type families it still might
-- be the case that one LHS after substitution is unreachable.
in if eqTypes lhs1Subst lhs2Subst -- check case 1B1 from Note.
then InjectivityAccepted
else InjectivityUnified ( ax1 { cab_lhs = Type.substTys subst lhs1
, cab_rhs = Type.substTy subst rhs1 })
( ax2 { cab_lhs = Type.substTys subst lhs2
, cab_rhs = Type.substTy subst rhs2 })
-- payload of InjectivityUnified used only for check 1B2, only
-- for closed type families
-- takes a CoAxiom with unknown branch incompatibilities and computes
-- the compatibilities
-- See Note [Storing compatibility] in GHC.Core.Coercion.Axiom
computeAxiomIncomps :: [CoAxBranch] -> [CoAxBranch]
computeAxiomIncomps branches
= snd (mapAccumL go [] branches)
where
go :: [CoAxBranch] -> CoAxBranch -> ([CoAxBranch], CoAxBranch)
go prev_brs cur_br
= (cur_br : prev_brs, new_br)
where
new_br = cur_br { cab_incomps = mk_incomps prev_brs cur_br }
mk_incomps :: [CoAxBranch] -> CoAxBranch -> [CoAxBranch]
mk_incomps prev_brs cur_br
= filter (not . compatibleBranches cur_br) prev_brs
{-
************************************************************************
* *
Constructing axioms
These functions are here because tidyType / tcUnifyTysFG
are not available in GHC.Core.Coercion.Axiom
Also computeAxiomIncomps is too sophisticated for CoAxiom
* *
************************************************************************
Note [Tidy axioms when we build them]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Like types and classes, we build axioms fully quantified over all
their variables, and tidy them when we build them. For example,
we print out axioms and don't want to print stuff like
F k k a b = ...
Instead we must tidy those kind variables. See #7524.
We could instead tidy when we print, but that makes it harder to get
things like injectivity errors to come out right. Danger of
Type family equation violates injectivity annotation.
Kind variable âkâ cannot be inferred from the right-hand side.
In the type family equation:
PolyKindVars @[k1] @[k2] ('[] @k1) = '[] @k2
Note [Always number wildcard types in CoAxBranch]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following example (from the DataFamilyInstanceLHS test case):
data family Sing (a :: k)
data instance Sing (_ :: MyKind) where
SingA :: Sing A
SingB :: Sing B
If we're not careful during tidying, then when this program is compiled with
-ddump-types, we'll get the following information:
COERCION AXIOMS
axiom DataFamilyInstanceLHS.D:R:SingMyKind_0 ::
Sing _ = DataFamilyInstanceLHS.R:SingMyKind_ _
It's misleading to have a wildcard type appearing on the RHS like
that. To avoid this issue, when building a CoAxiom (which is what eventually
gets printed above), we tidy all the variables in an env that already contains
'_'. Thus, any variable named '_' will be renamed, giving us the nicer output
here:
COERCION AXIOMS
axiom DataFamilyInstanceLHS.D:R:SingMyKind_0 ::
Sing _1 = DataFamilyInstanceLHS.R:SingMyKind_ _1
Which is at least legal syntax.
See also Note [CoAxBranch type variables] in GHC.Core.Coercion.Axiom; note that we
are tidying (changing OccNames only), not freshening, in accordance with
that Note.
-}
-- all axiom roles are Nominal, as this is only used with type families
mkCoAxBranch :: [TyVar] -- original, possibly stale, tyvars
-> [TyVar] -- Extra eta tyvars
-> [CoVar] -- possibly stale covars
-> [Type] -- LHS patterns
-> Type -- RHS
-> [Role]
-> SrcSpan
-> CoAxBranch
mkCoAxBranch tvs eta_tvs cvs lhs rhs roles loc
= CoAxBranch { cab_tvs = tvs'
, cab_eta_tvs = eta_tvs'
, cab_cvs = cvs'
, cab_lhs = tidyTypes env lhs
, cab_roles = roles
, cab_rhs = tidyType env rhs
, cab_loc = loc
, cab_incomps = placeHolderIncomps }
where
(env1, tvs') = tidyVarBndrs init_tidy_env tvs
(env2, eta_tvs') = tidyVarBndrs env1 eta_tvs
(env, cvs') = tidyVarBndrs env2 cvs
-- See Note [Tidy axioms when we build them]
-- See also Note [CoAxBranch type variables] in GHC.Core.Coercion.Axiom
init_occ_env = initTidyOccEnv [mkTyVarOcc "_"]
init_tidy_env = mkEmptyTidyEnv init_occ_env
-- See Note [Always number wildcard types in CoAxBranch]
-- all of the following code is here to avoid mutual dependencies with
-- Coercion
mkBranchedCoAxiom :: Name -> TyCon -> [CoAxBranch] -> CoAxiom Branched
mkBranchedCoAxiom ax_name fam_tc branches
= CoAxiom { co_ax_unique = nameUnique ax_name
, co_ax_name = ax_name
, co_ax_tc = fam_tc
, co_ax_role = Nominal
, co_ax_implicit = False
, co_ax_branches = manyBranches (computeAxiomIncomps branches) }
mkUnbranchedCoAxiom :: Name -> TyCon -> CoAxBranch -> CoAxiom Unbranched
mkUnbranchedCoAxiom ax_name fam_tc branch
= CoAxiom { co_ax_unique = nameUnique ax_name
, co_ax_name = ax_name
, co_ax_tc = fam_tc
, co_ax_role = Nominal
, co_ax_implicit = False
, co_ax_branches = unbranched (branch { cab_incomps = [] }) }
mkSingleCoAxiom :: Role -> Name
-> [TyVar] -> [TyVar] -> [CoVar]
-> TyCon -> [Type] -> Type
-> CoAxiom Unbranched
-- Make a single-branch CoAxiom, including making the branch itself
-- Used for both type family (Nominal) and data family (Representational)
-- axioms, hence passing in the Role
mkSingleCoAxiom role ax_name tvs eta_tvs cvs fam_tc lhs_tys rhs_ty
= CoAxiom { co_ax_unique = nameUnique ax_name
, co_ax_name = ax_name
, co_ax_tc = fam_tc
, co_ax_role = role
, co_ax_implicit = False
, co_ax_branches = unbranched (branch { cab_incomps = [] }) }
where
branch = mkCoAxBranch tvs eta_tvs cvs lhs_tys rhs_ty
(map (const Nominal) tvs)
(getSrcSpan ax_name)
-- | Create a coercion constructor (axiom) suitable for the given
-- newtype 'TyCon'. The 'Name' should be that of a new coercion
-- 'CoAxiom', the 'TyVar's the arguments expected by the @newtype@ and
-- the type the appropriate right hand side of the @newtype@, with
-- the free variables a subset of those 'TyVar's.
mkNewTypeCoAxiom :: Name -> TyCon -> [TyVar] -> [Role] -> Type -> CoAxiom Unbranched
mkNewTypeCoAxiom name tycon tvs roles rhs_ty
= CoAxiom { co_ax_unique = nameUnique name
, co_ax_name = name
, co_ax_implicit = True -- See Note [Implicit axioms] in GHC.Core.TyCon
, co_ax_role = Representational
, co_ax_tc = tycon
, co_ax_branches = unbranched (branch { cab_incomps = [] }) }
where
branch = mkCoAxBranch tvs [] [] (mkTyVarTys tvs) rhs_ty
roles (getSrcSpan name)
{-
************************************************************************
* *
Looking up a family instance
* *
************************************************************************
@lookupFamInstEnv@ looks up in a @FamInstEnv@, using a one-way match.
Multiple matches are only possible in case of type families (not data
families), and then, it doesn't matter which match we choose (as the
instances are guaranteed confluent).
We return the matching family instances and the type instance at which it
matches. For example, if we lookup 'T [Int]' and have a family instance
data instance T [a] = ..
desugared to
data :R42T a = ..
coe :Co:R42T a :: T [a] ~ :R42T a
we return the matching instance '(FamInst{.., fi_tycon = :R42T}, Int)'.
-}
-- when matching a type family application, we get a FamInst,
-- and the list of types the axiom should be applied to
data FamInstMatch = FamInstMatch { fim_instance :: FamInst
, fim_tys :: [Type]
, fim_cos :: [Coercion]
}
-- See Note [Over-saturated matches]
instance Outputable FamInstMatch where
ppr (FamInstMatch { fim_instance = inst
, fim_tys = tys
, fim_cos = cos })
= text "match with" <+> parens (ppr inst) <+> ppr tys <+> ppr cos
lookupFamInstEnvByTyCon :: FamInstEnvs -> TyCon -> [FamInst]
lookupFamInstEnvByTyCon (pkg_ie, home_ie) fam_tc
= get pkg_ie ++ get home_ie
where
get ie = case lookupUDFM ie fam_tc of
Nothing -> []
Just (FamIE fis) -> fis
lookupFamInstEnv
:: FamInstEnvs
-> TyCon -> [Type] -- What we are looking for
-> [FamInstMatch] -- Successful matches
-- Precondition: the tycon is saturated (or over-saturated)
lookupFamInstEnv
= lookup_fam_inst_env match
where
match _ _ tpl_tys tys = tcMatchTys tpl_tys tys
lookupFamInstEnvConflicts
:: FamInstEnvs
-> FamInst -- Putative new instance
-> [FamInstMatch] -- Conflicting matches (don't look at the fim_tys field)
-- E.g. when we are about to add
-- f : type instance F [a] = a->a
-- we do (lookupFamInstConflicts f [b])
-- to find conflicting matches
--
-- Precondition: the tycon is saturated (or over-saturated)
lookupFamInstEnvConflicts envs fam_inst@(FamInst { fi_axiom = new_axiom })
= lookup_fam_inst_env my_unify envs fam tys
where
(fam, tys) = famInstSplitLHS fam_inst
-- In example above, fam tys' = F [b]
my_unify (FamInst { fi_axiom = old_axiom }) tpl_tvs tpl_tys _
= ASSERT2( tyCoVarsOfTypes tys `disjointVarSet` tpl_tvs,
(ppr fam <+> ppr tys) $$
(ppr tpl_tvs <+> ppr tpl_tys) )
-- Unification will break badly if the variables overlap
-- They shouldn't because we allocate separate uniques for them
if compatibleBranches (coAxiomSingleBranch old_axiom) new_branch
then Nothing
else Just noSubst
-- Note [Family instance overlap conflicts]
noSubst = panic "lookupFamInstEnvConflicts noSubst"
new_branch = coAxiomSingleBranch new_axiom
--------------------------------------------------------------------------------
-- Type family injectivity checking bits --
--------------------------------------------------------------------------------
{- Note [Verifying injectivity annotation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Injectivity means that the RHS of a type family uniquely determines the LHS (see
Note [Type inference for type families with injectivity]). The user informs us about
injectivity using an injectivity annotation and it is GHC's task to verify that
this annotation is correct w.r.t. type family equations. Whenever we see a new
equation of a type family we need to make sure that adding this equation to the
already known equations of a type family does not violate the injectivity annotation
supplied by the user (see Note [Injectivity annotation]). Of course if the type
family has no injectivity annotation then no check is required. But if a type
family has injectivity annotation we need to make sure that the following
conditions hold:
1. For each pair of *different* equations of a type family, one of the following
conditions holds:
A: RHSs are different. (Check done in GHC.Core.FamInstEnv.injectiveBranches)
B1: OPEN TYPE FAMILIES: If the RHSs can be unified under some substitution
then it must be possible to unify the LHSs under the same substitution.
Example:
type family FunnyId a = r | r -> a
type instance FunnyId Int = Int
type instance FunnyId a = a
RHSs of these two equations unify under [ a |-> Int ] substitution.
Under this substitution LHSs are equal therefore these equations don't
violate injectivity annotation. (Check done in GHC.Core.FamInstEnv.injectiveBranches)
B2: CLOSED TYPE FAMILIES: If the RHSs can be unified under some
substitution then either the LHSs unify under the same substitution or
the LHS of the latter equation is overlapped by earlier equations.
Example 1:
type family SwapIntChar a = r | r -> a where
SwapIntChar Int = Char
SwapIntChar Char = Int
SwapIntChar a = a
Say we are checking the last two equations. RHSs unify under [ a |->
Int ] substitution but LHSs don't. So we apply the substitution to LHS
of last equation and check whether it is overlapped by any of previous
equations. Since it is overlapped by the first equation we conclude
that pair of last two equations does not violate injectivity
annotation. (Check done in GHC.Tc.Validity.checkValidCoAxiom#gather_conflicts)
A special case of B is when RHSs unify with an empty substitution ie. they
are identical.
If any of the above two conditions holds we conclude that the pair of
equations does not violate injectivity annotation. But if we find a pair
of equations where neither of the above holds we report that this pair
violates injectivity annotation because for a given RHS we don't have a
unique LHS. (Note that (B) actually implies (A).)
Note that we only take into account these LHS patterns that were declared
as injective.
2. If an RHS of a type family equation is a bare type variable then
all LHS variables (including implicit kind variables) also have to be bare.
In other words, this has to be a sole equation of that type family and it has
to cover all possible patterns. So for example this definition will be
rejected:
type family W1 a = r | r -> a
type instance W1 [a] = a
If it were accepted we could call `W1 [W1 Int]`, which would reduce to
`W1 Int` and then by injectivity we could conclude that `[W1 Int] ~ Int`,
which is bogus. Checked FamInst.bareTvInRHSViolated.
3. If the RHS of a type family equation is a type family application then the type
family is rejected as not injective. This is checked by FamInst.isTFHeaded.
4. If a LHS type variable that is declared as injective is not mentioned in an
injective position in the RHS then the type family is rejected as not
injective. "Injective position" means either an argument to a type
constructor or argument to a type family on injective position.
There are subtleties here. See Note [Coverage condition for injective type families]
in GHC.Tc.Instance.Family.
Check (1) must be done for all family instances (transitively) imported. Other
checks (2-4) should be done just for locally written equations, as they are checks
involving just a single equation, not about interactions. Doing the other checks for
imported equations led to #17405, as the behavior of check (4) depends on
-XUndecidableInstances (see Note [Coverage condition for injective type families] in
FamInst), which may vary between modules.
See also Note [Injective type families] in GHC.Core.TyCon
-}
-- | Check whether an open type family equation can be added to already existing
-- instance environment without causing conflicts with supplied injectivity
-- annotations. Returns list of conflicting axioms (type instance
-- declarations).
lookupFamInstEnvInjectivityConflicts
:: [Bool] -- injectivity annotation for this type family instance
-- INVARIANT: list contains at least one True value
-> FamInstEnvs -- all type instances seens so far
-> FamInst -- new type instance that we're checking
-> [CoAxBranch] -- conflicting instance declarations
lookupFamInstEnvInjectivityConflicts injList (pkg_ie, home_ie)
fam_inst@(FamInst { fi_axiom = new_axiom })
-- See Note [Verifying injectivity annotation]. This function implements
-- check (1.B1) for open type families described there.
= lookup_inj_fam_conflicts home_ie ++ lookup_inj_fam_conflicts pkg_ie
where
fam = famInstTyCon fam_inst
new_branch = coAxiomSingleBranch new_axiom
-- filtering function used by `lookup_inj_fam_conflicts` to check whether
-- a pair of equations conflicts with the injectivity annotation.
isInjConflict (FamInst { fi_axiom = old_axiom })
| InjectivityAccepted <-
injectiveBranches injList (coAxiomSingleBranch old_axiom) new_branch
= False -- no conflict
| otherwise = True
lookup_inj_fam_conflicts ie
| isOpenFamilyTyCon fam, Just (FamIE insts) <- lookupUDFM ie fam
= map (coAxiomSingleBranch . fi_axiom) $
filter isInjConflict insts
| otherwise = []
--------------------------------------------------------------------------------
-- Type family overlap checking bits --
--------------------------------------------------------------------------------
{-
Note [Family instance overlap conflicts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- In the case of data family instances, any overlap is fundamentally a
conflict (as these instances imply injective type mappings).
- In the case of type family instances, overlap is admitted as long as
the right-hand sides of the overlapping rules coincide under the
overlap substitution. eg
type instance F a Int = a
type instance F Int b = b
These two overlap on (F Int Int) but then both RHSs are Int,
so all is well. We require that they are syntactically equal;
anything else would be difficult to test for at this stage.
-}
------------------------------------------------------------
-- Might be a one-way match or a unifier
type MatchFun = FamInst -- The FamInst template
-> TyVarSet -> [Type] -- fi_tvs, fi_tys of that FamInst
-> [Type] -- Target to match against
-> Maybe TCvSubst
lookup_fam_inst_env' -- The worker, local to this module
:: MatchFun
-> FamInstEnv
-> TyCon -> [Type] -- What we are looking for
-> [FamInstMatch]
lookup_fam_inst_env' match_fun ie fam match_tys
| isOpenFamilyTyCon fam
, Just (FamIE insts) <- lookupUDFM ie fam
= find insts -- The common case
| otherwise = []
where
find [] = []
find (item@(FamInst { fi_tcs = mb_tcs, fi_tvs = tpl_tvs, fi_cvs = tpl_cvs
, fi_tys = tpl_tys }) : rest)
-- Fast check for no match, uses the "rough match" fields
| instanceCantMatch rough_tcs mb_tcs
= find rest
-- Proper check
| Just subst <- match_fun item (mkVarSet tpl_tvs) tpl_tys match_tys1
= (FamInstMatch { fim_instance = item
, fim_tys = substTyVars subst tpl_tvs `chkAppend` match_tys2
, fim_cos = ASSERT( all (isJust . lookupCoVar subst) tpl_cvs )
substCoVars subst tpl_cvs
})
: find rest
-- No match => try next
| otherwise
= find rest
where
(rough_tcs, match_tys1, match_tys2) = split_tys tpl_tys
-- Precondition: the tycon is saturated (or over-saturated)
-- Deal with over-saturation
-- See Note [Over-saturated matches]
split_tys tpl_tys
| isTypeFamilyTyCon fam
= pre_rough_split_tys
| otherwise
= let (match_tys1, match_tys2) = splitAtList tpl_tys match_tys
rough_tcs = roughMatchTcs match_tys1
in (rough_tcs, match_tys1, match_tys2)
(pre_match_tys1, pre_match_tys2) = splitAt (tyConArity fam) match_tys
pre_rough_split_tys
= (roughMatchTcs pre_match_tys1, pre_match_tys1, pre_match_tys2)
lookup_fam_inst_env -- The worker, local to this module
:: MatchFun
-> FamInstEnvs
-> TyCon -> [Type] -- What we are looking for
-> [FamInstMatch] -- Successful matches
-- Precondition: the tycon is saturated (or over-saturated)
lookup_fam_inst_env match_fun (pkg_ie, home_ie) fam tys
= lookup_fam_inst_env' match_fun home_ie fam tys
++ lookup_fam_inst_env' match_fun pkg_ie fam tys
{-
Note [Over-saturated matches]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's ok to look up an over-saturated type constructor. E.g.
type family F a :: * -> *
type instance F (a,b) = Either (a->b)
The type instance gives rise to a newtype TyCon (at a higher kind
which you can't do in Haskell!):
newtype FPair a b = FP (Either (a->b))
Then looking up (F (Int,Bool) Char) will return a FamInstMatch
(FPair, [Int,Bool,Char])
The "extra" type argument [Char] just stays on the end.
We handle data families and type families separately here:
* For type families, all instances of a type family must have the
same arity, so we can precompute the split between the match_tys
and the overflow tys. This is done in pre_rough_split_tys.
* For data family instances, though, we need to re-split for each
instance, because the breakdown might be different for each
instance. Why? Because of eta reduction; see
Note [Eta reduction for data families] in GHC.Core.Coercion.Axiom.
-}
-- checks if one LHS is dominated by a list of other branches
-- in other words, if an application would match the first LHS, it is guaranteed
-- to match at least one of the others. The RHSs are ignored.
-- This algorithm is conservative:
-- True -> the LHS is definitely covered by the others
-- False -> no information
-- It is currently (Oct 2012) used only for generating errors for
-- inaccessible branches. If these errors go unreported, no harm done.
-- This is defined here to avoid a dependency from CoAxiom to Unify
isDominatedBy :: CoAxBranch -> [CoAxBranch] -> Bool
isDominatedBy branch branches
= or $ map match branches
where
lhs = coAxBranchLHS branch
match (CoAxBranch { cab_lhs = tys })
= isJust $ tcMatchTys tys lhs
{-
************************************************************************
* *
Choosing an axiom application
* *
************************************************************************
The lookupFamInstEnv function does a nice job for *open* type families,
but we also need to handle closed ones when normalising a type:
-}
reduceTyFamApp_maybe :: FamInstEnvs
-> Role -- Desired role of result coercion
-> TyCon -> [Type]
-> Maybe (Coercion, Type)
-- Attempt to do a *one-step* reduction of a type-family application
-- but *not* newtypes
-- Works on type-synonym families always; data-families only if
-- the role we seek is representational
-- It does *not* normalise the type arguments first, so this may not
-- go as far as you want. If you want normalised type arguments,
-- use topReduceTyFamApp_maybe
--
-- The TyCon can be oversaturated.
-- Works on both open and closed families
--
-- Always returns a *homogeneous* coercion -- type family reductions are always
-- homogeneous
reduceTyFamApp_maybe envs role tc tys
| Phantom <- role
= Nothing
| case role of
Representational -> isOpenFamilyTyCon tc
_ -> isOpenTypeFamilyTyCon tc
-- If we seek a representational coercion
-- (e.g. the call in topNormaliseType_maybe) then we can
-- unwrap data families as well as type-synonym families;
-- otherwise only type-synonym families
, FamInstMatch { fim_instance = FamInst { fi_axiom = ax }
, fim_tys = inst_tys
, fim_cos = inst_cos } : _ <- lookupFamInstEnv envs tc tys
-- NB: Allow multiple matches because of compatible overlap
= let co = mkUnbranchedAxInstCo role ax inst_tys inst_cos
ty = coercionRKind co
in Just (co, ty)
| Just ax <- isClosedSynFamilyTyConWithAxiom_maybe tc
, Just (ind, inst_tys, inst_cos) <- chooseBranch ax tys
= let co = mkAxInstCo role ax ind inst_tys inst_cos
ty = coercionRKind co
in Just (co, ty)
| Just ax <- isBuiltInSynFamTyCon_maybe tc
, Just (coax,ts,ty) <- sfMatchFam ax tys
= let co = mkAxiomRuleCo coax (zipWith mkReflCo (coaxrAsmpRoles coax) ts)
in Just (co, ty)
| otherwise
= Nothing
-- The axiom can be oversaturated. (Closed families only.)
chooseBranch :: CoAxiom Branched -> [Type]
-> Maybe (BranchIndex, [Type], [Coercion]) -- found match, with args
chooseBranch axiom tys
= do { let num_pats = coAxiomNumPats axiom
(target_tys, extra_tys) = splitAt num_pats tys
branches = coAxiomBranches axiom
; (ind, inst_tys, inst_cos)
<- findBranch (unMkBranches branches) target_tys
; return ( ind, inst_tys `chkAppend` extra_tys, inst_cos ) }
-- The axiom must *not* be oversaturated
findBranch :: Array BranchIndex CoAxBranch
-> [Type]
-> Maybe (BranchIndex, [Type], [Coercion])
-- coercions relate requested types to returned axiom LHS at role N
findBranch branches target_tys
= foldr go Nothing (assocs branches)
where
go :: (BranchIndex, CoAxBranch)
-> Maybe (BranchIndex, [Type], [Coercion])
-> Maybe (BranchIndex, [Type], [Coercion])
go (index, branch) other
= let (CoAxBranch { cab_tvs = tpl_tvs, cab_cvs = tpl_cvs
, cab_lhs = tpl_lhs
, cab_incomps = incomps }) = branch
in_scope = mkInScopeSet (unionVarSets $
map (tyCoVarsOfTypes . coAxBranchLHS) incomps)
-- See Note [Flattening] in GHC.Core.Unify
flattened_target = flattenTys in_scope target_tys
in case tcMatchTys tpl_lhs target_tys of
Just subst -- matching worked. now, check for apartness.
| apartnessCheck flattened_target branch
-> -- matching worked & we're apart from all incompatible branches.
-- success
ASSERT( all (isJust . lookupCoVar subst) tpl_cvs )
Just (index, substTyVars subst tpl_tvs, substCoVars subst tpl_cvs)
-- failure. keep looking
_ -> other
-- | Do an apartness check, as described in the "Closed Type Families" paper
-- (POPL '14). This should be used when determining if an equation
-- ('CoAxBranch') of a closed type family can be used to reduce a certain target
-- type family application.
apartnessCheck :: [Type] -- ^ /flattened/ target arguments. Make sure
-- they're flattened! See Note [Flattening]
-- in GHC.Core.Unify
-- (NB: This "flat" is a different
-- "flat" than is used in GHC.Tc.Solver.Flatten.)
-> CoAxBranch -- ^ the candidate equation we wish to use
-- Precondition: this matches the target
-> Bool -- ^ True <=> equation can fire
apartnessCheck flattened_target (CoAxBranch { cab_incomps = incomps })
= all (isSurelyApart
. tcUnifyTysFG (const BindMe) flattened_target
. coAxBranchLHS) incomps
where
isSurelyApart SurelyApart = True
isSurelyApart _ = False
{-
************************************************************************
* *
Looking up a family instance
* *
************************************************************************
Note [Normalising types]
~~~~~~~~~~~~~~~~~~~~~~~~
The topNormaliseType function removes all occurrences of type families
and newtypes from the top-level structure of a type. normaliseTcApp does
the type family lookup and is fairly straightforward. normaliseType is
a little more involved.
The complication comes from the fact that a type family might be used in the
kind of a variable bound in a forall. We wish to remove this type family
application, but that means coming up with a fresh variable (with the new
kind). Thus, we need a substitution to be built up as we recur through the
type. However, an ordinary TCvSubst just won't do: when we hit a type variable
whose kind has changed during normalisation, we need both the new type
variable *and* the coercion. We could conjure up a new VarEnv with just this
property, but a usable substitution environment already exists:
LiftingContexts from the liftCoSubst family of functions, defined in GHC.Core.Coercion.
A LiftingContext maps a type variable to a coercion and a coercion variable to
a pair of coercions. Let's ignore coercion variables for now. Because the
coercion a type variable maps to contains the destination type (via
coercionKind), we don't need to store that destination type separately. Thus,
a LiftingContext has what we need: a map from type variables to (Coercion,
Type) pairs.
We also benefit because we can piggyback on the liftCoSubstVarBndr function to
deal with binders. However, I had to modify that function to work with this
application. Thus, we now have liftCoSubstVarBndrUsing, which takes
a function used to process the kind of the binder. We don't wish
to lift the kind, but instead normalise it. So, we pass in a callback function
that processes the kind of the binder.
After that brilliant explanation of all this, I'm sure you've forgotten the
dangling reference to coercion variables. What do we do with those? Nothing at
all. The point of normalising types is to remove type family applications, but
there's no sense in removing these from coercions. We would just get back a
new coercion witnessing the equality between the same types as the original
coercion. Because coercions are irrelevant anyway, there is no point in doing
this. So, whenever we encounter a coercion, we just say that it won't change.
That's what the CoercionTy case is doing within normalise_type.
Note [Normalisation and type synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to be a bit careful about normalising in the presence of type
synonyms (#13035). Suppose S is a type synonym, and we have
S t1 t2
If S is family-free (on its RHS) we can just normalise t1 and t2 and
reconstruct (S t1' t2'). Expanding S could not reveal any new redexes
because type families are saturated.
But if S has a type family on its RHS we expand /before/ normalising
the args t1, t2. If we normalise t1, t2 first, we'll re-normalise them
after expansion, and that can lead to /exponential/ behaviour; see #13035.
Notice, though, that expanding first can in principle duplicate t1,t2,
which might contain redexes. I'm sure you could conjure up an exponential
case by that route too, but it hasn't happened in practice yet!
-}
topNormaliseType :: FamInstEnvs -> Type -> Type
topNormaliseType env ty = case topNormaliseType_maybe env ty of
Just (_co, ty') -> ty'
Nothing -> ty
topNormaliseType_maybe :: FamInstEnvs -> Type -> Maybe (Coercion, Type)
-- ^ Get rid of *outermost* (or toplevel)
-- * type function redex
-- * data family redex
-- * newtypes
-- returning an appropriate Representational coercion. Specifically, if
-- topNormaliseType_maybe env ty = Just (co, ty')
-- then
-- (a) co :: ty ~R ty'
-- (b) ty' is not a newtype, and is not a type-family or data-family redex
--
-- However, ty' can be something like (Maybe (F ty)), where
-- (F ty) is a redex.
--
-- Always operates homogeneously: the returned type has the same kind as the
-- original type, and the returned coercion is always homogeneous.
topNormaliseType_maybe env ty
= do { ((co, mkind_co), nty) <- topNormaliseTypeX stepper combine ty
; return $ case mkind_co of
MRefl -> (co, nty)
MCo kind_co -> let nty_casted = nty `mkCastTy` mkSymCo kind_co
final_co = mkCoherenceRightCo Representational nty
(mkSymCo kind_co) co
in (final_co, nty_casted) }
where
stepper = unwrapNewTypeStepper' `composeSteppers` tyFamStepper
combine (c1, mc1) (c2, mc2) = (c1 `mkTransCo` c2, mc1 `mkTransMCo` mc2)
unwrapNewTypeStepper' :: NormaliseStepper (Coercion, MCoercionN)
unwrapNewTypeStepper' rec_nts tc tys
= mapStepResult (, MRefl) $ unwrapNewTypeStepper rec_nts tc tys
-- second coercion below is the kind coercion relating the original type's kind
-- to the normalised type's kind
tyFamStepper :: NormaliseStepper (Coercion, MCoercionN)
tyFamStepper rec_nts tc tys -- Try to step a type/data family
= case topReduceTyFamApp_maybe env tc tys of
Just (co, rhs, res_co) -> NS_Step rec_nts rhs (co, MCo res_co)
_ -> NS_Done
---------------
normaliseTcApp :: FamInstEnvs -> Role -> TyCon -> [Type] -> (Coercion, Type)
-- See comments on normaliseType for the arguments of this function
normaliseTcApp env role tc tys
= initNormM env role (tyCoVarsOfTypes tys) $
normalise_tc_app tc tys
-- See Note [Normalising types] about the LiftingContext
normalise_tc_app :: TyCon -> [Type] -> NormM (Coercion, Type)
normalise_tc_app tc tys
| Just (tenv, rhs, tys') <- expandSynTyCon_maybe tc tys
, not (isFamFreeTyCon tc) -- Expand and try again
= -- A synonym with type families in the RHS
-- Expand and try again
-- See Note [Normalisation and type synonyms]
normalise_type (mkAppTys (substTy (mkTvSubstPrs tenv) rhs) tys')
| isFamilyTyCon tc
= -- A type-family application
do { env <- getEnv
; role <- getRole
; (args_co, ntys, res_co) <- normalise_tc_args tc tys
; case reduceTyFamApp_maybe env role tc ntys of
Just (first_co, ty')
-> do { (rest_co,nty) <- normalise_type ty'
; return (assemble_result role nty
(args_co `mkTransCo` first_co `mkTransCo` rest_co)
res_co) }
_ -> -- No unique matching family instance exists;
-- we do not do anything
return (assemble_result role (mkTyConApp tc ntys) args_co res_co) }
| otherwise
= -- A synonym with no type families in the RHS; or data type etc
-- Just normalise the arguments and rebuild
do { (args_co, ntys, res_co) <- normalise_tc_args tc tys
; role <- getRole
; return (assemble_result role (mkTyConApp tc ntys) args_co res_co) }
where
assemble_result :: Role -- r, ambient role in NormM monad
-> Type -- nty, result type, possibly of changed kind
-> Coercion -- orig_ty ~r nty, possibly heterogeneous
-> CoercionN -- typeKind(orig_ty) ~N typeKind(nty)
-> (Coercion, Type) -- (co :: orig_ty ~r nty_casted, nty_casted)
-- where nty_casted has same kind as orig_ty
assemble_result r nty orig_to_nty kind_co
= ( final_co, nty_old_kind )
where
nty_old_kind = nty `mkCastTy` mkSymCo kind_co
final_co = mkCoherenceRightCo r nty (mkSymCo kind_co) orig_to_nty
---------------
-- | Try to simplify a type-family application, by *one* step
-- If topReduceTyFamApp_maybe env r F tys = Just (co, rhs, res_co)
-- then co :: F tys ~R# rhs
-- res_co :: typeKind(F tys) ~ typeKind(rhs)
-- Type families and data families; always Representational role
topReduceTyFamApp_maybe :: FamInstEnvs -> TyCon -> [Type]
-> Maybe (Coercion, Type, Coercion)
topReduceTyFamApp_maybe envs fam_tc arg_tys
| isFamilyTyCon fam_tc -- type families and data families
, Just (co, rhs) <- reduceTyFamApp_maybe envs role fam_tc ntys
= Just (args_co `mkTransCo` co, rhs, res_co)
| otherwise
= Nothing
where
role = Representational
(args_co, ntys, res_co) = initNormM envs role (tyCoVarsOfTypes arg_tys) $
normalise_tc_args fam_tc arg_tys
normalise_tc_args :: TyCon -> [Type] -- tc tys
-> NormM (Coercion, [Type], CoercionN)
-- (co, new_tys), where
-- co :: tc tys ~ tc new_tys; might not be homogeneous
-- res_co :: typeKind(tc tys) ~N typeKind(tc new_tys)
normalise_tc_args tc tys
= do { role <- getRole
; (args_cos, nargs, res_co) <- normalise_args (tyConKind tc) (tyConRolesX role tc) tys
; return (mkTyConAppCo role tc args_cos, nargs, res_co) }
---------------
normaliseType :: FamInstEnvs
-> Role -- desired role of coercion
-> Type -> (Coercion, Type)
normaliseType env role ty
= initNormM env role (tyCoVarsOfType ty) $ normalise_type ty
normalise_type :: Type -- old type
-> NormM (Coercion, Type) -- (coercion, new type), where
-- co :: old-type ~ new_type
-- Normalise the input type, by eliminating *all* type-function redexes
-- but *not* newtypes (which are visible to the programmer)
-- Returns with Refl if nothing happens
-- Does nothing to newtypes
-- The returned coercion *must* be *homogeneous*
-- See Note [Normalising types]
-- Try not to disturb type synonyms if possible
normalise_type ty
= go ty
where
go (TyConApp tc tys) = normalise_tc_app tc tys
go ty@(LitTy {}) = do { r <- getRole
; return (mkReflCo r ty, ty) }
go (AppTy ty1 ty2) = go_app_tys ty1 [ty2]
go ty@(FunTy { ft_mult = w, ft_arg = ty1, ft_res = ty2 })
= do { (co1, nty1) <- go ty1
; (co2, nty2) <- go ty2
; (wco, wty) <- withRole Nominal $ go w
; r <- getRole
; return (mkFunCo r wco co1 co2, ty { ft_mult = wty, ft_arg = nty1, ft_res = nty2 }) }
go (ForAllTy (Bndr tcvar vis) ty)
= do { (lc', tv', h, ki') <- normalise_var_bndr tcvar
; (co, nty) <- withLC lc' $ normalise_type ty
; let tv2 = setTyVarKind tv' ki'
; return (mkForAllCo tv' h co, ForAllTy (Bndr tv2 vis) nty) }
go (TyVarTy tv) = normalise_tyvar tv
go (CastTy ty co)
= do { (nco, nty) <- go ty
; lc <- getLC
; let co' = substRightCo lc co
; return (castCoercionKind2 nco Nominal ty nty co co'
, mkCastTy nty co') }
go (CoercionTy co)
= do { lc <- getLC
; r <- getRole
; let right_co = substRightCo lc co
; return ( mkProofIrrelCo r
(liftCoSubst Nominal lc (coercionType co))
co right_co
, mkCoercionTy right_co ) }
go_app_tys :: Type -- function
-> [Type] -- args
-> NormM (Coercion, Type)
-- cf. GHC.Tc.Solver.Flatten.flatten_app_ty_args
go_app_tys (AppTy ty1 ty2) tys = go_app_tys ty1 (ty2 : tys)
go_app_tys fun_ty arg_tys
= do { (fun_co, nfun) <- go fun_ty
; case tcSplitTyConApp_maybe nfun of
Just (tc, xis) ->
do { (second_co, nty) <- go (mkTyConApp tc (xis ++ arg_tys))
-- flatten_app_ty_args avoids redundantly processing the xis,
-- but that's a much more performance-sensitive function.
-- This type normalisation is not called in a loop.
; return (mkAppCos fun_co (map mkNomReflCo arg_tys) `mkTransCo` second_co, nty) }
Nothing ->
do { (args_cos, nargs, res_co) <- normalise_args (typeKind nfun)
(repeat Nominal)
arg_tys
; role <- getRole
; let nty = mkAppTys nfun nargs
nco = mkAppCos fun_co args_cos
nty_casted = nty `mkCastTy` mkSymCo res_co
final_co = mkCoherenceRightCo role nty (mkSymCo res_co) nco
; return (final_co, nty_casted) } }
normalise_args :: Kind -- of the function
-> [Role] -- roles at which to normalise args
-> [Type] -- args
-> NormM ([Coercion], [Type], Coercion)
-- returns (cos, xis, res_co), where each xi is the normalised
-- version of the corresponding type, each co is orig_arg ~ xi,
-- and the res_co :: kind(f orig_args) ~ kind(f xis)
-- NB: The xis might *not* have the same kinds as the input types,
-- but the resulting application *will* be well-kinded
-- cf. GHC.Tc.Solver.Flatten.flatten_args_slow
normalise_args fun_ki roles args
= do { normed_args <- zipWithM normalise1 roles args
; let (xis, cos, res_co) = simplifyArgsWorker ki_binders inner_ki fvs roles normed_args
; return (map mkSymCo cos, xis, mkSymCo res_co) }
where
(ki_binders, inner_ki) = splitPiTys fun_ki
fvs = tyCoVarsOfTypes args
-- flattener conventions are different from ours
impedance_match :: NormM (Coercion, Type) -> NormM (Type, Coercion)
impedance_match action = do { (co, ty) <- action
; return (ty, mkSymCo co) }
normalise1 role ty
= impedance_match $ withRole role $ normalise_type ty
normalise_tyvar :: TyVar -> NormM (Coercion, Type)
normalise_tyvar tv
= ASSERT( isTyVar tv )
do { lc <- getLC
; r <- getRole
; return $ case liftCoSubstTyVar lc r tv of
Just co -> (co, coercionRKind co)
Nothing -> (mkReflCo r ty, ty) }
where ty = mkTyVarTy tv
normalise_var_bndr :: TyCoVar -> NormM (LiftingContext, TyCoVar, Coercion, Kind)
normalise_var_bndr tcvar
-- works for both tvar and covar
= do { lc1 <- getLC
; env <- getEnv
; let callback lc ki = runNormM (normalise_type ki) env lc Nominal
; return $ liftCoSubstVarBndrUsing callback lc1 tcvar }
-- | a monad for the normalisation functions, reading 'FamInstEnvs',
-- a 'LiftingContext', and a 'Role'.
newtype NormM a = NormM { runNormM ::
FamInstEnvs -> LiftingContext -> Role -> a }
deriving (Functor)
initNormM :: FamInstEnvs -> Role
-> TyCoVarSet -- the in-scope variables
-> NormM a -> a
initNormM env role vars (NormM thing_inside)
= thing_inside env lc role
where
in_scope = mkInScopeSet vars
lc = emptyLiftingContext in_scope
getRole :: NormM Role
getRole = NormM (\ _ _ r -> r)
getLC :: NormM LiftingContext
getLC = NormM (\ _ lc _ -> lc)
getEnv :: NormM FamInstEnvs
getEnv = NormM (\ env _ _ -> env)
withRole :: Role -> NormM a -> NormM a
withRole r thing = NormM $ \ envs lc _old_r -> runNormM thing envs lc r
withLC :: LiftingContext -> NormM a -> NormM a
withLC lc thing = NormM $ \ envs _old_lc r -> runNormM thing envs lc r
instance Monad NormM where
ma >>= fmb = NormM $ \env lc r ->
let a = runNormM ma env lc r in
runNormM (fmb a) env lc r
instance Applicative NormM where
pure x = NormM $ \ _ _ _ -> x
(<*>) = ap
|