summaryrefslogtreecommitdiff
path: root/compiler/GHC/Core/Lint.hs
blob: 7bb1eb43aad93bb9368ddcd4becac06560dcc084 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
{-# LANGUAGE MultiWayIf          #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE UnboxedTuples #-}

{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1993-1998


A ``lint'' pass to check for Core correctness.
See Note [Core Lint guarantee].
-}

module GHC.Core.Lint (
    LintPassResultConfig (..),
    LintFlags (..),
    StaticPtrCheck (..),
    LintConfig (..),
    WarnsAndErrs,

    lintCoreBindings', lintUnfolding,
    lintPassResult, lintExpr,
    lintAnnots, lintAxioms,

    -- ** Debug output
    EndPassConfig (..),
    endPassIO,
    displayLintResults, dumpPassResult
 ) where

import GHC.Prelude

import GHC.Driver.Session

import GHC.Tc.Utils.TcType ( isFloatingPrimTy, isTyFamFree )
import GHC.Unit.Module.ModGuts
import GHC.Platform

import GHC.Core
import GHC.Core.FVs
import GHC.Core.Utils
import GHC.Core.Stats ( coreBindsStats )
import GHC.Core.DataCon
import GHC.Core.Ppr
import GHC.Core.Coercion
import GHC.Core.Type as Type
import GHC.Core.Multiplicity
import GHC.Core.UsageEnv
import GHC.Core.TyCo.Rep   -- checks validity of types/coercions
import GHC.Core.TyCo.Compare( eqType )
import GHC.Core.TyCo.Subst
import GHC.Core.TyCo.FVs
import GHC.Core.TyCo.Ppr
import GHC.Core.TyCon as TyCon
import GHC.Core.Coercion.Axiom
import GHC.Core.FamInstEnv( compatibleBranches )
import GHC.Core.Unify
import GHC.Core.Opt.Arity    ( typeArity, exprIsDeadEnd )

import GHC.Core.Opt.Monad

import GHC.Types.Literal
import GHC.Types.Var as Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.SrcLoc
import GHC.Types.Tickish
import GHC.Types.RepType
import GHC.Types.Basic
import GHC.Types.Demand      ( splitDmdSig, isDeadEndDiv )

import GHC.Builtin.Names
import GHC.Builtin.Types.Prim
import GHC.Builtin.Types ( multiplicityTy )

import GHC.Data.Bag
import GHC.Data.List.SetOps

import GHC.Utils.Monad
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import GHC.Utils.Constants (debugIsOn)
import GHC.Utils.Misc
import GHC.Utils.Error
import qualified GHC.Utils.Error as Err
import GHC.Utils.Logger

import Control.Monad
import Data.Foldable      ( for_, toList )
import Data.List.NonEmpty ( NonEmpty(..), groupWith )
import Data.List          ( partition )
import Data.Maybe
import GHC.Data.Pair
import GHC.Base (oneShot)
import GHC.Data.Unboxed

{-
Note [Core Lint guarantee]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Core Lint is the type-checker for Core. Using it, we get the following guarantee:

If all of:
1. Core Lint passes,
2. there are no unsafe coercions (i.e. unsafeEqualityProof),
3. all plugin-supplied coercions (i.e. PluginProv) are valid, and
4. all case-matches are complete
then running the compiled program will not seg-fault, assuming no bugs downstream
(e.g. in the code generator). This guarantee is quite powerful, in that it allows us
to decouple the safety of the resulting program from the type inference algorithm.

However, do note point (4) above. Core Lint does not check for incomplete case-matches;
see Note [Case expression invariants] in GHC.Core, invariant (4). As explained there,
an incomplete case-match might slip by Core Lint and cause trouble at runtime.

Note [GHC Formalism]
~~~~~~~~~~~~~~~~~~~~
This file implements the type-checking algorithm for System FC, the "official"
name of the Core language. Type safety of FC is heart of the claim that
executables produced by GHC do not have segmentation faults. Thus, it is
useful to be able to reason about System FC independently of reading the code.
To this purpose, there is a document core-spec.pdf built in docs/core-spec that
contains a formalism of the types and functions dealt with here. If you change
just about anything in this file or you change other types/functions throughout
the Core language (all signposted to this note), you should update that
formalism. See docs/core-spec/README for more info about how to do so.

Note [check vs lint]
~~~~~~~~~~~~~~~~~~~~
This file implements both a type checking algorithm and also general sanity
checking. For example, the "sanity checking" checks for TyConApp on the left
of an AppTy, which should never happen. These sanity checks don't really
affect any notion of type soundness. Yet, it is convenient to do the sanity
checks at the same time as the type checks. So, we use the following naming
convention:

- Functions that begin with 'lint'... are involved in type checking. These
  functions might also do some sanity checking.

- Functions that begin with 'check'... are *not* involved in type checking.
  They exist only for sanity checking.

Issues surrounding variable naming, shadowing, and such are considered *not*
to be part of type checking, as the formalism omits these details.

Summary of checks
~~~~~~~~~~~~~~~~~
Checks that a set of core bindings is well-formed.  The PprStyle and String
just control what we print in the event of an error.  The Bool value
indicates whether we have done any specialisation yet (in which case we do
some extra checks).

We check for
        (a) type errors
        (b) Out-of-scope type variables
        (c) Out-of-scope local variables
        (d) Ill-kinded types
        (e) Incorrect unsafe coercions

If we have done specialisation the we check that there are
        (a) No top-level bindings of primitive (unboxed type)

Note [Linting function types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All saturated applications of funTyCon are represented with the FunTy constructor.
See Note [Function type constructors and FunTy] in GHC.Builtin.Types.Prim

 We check this invariant in lintType.

Note [Linting type lets]
~~~~~~~~~~~~~~~~~~~~~~~~
In the desugarer, it's very very convenient to be able to say (in effect)
        let a = Type Bool in
        let x::a = True in <body>
That is, use a type let.  See Note [Core type and coercion invariant] in "GHC.Core".
One place it is used is in mkWwBodies; see Note [Join points and beta-redexes]
in GHC.Core.Opt.WorkWrap.Utils.  (Maybe there are other "clients" of this feature; I'm not sure).

* Hence when linting <body> we need to remember that a=Int, else we
  might reject a correct program.  So we carry a type substitution (in
  this example [a -> Bool]) and apply this substitution before
  comparing types. In effect, in Lint, type equality is always
  equality-modulo-le-subst.  This is in the le_subst field of
  LintEnv.  But nota bene:

  (SI1) The le_subst substitution is applied to types and coercions only

  (SI2) The result of that substitution is used only to check for type
        equality, to check well-typed-ness, /but is then discarded/.
        The result of substitution does not outlive the CoreLint pass.

  (SI3) The InScopeSet of le_subst includes only TyVar and CoVar binders.

* The function
        lintInTy :: Type -> LintM (Type, Kind)
  returns a substituted type.

* When we encounter a binder (like x::a) we must apply the substitution
  to the type of the binding variable.  lintBinders does this.

* Clearly we need to clone tyvar binders as we go.

* But take care (#17590)! We must also clone CoVar binders:
    let a = TYPE (ty |> cv)
    in \cv -> blah
  blindly substituting for `a` might capture `cv`.

* Alas, when cloning a coercion variable we might choose a unique
  that happens to clash with an inner Id, thus
      \cv_66 -> let wild_X7 = blah in blah
  We decide to clone `cv_66` because it's already in scope.  Fine,
  choose a new unique.  Aha, X7 looks good.  So we check the lambda
  body with le_subst of [cv_66 :-> cv_X7]

  This is all fine, even though we use the same unique as wild_X7.
  As (SI2) says, we do /not/ return a new lambda
     (\cv_X7 -> let wild_X7 = blah in ...)
  We simply use the le_subst substitution in types/coercions only, when
  checking for equality.

* We still need to check that Id occurrences are bound by some
  enclosing binding.  We do /not/ use the InScopeSet for the le_subst
  for this purpose -- it contains only TyCoVars.  Instead we have a separate
  le_ids for the in-scope Id binders.

Sigh.  We might want to explore getting rid of type-let!

Note [Bad unsafe coercion]
~~~~~~~~~~~~~~~~~~~~~~~~~~
For discussion see https://gitlab.haskell.org/ghc/ghc/wikis/bad-unsafe-coercions
Linter introduces additional rules that checks improper coercion between
different types, called bad coercions. Following coercions are forbidden:

  (a) coercions between boxed and unboxed values;
  (b) coercions between unlifted values of the different sizes, here
      active size is checked, i.e. size of the actual value but not
      the space allocated for value;
  (c) coercions between floating and integral boxed values, this check
      is not yet supported for unboxed tuples, as no semantics were
      specified for that;
  (d) coercions from / to vector type
  (e) If types are unboxed tuples then tuple (# A_1,..,A_n #) can be
      coerced to (# B_1,..,B_m #) if n=m and for each pair A_i, B_i rules
      (a-e) holds.

Note [Join points]
~~~~~~~~~~~~~~~~~~
We check the rules listed in Note [Invariants on join points] in GHC.Core. The
only one that causes any difficulty is the first: All occurrences must be tail
calls. To this end, along with the in-scope set, we remember in le_joins the
subset of in-scope Ids that are valid join ids. For example:

  join j x = ... in
  case e of
    A -> jump j y -- good
    B -> case (jump j z) of -- BAD
           C -> join h = jump j w in ... -- good
           D -> let x = jump j v in ... -- BAD

A join point remains valid in case branches, so when checking the A
branch, j is still valid. When we check the scrutinee of the inner
case, however, we set le_joins to empty, and catch the
error. Similarly, join points can occur free in RHSes of other join
points but not the RHSes of value bindings (thunks and functions).

Note [Avoiding compiler perf traps when constructing error messages.]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's quite common to put error messages into a where clause when it might
be triggered by multiple branches. E.g.

  checkThing x y z =
    case x of
      X -> unless (correctX x) $ failWithL errMsg
      Y -> unless (correctY y) $ failWithL errMsg
    where
      errMsg = text "My error involving:" $$ ppr x <+> ppr y

However ghc will compile this to:

  checkThink x y z =
    let errMsg = text "My error involving:" $$ ppr x <+> ppr y
    in case x of
      X -> unless (correctX x) $ failWithL errMsg
      Y -> unless (correctY y) $ failWithL errMsg

Putting the allocation of errMsg into the common non-error path.
One way to work around this is to turn errMsg into a function:

  checkThink x y z =
    case x of
      X -> unless (correctX x) $ failWithL (errMsg x y)
      Y -> unless (correctY y) $ failWithL (errMsg x y)
    where
      errMsg x y = text "My error involving:" $$ ppr x <+> ppr y

This way `errMsg` is a static function and it being defined in the common
path does not result in allocation in the hot path. This can be surprisingly
impactful. Changing `lint_app` reduced allocations for one test program I was
looking at by ~4%.


************************************************************************
*                                                                      *
                 Beginning and ending passes
*                                                                      *
************************************************************************
-}

-- | Configuration for boilerplate operations at the end of a
-- compilation pass producing Core.
data EndPassConfig = EndPassConfig
  { ep_dumpCoreSizes :: !Bool
  -- ^ Whether core bindings should be dumped with the size of what they
  -- are binding (i.e. the size of the RHS of the binding).

  , ep_lintPassResult :: !(Maybe LintPassResultConfig)
  -- ^ Whether we should lint the result of this pass.

  , ep_namePprCtx :: !NamePprCtx

  , ep_dumpFlag :: !(Maybe DumpFlag)

  , ep_prettyPass :: !SDoc

  , ep_passDetails :: !SDoc
  }

endPassIO :: Logger
          -> EndPassConfig
          -> CoreProgram -> [CoreRule]
          -> IO ()
-- Used by the IO-is CorePrep too
endPassIO logger cfg binds rules
  = do { dumpPassResult logger (ep_dumpCoreSizes cfg) (ep_namePprCtx cfg) mb_flag
                        (renderWithContext defaultSDocContext (ep_prettyPass cfg))
                        (ep_passDetails cfg) binds rules
       ; for_ (ep_lintPassResult cfg) $ \lp_cfg ->
           lintPassResult logger lp_cfg binds
       }
  where
    mb_flag = case ep_dumpFlag cfg of
                Just flag | logHasDumpFlag logger flag                    -> Just flag
                          | logHasDumpFlag logger Opt_D_verbose_core2core -> Just flag
                _ -> Nothing

dumpPassResult :: Logger
               -> Bool                  -- dump core sizes?
               -> NamePprCtx
               -> Maybe DumpFlag        -- Just df => show details in a file whose
                                        --            name is specified by df
               -> String                -- Header
               -> SDoc                  -- Extra info to appear after header
               -> CoreProgram -> [CoreRule]
               -> IO ()
dumpPassResult logger dump_core_sizes name_ppr_ctx mb_flag hdr extra_info binds rules
  = do { forM_ mb_flag $ \flag -> do
           logDumpFile logger (mkDumpStyle name_ppr_ctx) flag hdr FormatCore dump_doc

         -- Report result size
         -- This has the side effect of forcing the intermediate to be evaluated
         -- if it's not already forced by a -ddump flag.
       ; Err.debugTraceMsg logger 2 size_doc
       }

  where
    size_doc = sep [text "Result size of" <+> text hdr, nest 2 (equals <+> ppr (coreBindsStats binds))]

    dump_doc  = vcat [ nest 2 extra_info
                     , size_doc
                     , blankLine
                     , if dump_core_sizes
                        then pprCoreBindingsWithSize binds
                        else pprCoreBindings         binds
                     , ppUnless (null rules) pp_rules ]
    pp_rules = vcat [ blankLine
                    , text "------ Local rules for imported ids --------"
                    , pprRules rules ]

{-
************************************************************************
*                                                                      *
                 Top-level interfaces
*                                                                      *
************************************************************************
-}

data LintPassResultConfig = LintPassResultConfig
  { lpr_diagOpts         :: !DiagOpts
  , lpr_platform         :: !Platform
  , lpr_makeLintFlags    :: !LintFlags
  , lpr_showLintWarnings :: !Bool
  , lpr_passPpr          :: !SDoc
  , lpr_localsInScope    :: ![Var]
  }

lintPassResult :: Logger -> LintPassResultConfig
               -> CoreProgram -> IO ()
lintPassResult logger cfg binds
  = do { let warns_and_errs = lintCoreBindings'
               (LintConfig
                { l_diagOpts = lpr_diagOpts cfg
                , l_platform = lpr_platform cfg
                , l_flags    = lpr_makeLintFlags cfg
                , l_vars     = lpr_localsInScope cfg
                })
               binds
       ; Err.showPass logger $
           "Core Linted result of " ++
           renderWithContext defaultSDocContext (lpr_passPpr cfg)
       ; displayLintResults logger
                            (lpr_showLintWarnings cfg) (lpr_passPpr cfg)
                            (pprCoreBindings binds) warns_and_errs
       }

displayLintResults :: Logger
                   -> Bool -- ^ If 'True', display linter warnings.
                           --   If 'False', ignore linter warnings.
                   -> SDoc -- ^ The source of the linted program
                   -> SDoc -- ^ The linted program, pretty-printed
                   -> WarnsAndErrs
                   -> IO ()
displayLintResults logger display_warnings pp_what pp_pgm (warns, errs)
  | not (isEmptyBag errs)
  = do { logMsg logger Err.MCDump noSrcSpan
           $ withPprStyle defaultDumpStyle
           (vcat [ lint_banner "errors" pp_what, Err.pprMessageBag errs
                 , text "*** Offending Program ***"
                 , pp_pgm
                 , text "*** End of Offense ***" ])
       ; Err.ghcExit logger 1 }

  | not (isEmptyBag warns)
  , log_enable_debug (logFlags logger)
  , display_warnings
  -- If the Core linter encounters an error, output to stderr instead of
  -- stdout (#13342)
  = logMsg logger Err.MCInfo noSrcSpan
      $ withPprStyle defaultDumpStyle
        (lint_banner "warnings" pp_what $$ Err.pprMessageBag (mapBag ($$ blankLine) warns))

  | otherwise = return ()

lint_banner :: String -> SDoc -> SDoc
lint_banner string pass = text "*** Core Lint"      <+> text string
                          <+> text ": in result of" <+> pass
                          <+> text "***"

-- | Type-check a 'CoreProgram'. See Note [Core Lint guarantee].
lintCoreBindings' :: LintConfig -> CoreProgram -> WarnsAndErrs
--   Returns (warnings, errors)
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintCoreBindings' cfg binds
  = initL cfg $
    addLoc TopLevelBindings           $
    do { checkL (null dups) (dupVars dups)
       ; checkL (null ext_dups) (dupExtVars ext_dups)
       ; lintRecBindings TopLevel all_pairs $ \_ ->
         return () }
  where
    all_pairs = flattenBinds binds
     -- Put all the top-level binders in scope at the start
     -- This is because rewrite rules can bring something
     -- into use 'unexpectedly'; see Note [Glomming] in "GHC.Core.Opt.OccurAnal"
    binders = map fst all_pairs

    (_, dups) = removeDups compare binders

    -- ext_dups checks for names with different uniques
    -- but the same External name M.n.  We don't
    -- allow this at top level:
    --    M.n{r3}  = ...
    --    M.n{r29} = ...
    -- because they both get the same linker symbol
    ext_dups = snd $ removeDupsOn ord_ext $
               filter isExternalName $ map Var.varName binders
    ord_ext n = (nameModule n, nameOccName n)

{-
************************************************************************
*                                                                      *
\subsection[lintUnfolding]{lintUnfolding}
*                                                                      *
************************************************************************

Note [Linting Unfoldings from Interfaces]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We use this to check all top-level unfoldings that come in from interfaces
(it is very painful to catch errors otherwise).

We do not need to call lintUnfolding on unfoldings that are nested within
top-level unfoldings; they are linted when we lint the top-level unfolding;
hence the `TopLevelFlag` on `tcPragExpr` in GHC.IfaceToCore.

-}

lintUnfolding :: Bool             -- ^ True <=> is a compulsory unfolding
              -> LintConfig
              -> SrcLoc
              -> CoreExpr
              -> Maybe (Bag SDoc) -- Nothing => OK

lintUnfolding is_compulsory cfg locn expr
  | isEmptyBag errs = Nothing
  | otherwise       = Just errs
  where
    (_warns, errs) = initL cfg $
                     if is_compulsory
                       -- See Note [Checking for representation polymorphism]
                     then noFixedRuntimeRepChecks linter
                     else linter
    linter = addLoc (ImportedUnfolding locn) $
             lintCoreExpr expr

lintExpr :: LintConfig
         -> CoreExpr
         -> Maybe (Bag SDoc)  -- Nothing => OK

lintExpr cfg expr
  | isEmptyBag errs = Nothing
  | otherwise       = Just errs
  where
    (_warns, errs) = initL cfg linter
    linter = addLoc TopLevelBindings $
             lintCoreExpr expr

{-
************************************************************************
*                                                                      *
\subsection[lintCoreBinding]{lintCoreBinding}
*                                                                      *
************************************************************************

Check a core binding, returning the list of variables bound.
-}

-- Returns a UsageEnv because this function is called in lintCoreExpr for
-- Let

lintRecBindings :: TopLevelFlag -> [(Id, CoreExpr)]
                -> ([LintedId] -> LintM a) -> LintM (a, [UsageEnv])
lintRecBindings top_lvl pairs thing_inside
  = lintIdBndrs top_lvl bndrs $ \ bndrs' ->
    do { ues <- zipWithM lint_pair bndrs' rhss
       ; a <- thing_inside bndrs'
       ; return (a, ues) }
  where
    (bndrs, rhss) = unzip pairs
    lint_pair bndr' rhs
      = addLoc (RhsOf bndr') $
        do { (rhs_ty, ue) <- lintRhs bndr' rhs         -- Check the rhs
           ; lintLetBind top_lvl Recursive bndr' rhs rhs_ty
           ; return ue }

lintLetBody :: [LintedId] -> CoreExpr -> LintM (LintedType, UsageEnv)
lintLetBody bndrs body
  = do { (body_ty, body_ue) <- addLoc (BodyOfLetRec bndrs) (lintCoreExpr body)
       ; mapM_ (lintJoinBndrType body_ty) bndrs
       ; return (body_ty, body_ue) }

lintLetBind :: TopLevelFlag -> RecFlag -> LintedId
              -> CoreExpr -> LintedType -> LintM ()
-- Binder's type, and the RHS, have already been linted
-- This function checks other invariants
lintLetBind top_lvl rec_flag binder rhs rhs_ty
  = do { let binder_ty = idType binder
       ; ensureEqTys binder_ty rhs_ty (mkRhsMsg binder (text "RHS") rhs_ty)

       -- If the binding is for a CoVar, the RHS should be (Coercion co)
       -- See Note [Core type and coercion invariant] in GHC.Core
       ; checkL (not (isCoVar binder) || isCoArg rhs)
                (mkLetErr binder rhs)

        -- Check the let-can-float invariant
        -- See Note [Core let-can-float invariant] in GHC.Core
       ; checkL ( isJoinId binder
               || mightBeLiftedType binder_ty
               || (isNonRec rec_flag && exprOkForSpeculation rhs)
               || isDataConWorkId binder || isDataConWrapId binder -- until #17521 is fixed
               || exprIsTickedString rhs)
           (badBndrTyMsg binder (text "unlifted"))

        -- Check that if the binder is at the top level and has type Addr#,
        -- that it is a string literal.
        -- See Note [Core top-level string literals].
       ; checkL (not (isTopLevel top_lvl && binder_ty `eqType` addrPrimTy)
                 || exprIsTickedString rhs)
           (mkTopNonLitStrMsg binder)

       ; flags <- getLintFlags

         -- Check that a join-point binder has a valid type
         -- NB: lintIdBinder has checked that it is not top-level bound
       ; case isJoinId_maybe binder of
            Nothing    -> return ()
            Just arity ->  checkL (isValidJoinPointType arity binder_ty)
                                  (mkInvalidJoinPointMsg binder binder_ty)

       ; when (lf_check_inline_loop_breakers flags
               && isStableUnfolding (realIdUnfolding binder)
               && isStrongLoopBreaker (idOccInfo binder)
               && isInlinePragma (idInlinePragma binder))
              (addWarnL (text "INLINE binder is (non-rule) loop breaker:" <+> ppr binder))
              -- Only non-rule loop breakers inhibit inlining

       -- We used to check that the dmdTypeDepth of a demand signature never
       -- exceeds idArity, but that is an unnecessary complication, see
       -- Note [idArity varies independently of dmdTypeDepth] in GHC.Core.Opt.DmdAnal

       -- Check that the binder's arity is within the bounds imposed by the type
       -- and the strictness signature. See Note [Arity invariants for bindings]
       -- and Note [Trimming arity]

       ; checkL (typeArity (idType binder) >= idArity binder)
           (text "idArity" <+> ppr (idArity binder) <+>
           text "exceeds typeArity" <+>
           ppr (typeArity (idType binder)) <> colon <+>
           ppr binder)

       -- See Note [idArity varies independently of dmdTypeDepth]
       --     in GHC.Core.Opt.DmdAnal
       ; case splitDmdSig (idDmdSig binder) of
           (demands, result_info) | isDeadEndDiv result_info ->
             checkL (demands `lengthAtLeast` idArity binder)
               (text "idArity" <+> ppr (idArity binder) <+>
               text "exceeds arity imposed by the strictness signature" <+>
               ppr (idDmdSig binder) <> colon <+>
               ppr binder)

           _ -> return ()

       ; addLoc (RuleOf binder) $ mapM_ (lintCoreRule binder binder_ty) (idCoreRules binder)

       ; addLoc (UnfoldingOf binder) $
         lintIdUnfolding binder binder_ty (idUnfolding binder)
       ; return () }

        -- We should check the unfolding, if any, but this is tricky because
        -- the unfolding is a SimplifiableCoreExpr. Give up for now.

-- | Checks the RHS of bindings. It only differs from 'lintCoreExpr'
-- in that it doesn't reject occurrences of the function 'makeStatic' when they
-- appear at the top level and @lf_check_static_ptrs == AllowAtTopLevel@, and
-- for join points, it skips the outer lambdas that take arguments to the
-- join point.
--
-- See Note [Checking StaticPtrs].
lintRhs :: Id -> CoreExpr -> LintM (LintedType, UsageEnv)
-- NB: the Id can be Linted or not -- it's only used for
--     its OccInfo and join-pointer-hood
lintRhs bndr rhs
    | Just arity <- isJoinId_maybe bndr
    = lintJoinLams arity (Just bndr) rhs
    | AlwaysTailCalled arity <- tailCallInfo (idOccInfo bndr)
    = lintJoinLams arity Nothing rhs

-- Allow applications of the data constructor @StaticPtr@ at the top
-- but produce errors otherwise.
lintRhs _bndr rhs = fmap lf_check_static_ptrs getLintFlags >>= go
  where
    -- Allow occurrences of 'makeStatic' at the top-level but produce errors
    -- otherwise.
    go :: StaticPtrCheck -> LintM (OutType, UsageEnv)
    go AllowAtTopLevel
      | (binders0, rhs') <- collectTyBinders rhs
      , Just (fun, t, info, e) <- collectMakeStaticArgs rhs'
      = markAllJoinsBad $
        foldr
        -- imitate @lintCoreExpr (Lam ...)@
        lintLambda
        -- imitate @lintCoreExpr (App ...)@
        (do fun_ty_ue <- lintCoreExpr fun
            lintCoreArgs fun_ty_ue [Type t, info, e]
        )
        binders0
    go _ = markAllJoinsBad $ lintCoreExpr rhs

-- | Lint the RHS of a join point with expected join arity of @n@ (see Note
-- [Join points] in "GHC.Core").
lintJoinLams :: JoinArity -> Maybe Id -> CoreExpr -> LintM (LintedType, UsageEnv)
lintJoinLams join_arity enforce rhs
  = go join_arity rhs
  where
    go 0 expr            = lintCoreExpr expr
    go n (Lam var body)  = lintLambda var $ go (n-1) body
    go n expr | Just bndr <- enforce -- Join point with too few RHS lambdas
              = failWithL $ mkBadJoinArityMsg bndr join_arity n rhs
              | otherwise -- Future join point, not yet eta-expanded
              = markAllJoinsBad $ lintCoreExpr expr
                -- Body of lambda is not a tail position

lintIdUnfolding :: Id -> Type -> Unfolding -> LintM ()
lintIdUnfolding bndr bndr_ty uf
  | isStableUnfolding uf
  , Just rhs <- maybeUnfoldingTemplate uf
  = do { ty <- fst <$> (if isCompulsoryUnfolding uf
                        then noFixedRuntimeRepChecks $ lintRhs bndr rhs
            --               ^^^^^^^^^^^^^^^^^^^^^^^
            -- See Note [Checking for representation polymorphism]
                        else lintRhs bndr rhs)
       ; ensureEqTys bndr_ty ty (mkRhsMsg bndr (text "unfolding") ty) }
lintIdUnfolding  _ _ _
  = return ()       -- Do not Lint unstable unfoldings, because that leads
                    -- to exponential behaviour; c.f. GHC.Core.FVs.idUnfoldingVars

{- Note [Checking for INLINE loop breakers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's very suspicious if a strong loop breaker is marked INLINE.

However, the desugarer generates instance methods with INLINE pragmas
that form a mutually recursive group.  Only after a round of
simplification are they unravelled.  So we suppress the test for
the desugarer.  Here is an example:
  instance Eq T where
    t1 == t2 = blah
    t1 /= t2 = not (t1 == t2)
    {-# INLINE (/=) #-}

This will generate something like
    -- From the class decl for Eq
    data Eq a = EqDict (a->a->Bool) (a->a->Bool)
    eq_sel :: Eq a -> (a->a->Bool)
    eq_sel (EqDict eq _) = eq

    -- From the instance Eq T
    $ceq :: T -> T -> Bool
    $ceq = blah

    Rec { $dfEqT :: Eq T {-# DFunId #-}
          $dfEqT = EqDict $ceq $cnoteq

          $cnoteq :: T -> T -> Bool  {-# INLINE #-}
          $cnoteq x y = not (eq_sel $dfEqT x y) }

Notice that

* `$dfEqT` and `$cnotEq` are mutually recursive.

* We do not want `$dfEqT` to be the loop breaker: it's a DFunId, and
  we want to let it "cancel" with "eq_sel" (see Note [ClassOp/DFun
  selection] in GHC.Tc.TyCl.Instance, which it can't do if it's a loop
  breaker.

So we make `$cnoteq` into the loop breaker. That means it can't
inline, despite the INLINE pragma. That's what gives rise to the
warning, which is perfectly appropriate for, say
   Rec { {-# INLINE f #-}  f = \x -> ...f.... }
We can't inline a recursive function -- it's a loop breaker.

But now we can optimise `eq_sel $dfEqT` to `$ceq`, so we get
  Rec {
    $dfEqT :: Eq T {-# DFunId #-}
    $dfEqT = EqDict $ceq $cnoteq

    $cnoteq :: T -> T -> Bool  {-# INLINE #-}
    $cnoteq x y = not ($ceq x y) }

and now the dependencies of the Rec have gone, and we can split it up to give
    NonRec {  $dfEqT :: Eq T {-# DFunId #-}
              $dfEqT = EqDict $ceq $cnoteq }

    NonRec {  $cnoteq :: T -> T -> Bool  {-# INLINE #-}
              $cnoteq x y = not ($ceq x y) }

Now $cnoteq is not a loop breaker any more, so the INLINE pragma can
take effect -- the warning turned out to be temporary.

To stop excessive warnings, this warning for INLINE loop breakers is
switched off when linting the result of the desugarer.  See
lf_check_inline_loop_breakers in GHC.Core.Lint.


Note [Checking for representation polymorphism]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We ordinarily want to check for bad representation polymorphism. See
Note [Representation polymorphism invariants] in GHC.Core. However, we do *not*
want to do this in a compulsory unfolding. Compulsory unfoldings arise
only internally, for things like newtype wrappers, dictionaries, and
(notably) unsafeCoerce#. These might legitimately be representation-polymorphic;
indeed representation-polymorphic unfoldings are a primary reason for the
very existence of compulsory unfoldings (we can't compile code for
the original, representation-polymorphic, binding).

It is vitally important that we do representation polymorphism checks *after*
performing the unfolding, but not beforehand. This is all safe because
we will check any unfolding after it has been unfolded; checking the
unfolding beforehand is merely an optimization, and one that actively
hurts us here.

Note [Linting of runRW#]
~~~~~~~~~~~~~~~~~~~~~~~~
runRW# has some very special behavior (see Note [runRW magic] in
GHC.CoreToStg.Prep) which CoreLint must accommodate, by allowing
join points in its argument.  For example, this is fine:

    join j x = ...
    in runRW#  (\s. case v of
                       A -> j 3
                       B -> j 4)

Usually those calls to the join point 'j' would not be valid tail calls,
because they occur in a function argument.  But in the case of runRW#
they are fine, because runRW# (\s.e) behaves operationally just like e.
(runRW# is ultimately inlined in GHC.CoreToStg.Prep.)

In the case that the continuation is /not/ a lambda we simply disable this
special behaviour.  For example, this is /not/ fine:

    join j = ...
    in runRW# @r @ty (jump j)



************************************************************************
*                                                                      *
\subsection[lintCoreExpr]{lintCoreExpr}
*                                                                      *
************************************************************************
-}

-- Linted things: substitution applied, and type is linted
type LintedType     = Type
type LintedKind     = Kind
type LintedCoercion = Coercion
type LintedTyCoVar  = TyCoVar
type LintedId       = Id

-- | Lint an expression cast through the given coercion, returning the type
-- resulting from the cast.
lintCastExpr :: CoreExpr -> LintedType -> Coercion -> LintM LintedType
lintCastExpr expr expr_ty co
  = do { co' <- lintCoercion co
       ; let (Pair from_ty to_ty, role) = coercionKindRole co'
       ; checkValueType to_ty $
         text "target of cast" <+> quotes (ppr co')
       ; lintRole co' Representational role
       ; ensureEqTys from_ty expr_ty (mkCastErr expr co' from_ty expr_ty)
       ; return to_ty }

lintCoreExpr :: CoreExpr -> LintM (LintedType, UsageEnv)
-- The returned type has the substitution from the monad
-- already applied to it:
--      lintCoreExpr e subst = exprType (subst e)
--
-- The returned "type" can be a kind, if the expression is (Type ty)

-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]

lintCoreExpr (Var var)
  = do
      var_pair@(var_ty, _) <- lintIdOcc var 0
      checkCanEtaExpand (Var var) [] var_ty
      return var_pair

lintCoreExpr (Lit lit)
  = return (literalType lit, zeroUE)

lintCoreExpr (Cast expr co)
  = do (expr_ty, ue) <- markAllJoinsBad (lintCoreExpr expr)
            -- markAllJoinsBad: see Note [Join points and casts]
       to_ty <- lintCastExpr expr expr_ty co
       return (to_ty, ue)

lintCoreExpr (Tick tickish expr)
  = do case tickish of
         Breakpoint _ _ ids -> forM_ ids $ \id -> do
                                 checkDeadIdOcc id
                                 lookupIdInScope id
         _                  -> return ()
       markAllJoinsBadIf block_joins $ lintCoreExpr expr
  where
    block_joins = not (tickish `tickishScopesLike` SoftScope)
      -- TODO Consider whether this is the correct rule. It is consistent with
      -- the simplifier's behaviour - cost-centre-scoped ticks become part of
      -- the continuation, and thus they behave like part of an evaluation
      -- context, but soft-scoped and non-scoped ticks simply wrap the result
      -- (see Simplify.simplTick).

lintCoreExpr (Let (NonRec tv (Type ty)) body)
  | isTyVar tv
  =     -- See Note [Linting type lets]
    do  { ty' <- lintType ty
        ; lintTyBndr tv              $ \ tv' ->
    do  { addLoc (RhsOf tv) $ lintTyKind tv' ty'
                -- Now extend the substitution so we
                -- take advantage of it in the body
        ; extendTvSubstL tv ty'        $
          addLoc (BodyOfLetRec [tv]) $
          lintCoreExpr body } }

lintCoreExpr (Let (NonRec bndr rhs) body)
  | isId bndr
  = do { -- First Lint the RHS, before bringing the binder into scope
         (rhs_ty, let_ue) <- lintRhs bndr rhs

          -- See Note [Multiplicity of let binders] in Var
         -- Now lint the binder
       ; lintBinder LetBind bndr $ \bndr' ->
    do { lintLetBind NotTopLevel NonRecursive bndr' rhs rhs_ty
       ; addAliasUE bndr let_ue (lintLetBody [bndr'] body) } }

  | otherwise
  = failWithL (mkLetErr bndr rhs)       -- Not quite accurate

lintCoreExpr e@(Let (Rec pairs) body)
  = do  { -- Check that the list of pairs is non-empty
          checkL (not (null pairs)) (emptyRec e)

          -- Check that there are no duplicated binders
        ; let (_, dups) = removeDups compare bndrs
        ; checkL (null dups) (dupVars dups)

          -- Check that either all the binders are joins, or none
        ; checkL (all isJoinId bndrs || all (not . isJoinId) bndrs) $
          mkInconsistentRecMsg bndrs

          -- See Note [Multiplicity of let binders] in Var
        ; ((body_type, body_ue), ues) <-
            lintRecBindings NotTopLevel pairs $ \ bndrs' ->
            lintLetBody bndrs' body
        ; return (body_type, body_ue  `addUE` scaleUE ManyTy (foldr1 addUE ues)) }
  where
    bndrs = map fst pairs

lintCoreExpr e@(App _ _)
  | Var fun <- fun
  , fun `hasKey` runRWKey
    -- N.B. we may have an over-saturated application of the form:
    --   runRW (\s -> \x -> ...) y
  , ty_arg1 : ty_arg2 : arg3 : rest <- args
  = do { fun_pair1      <- lintCoreArg (idType fun, zeroUE) ty_arg1
       ; (fun_ty2, ue2) <- lintCoreArg fun_pair1            ty_arg2
         -- See Note [Linting of runRW#]
       ; let lintRunRWCont :: CoreArg -> LintM (LintedType, UsageEnv)
             lintRunRWCont expr@(Lam _ _) =
                lintJoinLams 1 (Just fun) expr
             lintRunRWCont other = markAllJoinsBad $ lintCoreExpr other
             -- TODO: Look through ticks?
       ; (arg3_ty, ue3) <- lintRunRWCont arg3
       ; app_ty <- lintValApp arg3 fun_ty2 arg3_ty ue2 ue3
       ; lintCoreArgs app_ty rest }

  | otherwise
  = do { fun_pair <- lintCoreFun fun (length args)
       ; app_pair@(app_ty, _) <- lintCoreArgs fun_pair args
       ; checkCanEtaExpand fun args app_ty
       ; return app_pair}
  where
    skipTick t = case collectFunSimple e of
      (Var v) -> etaExpansionTick v t
      _ -> tickishFloatable t
    (fun, args, _source_ticks) = collectArgsTicks skipTick e
      -- We must look through source ticks to avoid #21152, for example:
      --
      -- reallyUnsafePtrEquality
      --   = \ @a ->
      --       (src<loc> reallyUnsafePtrEquality#)
      --         @Lifted @a @Lifted @a
      --
      -- To do this, we use `collectArgsTicks tickishFloatable` to match
      -- the eta expansion behaviour, as per Note [Eta expansion and source notes]
      -- in GHC.Core.Opt.Arity.
      -- Sadly this was not quite enough. So we now also accept things that CorePrep will allow.
      -- See Note [Ticks and mandatory eta expansion]

lintCoreExpr (Lam var expr)
  = markAllJoinsBad $
    lintLambda var $ lintCoreExpr expr

lintCoreExpr (Case scrut var alt_ty alts)
  = lintCaseExpr scrut var alt_ty alts

-- This case can't happen; linting types in expressions gets routed through
-- lintCoreArgs
lintCoreExpr (Type ty)
  = failWithL (text "Type found as expression" <+> ppr ty)

lintCoreExpr (Coercion co)
  = do { co' <- addLoc (InCo co) $
                lintCoercion co
       ; return (coercionType co', zeroUE) }

----------------------
lintIdOcc :: Var -> Int -- Number of arguments (type or value) being passed
           -> LintM (LintedType, UsageEnv) -- returns type of the *variable*
lintIdOcc var nargs
  = addLoc (OccOf var) $
    do  { checkL (isNonCoVarId var)
                 (text "Non term variable" <+> ppr var)
                 -- See GHC.Core Note [Variable occurrences in Core]

        -- Check that the type of the occurrence is the same
        -- as the type of the binding site.  The inScopeIds are
        -- /un-substituted/, so this checks that the occurrence type
        -- is identical to the binder type.
        -- This makes things much easier for things like:
        --    /\a. \(x::Maybe a). /\a. ...(x::Maybe a)...
        -- The "::Maybe a" on the occurrence is referring to the /outer/ a.
        -- If we compared /substituted/ types we'd risk comparing
        -- (Maybe a) from the binding site with bogus (Maybe a1) from
        -- the occurrence site.  Comparing un-substituted types finesses
        -- this altogether
        ; (bndr, linted_bndr_ty) <- lookupIdInScope var
        ; let occ_ty  = idType var
              bndr_ty = idType bndr
        ; ensureEqTys occ_ty bndr_ty $
          mkBndrOccTypeMismatchMsg bndr var bndr_ty occ_ty

          -- Check for a nested occurrence of the StaticPtr constructor.
          -- See Note [Checking StaticPtrs].
        ; lf <- getLintFlags
        ; when (nargs /= 0 && lf_check_static_ptrs lf /= AllowAnywhere) $
            checkL (idName var /= makeStaticName) $
              text "Found makeStatic nested in an expression"

        ; checkDeadIdOcc var
        ; checkJoinOcc var nargs
        ; case isDataConId_maybe var of
             Nothing -> return ()
             Just dc -> checkTypeDataConOcc "expression" dc

        ; usage <- varCallSiteUsage var

        ; return (linted_bndr_ty, usage) }

lintCoreFun :: CoreExpr
            -> Int                          -- Number of arguments (type or val) being passed
            -> LintM (LintedType, UsageEnv) -- Returns type of the *function*
lintCoreFun (Var var) nargs
  = lintIdOcc var nargs

lintCoreFun (Lam var body) nargs
  -- Act like lintCoreExpr of Lam, but *don't* call markAllJoinsBad;
  -- See Note [Beta redexes]
  | nargs /= 0
  = lintLambda var $ lintCoreFun body (nargs - 1)

lintCoreFun expr nargs
  = markAllJoinsBadIf (nargs /= 0) $
      -- See Note [Join points are less general than the paper]
    lintCoreExpr expr
------------------
lintLambda :: Var -> LintM (Type, UsageEnv) -> LintM (Type, UsageEnv)
lintLambda var lintBody =
    addLoc (LambdaBodyOf var) $
    lintBinder LambdaBind var $ \ var' ->
    do { (body_ty, ue) <- lintBody
       ; ue' <- checkLinearity ue var'
       ; return (mkLamType var' body_ty, ue') }
------------------
checkDeadIdOcc :: Id -> LintM ()
-- Occurrences of an Id should never be dead....
-- except when we are checking a case pattern
checkDeadIdOcc id
  | isDeadOcc (idOccInfo id)
  = do { in_case <- inCasePat
       ; checkL in_case
                (text "Occurrence of a dead Id" <+> ppr id) }
  | otherwise
  = return ()

------------------
lintJoinBndrType :: LintedType -- Type of the body
                 -> LintedId   -- Possibly a join Id
                -> LintM ()
-- Checks that the return type of a join Id matches the body
-- E.g. join j x = rhs in body
--      The type of 'rhs' must be the same as the type of 'body'
lintJoinBndrType body_ty bndr
  | Just arity <- isJoinId_maybe bndr
  , let bndr_ty = idType bndr
  , (bndrs, res) <- splitPiTys bndr_ty
  = checkL (length bndrs >= arity
            && body_ty `eqType` mkPiTys (drop arity bndrs) res) $
    hang (text "Join point returns different type than body")
       2 (vcat [ text "Join bndr:" <+> ppr bndr <+> dcolon <+> ppr (idType bndr)
               , text "Join arity:" <+> ppr arity
               , text "Body type:" <+> ppr body_ty ])
  | otherwise
  = return ()

checkJoinOcc :: Id -> JoinArity -> LintM ()
-- Check that if the occurrence is a JoinId, then so is the
-- binding site, and it's a valid join Id
checkJoinOcc var n_args
  | Just join_arity_occ <- isJoinId_maybe var
  = do { mb_join_arity_bndr <- lookupJoinId var
       ; case mb_join_arity_bndr of {
           Nothing -> -- Binder is not a join point
                      do { join_set <- getValidJoins
                         ; addErrL (text "join set " <+> ppr join_set $$
                                    invalidJoinOcc var) } ;

           Just join_arity_bndr ->

    do { checkL (join_arity_bndr == join_arity_occ) $
           -- Arity differs at binding site and occurrence
         mkJoinBndrOccMismatchMsg var join_arity_bndr join_arity_occ

       ; checkL (n_args == join_arity_occ) $
           -- Arity doesn't match #args
         mkBadJumpMsg var join_arity_occ n_args } } }

  | otherwise
  = return ()

checkTypeDataConOcc :: String -> DataCon -> LintM ()
-- Check that the Id is not a data constructor of a `type data` declaration
-- Invariant (I1) of Note [Type data declarations] in GHC.Rename.Module
checkTypeDataConOcc what dc
  = checkL (not (isTypeDataTyCon (dataConTyCon dc))) $
    (text "type data constructor found in a" <+> text what <> colon <+> ppr dc)

-- | This function checks that we are able to perform eta expansion for
-- functions with no binding, in order to satisfy invariant I3
-- from Note [Representation polymorphism invariants] in GHC.Core.
checkCanEtaExpand :: CoreExpr   -- ^ the function (head of the application) we are checking
                  -> [CoreArg]  -- ^ the arguments to the application
                  -> LintedType -- ^ the instantiated type of the overall application
                  -> LintM ()
checkCanEtaExpand (Var fun_id) args app_ty
  = do { do_rep_poly_checks <- lf_check_fixed_rep <$> getLintFlags
       ; when (do_rep_poly_checks && hasNoBinding fun_id) $
           checkL (null bad_arg_tys) err_msg }
    where
      arity :: Arity
      arity = idArity fun_id

      nb_val_args :: Int
      nb_val_args = count isValArg args

      -- Check the remaining argument types, past the
      -- given arguments and up to the arity of the 'Id'.
      -- Returns the types that couldn't be determined to have
      -- a fixed RuntimeRep.
      check_args :: [Type] -> [Type]
      check_args = go (nb_val_args + 1)
        where
          go :: Int    -- index of the argument (starting from 1)
             -> [Type] -- arguments
             -> [Type] -- value argument types that could not be
                       -- determined to have a fixed runtime representation
          go i _
            | i > arity
            = []
          go _ []
            -- The Arity of an Id should never exceed the number of value arguments
            -- that can be read off from the Id's type.
            -- See Note [Arity and function types] in GHC.Types.Id.Info.
            = pprPanic "checkCanEtaExpand: arity larger than number of value arguments apparent in type"
                $ vcat
                  [ text "fun_id =" <+> ppr fun_id
                  , text "arity =" <+> ppr arity
                  , text "app_ty =" <+> ppr app_ty
                  , text "args = " <+> ppr args
                  , text "nb_val_args =" <+> ppr nb_val_args ]
          go i (ty : bndrs)
            | typeHasFixedRuntimeRep ty
            = go (i+1) bndrs
            | otherwise
            = ty : go (i+1) bndrs

      bad_arg_tys :: [Type]
      bad_arg_tys = check_args . map (scaledThing . fst) $ getRuntimeArgTys app_ty
        -- We use 'getRuntimeArgTys' to find all the argument types,
        -- including those hidden under newtypes. For example,
        -- if `FunNT a b` is a newtype around `a -> b`, then
        -- when checking
        --
        -- foo :: forall r (a :: TYPE r) (b :: TYPE r) c. a -> FunNT b c
        --
        -- we should check that the instantiations of BOTH `a` AND `b`
        -- have a fixed runtime representation.

      err_msg :: SDoc
      err_msg
        = vcat [ text "Cannot eta expand" <+> quotes (ppr fun_id)
               , text "The following type" <> plural bad_arg_tys
                 <+> doOrDoes bad_arg_tys <+> text "not have a fixed runtime representation:"
               , nest 2 $ vcat $ map ppr_ty_ki bad_arg_tys ]

      ppr_ty_ki :: Type -> SDoc
      ppr_ty_ki ty = bullet <+> ppr ty <+> dcolon <+> ppr (typeKind ty)
checkCanEtaExpand _ _ _
  = return ()

-- Check that the usage of var is consistent with var itself, and pop the var
-- from the usage environment (this is important because of shadowing).
checkLinearity :: UsageEnv -> Var -> LintM UsageEnv
checkLinearity body_ue lam_var =
  case varMultMaybe lam_var of
    Just mult -> do ensureSubUsage lhs mult (err_msg mult)
                    return $ deleteUE body_ue lam_var
    Nothing    -> return body_ue -- A type variable
  where
    lhs = lookupUE body_ue lam_var
    err_msg mult = text "Linearity failure in lambda:" <+> ppr lam_var
                $$ ppr lhs <+> text "⊈" <+> ppr mult

{- Note [Join points and casts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You might think that this should be OK:
   join j x = rhs
   in (case e of
          A   -> alt1
          B x -> (jump j x) |> co)

You might think that, since the cast is ultimately erased, the jump to
`j` should still be OK as a join point.  But no!  See #21716. Suppose

  newtype Age = MkAge Int   -- axAge :: Age ~ Int
  f :: Int -> ...           -- f strict in it's first argument

and consider the expression

  f (join j :: Bool -> Age
          j x = (rhs1 :: Age)
     in case v of
         Just x  -> (j x |> axAge :: Int)
         Nothing -> rhs2)

Then, if the Simplifier pushes the strict call into the join points
and alternatives we'll get

   join j' x = f (rhs1 :: Age)
   in case v of
      Just x  -> j' x |> axAge
      Nothing -> f rhs2

Utterly bogus.  `f` expects an `Int` and we are giving it an `Age`.
No no no.  Casts destroy the tail-call property.  Henc markAllJoinsBad
in the (Cast expr co) case of lintCoreExpr.

Note [No alternatives lint check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Case expressions with no alternatives are odd beasts, and it would seem
like they would worth be looking at in the linter (cf #10180). We
used to check two things:

* exprIsHNF is false: it would *seem* to be terribly wrong if
  the scrutinee was already in head normal form.

* exprIsDeadEnd is true: we should be able to see why GHC believes the
  scrutinee is diverging for sure.

It was already known that the second test was not entirely reliable.
Unfortunately (#13990), the first test turned out not to be reliable
either. Getting the checks right turns out to be somewhat complicated.

For example, suppose we have (comment 8)

  data T a where
    TInt :: T Int

  absurdTBool :: T Bool -> a
  absurdTBool v = case v of

  data Foo = Foo !(T Bool)

  absurdFoo :: Foo -> a
  absurdFoo (Foo x) = absurdTBool x

GHC initially accepts the empty case because of the GADT conditions. But then
we inline absurdTBool, getting

  absurdFoo (Foo x) = case x of

x is in normal form (because the Foo constructor is strict) but the
case is empty. To avoid this problem, GHC would have to recognize
that matching on Foo x is already absurd, which is not so easy.

More generally, we don't really know all the ways that GHC can
lose track of why an expression is bottom, so we shouldn't make too
much fuss when that happens.


Note [Beta redexes]
~~~~~~~~~~~~~~~~~~~
Consider:

  join j @x y z = ... in
  (\@x y z -> jump j @x y z) @t e1 e2

This is clearly ill-typed, since the jump is inside both an application and a
lambda, either of which is enough to disqualify it as a tail call (see Note
[Invariants on join points] in GHC.Core). However, strictly from a
lambda-calculus perspective, the term doesn't go wrong---after the two beta
reductions, the jump *is* a tail call and everything is fine.

Why would we want to allow this when we have let? One reason is that a compound
beta redex (that is, one with more than one argument) has different scoping
rules: naively reducing the above example using lets will capture any free
occurrence of y in e2. More fundamentally, type lets are tricky; many passes,
such as Float Out, tacitly assume that the incoming program's type lets have
all been dealt with by the simplifier. Thus we don't want to let-bind any types
in, say, GHC.Core.Subst.simpleOptPgm, which in some circumstances can run immediately
before Float Out.

All that said, currently GHC.Core.Subst.simpleOptPgm is the only thing using this
loophole, doing so to avoid re-traversing large functions (beta-reducing a type
lambda without introducing a type let requires a substitution). TODO: Improve
simpleOptPgm so that we can forget all this ever happened.

************************************************************************
*                                                                      *
\subsection[lintCoreArgs]{lintCoreArgs}
*                                                                      *
************************************************************************

The basic version of these functions checks that the argument is a
subtype of the required type, as one would expect.
-}

-- Takes the functions type and arguments as argument.
-- Returns the *result* of applying the function to arguments.
-- e.g. f :: Int -> Bool -> Int would return `Int` as result type.
lintCoreArgs  :: (LintedType, UsageEnv) -> [CoreArg] -> LintM (LintedType, UsageEnv)
lintCoreArgs (fun_ty, fun_ue) args = foldM lintCoreArg (fun_ty, fun_ue) args

lintCoreArg  :: (LintedType, UsageEnv) -> CoreArg -> LintM (LintedType, UsageEnv)
lintCoreArg (fun_ty, ue) (Type arg_ty)
  = do { checkL (not (isCoercionTy arg_ty))
                (text "Unnecessary coercion-to-type injection:"
                  <+> ppr arg_ty)
       ; arg_ty' <- lintType arg_ty
       ; res <- lintTyApp fun_ty arg_ty'
       ; return (res, ue) }

lintCoreArg (fun_ty, fun_ue) arg
  = do { (arg_ty, arg_ue) <- markAllJoinsBad $ lintCoreExpr arg
           -- See Note [Representation polymorphism invariants] in GHC.Core
       ; flags <- getLintFlags

       ; when (lf_check_fixed_rep flags) $
         -- Only check that 'arg_ty' has a fixed RuntimeRep
         -- if 'lf_check_fixed_rep' is on.
         do { checkL (typeHasFixedRuntimeRep arg_ty)
                     (text "Argument does not have a fixed runtime representation"
                      <+> ppr arg <+> dcolon
                      <+> parens (ppr arg_ty <+> dcolon <+> ppr (typeKind arg_ty))) }

       ; lintValApp arg fun_ty arg_ty fun_ue arg_ue }

-----------------
lintAltBinders :: UsageEnv
               -> Var         -- Case binder
               -> LintedType     -- Scrutinee type
               -> LintedType     -- Constructor type
               -> [(Mult, OutVar)]    -- Binders
               -> LintM UsageEnv
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintAltBinders rhs_ue _case_bndr scrut_ty con_ty []
  = do { ensureEqTys con_ty scrut_ty (mkBadPatMsg con_ty scrut_ty)
       ; return rhs_ue }
lintAltBinders rhs_ue case_bndr scrut_ty con_ty ((var_w, bndr):bndrs)
  | isTyVar bndr
  = do { con_ty' <- lintTyApp con_ty (mkTyVarTy bndr)
       ; lintAltBinders rhs_ue case_bndr scrut_ty con_ty'  bndrs }
  | otherwise
  = do { (con_ty', _) <- lintValApp (Var bndr) con_ty (idType bndr) zeroUE zeroUE
         -- We can pass zeroUE to lintValApp because we ignore its usage
         -- calculation and compute it in the call for checkCaseLinearity below.
       ; rhs_ue' <- checkCaseLinearity rhs_ue case_bndr var_w bndr
       ; lintAltBinders rhs_ue' case_bndr scrut_ty con_ty' bndrs }

-- | Implements the case rules for linearity
checkCaseLinearity :: UsageEnv -> Var -> Mult -> Var -> LintM UsageEnv
checkCaseLinearity ue case_bndr var_w bndr = do
  ensureSubUsage lhs rhs err_msg
  lintLinearBinder (ppr bndr) (case_bndr_w `mkMultMul` var_w) (varMult bndr)
  return $ deleteUE ue bndr
  where
    lhs = bndr_usage `addUsage` (var_w `scaleUsage` case_bndr_usage)
    rhs = case_bndr_w `mkMultMul` var_w
    err_msg  = (text "Linearity failure in variable:" <+> ppr bndr
                $$ ppr lhs <+> text "⊈" <+> ppr rhs
                $$ text "Computed by:"
                <+> text "LHS:" <+> lhs_formula
                <+> text "RHS:" <+> rhs_formula)
    lhs_formula = ppr bndr_usage <+> text "+"
                                 <+> parens (ppr case_bndr_usage <+> text "*" <+> ppr var_w)
    rhs_formula = ppr case_bndr_w <+> text "*" <+> ppr var_w
    case_bndr_w = varMult case_bndr
    case_bndr_usage = lookupUE ue case_bndr
    bndr_usage = lookupUE ue bndr



-----------------
lintTyApp :: LintedType -> LintedType -> LintM LintedType
lintTyApp fun_ty arg_ty
  | Just (tv,body_ty) <- splitForAllTyCoVar_maybe fun_ty
  = do  { lintTyKind tv arg_ty
        ; in_scope <- getInScope
        -- substTy needs the set of tyvars in scope to avoid generating
        -- uniques that are already in scope.
        -- See Note [The substitution invariant] in GHC.Core.TyCo.Subst
        ; return (substTyWithInScope in_scope [tv] [arg_ty] body_ty) }

  | otherwise
  = failWithL (mkTyAppMsg fun_ty arg_ty)

-----------------

-- | @lintValApp arg fun_ty arg_ty@ lints an application of @fun arg@
-- where @fun :: fun_ty@ and @arg :: arg_ty@, returning the type of the
-- application.
lintValApp :: CoreExpr -> LintedType -> LintedType -> UsageEnv -> UsageEnv -> LintM (LintedType, UsageEnv)
lintValApp arg fun_ty arg_ty fun_ue arg_ue
  | Just (_, w, arg_ty', res_ty') <- splitFunTy_maybe fun_ty
  = do { ensureEqTys arg_ty' arg_ty (mkAppMsg arg_ty' arg_ty arg)
       ; let app_ue =  addUE fun_ue (scaleUE w arg_ue)
       ; return (res_ty', app_ue) }
  | otherwise
  = failWithL err2
  where
    err2 = mkNonFunAppMsg fun_ty arg_ty arg

lintTyKind :: OutTyVar -> LintedType -> LintM ()
-- Both args have had substitution applied

-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintTyKind tyvar arg_ty
  = unless (arg_kind `eqType` tyvar_kind) $
    addErrL (mkKindErrMsg tyvar arg_ty $$ (text "Linted Arg kind:" <+> ppr arg_kind))
  where
    tyvar_kind = tyVarKind tyvar
    arg_kind = typeKind arg_ty

{-
************************************************************************
*                                                                      *
\subsection[lintCoreAlts]{lintCoreAlts}
*                                                                      *
************************************************************************
-}

lintCaseExpr :: CoreExpr -> Id -> Type -> [CoreAlt] -> LintM (LintedType, UsageEnv)
lintCaseExpr scrut var alt_ty alts =
  do { let e = Case scrut var alt_ty alts   -- Just for error messages

     -- Check the scrutinee
     ; (scrut_ty, scrut_ue) <- markAllJoinsBad $ lintCoreExpr scrut
          -- See Note [Join points are less general than the paper]
          -- in GHC.Core
     ; let scrut_mult = varMult var

     ; alt_ty <- addLoc (CaseTy scrut) $
                 lintValueType alt_ty
     ; var_ty <- addLoc (IdTy var) $
                 lintValueType (idType var)

     -- We used to try to check whether a case expression with no
     -- alternatives was legitimate, but this didn't work.
     -- See Note [No alternatives lint check] for details.

     -- Check that the scrutinee is not a floating-point type
     -- if there are any literal alternatives
     -- See GHC.Core Note [Case expression invariants] item (5)
     -- See Note [Rules for floating-point comparisons] in GHC.Core.Opt.ConstantFold
     ; let isLitPat (Alt (LitAlt _) _  _) = True
           isLitPat _                     = False
     ; checkL (not $ isFloatingPrimTy scrut_ty && any isLitPat alts)
         (text "Lint warning: Scrutinising floating-point expression with literal pattern in case analysis (see #9238)."
          $$ text "scrut" <+> ppr scrut)

     ; case tyConAppTyCon_maybe (idType var) of
         Just tycon
              | debugIsOn
              , isAlgTyCon tycon
              , not (isAbstractTyCon tycon)
              , null (tyConDataCons tycon)
              , not (exprIsDeadEnd scrut)
              -> pprTrace "Lint warning: case binder's type has no constructors" (ppr var <+> ppr (idType var))
                        -- This can legitimately happen for type families
                      $ return ()
         _otherwise -> return ()

        -- Don't use lintIdBndr on var, because unboxed tuple is legitimate

     ; subst <- getSubst
     ; ensureEqTys var_ty scrut_ty (mkScrutMsg var var_ty scrut_ty subst)
       -- See GHC.Core Note [Case expression invariants] item (7)

     ; lintBinder CaseBind var $ \_ ->
       do { -- Check the alternatives
          ; alt_ues <- mapM (lintCoreAlt var scrut_ty scrut_mult alt_ty) alts
          ; let case_ue = (scaleUE scrut_mult scrut_ue) `addUE` supUEs alt_ues
          ; checkCaseAlts e scrut_ty alts
          ; return (alt_ty, case_ue) } }

checkCaseAlts :: CoreExpr -> LintedType -> [CoreAlt] -> LintM ()
-- a) Check that the alts are non-empty
-- b1) Check that the DEFAULT comes first, if it exists
-- b2) Check that the others are in increasing order
-- c) Check that there's a default for infinite types
-- NB: Algebraic cases are not necessarily exhaustive, because
--     the simplifier correctly eliminates case that can't
--     possibly match.

checkCaseAlts e ty alts =
  do { checkL (all non_deflt con_alts) (mkNonDefltMsg e)
         -- See GHC.Core Note [Case expression invariants] item (2)

     ; checkL (increasing_tag con_alts) (mkNonIncreasingAltsMsg e)
         -- See GHC.Core Note [Case expression invariants] item (3)

          -- For types Int#, Word# with an infinite (well, large!) number of
          -- possible values, there should usually be a DEFAULT case
          -- But (see Note [Empty case alternatives] in GHC.Core) it's ok to
          -- have *no* case alternatives.
          -- In effect, this is a kind of partial test. I suppose it's possible
          -- that we might *know* that 'x' was 1 or 2, in which case
          --   case x of { 1 -> e1; 2 -> e2 }
          -- would be fine.
     ; checkL (isJust maybe_deflt || not is_infinite_ty || null alts)
              (nonExhaustiveAltsMsg e) }
  where
    (con_alts, maybe_deflt) = findDefault alts

        -- Check that successive alternatives have strictly increasing tags
    increasing_tag (alt1 : rest@( alt2 : _)) = alt1 `ltAlt` alt2 && increasing_tag rest
    increasing_tag _                         = True

    non_deflt (Alt DEFAULT _ _) = False
    non_deflt _                 = True

    is_infinite_ty = case tyConAppTyCon_maybe ty of
                        Nothing    -> False
                        Just tycon -> isPrimTyCon tycon

lintAltExpr :: CoreExpr -> LintedType -> LintM UsageEnv
lintAltExpr expr ann_ty
  = do { (actual_ty, ue) <- lintCoreExpr expr
       ; ensureEqTys actual_ty ann_ty (mkCaseAltMsg expr actual_ty ann_ty)
       ; return ue }
         -- See GHC.Core Note [Case expression invariants] item (6)

lintCoreAlt :: Var              -- Case binder
            -> LintedType       -- Type of scrutinee
            -> Mult             -- Multiplicity of scrutinee
            -> LintedType       -- Type of the alternative
            -> CoreAlt
            -> LintM UsageEnv
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintCoreAlt _ _ _ alt_ty (Alt DEFAULT args rhs) =
  do { lintL (null args) (mkDefaultArgsMsg args)
     ; lintAltExpr rhs alt_ty }

lintCoreAlt _case_bndr scrut_ty _ alt_ty (Alt (LitAlt lit) args rhs)
  | litIsLifted lit
  = failWithL integerScrutinisedMsg
  | otherwise
  = do { lintL (null args) (mkDefaultArgsMsg args)
       ; ensureEqTys lit_ty scrut_ty (mkBadPatMsg lit_ty scrut_ty)
       ; lintAltExpr rhs alt_ty }
  where
    lit_ty = literalType lit

lintCoreAlt case_bndr scrut_ty _scrut_mult alt_ty alt@(Alt (DataAlt con) args rhs)
  | isNewTyCon (dataConTyCon con)
  = zeroUE <$ addErrL (mkNewTyDataConAltMsg scrut_ty alt)
  | Just (tycon, tycon_arg_tys) <- splitTyConApp_maybe scrut_ty
  = addLoc (CaseAlt alt) $  do
    { checkTypeDataConOcc "pattern" con
    ; lintL (tycon == dataConTyCon con) (mkBadConMsg tycon con)

      -- Instantiate the universally quantified
      -- type variables of the data constructor
    ; let { con_payload_ty = piResultTys (dataConRepType con) tycon_arg_tys
          ; binderMult (Named _)   = ManyTy
          ; binderMult (Anon st _) = scaledMult st
          -- See Note [Validating multiplicities in a case]
          ; multiplicities = map binderMult $ fst $ splitPiTys con_payload_ty }

        -- And now bring the new binders into scope
    ; lintBinders CasePatBind args $ \ args' -> do
      {
        rhs_ue <- lintAltExpr rhs alt_ty
      ; rhs_ue' <- addLoc (CasePat alt) (lintAltBinders rhs_ue case_bndr scrut_ty con_payload_ty (zipEqual "lintCoreAlt" multiplicities  args'))
      ; return $ deleteUE rhs_ue' case_bndr
      }
   }

  | otherwise   -- Scrut-ty is wrong shape
  = zeroUE <$ addErrL (mkBadAltMsg scrut_ty alt)

{-
Note [Validating multiplicities in a case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose 'MkT :: a %m -> T m a'.
If we are validating 'case (x :: T Many a) of MkT y -> ...',
we have to substitute m := Many in the type of MkT - in particular,
y can be used Many times and that expression would still be linear in x.
We do this by looking at con_payload_ty, which is the type of the datacon
applied to the surrounding arguments.
Testcase: linear/should_compile/MultConstructor

Data constructors containing existential tyvars will then have
Named binders, which are always multiplicity Many.
Testcase: indexed-types/should_compile/GADT1
-}

lintLinearBinder :: SDoc -> Mult -> Mult -> LintM ()
lintLinearBinder doc actual_usage described_usage
  = ensureSubMult actual_usage described_usage err_msg
    where
      err_msg = (text "Multiplicity of variable does not agree with its context"
                $$ doc
                $$ ppr actual_usage
                $$ text "Annotation:" <+> ppr described_usage)

{-
************************************************************************
*                                                                      *
\subsection[lint-types]{Types}
*                                                                      *
************************************************************************
-}

-- When we lint binders, we (one at a time and in order):
--  1. Lint var types or kinds (possibly substituting)
--  2. Add the binder to the in scope set, and if its a coercion var,
--     we may extend the substitution to reflect its (possibly) new kind
lintBinders :: BindingSite -> [Var] -> ([Var] -> LintM a) -> LintM a
lintBinders _    []         linterF = linterF []
lintBinders site (var:vars) linterF = lintBinder site var $ \var' ->
                                      lintBinders site vars $ \ vars' ->
                                      linterF (var':vars')

-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintBinder :: BindingSite -> Var -> (Var -> LintM a) -> LintM a
lintBinder site var linterF
  | isTyCoVar var = lintTyCoBndr var linterF
  | otherwise     = lintIdBndr NotTopLevel site var linterF

lintTyBndr :: TyVar -> (LintedTyCoVar -> LintM a) -> LintM a
lintTyBndr = lintTyCoBndr  -- We could specialise it, I guess

lintTyCoBndr :: TyCoVar -> (LintedTyCoVar -> LintM a) -> LintM a
lintTyCoBndr tcv thing_inside
  = do { subst <- getSubst
       ; tcv_type' <- lintType (varType tcv)
       ; let tcv' = uniqAway (getSubstInScope subst) $
                    setVarType tcv tcv_type'
             subst' = extendTCvSubstWithClone subst tcv tcv'

       -- See (FORALL1) and (FORALL2) in GHC.Core.Type
       ; if (isTyVar tcv)
         then -- Check that in (forall (a:ki). blah) we have ki:Type
              lintL (isLiftedTypeKind (typeKind tcv_type')) $
              hang (text "TyVar whose kind does not have kind Type:")
                 2 (ppr tcv' <+> dcolon <+> ppr tcv_type' <+> dcolon <+> ppr (typeKind tcv_type'))
         else -- Check that in (forall (cv::ty). blah),
              -- then ty looks like (t1 ~# t2)
              lintL (isCoVarType tcv_type') $
              text "CoVar with non-coercion type:" <+> pprTyVar tcv

       ; updateSubst subst' (thing_inside tcv') }

lintIdBndrs :: forall a. TopLevelFlag -> [Id] -> ([LintedId] -> LintM a) -> LintM a
lintIdBndrs top_lvl ids thing_inside
  = go ids thing_inside
  where
    go :: [Id] -> ([Id] -> LintM a) -> LintM a
    go []       thing_inside = thing_inside []
    go (id:ids) thing_inside = lintIdBndr top_lvl LetBind id  $ \id' ->
                               go ids                         $ \ids' ->
                               thing_inside (id' : ids')

lintIdBndr :: TopLevelFlag -> BindingSite
           -> InVar -> (OutVar -> LintM a) -> LintM a
-- Do substitution on the type of a binder and add the var with this
-- new type to the in-scope set of the second argument
-- ToDo: lint its rules
lintIdBndr top_lvl bind_site id thing_inside
  = assertPpr (isId id) (ppr id) $
    do { flags <- getLintFlags
       ; checkL (not (lf_check_global_ids flags) || isLocalId id)
                (text "Non-local Id binder" <+> ppr id)
                -- See Note [Checking for global Ids]

       -- Check that if the binder is nested, it is not marked as exported
       ; checkL (not (isExportedId id) || is_top_lvl)
           (mkNonTopExportedMsg id)

       -- Check that if the binder is nested, it does not have an external name
       ; checkL (not (isExternalName (Var.varName id)) || is_top_lvl)
           (mkNonTopExternalNameMsg id)

          -- See Note [Representation polymorphism invariants] in GHC.Core
       ; lintL (isJoinId id || not (lf_check_fixed_rep flags)
                || typeHasFixedRuntimeRep id_ty) $
         text "Binder does not have a fixed runtime representation:" <+> ppr id <+> dcolon <+>
            parens (ppr id_ty <+> dcolon <+> ppr (typeKind id_ty))

       -- Check that a join-id is a not-top-level let-binding
       ; when (isJoinId id) $
         checkL (not is_top_lvl && is_let_bind) $
         mkBadJoinBindMsg id

       -- Check that the Id does not have type (t1 ~# t2) or (t1 ~R# t2);
       -- if so, it should be a CoVar, and checked by lintCoVarBndr
       ; lintL (not (isCoVarType id_ty))
               (text "Non-CoVar has coercion type" <+> ppr id <+> dcolon <+> ppr id_ty)

       -- Check that the lambda binder has no value or OtherCon unfolding.
       -- See #21496
       ; lintL (not (bind_site == LambdaBind && isEvaldUnfolding (idUnfolding id)))
                (text "Lambda binder with value or OtherCon unfolding.")

       ; linted_ty <- addLoc (IdTy id) (lintValueType id_ty)

       ; addInScopeId id linted_ty $
         thing_inside (setIdType id linted_ty) }
  where
    id_ty = idType id

    is_top_lvl = isTopLevel top_lvl
    is_let_bind = case bind_site of
                    LetBind -> True
                    _       -> False

{-
%************************************************************************
%*                                                                      *
             Types
%*                                                                      *
%************************************************************************
-}

lintValueType :: Type -> LintM LintedType
-- Types only, not kinds
-- Check the type, and apply the substitution to it
-- See Note [Linting type lets]
lintValueType ty
  = addLoc (InType ty) $
    do  { ty' <- lintType ty
        ; let sk = typeKind ty'
        ; lintL (isTYPEorCONSTRAINT sk) $
          hang (text "Ill-kinded type:" <+> ppr ty)
             2 (text "has kind:" <+> ppr sk)
        ; return ty' }

checkTyCon :: TyCon -> LintM ()
checkTyCon tc
  = checkL (not (isTcTyCon tc)) (text "Found TcTyCon:" <+> ppr tc)

-------------------
lintType :: Type -> LintM LintedType

-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintType (TyVarTy tv)
  | not (isTyVar tv)
  = failWithL (mkBadTyVarMsg tv)

  | otherwise
  = do { subst <- getSubst
       ; case lookupTyVar subst tv of
           Just linted_ty -> return linted_ty

           -- In GHCi we may lint an expression with a free
           -- type variable.  Then it won't be in the
           -- substitution, but it should be in scope
           Nothing | tv `isInScope` subst
                   -> return (TyVarTy tv)
                   | otherwise
                   -> failWithL $
                      hang (text "The type variable" <+> pprBndr LetBind tv)
                         2 (text "is out of scope")
     }

lintType ty@(AppTy t1 t2)
  | TyConApp {} <- t1
  = failWithL $ text "TyConApp to the left of AppTy:" <+> ppr ty
  | otherwise
  = do { t1' <- lintType t1
       ; t2' <- lintType t2
       ; lint_ty_app ty (typeKind t1') [t2']
       ; return (AppTy t1' t2') }

lintType ty@(TyConApp tc tys)
  | isTypeSynonymTyCon tc || isTypeFamilyTyCon tc
  = do { report_unsat <- lf_report_unsat_syns <$> getLintFlags
       ; lintTySynFamApp report_unsat ty tc tys }

  | Just {} <- tyConAppFunTy_maybe tc tys
    -- We should never see a saturated application of funTyCon; such
    -- applications should be represented with the FunTy constructor.
    -- See Note [Linting function types]
  = failWithL (hang (text "Saturated application of" <+> quotes (ppr tc)) 2 (ppr ty))

  | otherwise  -- Data types, data families, primitive types
  = do { checkTyCon tc
       ; tys' <- mapM lintType tys
       ; lint_ty_app ty (tyConKind tc) tys'
       ; return (TyConApp tc tys') }

-- arrows can related *unlifted* kinds, so this has to be separate from
-- a dependent forall.
lintType ty@(FunTy af tw t1 t2)
  = do { t1' <- lintType t1
       ; t2' <- lintType t2
       ; tw' <- lintType tw
       ; lintArrow (text "type or kind" <+> quotes (ppr ty)) t1' t2' tw'
       ; let real_af = chooseFunTyFlag t1 t2
       ; unless (real_af == af) $ addErrL $
         hang (text "Bad FunTyFlag in FunTy")
            2 (vcat [ ppr ty
                    , text "FunTyFlag =" <+> ppr af
                    , text "Computed FunTyFlag =" <+> ppr real_af ])
       ; return (FunTy af tw' t1' t2') }

lintType ty@(ForAllTy (Bndr tcv vis) body_ty)
  | not (isTyCoVar tcv)
  = failWithL (text "Non-Tyvar or Non-Covar bound in type:" <+> ppr ty)
  | otherwise
  = lintTyCoBndr tcv $ \tcv' ->
    do { body_ty' <- lintType body_ty
       ; lintForAllBody tcv' body_ty'

       ; when (isCoVar tcv) $
         lintL (tcv `elemVarSet` tyCoVarsOfType body_ty) $
         text "Covar does not occur in the body:" <+> (ppr tcv $$ ppr body_ty)
         -- See GHC.Core.TyCo.Rep Note [Unused coercion variable in ForAllTy]
         -- and cf GHC.Core.Coercion Note [Unused coercion variable in ForAllCo]

       ; return (ForAllTy (Bndr tcv' vis) body_ty') }

lintType ty@(LitTy l)
  = do { lintTyLit l; return ty }

lintType (CastTy ty co)
  = do { ty' <- lintType ty
       ; co' <- lintStarCoercion co
       ; let tyk = typeKind ty'
             cok = coercionLKind co'
       ; ensureEqTys tyk cok (mkCastTyErr ty co tyk cok)
       ; return (CastTy ty' co') }

lintType (CoercionTy co)
  = do { co' <- lintCoercion co
       ; return (CoercionTy co') }

-----------------
lintForAllBody :: LintedTyCoVar -> LintedType -> LintM ()
-- Do the checks for the body of a forall-type
lintForAllBody tcv body_ty
  = do { checkValueType body_ty (text "the body of forall:" <+> ppr body_ty)

         -- For type variables, check for skolem escape
         -- See Note [Phantom type variables in kinds] in GHC.Core.Type
         -- The kind of (forall cv. th) is liftedTypeKind, so no
         -- need to check for skolem-escape in the CoVar case
       ; let body_kind = typeKind body_ty
       ; when (isTyVar tcv) $
         case occCheckExpand [tcv] body_kind of
           Just {} -> return ()
           Nothing -> failWithL $
                      hang (text "Variable escape in forall:")
                         2 (vcat [ text "tyvar:" <+> ppr tcv
                                 , text "type:" <+> ppr body_ty
                                 , text "kind:" <+> ppr body_kind ])
    }

-----------------
lintTySynFamApp :: Bool -> InType -> TyCon -> [InType] -> LintM LintedType
-- The TyCon is a type synonym or a type family (not a data family)
-- See Note [Linting type synonym applications]
-- c.f. GHC.Tc.Validity.check_syn_tc_app
lintTySynFamApp report_unsat ty tc tys
  | report_unsat   -- Report unsaturated only if report_unsat is on
  , tys `lengthLessThan` tyConArity tc
  = failWithL (hang (text "Un-saturated type application") 2 (ppr ty))

  -- Deal with type synonyms
  | ExpandsSyn tenv rhs tys' <- expandSynTyCon_maybe tc tys
  , let expanded_ty = mkAppTys (substTy (mkTvSubstPrs tenv) rhs) tys'
  = do { -- Kind-check the argument types, but without reporting
         -- un-saturated type families/synonyms
         tys' <- setReportUnsat False (mapM lintType tys)

       ; when report_unsat $
         do { _ <- lintType expanded_ty
            ; return () }

       ; lint_ty_app ty (tyConKind tc) tys'
       ; return (TyConApp tc tys') }

  -- Otherwise this must be a type family
  | otherwise
  = do { tys' <- mapM lintType tys
       ; lint_ty_app ty (tyConKind tc) tys'
       ; return (TyConApp tc tys') }

-----------------
-- Confirms that a type is really TYPE r or Constraint
checkValueType :: LintedType -> SDoc -> LintM ()
checkValueType ty doc
  = lintL (isTYPEorCONSTRAINT kind)
          (text "Non-Type-like kind when Type-like expected:" <+> ppr kind $$
           text "when checking" <+> doc)
  where
    kind = typeKind ty

-----------------
lintArrow :: SDoc -> LintedType -> LintedType -> LintedType -> LintM ()
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintArrow what t1 t2 tw  -- Eg lintArrow "type or kind `blah'" k1 k2 kw
                         -- or lintArrow "coercion `blah'" k1 k2 kw
  = do { unless (isTYPEorCONSTRAINT k1) (report (text "argument") k1)
       ; unless (isTYPEorCONSTRAINT k2) (report (text "result")   k2)
       ; unless (isMultiplicityTy kw)         (report (text "multiplicity") kw) }
  where
    k1 = typeKind t1
    k2 = typeKind t2
    kw = typeKind tw
    report ar k = addErrL (vcat [ hang (text "Ill-kinded" <+> ar)
                                     2 (text "in" <+> what)
                                , what <+> text "kind:" <+> ppr k ])

-----------------
lint_ty_app :: Type -> LintedKind -> [LintedType] -> LintM ()
lint_ty_app msg_ty k tys
    -- See Note [Avoiding compiler perf traps when constructing error messages.]
  = lint_app (\msg_ty -> text "type" <+> quotes (ppr msg_ty)) msg_ty k tys

----------------
lint_co_app :: Coercion -> LintedKind -> [LintedType] -> LintM ()
lint_co_app msg_ty k tys
    -- See Note [Avoiding compiler perf traps when constructing error messages.]
  = lint_app (\msg_ty -> text "coercion" <+> quotes (ppr msg_ty)) msg_ty k tys

----------------
lintTyLit :: TyLit -> LintM ()
lintTyLit (NumTyLit n)
  | n >= 0    = return ()
  | otherwise = failWithL msg
    where msg = text "Negative type literal:" <+> integer n
lintTyLit (StrTyLit _) = return ()
lintTyLit (CharTyLit _) = return ()

lint_app :: Outputable msg_thing => (msg_thing -> SDoc) -> msg_thing -> LintedKind -> [LintedType] -> LintM ()
-- (lint_app d fun_kind arg_tys)
--    We have an application (f arg_ty1 .. arg_tyn),
--    where f :: fun_kind

-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
--
-- Being strict in the kind here avoids quite a few pointless thunks
-- reducing allocations by ~5%
lint_app mk_msg msg_type !kfn arg_tys
    = do { !in_scope <- getInScope
         -- We need the in_scope set to satisfy the invariant in
         -- Note [The substitution invariant] in GHC.Core.TyCo.Subst
         -- Forcing the in scope set eagerly here reduces allocations by up to 4%.
         ; go_app in_scope kfn arg_tys
         }
  where

    -- We use explicit recursion instead of a fold here to avoid go_app becoming
    -- an allocated function closure. This reduced allocations by up to 7% for some
    -- modules.
    go_app :: InScopeSet -> LintedKind -> [Type] -> LintM ()
    go_app !in_scope !kfn ta
      | Just kfn' <- coreView kfn
      = go_app in_scope kfn' ta

    go_app _in_scope _kind [] = return ()

    go_app in_scope fun_kind@(FunTy _ _ kfa kfb) (ta:tas)
      = do { let ka = typeKind ta
           ; unless (ka `eqType` kfa) $
             addErrL (lint_app_fail_msg kfn arg_tys mk_msg msg_type (text "Fun:" <+> (ppr fun_kind $$ ppr ta <+> dcolon <+> ppr ka)))
           ; go_app in_scope kfb tas }

    go_app in_scope (ForAllTy (Bndr kv _vis) kfn) (ta:tas)
      = do { let kv_kind = varType kv
                 ka      = typeKind ta
           ; unless (ka `eqType` kv_kind) $
             addErrL (lint_app_fail_msg kfn arg_tys mk_msg msg_type (text "Forall:" <+> (ppr kv $$ ppr kv_kind $$
                                                    ppr ta <+> dcolon <+> ppr ka)))
           ; let kind' = substTy (extendTCvSubst (mkEmptySubst in_scope) kv ta) kfn
           ; go_app in_scope kind' tas }

    go_app _ kfn ta
       = failWithL (lint_app_fail_msg kfn arg_tys mk_msg msg_type (text "Not a fun:" <+> (ppr kfn $$ ppr ta)))

-- This is a top level definition to ensure we pass all variables of the error message
-- explicitly and don't capture them as free variables. Otherwise this binder might
-- become a thunk that get's allocated in the hot code path.
-- See Note [Avoiding compiler perf traps when constructing error messages.]
lint_app_fail_msg :: (Outputable a1, Outputable a2) => a1 -> a2 -> (t -> SDoc) -> t -> SDoc -> SDoc
lint_app_fail_msg kfn arg_tys mk_msg msg_type extra = vcat [ hang (text "Kind application error in") 2 (mk_msg msg_type)
                      , nest 2 (text "Function kind =" <+> ppr kfn)
                      , nest 2 (text "Arg types =" <+> ppr arg_tys)
                      , extra ]
{- *********************************************************************
*                                                                      *
        Linting rules
*                                                                      *
********************************************************************* -}

lintCoreRule :: OutVar -> LintedType -> CoreRule -> LintM ()
lintCoreRule _ _ (BuiltinRule {})
  = return ()  -- Don't bother

lintCoreRule fun fun_ty rule@(Rule { ru_name = name, ru_bndrs = bndrs
                                   , ru_args = args, ru_rhs = rhs })
  = lintBinders LambdaBind bndrs $ \ _ ->
    do { (lhs_ty, _) <- lintCoreArgs (fun_ty, zeroUE) args
       ; (rhs_ty, _) <- case isJoinId_maybe fun of
                     Just join_arity
                       -> do { checkL (args `lengthIs` join_arity) $
                                mkBadJoinPointRuleMsg fun join_arity rule
                               -- See Note [Rules for join points]
                             ; lintCoreExpr rhs }
                     _ -> markAllJoinsBad $ lintCoreExpr rhs
       ; ensureEqTys lhs_ty rhs_ty $
         (rule_doc <+> vcat [ text "lhs type:" <+> ppr lhs_ty
                            , text "rhs type:" <+> ppr rhs_ty
                            , text "fun_ty:" <+> ppr fun_ty ])
       ; let bad_bndrs = filter is_bad_bndr bndrs

       ; checkL (null bad_bndrs)
                (rule_doc <+> text "unbound" <+> ppr bad_bndrs)
            -- See Note [Linting rules]
    }
  where
    rule_doc = text "Rule" <+> doubleQuotes (ftext name) <> colon

    lhs_fvs = exprsFreeVars args
    rhs_fvs = exprFreeVars rhs

    is_bad_bndr :: Var -> Bool
    -- See Note [Unbound RULE binders] in GHC.Core.Rules
    is_bad_bndr bndr = not (bndr `elemVarSet` lhs_fvs)
                    && bndr `elemVarSet` rhs_fvs
                    && isNothing (isReflCoVar_maybe bndr)


{- Note [Linting rules]
~~~~~~~~~~~~~~~~~~~~~~~
It's very bad if simplifying a rule means that one of the template
variables (ru_bndrs) that /is/ mentioned on the RHS becomes
not-mentioned in the LHS (ru_args).  How can that happen?  Well, in #10602,
SpecConstr stupidly constructed a rule like

  forall x,c1,c2.
     f (x |> c1 |> c2) = ....

But simplExpr collapses those coercions into one.  (Indeed in #10602,
it collapsed to the identity and was removed altogether.)

We don't have a great story for what to do here, but at least
this check will nail it.

NB (#11643): it's possible that a variable listed in the
binders becomes not-mentioned on both LHS and RHS.  Here's a silly
example:
   RULE forall x y. f (g x y) = g (x+1) (y-1)
And suppose worker/wrapper decides that 'x' is Absent.  Then
we'll end up with
   RULE forall x y. f ($gw y) = $gw (x+1)
This seems sufficiently obscure that there isn't enough payoff to
try to trim the forall'd binder list.

Note [Rules for join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A join point cannot be partially applied. However, the left-hand side of a rule
for a join point is effectively a *pattern*, not a piece of code, so there's an
argument to be made for allowing a situation like this:

  join $sj :: Int -> Int -> String
       $sj n m = ...
       j :: forall a. Eq a => a -> a -> String
       {-# RULES "SPEC j" jump j @ Int $dEq = jump $sj #-}
       j @a $dEq x y = ...

Applying this rule can't turn a well-typed program into an ill-typed one, so
conceivably we could allow it. But we can always eta-expand such an
"undersaturated" rule (see 'GHC.Core.Opt.Arity.etaExpandToJoinPointRule'), and in fact
the simplifier would have to in order to deal with the RHS. So we take a
conservative view and don't allow undersaturated rules for join points. See
Note [Join points and unfoldings/rules] in "GHC.Core.Opt.OccurAnal" for further discussion.
-}

{-
************************************************************************
*                                                                      *
         Linting coercions
*                                                                      *
************************************************************************
-}

{- Note [Asymptotic efficiency]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When linting coercions (and types actually) we return a linted
(substituted) coercion.  Then we often have to take the coercionKind of
that returned coercion. If we get long chains, that can be asymptotically
inefficient, notably in
* TransCo
* InstCo
* SelCo (cf #9233)
* LRCo

But the code is simple.  And this is only Lint.  Let's wait to see if
the bad perf bites us in practice.

A solution would be to return the kind and role of the coercion,
as well as the linted coercion.  Or perhaps even *only* the kind and role,
which is what used to happen.   But that proved tricky and error prone
(#17923), so now we return the coercion.
-}


-- lints a coercion, confirming that its lh kind and its rh kind are both *
-- also ensures that the role is Nominal
lintStarCoercion :: InCoercion -> LintM LintedCoercion
lintStarCoercion g
  = do { g' <- lintCoercion g
       ; let Pair t1 t2 = coercionKind g'
       ; checkValueType t1 (text "the kind of the left type in" <+> ppr g)
       ; checkValueType t2 (text "the kind of the right type in" <+> ppr g)
       ; lintRole g Nominal (coercionRole g)
       ; return g' }

lintCoercion :: InCoercion -> LintM LintedCoercion
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]

lintCoercion (CoVarCo cv)
  | not (isCoVar cv)
  = failWithL (hang (text "Bad CoVarCo:" <+> ppr cv)
                  2 (text "With offending type:" <+> ppr (varType cv)))

  | otherwise
  = do { subst <- getSubst
       ; case lookupCoVar subst cv of
           Just linted_co -> return linted_co ;
           Nothing
              | cv `isInScope` subst
                   -> return (CoVarCo cv)
              | otherwise
                   ->
                      -- lintCoBndr always extends the substitution
                      failWithL $
                      hang (text "The coercion variable" <+> pprBndr LetBind cv)
                         2 (text "is out of scope")
     }


lintCoercion (Refl ty)
  = do { ty' <- lintType ty
       ; return (Refl ty') }

lintCoercion (GRefl r ty MRefl)
  = do { ty' <- lintType ty
       ; return (GRefl r ty' MRefl) }

lintCoercion (GRefl r ty (MCo co))
  = do { ty' <- lintType ty
       ; co' <- lintCoercion co
       ; let tk = typeKind ty'
             tl = coercionLKind co'
       ; ensureEqTys tk tl $
         hang (text "GRefl coercion kind mis-match:" <+> ppr co)
            2 (vcat [ppr ty', ppr tk, ppr tl])
       ; lintRole co' Nominal (coercionRole co')
       ; return (GRefl r ty' (MCo co')) }

lintCoercion co@(TyConAppCo r tc cos)
  | Just {} <- tyConAppFunCo_maybe r tc cos
  = failWithL (hang (text "Saturated application of" <+> quotes (ppr tc))
                  2 (ppr co))
    -- All saturated TyConAppCos should be FunCos

  | Just {} <- synTyConDefn_maybe tc
  = failWithL (text "Synonym in TyConAppCo:" <+> ppr co)

  | otherwise
  = do { checkTyCon tc
       ; cos' <- mapM lintCoercion cos
       ; let (co_kinds, co_roles) = unzip (map coercionKindRole cos')
       ; lint_co_app co (tyConKind tc) (map pFst co_kinds)
       ; lint_co_app co (tyConKind tc) (map pSnd co_kinds)
       ; zipWithM_ (lintRole co) (tyConRoleListX r tc) co_roles
       ; return (TyConAppCo r tc cos') }

lintCoercion co@(AppCo co1 co2)
  | TyConAppCo {} <- co1
  = failWithL (text "TyConAppCo to the left of AppCo:" <+> ppr co)
  | Just (TyConApp {}, _) <- isReflCo_maybe co1
  = failWithL (text "Refl (TyConApp ...) to the left of AppCo:" <+> ppr co)
  | otherwise
  = do { co1' <- lintCoercion co1
       ; co2' <- lintCoercion co2
       ; let (Pair lk1 rk1, r1) = coercionKindRole co1'
             (Pair lk2 rk2, r2) = coercionKindRole co2'
       ; lint_co_app co (typeKind lk1) [lk2]
       ; lint_co_app co (typeKind rk1) [rk2]

       ; if r1 == Phantom
         then lintL (r2 == Phantom || r2 == Nominal)
                     (text "Second argument in AppCo cannot be R:" $$
                      ppr co)
         else lintRole co Nominal r2

       ; return (AppCo co1' co2') }

----------
lintCoercion co@(ForAllCo tcv kind_co body_co)
  | not (isTyCoVar tcv)
  = failWithL (text "Non tyco binder in ForAllCo:" <+> ppr co)
  | otherwise
  = do { kind_co' <- lintStarCoercion kind_co
       ; lintTyCoBndr tcv $ \tcv' ->
    do { body_co' <- lintCoercion body_co
       ; ensureEqTys (varType tcv') (coercionLKind kind_co') $
         text "Kind mis-match in ForallCo" <+> ppr co

       -- Assuming kind_co :: k1 ~ k2
       -- Need to check that
       --    (forall (tcv:k1). lty) and
       --    (forall (tcv:k2). rty[(tcv:k2) |> sym kind_co/tcv])
       -- are both well formed.  Easiest way is to call lintForAllBody
       -- for each; there is actually no need to do the funky substitution
       ; let Pair lty rty = coercionKind body_co'
       ; lintForAllBody tcv' lty
       ; lintForAllBody tcv' rty

       ; when (isCoVar tcv) $
         lintL (almostDevoidCoVarOfCo tcv body_co) $
         text "Covar can only appear in Refl and GRefl: " <+> ppr co
         -- See "last wrinkle" in GHC.Core.Coercion
         -- Note [Unused coercion variable in ForAllCo]
         -- and c.f. GHC.Core.TyCo.Rep Note [Unused coercion variable in ForAllTy]

       ; return (ForAllCo tcv' kind_co' body_co') } }

lintCoercion co@(FunCo { fco_role = r, fco_afl = afl, fco_afr = afr
                       , fco_mult = cow, fco_arg = co1, fco_res = co2 })
  = do { co1' <- lintCoercion co1
       ; co2' <- lintCoercion co2
       ; cow' <- lintCoercion cow
       ; let Pair lt1 rt1 = coercionKind co1
             Pair lt2 rt2 = coercionKind co2
             Pair ltw rtw = coercionKind cow
       ; lintL (afl == chooseFunTyFlag lt1 lt2) (bad_co_msg "afl")
       ; lintL (afr == chooseFunTyFlag rt1 rt2) (bad_co_msg "afr")
       ; lintArrow (bad_co_msg "arrowl") lt1 lt2 ltw
       ; lintArrow (bad_co_msg "arrowr") rt1 rt2 rtw
       ; lintRole co1 r (coercionRole co1)
       ; lintRole co2 r (coercionRole co2)
       ; ensureEqTys (typeKind ltw) multiplicityTy (bad_co_msg "mult-l")
       ; ensureEqTys (typeKind rtw) multiplicityTy (bad_co_msg "mult-r")
       ; let expected_mult_role = case r of
                                    Phantom -> Phantom
                                    _ -> Nominal
       ; lintRole cow expected_mult_role (coercionRole cow)
       ; return (co { fco_mult = cow', fco_arg = co1', fco_res = co2' }) }
  where
    bad_co_msg s = hang (text "Bad coercion" <+> parens (text s))
                      2 (vcat [ text "afl:" <+> ppr afl
                              , text "afr:" <+> ppr afr
                              , text "arg_co:" <+> ppr co1
                              , text "res_co:" <+> ppr co2 ])

-- See Note [Bad unsafe coercion]
lintCoercion co@(UnivCo prov r ty1 ty2)
  = do { ty1' <- lintType ty1
       ; ty2' <- lintType ty2
       ; let k1 = typeKind ty1'
             k2 = typeKind ty2'
       ; prov' <- lint_prov k1 k2 prov

       ; when (r /= Phantom && isTYPEorCONSTRAINT k1
                            && isTYPEorCONSTRAINT k2)
              (checkTypes ty1 ty2)

       ; return (UnivCo prov' r ty1' ty2') }
   where
     report s = hang (text $ "Unsafe coercion: " ++ s)
                     2 (vcat [ text "From:" <+> ppr ty1
                             , text "  To:" <+> ppr ty2])
     isUnBoxed :: PrimRep -> Bool
     isUnBoxed = not . isGcPtrRep

       -- see #9122 for discussion of these checks
     checkTypes t1 t2
       | allow_ill_kinded_univ_co prov
       = return ()  -- Skip kind checks
       | otherwise
       = do { checkWarnL fixed_rep_1
                         (report "left-hand type does not have a fixed runtime representation")
            ; checkWarnL fixed_rep_2
                         (report "right-hand type does not have a fixed runtime representation")
            ; when (fixed_rep_1 && fixed_rep_2) $
              do { checkWarnL (reps1 `equalLength` reps2)
                              (report "between values with different # of reps")
                 ; zipWithM_ validateCoercion reps1 reps2 }}
       where
         fixed_rep_1 = typeHasFixedRuntimeRep t1
         fixed_rep_2 = typeHasFixedRuntimeRep t2

         -- don't look at these unless lev_poly1/2 are False
         -- Otherwise, we get #13458
         reps1 = typePrimRep t1
         reps2 = typePrimRep t2

     -- CorePrep deliberately makes ill-kinded casts
     --  e.g (case error @Int "blah" of {}) :: Int#
     --     ==> (error @Int "blah") |> Unsafe Int Int#
     -- See Note [Unsafe coercions] in GHC.Core.CoreToStg.Prep
     allow_ill_kinded_univ_co (CorePrepProv homo_kind) = not homo_kind
     allow_ill_kinded_univ_co _                        = False

     validateCoercion :: PrimRep -> PrimRep -> LintM ()
     validateCoercion rep1 rep2
       = do { platform <- getPlatform
            ; checkWarnL (isUnBoxed rep1 == isUnBoxed rep2)
                         (report "between unboxed and boxed value")
            ; checkWarnL (TyCon.primRepSizeB platform rep1
                           == TyCon.primRepSizeB platform rep2)
                         (report "between unboxed values of different size")
            ; let fl = liftM2 (==) (TyCon.primRepIsFloat rep1)
                                   (TyCon.primRepIsFloat rep2)
            ; case fl of
                Nothing    -> addWarnL (report "between vector types")
                Just False -> addWarnL (report "between float and integral values")
                _          -> return ()
            }

     lint_prov k1 k2 (PhantomProv kco)
       = do { kco' <- lintStarCoercion kco
            ; lintRole co Phantom r
            ; check_kinds kco' k1 k2
            ; return (PhantomProv kco') }

     lint_prov k1 k2 (ProofIrrelProv kco)
       = do { lintL (isCoercionTy ty1) (mkBadProofIrrelMsg ty1 co)
            ; lintL (isCoercionTy ty2) (mkBadProofIrrelMsg ty2 co)
            ; kco' <- lintStarCoercion kco
            ; check_kinds kco k1 k2
            ; return (ProofIrrelProv kco') }

     lint_prov _ _ prov@(PluginProv _)   = return prov
     lint_prov _ _ prov@(CorePrepProv _) = return prov

     check_kinds kco k1 k2
       = do { let Pair k1' k2' = coercionKind kco
            ; ensureEqTys k1 k1' (mkBadUnivCoMsg CLeft  co)
            ; ensureEqTys k2 k2' (mkBadUnivCoMsg CRight co) }


lintCoercion (SymCo co)
  = do { co' <- lintCoercion co
       ; return (SymCo co') }

lintCoercion co@(TransCo co1 co2)
  = do { co1' <- lintCoercion co1
       ; co2' <- lintCoercion co2
       ; let ty1b = coercionRKind co1'
             ty2a = coercionLKind co2'
       ; ensureEqTys ty1b ty2a
               (hang (text "Trans coercion mis-match:" <+> ppr co)
                   2 (vcat [ppr (coercionKind co1'), ppr (coercionKind co2')]))
       ; lintRole co (coercionRole co1) (coercionRole co2)
       ; return (TransCo co1' co2') }

lintCoercion the_co@(SelCo cs co)
  = do { co' <- lintCoercion co
       ; let (Pair s t, co_role) = coercionKindRole co'

       ; if -- forall (both TyVar and CoVar)
            | Just _ <- splitForAllTyCoVar_maybe s
            , Just _ <- splitForAllTyCoVar_maybe t
            , SelForAll <- cs
            ,   (isForAllTy_ty s && isForAllTy_ty t)
             || (isForAllTy_co s && isForAllTy_co t)
            -> return (SelCo cs co')

            -- function
            | isFunTy s
            , isFunTy t
            , SelFun {} <- cs
            -> return (SelCo cs co')

            -- TyCon
            | Just (tc_s, tys_s) <- splitTyConApp_maybe s
            , Just (tc_t, tys_t) <- splitTyConApp_maybe t
            , tc_s == tc_t
            , SelTyCon n r0 <- cs
            , isInjectiveTyCon tc_s co_role
                -- see Note [SelCo and newtypes] in GHC.Core.TyCo.Rep
            , tys_s `equalLength` tys_t
            , tys_s `lengthExceeds` n
            -> do { lintRole the_co (tyConRole co_role tc_s n) r0
                  ; return (SelCo cs co') }

            | otherwise
            -> failWithL (hang (text "Bad SelCo:")
                             2 (ppr the_co $$ ppr s $$ ppr t)) }

lintCoercion the_co@(LRCo lr co)
  = do { co' <- lintCoercion co
       ; let Pair s t = coercionKind co'
             r        = coercionRole co'
       ; lintRole co Nominal r
       ; case (splitAppTy_maybe s, splitAppTy_maybe t) of
           (Just _, Just _) -> return (LRCo lr co')
           _ -> failWithL (hang (text "Bad LRCo:")
                              2 (ppr the_co $$ ppr s $$ ppr t)) }

lintCoercion (InstCo co arg)
  = do { co'  <- lintCoercion co
       ; arg' <- lintCoercion arg
       ; let Pair t1 t2 = coercionKind co'
             Pair s1 s2 = coercionKind arg'

       ; lintRole arg Nominal (coercionRole arg')

      ; case (splitForAllTyVar_maybe t1, splitForAllTyVar_maybe t2) of
         -- forall over tvar
         { (Just (tv1,_), Just (tv2,_))
             | typeKind s1 `eqType` tyVarKind tv1
             , typeKind s2 `eqType` tyVarKind tv2
             -> return (InstCo co' arg')
             | otherwise
             -> failWithL (text "Kind mis-match in inst coercion1" <+> ppr co)

         ; _ -> case (splitForAllCoVar_maybe t1, splitForAllCoVar_maybe t2) of
         -- forall over covar
         { (Just (cv1, _), Just (cv2, _))
             | typeKind s1 `eqType` varType cv1
             , typeKind s2 `eqType` varType cv2
             , CoercionTy _ <- s1
             , CoercionTy _ <- s2
             -> return (InstCo co' arg')
             | otherwise
             -> failWithL (text "Kind mis-match in inst coercion2" <+> ppr co)

         ; _ -> failWithL (text "Bad argument of inst") }}}

lintCoercion co@(AxiomInstCo con ind cos)
  = do { unless (0 <= ind && ind < numBranches (coAxiomBranches con))
                (bad_ax (text "index out of range"))
       ; let CoAxBranch { cab_tvs   = ktvs
                        , cab_cvs   = cvs
                        , cab_roles = roles } = coAxiomNthBranch con ind
       ; unless (cos `equalLength` (ktvs ++ cvs)) $
           bad_ax (text "lengths")
       ; cos' <- mapM lintCoercion cos
       ; subst <- getSubst
       ; let empty_subst = zapSubst subst
       ; _ <- foldlM check_ki (empty_subst, empty_subst)
                              (zip3 (ktvs ++ cvs) roles cos')
       ; let fam_tc = coAxiomTyCon con
       ; case checkAxInstCo co of
           Just bad_branch -> bad_ax $ text "inconsistent with" <+>
                                       pprCoAxBranch fam_tc bad_branch
           Nothing -> return ()
       ; return (AxiomInstCo con ind cos') }
  where
    bad_ax what = addErrL (hang (text  "Bad axiom application" <+> parens what)
                        2 (ppr co))

    check_ki (subst_l, subst_r) (ktv, role, arg')
      = do { let Pair s' t' = coercionKind arg'
                 sk' = typeKind s'
                 tk' = typeKind t'
           ; lintRole arg' role (coercionRole arg')
           ; let ktv_kind_l = substTy subst_l (tyVarKind ktv)
                 ktv_kind_r = substTy subst_r (tyVarKind ktv)
           ; unless (sk' `eqType` ktv_kind_l)
                    (bad_ax (text "check_ki1" <+> vcat [ ppr co, ppr sk', ppr ktv, ppr ktv_kind_l ] ))
           ; unless (tk' `eqType` ktv_kind_r)
                    (bad_ax (text "check_ki2" <+> vcat [ ppr co, ppr tk', ppr ktv, ppr ktv_kind_r ] ))
           ; return (extendTCvSubst subst_l ktv s',
                     extendTCvSubst subst_r ktv t') }

lintCoercion (KindCo co)
  = do { co' <- lintCoercion co
       ; return (KindCo co') }

lintCoercion (SubCo co')
  = do { co' <- lintCoercion co'
       ; lintRole co' Nominal (coercionRole co')
       ; return (SubCo co') }

lintCoercion this@(AxiomRuleCo ax cos)
  = do { cos' <- mapM lintCoercion cos
       ; lint_roles 0 (coaxrAsmpRoles ax) cos'
       ; case coaxrProves ax (map coercionKind cos') of
           Nothing -> err "Malformed use of AxiomRuleCo" [ ppr this ]
           Just _  -> return (AxiomRuleCo ax cos') }
  where
  err :: forall a. String -> [SDoc] -> LintM a
  err m xs  = failWithL $
              hang (text m) 2 $ vcat (text "Rule:" <+> ppr (coaxrName ax) : xs)

  lint_roles n (e : es) (co : cos)
    | e == coercionRole co = lint_roles (n+1) es cos
    | otherwise = err "Argument roles mismatch"
                      [ text "In argument:" <+> int (n+1)
                      , text "Expected:" <+> ppr e
                      , text "Found:" <+> ppr (coercionRole co) ]
  lint_roles _ [] []  = return ()
  lint_roles n [] rs  = err "Too many coercion arguments"
                          [ text "Expected:" <+> int n
                          , text "Provided:" <+> int (n + length rs) ]

  lint_roles n es []  = err "Not enough coercion arguments"
                          [ text "Expected:" <+> int (n + length es)
                          , text "Provided:" <+> int n ]

lintCoercion (HoleCo h)
  = do { addErrL $ text "Unfilled coercion hole:" <+> ppr h
       ; lintCoercion (CoVarCo (coHoleCoVar h)) }


{-
Note [Conflict checking with AxiomInstCo]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following type family and axiom:

type family Equal (a :: k) (b :: k) :: Bool
type instance where
  Equal a a = True
  Equal a b = False
--
Equal :: forall k::*. k -> k -> Bool
axEqual :: { forall k::*. forall a::k. Equal k a a ~ True
           ; forall k::*. forall a::k. forall b::k. Equal k a b ~ False }

The coercion (axEqual[1] <*> <Int> <Int) is ill-typed, and Lint should reject it.
(Recall that the index is 0-based, so this is the second branch of the axiom.)
The problem is that, on the surface, it seems that

  (axEqual[1] <*> <Int> <Int>) :: (Equal * Int Int ~ False)

and that all is OK. But, all is not OK: we want to use the first branch of the
axiom in this case, not the second. The problem is that the parameters of the
first branch can unify with the supplied coercions, thus meaning that the first
branch should be taken. See also Note [Apartness] in "GHC.Core.FamInstEnv".

For more details, see the section "Branched axiom conflict checking" in
docs/core-spec, which defines the corresponding no_conflict function used by the
Co_AxiomInstCo rule in the section "Coercion typing".
-}

-- | Check to make sure that an AxInstCo is internally consistent.
-- Returns the conflicting branch, if it exists
-- See Note [Conflict checking with AxiomInstCo]
checkAxInstCo :: Coercion -> Maybe CoAxBranch
-- defined here to avoid dependencies in GHC.Core.Coercion
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism] in GHC.Core.Lint
checkAxInstCo (AxiomInstCo ax ind cos)
  = let branch       = coAxiomNthBranch ax ind
        tvs          = coAxBranchTyVars branch
        cvs          = coAxBranchCoVars branch
        incomps      = coAxBranchIncomps branch
        (tys, cotys) = splitAtList tvs (map coercionLKind cos)
        co_args      = map stripCoercionTy cotys
        subst        = zipTvSubst tvs tys `composeTCvSubst`
                       zipCvSubst cvs co_args
        target   = Type.substTys subst (coAxBranchLHS branch)
        in_scope = mkInScopeSet $
                   unionVarSets (map (tyCoVarsOfTypes . coAxBranchLHS) incomps)
        flattened_target = flattenTys in_scope target in
    check_no_conflict flattened_target incomps
  where
    check_no_conflict :: [Type] -> [CoAxBranch] -> Maybe CoAxBranch
    check_no_conflict _    [] = Nothing
    check_no_conflict flat (b@CoAxBranch { cab_lhs = lhs_incomp } : rest)
         -- See Note [Apartness] in GHC.Core.FamInstEnv
      | SurelyApart <- tcUnifyTysFG alwaysBindFun flat lhs_incomp
      = check_no_conflict flat rest
      | otherwise
      = Just b
checkAxInstCo _ = Nothing


{-
************************************************************************
*                                                                      *
              Axioms
*                                                                      *
************************************************************************
-}

lintAxioms :: Logger
           -> LintConfig
           -> SDoc -- ^ The source of the linted axioms
           -> [CoAxiom Branched]
           -> IO ()
lintAxioms logger cfg what axioms =
  displayLintResults logger True what (vcat $ map pprCoAxiom axioms) $
  initL cfg $
  do { mapM_ lint_axiom axioms
     ; let axiom_groups = groupWith coAxiomTyCon axioms
     ; mapM_ lint_axiom_group axiom_groups }

lint_axiom :: CoAxiom Branched -> LintM ()
lint_axiom ax@(CoAxiom { co_ax_tc = tc, co_ax_branches = branches
                       , co_ax_role = ax_role })
  = addLoc (InAxiom ax) $
    do { mapM_ (lint_branch tc) branch_list
       ; extra_checks }
  where
    branch_list = fromBranches branches

    extra_checks
      | isNewTyCon tc
      = do { CoAxBranch { cab_tvs     = tvs
                        , cab_eta_tvs = eta_tvs
                        , cab_cvs     = cvs
                        , cab_roles   = roles
                        , cab_lhs     = lhs_tys }
              <- case branch_list of
               [branch] -> return branch
               _        -> failWithL (text "multi-branch axiom with newtype")
           ; let ax_lhs = mkInfForAllTys tvs $
                          mkTyConApp tc lhs_tys
                 nt_tvs = takeList tvs (tyConTyVars tc)
                    -- axiom may be eta-reduced: Note [Newtype eta] in GHC.Core.TyCon
                 nt_lhs = mkInfForAllTys nt_tvs $
                          mkTyConApp tc (mkTyVarTys nt_tvs)
                 -- See Note [Newtype eta] in GHC.Core.TyCon
           ; lintL (ax_lhs `eqType` nt_lhs)
                   (text "Newtype axiom LHS does not match newtype definition")
           ; lintL (null cvs)
                   (text "Newtype axiom binds coercion variables")
           ; lintL (null eta_tvs)  -- See Note [Eta reduction for data families]
                                   -- which is not about newtype axioms
                   (text "Newtype axiom has eta-tvs")
           ; lintL (ax_role == Representational)
                   (text "Newtype axiom role not representational")
           ; lintL (roles `equalLength` tvs)
                   (text "Newtype axiom roles list is the wrong length." $$
                    text "roles:" <+> sep (map ppr roles))
           ; lintL (roles == takeList roles (tyConRoles tc))
                   (vcat [ text "Newtype axiom roles do not match newtype tycon's."
                         , text "axiom roles:" <+> sep (map ppr roles)
                         , text "tycon roles:" <+> sep (map ppr (tyConRoles tc)) ])
           }

      | isFamilyTyCon tc
      = do { if | isTypeFamilyTyCon tc
                  -> lintL (ax_role == Nominal)
                           (text "type family axiom is not nominal")

                | isDataFamilyTyCon tc
                  -> lintL (ax_role == Representational)
                           (text "data family axiom is not representational")

                | otherwise
                  -> addErrL (text "A family TyCon is neither a type family nor a data family:" <+> ppr tc)

           ; mapM_ (lint_family_branch tc) branch_list }

      | otherwise
      = addErrL (text "Axiom tycon is neither a newtype nor a family.")

lint_branch :: TyCon -> CoAxBranch -> LintM ()
lint_branch ax_tc (CoAxBranch { cab_tvs = tvs, cab_cvs = cvs
                              , cab_lhs = lhs_args, cab_rhs = rhs })
  = lintBinders LambdaBind (tvs ++ cvs) $ \_ ->
    do { let lhs = mkTyConApp ax_tc lhs_args
       ; lhs' <- lintType lhs
       ; rhs' <- lintType rhs
       ; let lhs_kind = typeKind lhs'
             rhs_kind = typeKind rhs'
       ; lintL (not (lhs_kind `typesAreApart` rhs_kind)) $
         hang (text "Inhomogeneous axiom")
            2 (text "lhs:" <+> ppr lhs <+> dcolon <+> ppr lhs_kind $$
               text "rhs:" <+> ppr rhs <+> dcolon <+> ppr rhs_kind) }
         -- Type and Constraint are not Apart, so this test allows
         -- the newtype axiom for a single-method class.  Indeed the
         -- whole reason Type and Constraint are not Apart is to allow
         -- such axioms!

-- these checks do not apply to newtype axioms
lint_family_branch :: TyCon -> CoAxBranch -> LintM ()
lint_family_branch fam_tc br@(CoAxBranch { cab_tvs     = tvs
                                         , cab_eta_tvs = eta_tvs
                                         , cab_cvs     = cvs
                                         , cab_roles   = roles
                                         , cab_lhs     = lhs
                                         , cab_incomps = incomps })
  = do { lintL (isDataFamilyTyCon fam_tc || null eta_tvs)
               (text "Type family axiom has eta-tvs")
       ; lintL (all (`elemVarSet` tyCoVarsOfTypes lhs) tvs)
               (text "Quantified variable in family axiom unused in LHS")
       ; lintL (all isTyFamFree lhs)
               (text "Type family application on LHS of family axiom")
       ; lintL (all (== Nominal) roles)
               (text "Non-nominal role in family axiom" $$
                text "roles:" <+> sep (map ppr roles))
       ; lintL (null cvs)
               (text "Coercion variables bound in family axiom")
       ; forM_ incomps $ \ br' ->
           lintL (not (compatibleBranches br br')) $
           hang (text "Incorrect incompatible branches:")
              2 (vcat [text "Branch:"       <+> ppr br,
                       text "Bogus incomp:" <+> ppr br']) }

lint_axiom_group :: NonEmpty (CoAxiom Branched) -> LintM ()
lint_axiom_group (_  :| []) = return ()
lint_axiom_group (ax :| axs)
  = do { lintL (isOpenFamilyTyCon tc)
               (text "Non-open-family with multiple axioms")
       ; let all_pairs = [ (ax1, ax2) | ax1 <- all_axs
                                      , ax2 <- all_axs ]
       ; mapM_ (lint_axiom_pair tc) all_pairs }
  where
    all_axs = ax : axs
    tc      = coAxiomTyCon ax

lint_axiom_pair :: TyCon -> (CoAxiom Branched, CoAxiom Branched) -> LintM ()
lint_axiom_pair tc (ax1, ax2)
  | Just br1@(CoAxBranch { cab_tvs = tvs1
                         , cab_lhs = lhs1
                         , cab_rhs = rhs1 }) <- coAxiomSingleBranch_maybe ax1
  , Just br2@(CoAxBranch { cab_tvs = tvs2
                         , cab_lhs = lhs2
                         , cab_rhs = rhs2 }) <- coAxiomSingleBranch_maybe ax2
  = lintL (compatibleBranches br1 br2) $
    vcat [ hsep [ text "Axioms", ppr ax1, text "and", ppr ax2
                , text "are incompatible" ]
         , text "tvs1 =" <+> pprTyVars tvs1
         , text "lhs1 =" <+> ppr (mkTyConApp tc lhs1)
         , text "rhs1 =" <+> ppr rhs1
         , text "tvs2 =" <+> pprTyVars tvs2
         , text "lhs2 =" <+> ppr (mkTyConApp tc lhs2)
         , text "rhs2 =" <+> ppr rhs2 ]

  | otherwise
  = addErrL (text "Open type family axiom has more than one branch: either" <+>
             ppr ax1 <+> text "or" <+> ppr ax2)

{-
************************************************************************
*                                                                      *
\subsection[lint-monad]{The Lint monad}
*                                                                      *
************************************************************************
-}

-- If you edit this type, you may need to update the GHC formalism
-- See Note [GHC Formalism]
data LintEnv
  = LE { le_flags :: LintFlags       -- Linting the result of this pass
       , le_loc   :: [LintLocInfo]   -- Locations

       , le_subst :: Subst  -- Current TyCo substitution
                               --    See Note [Linting type lets]
            -- /Only/ substitutes for type variables;
            --        but might clone CoVars
            -- We also use le_subst to keep track of
            -- in-scope TyVars and CoVars (but not Ids)
            -- Range of the Subst is LintedType/LintedCo

       , le_ids   :: VarEnv (Id, LintedType)    -- In-scope Ids
            -- Used to check that occurrences have an enclosing binder.
            -- The Id is /pre-substitution/, used to check that
            -- the occurrence has an identical type to the binder
            -- The LintedType is used to return the type of the occurrence,
            -- without having to lint it again.

       , le_joins :: IdSet     -- Join points in scope that are valid
                               -- A subset of the InScopeSet in le_subst
                               -- See Note [Join points]

       , le_ue_aliases :: NameEnv UsageEnv -- Assigns usage environments to the
                                           -- alias-like binders, as found in
                                           -- non-recursive lets.

       , le_platform   :: Platform         -- ^ Target platform
       , le_diagOpts   :: DiagOpts         -- ^ Target platform
       }

data LintFlags
  = LF { lf_check_global_ids           :: Bool -- See Note [Checking for global Ids]
       , lf_check_inline_loop_breakers :: Bool -- See Note [Checking for INLINE loop breakers]
       , lf_check_static_ptrs :: StaticPtrCheck -- ^ See Note [Checking StaticPtrs]
       , lf_report_unsat_syns :: Bool -- ^ See Note [Linting type synonym applications]
       , lf_check_linearity :: Bool -- ^ See Note [Linting linearity]
       , lf_check_fixed_rep :: Bool -- See Note [Checking for representation polymorphism]
    }

-- See Note [Checking StaticPtrs]
data StaticPtrCheck
    = AllowAnywhere
        -- ^ Allow 'makeStatic' to occur anywhere.
    | AllowAtTopLevel
        -- ^ Allow 'makeStatic' calls at the top-level only.
    | RejectEverywhere
        -- ^ Reject any 'makeStatic' occurrence.
  deriving Eq

newtype LintM a =
   LintM' { unLintM ::
            LintEnv ->
            WarnsAndErrs ->           -- Warning and error messages so far
            LResult a } -- Result and messages (if any)


pattern LintM :: (LintEnv -> WarnsAndErrs -> LResult a) -> LintM a
-- See Note [The one-shot state monad trick] in GHC.Utils.Monad
pattern LintM m <- LintM' m
  where
    LintM m = LintM' (oneShot $ \env -> oneShot $ \we -> m env we)
    -- LintM m = LintM' (oneShot $ oneShot m)
{-# COMPLETE LintM #-}

instance Functor (LintM) where
  fmap f (LintM m) = LintM $ \e w -> mapLResult f (m e w)

type WarnsAndErrs = (Bag SDoc, Bag SDoc)

-- Using a unboxed tuple here reduced allocations for a lint heavy
-- file by ~6%. Using MaybeUB reduced them further by another ~12%.
type LResult a = (# MaybeUB a, WarnsAndErrs #)

pattern LResult :: MaybeUB a -> WarnsAndErrs -> LResult a
pattern LResult m w = (# m, w #)
{-# COMPLETE LResult #-}

mapLResult :: (a1 -> a2) -> LResult a1 -> LResult a2
mapLResult f (LResult r w) = LResult (fmapMaybeUB f r) w

-- Just for testing.
fromBoxedLResult :: (Maybe a, WarnsAndErrs) -> LResult a
fromBoxedLResult (Just x, errs) = LResult (JustUB x) errs
fromBoxedLResult (Nothing,errs) = LResult NothingUB errs

{- Note [Checking for global Ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Before CoreTidy, all locally-bound Ids must be LocalIds, even
top-level ones. See Note [Exported LocalIds] and #9857.

Note [Checking StaticPtrs]
~~~~~~~~~~~~~~~~~~~~~~~~~~
See Note [Grand plan for static forms] in GHC.Iface.Tidy.StaticPtrTable for an overview.

Every occurrence of the function 'makeStatic' should be moved to the
top level by the FloatOut pass.  It's vital that we don't have nested
'makeStatic' occurrences after CorePrep, because we populate the Static
Pointer Table from the top-level bindings. See SimplCore Note [Grand
plan for static forms].

The linter checks that no occurrence is left behind, nested within an
expression. The check is enabled only after the FloatOut, CorePrep,
and CoreTidy passes and only if the module uses the StaticPointers
language extension. Checking more often doesn't help since the condition
doesn't hold until after the first FloatOut pass.

Note [Type substitution]
~~~~~~~~~~~~~~~~~~~~~~~~
Why do we need a type substitution?  Consider
        /\(a:*). \(x:a). /\(a:*). id a x
This is ill typed, because (renaming variables) it is really
        /\(a:*). \(x:a). /\(b:*). id b x
Hence, when checking an application, we can't naively compare x's type
(at its binding site) with its expected type (at a use site).  So we
rename type binders as we go, maintaining a substitution.

The same substitution also supports let-type, current expressed as
        (/\(a:*). body) ty
Here we substitute 'ty' for 'a' in 'body', on the fly.

Note [Linting type synonym applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When linting a type-synonym, or type-family, application
  S ty1 .. tyn
we behave as follows (#15057, #T15664):

* If lf_report_unsat_syns = True, and S has arity < n,
  complain about an unsaturated type synonym or type family

* Switch off lf_report_unsat_syns, and lint ty1 .. tyn.

  Reason: catch out of scope variables or other ill-kinded gubbins,
  even if S discards that argument entirely. E.g. (#15012):
     type FakeOut a = Int
     type family TF a
     type instance TF Int = FakeOut a
  Here 'a' is out of scope; but if we expand FakeOut, we conceal
  that out-of-scope error.

  Reason for switching off lf_report_unsat_syns: with
  LiberalTypeSynonyms, GHC allows unsaturated synonyms provided they
  are saturated when the type is expanded. Example
     type T f = f Int
     type S a = a -> a
     type Z = T S
  In Z's RHS, S appears unsaturated, but it is saturated when T is expanded.

* If lf_report_unsat_syns is on, expand the synonym application and
  lint the result.  Reason: want to check that synonyms are saturated
  when the type is expanded.

Note [Linting linearity]
~~~~~~~~~~~~~~~~~~~~~~~~
Core understands linear types: linearity is checked with the flag
`-dlinear-core-lint`. Why not make `-dcore-lint` check linearity?  Because
optimisation passes are not (yet) guaranteed to maintain linearity.  They should
do so semantically (GHC is careful not to duplicate computation) but it is much
harder to ensure that the statically-checkable constraints of Linear Core are
maintained. The current Linear Core is described in the wiki at:
https://gitlab.haskell.org/ghc/ghc/-/wikis/linear-types/implementation.

Why don't the optimisation passes maintain the static types of Linear Core?
Because doing so would cripple some important optimisations.  Here is an
example:

  data T = MkT {-# UNPACK #-} !Int

The wrapper for MkT is

  $wMkT :: Int %1 -> T
  $wMkT n = case %1 n of
    I# n' -> MkT n'

This introduces, in particular, a `case %1` (this is not actual Haskell or Core
syntax), where the `%1` means that the `case` expression consumes its scrutinee
linearly.

Now, `case %1` interacts with the binder swap optimisation in a non-trivial
way. Take a slightly modified version of the code for $wMkT:

  case %1 x of z {
    I# n' -> (x, n')
  }

Binder-swap wants to change this to

  case %1 x of z {
    I# n' -> let x = z in (x, n')
  }

Now, this is not something that a linear type checker usually considers
well-typed. It is not something that `-dlinear-core-lint` considers to be
well-typed either. But it's only because `-dlinear-core-lint` is not good
enough. However, making `-dlinear-core-lint` recognise this expression as valid
is not obvious. There are many such interactions between a linear type system
and GHC optimisations documented in the linear-type implementation wiki page
[https://gitlab.haskell.org/ghc/ghc/-/wikis/linear-types/implementation#core-to-core-passes].

PRINCIPLE: The type system bends to the optimisation, not the other way around.

In the original linear-types implementation, we had tried to make every
optimisation pass produce code that passes `-dlinear-core-lint`. It had proved
very difficult. And we kept finding corner case after corner case.  Plus, we
used to restrict transformations when `-dlinear-core-lint` couldn't typecheck
the result. There are still occurrences of such restrictions in the code. But
our current stance is that such restrictions can be removed.

For instance, some optimisations can create a letrec which uses a variable
linearly, e.g.

  letrec f True = f False
         f False = x
  in f True

uses 'x' linearly, but this is not seen by the linter. This issue is discussed
in  ticket #18694.

Plus in many cases, in order to make a transformation compatible with linear
linting, we ended up restricting to avoid producing patterns that were not
recognised as linear by the linter. This violates the above principle.

In the future, we may be able to lint the linearity of the output of
Core-to-Core passes (#19165). But right now, we can't. Therefore, in virtue of
the principle above, after the desguarer, the optimiser should take no special
pains to preserve linearity (in the type system sense).

In general the optimiser tries hard not to lose sharing, so it probably doesn't
actually make linear things non-linear. We postulate that any program
transformation which breaks linearity would negatively impact performance, and
therefore wouldn't be suitable for an optimiser. An alternative to linting
linearity after each pass is to prove this statement.

There is a useful discussion at https://gitlab.haskell.org/ghc/ghc/-/issues/22123

Note [checkCanEtaExpand]
~~~~~~~~~~~~~~~~~~~~~~~~
The checkCanEtaExpand function is responsible for enforcing invariant I3
from Note [Representation polymorphism invariants] in GHC.Core: in any
partial application `f e_1 .. e_n`, if `f` has no binding, we must be able to
eta expand `f` to match the declared arity of `f`.

Wrinkle 1: eta-expansion and newtypes

  Most of the time, when we have a partial application `f e_1 .. e_n`
  in which `f` is `hasNoBinding`, we eta-expand it up to its arity
  as follows:

    \ x_{n+1} ... x_arity -> f e_1 .. e_n x_{n+1} ... x_arity

  However, we might need to insert casts if some of the arguments
  that `f` takes are under a newtype.
  For example, suppose `f` `hasNoBinding`, has arity 1 and type

    f :: forall r (a :: TYPE r). Identity (a -> a)

  then we eta-expand the nullary application `f` to

    ( \ x -> f x ) |> co

  where

    co :: ( forall r (a :: TYPE r). a -> a ) ~# ( forall r (a :: TYPE r). Identity (a -> a) )

  In this case we would have to perform a representation-polymorphism check on the instantiation
  of `a`.

Wrinkle 2: 'hasNoBinding' and laziness

  It's important that we able to compute 'hasNoBinding' for an 'Id' without ever forcing
  the unfolding of the 'Id'. Otherwise, we could end up with a loop, as outlined in
    Note [Lazily checking Unfoldings] in GHC.IfaceToCore.
-}

instance Applicative LintM where
      pure x = LintM $ \ _ errs -> LResult (JustUB x) errs
                                   --(Just x, errs)
      (<*>) = ap

instance Monad LintM where
  m >>= k  = LintM (\ env errs ->
                       let res = unLintM m env errs in
                         case res of
                           LResult (JustUB r) errs' -> unLintM (k r) env errs'
                           LResult NothingUB errs' -> LResult NothingUB errs'
                    )
                          --  LError errs'-> LError errs')
                      --  let (res, errs') = unLintM m env errs in
                          --  Just r -> unLintM (k r) env errs'
                          --  Nothing -> (Nothing, errs'))

instance MonadFail LintM where
    fail err = failWithL (text err)

getPlatform :: LintM Platform
getPlatform = LintM (\ e errs -> (LResult (JustUB $ le_platform e) errs))

data LintLocInfo
  = RhsOf Id            -- The variable bound
  | OccOf Id            -- Occurrence of id
  | LambdaBodyOf Id     -- The lambda-binder
  | RuleOf Id           -- Rules attached to a binder
  | UnfoldingOf Id      -- Unfolding of a binder
  | BodyOfLetRec [Id]   -- One of the binders
  | CaseAlt CoreAlt     -- Case alternative
  | CasePat CoreAlt     -- The *pattern* of the case alternative
  | CaseTy CoreExpr     -- The type field of a case expression
                        -- with this scrutinee
  | IdTy Id             -- The type field of an Id binder
  | AnExpr CoreExpr     -- Some expression
  | ImportedUnfolding SrcLoc -- Some imported unfolding (ToDo: say which)
  | TopLevelBindings
  | InType Type         -- Inside a type
  | InCo   Coercion     -- Inside a coercion
  | InAxiom (CoAxiom Branched)   -- Inside a CoAxiom

data LintConfig = LintConfig
  { l_diagOpts   :: !DiagOpts         -- ^ Diagnostics opts
  , l_platform   :: !Platform         -- ^ Target platform
  , l_flags      :: !LintFlags        -- ^ Linting the result of this pass
  , l_vars       :: ![Var]            -- ^ 'Id's that should be treated as being in scope
  }

initL :: LintConfig
      -> LintM a            -- ^ Action to run
      -> WarnsAndErrs
initL cfg m
  = case unLintM m env (emptyBag, emptyBag) of
      LResult (JustUB _) errs -> errs
      LResult NothingUB errs@(_, e) | not (isEmptyBag e) -> errs
                                    | otherwise -> pprPanic ("Bug in Lint: a failure occurred " ++
                                                      "without reporting an error message") empty
  where
    (tcvs, ids) = partition isTyCoVar $ l_vars cfg
    env = LE { le_flags = l_flags cfg
             , le_subst = mkEmptySubst (mkInScopeSetList tcvs)
             , le_ids   = mkVarEnv [(id, (id,idType id)) | id <- ids]
             , le_joins = emptyVarSet
             , le_loc = []
             , le_ue_aliases = emptyNameEnv
             , le_platform = l_platform cfg
             , le_diagOpts = l_diagOpts cfg
             }

setReportUnsat :: Bool -> LintM a -> LintM a
-- Switch off lf_report_unsat_syns
setReportUnsat ru thing_inside
  = LintM $ \ env errs ->
    let env' = env { le_flags = (le_flags env) { lf_report_unsat_syns = ru } }
    in unLintM thing_inside env' errs

-- See Note [Checking for representation polymorphism]
noFixedRuntimeRepChecks :: LintM a -> LintM a
noFixedRuntimeRepChecks thing_inside
  = LintM $ \env errs ->
    let env' = env { le_flags = (le_flags env) { lf_check_fixed_rep = False } }
    in unLintM thing_inside env' errs

getLintFlags :: LintM LintFlags
getLintFlags = LintM $ \ env errs -> fromBoxedLResult (Just (le_flags env), errs)

checkL :: Bool -> SDoc -> LintM ()
checkL True  _   = return ()
checkL False msg = failWithL msg

-- like checkL, but relevant to type checking
lintL :: Bool -> SDoc -> LintM ()
lintL = checkL

checkWarnL :: Bool -> SDoc -> LintM ()
checkWarnL True   _  = return ()
checkWarnL False msg = addWarnL msg

failWithL :: SDoc -> LintM a
failWithL msg = LintM $ \ env (warns,errs) ->
                fromBoxedLResult (Nothing, (warns, addMsg True env errs msg))

addErrL :: SDoc -> LintM ()
addErrL msg = LintM $ \ env (warns,errs) ->
              fromBoxedLResult (Just (), (warns, addMsg True env errs msg))

addWarnL :: SDoc -> LintM ()
addWarnL msg = LintM $ \ env (warns,errs) ->
              fromBoxedLResult (Just (), (addMsg False env warns msg, errs))

addMsg :: Bool -> LintEnv ->  Bag SDoc -> SDoc -> Bag SDoc
addMsg is_error env msgs msg
  = assertPpr (notNull loc_msgs) msg $
    msgs `snocBag` mk_msg msg
  where
   loc_msgs :: [(SrcLoc, SDoc)]  -- Innermost first
   loc_msgs = map dumpLoc (le_loc env)

   cxt_doc = vcat [ vcat $ reverse $ map snd loc_msgs
                  , text "Substitution:" <+> ppr (le_subst env) ]
   context | is_error  = cxt_doc
           | otherwise = whenPprDebug cxt_doc
     -- Print voluminous info for Lint errors
     -- but not for warnings

   msg_span = case [ span | (loc,_) <- loc_msgs
                          , let span = srcLocSpan loc
                          , isGoodSrcSpan span ] of
               []    -> noSrcSpan
               (s:_) -> s
   !diag_opts = le_diagOpts env
   mk_msg msg = mkLocMessage (mkMCDiagnostic diag_opts WarningWithoutFlag Nothing) msg_span
                             (msg $$ context)

addLoc :: LintLocInfo -> LintM a -> LintM a
addLoc extra_loc m
  = LintM $ \ env errs ->
    unLintM m (env { le_loc = extra_loc : le_loc env }) errs

inCasePat :: LintM Bool         -- A slight hack; see the unique call site
inCasePat = LintM $ \ env errs -> fromBoxedLResult (Just (is_case_pat env), errs)
  where
    is_case_pat (LE { le_loc = CasePat {} : _ }) = True
    is_case_pat _other                           = False

addInScopeId :: Id -> LintedType -> LintM a -> LintM a
addInScopeId id linted_ty m
  = LintM $ \ env@(LE { le_ids = id_set, le_joins = join_set }) errs ->
    unLintM m (env { le_ids   = extendVarEnv id_set id (id, linted_ty)
                   , le_joins = add_joins join_set }) errs
  where
    add_joins join_set
      | isJoinId id = extendVarSet join_set id -- Overwrite with new arity
      | otherwise   = delVarSet    join_set id -- Remove any existing binding

getInScopeIds :: LintM (VarEnv (Id,LintedType))
getInScopeIds = LintM (\env errs -> fromBoxedLResult (Just (le_ids env), errs))

extendTvSubstL :: TyVar -> Type -> LintM a -> LintM a
extendTvSubstL tv ty m
  = LintM $ \ env errs ->
    unLintM m (env { le_subst = Type.extendTvSubst (le_subst env) tv ty }) errs

updateSubst :: Subst -> LintM a -> LintM a
updateSubst subst' m
  = LintM $ \ env errs -> unLintM m (env { le_subst = subst' }) errs

markAllJoinsBad :: LintM a -> LintM a
markAllJoinsBad m
  = LintM $ \ env errs -> unLintM m (env { le_joins = emptyVarSet }) errs

markAllJoinsBadIf :: Bool -> LintM a -> LintM a
markAllJoinsBadIf True  m = markAllJoinsBad m
markAllJoinsBadIf False m = m

getValidJoins :: LintM IdSet
getValidJoins = LintM (\ env errs -> fromBoxedLResult (Just (le_joins env), errs))

getSubst :: LintM Subst
getSubst = LintM (\ env errs -> fromBoxedLResult (Just (le_subst env), errs))

getUEAliases :: LintM (NameEnv UsageEnv)
getUEAliases = LintM (\ env errs -> fromBoxedLResult (Just (le_ue_aliases env), errs))

getInScope :: LintM InScopeSet
getInScope = LintM (\ env errs -> fromBoxedLResult (Just (getSubstInScope $ le_subst env), errs))

lookupIdInScope :: Id -> LintM (Id, LintedType)
lookupIdInScope id_occ
  = do { in_scope_ids <- getInScopeIds
       ; case lookupVarEnv in_scope_ids id_occ of
           Just (id_bndr, linted_ty)
             -> do { checkL (not (bad_global id_bndr)) global_in_scope
                   ; return (id_bndr, linted_ty) }
           Nothing -> do { checkL (not is_local) local_out_of_scope
                         ; return (id_occ, idType id_occ) } }
                      -- We don't bother to lint the type
                      -- of global (i.e. imported) Ids
  where
    is_local = mustHaveLocalBinding id_occ
    local_out_of_scope = text "Out of scope:" <+> pprBndr LetBind id_occ
    global_in_scope    = hang (text "Occurrence is GlobalId, but binding is LocalId")
                            2 (pprBndr LetBind id_occ)
    bad_global id_bnd = isGlobalId id_occ
                     && isLocalId id_bnd
                     && not (isWiredIn id_occ)
       -- 'bad_global' checks for the case where an /occurrence/ is
       -- a GlobalId, but there is an enclosing binding fora a LocalId.
       -- NB: the in-scope variables are mostly LocalIds, checked by lintIdBndr,
       --     but GHCi adds GlobalIds from the interactive context.  These
       --     are fine; hence the test (isLocalId id == isLocalId v)
       -- NB: when compiling Control.Exception.Base, things like absentError
       --     are defined locally, but appear in expressions as (global)
       --     wired-in Ids after worker/wrapper
       --     So we simply disable the test in this case

lookupJoinId :: Id -> LintM (Maybe JoinArity)
-- Look up an Id which should be a join point, valid here
-- If so, return its arity, if not return Nothing
lookupJoinId id
  = do { join_set <- getValidJoins
       ; case lookupVarSet join_set id of
            Just id' -> return (isJoinId_maybe id')
            Nothing  -> return Nothing }

addAliasUE :: Id -> UsageEnv -> LintM a -> LintM a
addAliasUE id ue thing_inside = LintM $ \ env errs ->
  let new_ue_aliases =
        extendNameEnv (le_ue_aliases env) (getName id) ue
  in
    unLintM thing_inside (env { le_ue_aliases = new_ue_aliases }) errs

varCallSiteUsage :: Id -> LintM UsageEnv
varCallSiteUsage id =
  do m <- getUEAliases
     return $ case lookupNameEnv m (getName id) of
         Nothing    -> singleUsageUE id
         Just id_ue -> id_ue

ensureEqTys :: LintedType -> LintedType -> SDoc -> LintM ()
-- check ty2 is subtype of ty1 (ie, has same structure but usage
-- annotations need only be consistent, not equal)
-- Assumes ty1,ty2 are have already had the substitution applied
ensureEqTys ty1 ty2 msg = lintL (ty1 `eqType` ty2) msg

ensureSubUsage :: Usage -> Mult -> SDoc -> LintM ()
ensureSubUsage Bottom     _              _ = return ()
ensureSubUsage Zero       described_mult err_msg = ensureSubMult ManyTy described_mult err_msg
ensureSubUsage (MUsage m) described_mult err_msg = ensureSubMult m described_mult err_msg

ensureSubMult :: Mult -> Mult -> SDoc -> LintM ()
ensureSubMult actual_mult described_mult err_msg = do
    flags <- getLintFlags
    when (lf_check_linearity flags) $
      unless (deepSubMult actual_mult described_mult) $
        addErrL err_msg
  where
    -- Check for submultiplicity using the following rules:
    -- 1. x*y <= z when x <= z and y <= z.
    --    This rule follows from the fact that x*y = sup{x,y} for any
    --    multiplicities x,y.
    -- 2. x <= y*z when x <= y or x <= z.
    --    This rule is not complete: when x = y*z, we cannot
    --    change y*z <= y*z to y*z <= y or y*z <= z.
    --    However, we eliminate products on the LHS in step 1.
    -- 3. One <= x and x <= Many for any x, as checked by 'submult'.
    -- 4. x <= x.
    -- Otherwise, we fail.
    deepSubMult :: Mult -> Mult -> Bool
    deepSubMult m n
      | Just (m1, m2) <- isMultMul m = deepSubMult m1 n  && deepSubMult m2 n
      | Just (n1, n2) <- isMultMul n = deepSubMult m  n1 || deepSubMult m  n2
      | Submult <- m `submult` n = True
      | otherwise = m `eqType` n

lintRole :: Outputable thing
          => thing     -- where the role appeared
          -> Role      -- expected
          -> Role      -- actual
          -> LintM ()
lintRole co r1 r2
  = lintL (r1 == r2)
          (text "Role incompatibility: expected" <+> ppr r1 <> comma <+>
           text "got" <+> ppr r2 $$
           text "in" <+> ppr co)

{-
************************************************************************
*                                                                      *
\subsection{Error messages}
*                                                                      *
************************************************************************
-}

dumpLoc :: LintLocInfo -> (SrcLoc, SDoc)

dumpLoc (RhsOf v)
  = (getSrcLoc v, text "In the RHS of" <+> pp_binders [v])

dumpLoc (OccOf v)
  = (getSrcLoc v, text "In an occurrence of" <+> pp_binder v)

dumpLoc (LambdaBodyOf b)
  = (getSrcLoc b, text "In the body of lambda with binder" <+> pp_binder b)

dumpLoc (RuleOf b)
  = (getSrcLoc b, text "In a rule attached to" <+> pp_binder b)

dumpLoc (UnfoldingOf b)
  = (getSrcLoc b, text "In the unfolding of" <+> pp_binder b)

dumpLoc (BodyOfLetRec [])
  = (noSrcLoc, text "In body of a letrec with no binders")

dumpLoc (BodyOfLetRec bs@(b:_))
  = ( getSrcLoc b, text "In the body of letrec with binders" <+> pp_binders bs)

dumpLoc (AnExpr e)
  = (noSrcLoc, text "In the expression:" <+> ppr e)

dumpLoc (CaseAlt (Alt con args _))
  = (noSrcLoc, text "In a case alternative:" <+> parens (ppr con <+> pp_binders args))

dumpLoc (CasePat (Alt con args _))
  = (noSrcLoc, text "In the pattern of a case alternative:" <+> parens (ppr con <+> pp_binders args))

dumpLoc (CaseTy scrut)
  = (noSrcLoc, hang (text "In the result-type of a case with scrutinee:")
                  2 (ppr scrut))

dumpLoc (IdTy b)
  = (getSrcLoc b, text "In the type of a binder:" <+> ppr b)

dumpLoc (ImportedUnfolding locn)
  = (locn, text "In an imported unfolding")
dumpLoc TopLevelBindings
  = (noSrcLoc, Outputable.empty)
dumpLoc (InType ty)
  = (noSrcLoc, text "In the type" <+> quotes (ppr ty))
dumpLoc (InCo co)
  = (noSrcLoc, text "In the coercion" <+> quotes (ppr co))
dumpLoc (InAxiom ax)
  = (getSrcLoc ax, hang (text "In the coercion axiom")
                      2 (pprCoAxiom ax))

pp_binders :: [Var] -> SDoc
pp_binders bs = sep (punctuate comma (map pp_binder bs))

pp_binder :: Var -> SDoc
pp_binder b | isId b    = hsep [ppr b, dcolon, ppr (idType b)]
            | otherwise = hsep [ppr b, dcolon, ppr (tyVarKind b)]

------------------------------------------------------
--      Messages for case expressions

mkDefaultArgsMsg :: [Var] -> SDoc
mkDefaultArgsMsg args
  = hang (text "DEFAULT case with binders")
         4 (ppr args)

mkCaseAltMsg :: CoreExpr -> Type -> Type -> SDoc
mkCaseAltMsg e ty1 ty2
  = hang (text "Type of case alternatives not the same as the annotation on case:")
         4 (vcat [ text "Actual type:" <+> ppr ty1,
                   text "Annotation on case:" <+> ppr ty2,
                   text "Alt Rhs:" <+> ppr e ])

mkScrutMsg :: Id -> Type -> Type -> Subst -> SDoc
mkScrutMsg var var_ty scrut_ty subst
  = vcat [text "Result binder in case doesn't match scrutinee:" <+> ppr var,
          text "Result binder type:" <+> ppr var_ty,--(idType var),
          text "Scrutinee type:" <+> ppr scrut_ty,
     hsep [text "Current TCv subst", ppr subst]]

mkNonDefltMsg, mkNonIncreasingAltsMsg :: CoreExpr -> SDoc
mkNonDefltMsg e
  = hang (text "Case expression with DEFAULT not at the beginning") 4 (ppr e)
mkNonIncreasingAltsMsg e
  = hang (text "Case expression with badly-ordered alternatives") 4 (ppr e)

nonExhaustiveAltsMsg :: CoreExpr -> SDoc
nonExhaustiveAltsMsg e
  = hang (text "Case expression with non-exhaustive alternatives") 4 (ppr e)

mkBadConMsg :: TyCon -> DataCon -> SDoc
mkBadConMsg tycon datacon
  = vcat [
        text "In a case alternative, data constructor isn't in scrutinee type:",
        text "Scrutinee type constructor:" <+> ppr tycon,
        text "Data con:" <+> ppr datacon
    ]

mkBadPatMsg :: Type -> Type -> SDoc
mkBadPatMsg con_result_ty scrut_ty
  = vcat [
        text "In a case alternative, pattern result type doesn't match scrutinee type:",
        text "Pattern result type:" <+> ppr con_result_ty,
        text "Scrutinee type:" <+> ppr scrut_ty
    ]

integerScrutinisedMsg :: SDoc
integerScrutinisedMsg
  = text "In a LitAlt, the literal is lifted (probably Integer)"

mkBadAltMsg :: Type -> CoreAlt -> SDoc
mkBadAltMsg scrut_ty alt
  = vcat [ text "Data alternative when scrutinee is not a tycon application",
           text "Scrutinee type:" <+> ppr scrut_ty,
           text "Alternative:" <+> pprCoreAlt alt ]

mkNewTyDataConAltMsg :: Type -> CoreAlt -> SDoc
mkNewTyDataConAltMsg scrut_ty alt
  = vcat [ text "Data alternative for newtype datacon",
           text "Scrutinee type:" <+> ppr scrut_ty,
           text "Alternative:" <+> pprCoreAlt alt ]


------------------------------------------------------
--      Other error messages

mkAppMsg :: Type -> Type -> CoreExpr -> SDoc
mkAppMsg expected_arg_ty actual_arg_ty arg
  = vcat [text "Argument value doesn't match argument type:",
              hang (text "Expected arg type:") 4 (ppr expected_arg_ty),
              hang (text "Actual arg type:") 4 (ppr actual_arg_ty),
              hang (text "Arg:") 4 (ppr arg)]

mkNonFunAppMsg :: Type -> Type -> CoreExpr -> SDoc
mkNonFunAppMsg fun_ty arg_ty arg
  = vcat [text "Non-function type in function position",
              hang (text "Fun type:") 4 (ppr fun_ty),
              hang (text "Arg type:") 4 (ppr arg_ty),
              hang (text "Arg:") 4 (ppr arg)]

mkLetErr :: TyVar -> CoreExpr -> SDoc
mkLetErr bndr rhs
  = vcat [text "Bad `let' binding:",
          hang (text "Variable:")
                 4 (ppr bndr <+> dcolon <+> ppr (varType bndr)),
          hang (text "Rhs:")
                 4 (ppr rhs)]

mkTyAppMsg :: Type -> Type -> SDoc
mkTyAppMsg ty arg_ty
  = vcat [text "Illegal type application:",
              hang (text "Exp type:")
                 4 (ppr ty <+> dcolon <+> ppr (typeKind ty)),
              hang (text "Arg type:")
                 4 (ppr arg_ty <+> dcolon <+> ppr (typeKind arg_ty))]

emptyRec :: CoreExpr -> SDoc
emptyRec e = hang (text "Empty Rec binding:") 2 (ppr e)

mkRhsMsg :: Id -> SDoc -> Type -> SDoc
mkRhsMsg binder what ty
  = vcat
    [hsep [text "The type of this binder doesn't match the type of its" <+> what <> colon,
            ppr binder],
     hsep [text "Binder's type:", ppr (idType binder)],
     hsep [text "Rhs type:", ppr ty]]

badBndrTyMsg :: Id -> SDoc -> SDoc
badBndrTyMsg binder what
  = vcat [ text "The type of this binder is" <+> what <> colon <+> ppr binder
         , text "Binder's type:" <+> ppr (idType binder) ]

mkNonTopExportedMsg :: Id -> SDoc
mkNonTopExportedMsg binder
  = hsep [text "Non-top-level binder is marked as exported:", ppr binder]

mkNonTopExternalNameMsg :: Id -> SDoc
mkNonTopExternalNameMsg binder
  = hsep [text "Non-top-level binder has an external name:", ppr binder]

mkTopNonLitStrMsg :: Id -> SDoc
mkTopNonLitStrMsg binder
  = hsep [text "Top-level Addr# binder has a non-literal rhs:", ppr binder]

mkKindErrMsg :: TyVar -> Type -> SDoc
mkKindErrMsg tyvar arg_ty
  = vcat [text "Kinds don't match in type application:",
          hang (text "Type variable:")
                 4 (ppr tyvar <+> dcolon <+> ppr (tyVarKind tyvar)),
          hang (text "Arg type:")
                 4 (ppr arg_ty <+> dcolon <+> ppr (typeKind arg_ty))]

mkCastErr :: CoreExpr -> Coercion -> Type -> Type -> SDoc
mkCastErr expr = mk_cast_err "expression" "type" (ppr expr)

mkCastTyErr :: Type -> Coercion -> Kind -> Kind -> SDoc
mkCastTyErr ty = mk_cast_err "type" "kind" (ppr ty)

mk_cast_err :: String -- ^ What sort of casted thing this is
                      --   (\"expression\" or \"type\").
            -> String -- ^ What sort of coercion is being used
                      --   (\"type\" or \"kind\").
            -> SDoc   -- ^ The thing being casted.
            -> Coercion -> Type -> Type -> SDoc
mk_cast_err thing_str co_str pp_thing co from_ty thing_ty
  = vcat [from_msg <+> text "of Cast differs from" <+> co_msg
            <+> text "of" <+> enclosed_msg,
          from_msg <> colon <+> ppr from_ty,
          text (capitalise co_str) <+> text "of" <+> enclosed_msg <> colon
            <+> ppr thing_ty,
          text "Actual" <+> enclosed_msg <> colon <+> pp_thing,
          text "Coercion used in cast:" <+> ppr co
         ]
  where
    co_msg, from_msg, enclosed_msg :: SDoc
    co_msg       = text co_str
    from_msg     = text "From-" <> co_msg
    enclosed_msg = text "enclosed" <+> text thing_str

mkBadUnivCoMsg :: LeftOrRight -> Coercion -> SDoc
mkBadUnivCoMsg lr co
  = text "Kind mismatch on the" <+> pprLeftOrRight lr <+>
    text "side of a UnivCo:" <+> ppr co

mkBadProofIrrelMsg :: Type -> Coercion -> SDoc
mkBadProofIrrelMsg ty co
  = hang (text "Found a non-coercion in a proof-irrelevance UnivCo:")
       2 (vcat [ text "type:" <+> ppr ty
               , text "co:" <+> ppr co ])

mkBadTyVarMsg :: Var -> SDoc
mkBadTyVarMsg tv
  = text "Non-tyvar used in TyVarTy:"
      <+> ppr tv <+> dcolon <+> ppr (varType tv)

mkBadJoinBindMsg :: Var -> SDoc
mkBadJoinBindMsg var
  = vcat [ text "Bad join point binding:" <+> ppr var
         , text "Join points can be bound only by a non-top-level let" ]

mkInvalidJoinPointMsg :: Var -> Type -> SDoc
mkInvalidJoinPointMsg var ty
  = hang (text "Join point has invalid type:")
        2 (ppr var <+> dcolon <+> ppr ty)

mkBadJoinArityMsg :: Var -> Int -> Int -> CoreExpr -> SDoc
mkBadJoinArityMsg var ar n rhs
  = vcat [ text "Join point has too few lambdas",
           text "Join var:" <+> ppr var,
           text "Join arity:" <+> ppr ar,
           text "Number of lambdas:" <+> ppr (ar - n),
           text "Rhs = " <+> ppr rhs
           ]

invalidJoinOcc :: Var -> SDoc
invalidJoinOcc var
  = vcat [ text "Invalid occurrence of a join variable:" <+> ppr var
         , text "The binder is either not a join point, or not valid here" ]

mkBadJumpMsg :: Var -> Int -> Int -> SDoc
mkBadJumpMsg var ar nargs
  = vcat [ text "Join point invoked with wrong number of arguments",
           text "Join var:" <+> ppr var,
           text "Join arity:" <+> ppr ar,
           text "Number of arguments:" <+> int nargs ]

mkInconsistentRecMsg :: [Var] -> SDoc
mkInconsistentRecMsg bndrs
  = vcat [ text "Recursive let binders mix values and join points",
           text "Binders:" <+> hsep (map ppr_with_details bndrs) ]
  where
    ppr_with_details bndr = ppr bndr <> ppr (idDetails bndr)

mkJoinBndrOccMismatchMsg :: Var -> JoinArity -> JoinArity -> SDoc
mkJoinBndrOccMismatchMsg bndr join_arity_bndr join_arity_occ
  = vcat [ text "Mismatch in join point arity between binder and occurrence"
         , text "Var:" <+> ppr bndr
         , text "Arity at binding site:" <+> ppr join_arity_bndr
         , text "Arity at occurrence:  " <+> ppr join_arity_occ ]

mkBndrOccTypeMismatchMsg :: Var -> Var -> LintedType -> LintedType -> SDoc
mkBndrOccTypeMismatchMsg bndr var bndr_ty var_ty
  = vcat [ text "Mismatch in type between binder and occurrence"
         , text "Binder:" <+> ppr bndr <+> dcolon <+> ppr bndr_ty
         , text "Occurrence:" <+> ppr var <+> dcolon <+> ppr var_ty
         , text "  Before subst:" <+> ppr (idType var) ]

mkBadJoinPointRuleMsg :: JoinId -> JoinArity -> CoreRule -> SDoc
mkBadJoinPointRuleMsg bndr join_arity rule
  = vcat [ text "Join point has rule with wrong number of arguments"
         , text "Var:" <+> ppr bndr
         , text "Join arity:" <+> ppr join_arity
         , text "Rule:" <+> ppr rule ]

pprLeftOrRight :: LeftOrRight -> SDoc
pprLeftOrRight CLeft  = text "left"
pprLeftOrRight CRight = text "right"

dupVars :: [NonEmpty Var] -> SDoc
dupVars vars
  = hang (text "Duplicate variables brought into scope")
       2 (ppr (map toList vars))

dupExtVars :: [NonEmpty Name] -> SDoc
dupExtVars vars
  = hang (text "Duplicate top-level variables with the same qualified name")
       2 (ppr (map toList vars))

{-
************************************************************************
*                                                                      *
\subsection{Annotation Linting}
*                                                                      *
************************************************************************
-}

-- | This checks whether a pass correctly looks through debug
-- annotations (@SourceNote@). This works a bit different from other
-- consistency checks: We check this by running the given task twice,
-- noting all differences between the results.
lintAnnots :: SDoc -> (ModGuts -> CoreM ModGuts) -> ModGuts -> CoreM ModGuts
lintAnnots pname pass guts = {-# SCC "lintAnnots" #-} do
  -- Run the pass as we normally would
  dflags <- getDynFlags
  logger <- getLogger
  when (gopt Opt_DoAnnotationLinting dflags) $
    liftIO $ Err.showPass logger "Annotation linting - first run"
  -- If appropriate re-run it without debug annotations to make sure
  -- that they made no difference.
  if gopt Opt_DoAnnotationLinting dflags
    then do
      nguts <- pass guts
      liftIO $ Err.showPass logger "Annotation linting - second run"
      nguts' <- withoutAnnots pass guts
      -- Finally compare the resulting bindings
      liftIO $ Err.showPass logger "Annotation linting - comparison"
      let binds = flattenBinds $ mg_binds nguts
          binds' = flattenBinds $ mg_binds nguts'
          (diffs,_) = diffBinds True (mkRnEnv2 emptyInScopeSet) binds binds'
      when (not (null diffs)) $ GHC.Core.Opt.Monad.putMsg $ vcat
        [ lint_banner "warning" pname
        , text "Core changes with annotations:"
        , withPprStyle defaultDumpStyle $ nest 2 $ vcat diffs
        ]
      return nguts
    else
      pass guts

-- | Run the given pass without annotations. This means that we both
-- set the debugLevel setting to 0 in the environment as well as all
-- annotations from incoming modules.
withoutAnnots :: (ModGuts -> CoreM ModGuts) -> ModGuts -> CoreM ModGuts
withoutAnnots pass guts = do
  -- Remove debug flag from environment.
  -- TODO: supply tag here as well ?
  let withoutFlag = mapDynFlagsCoreM $ \(!dflags) -> dflags { debugLevel = 0 }
  -- Nuke existing ticks in module.
  -- TODO: Ticks in unfoldings. Maybe change unfolding so it removes
  -- them in absence of debugLevel > 0.
  let nukeTicks = stripTicksE (not . tickishIsCode)
      nukeAnnotsBind :: CoreBind -> CoreBind
      nukeAnnotsBind bind = case bind of
        Rec bs     -> Rec $ map (\(b,e) -> (b, nukeTicks e)) bs
        NonRec b e -> NonRec b $ nukeTicks e
      nukeAnnotsMod mg@ModGuts{mg_binds=binds}
        = mg{mg_binds = map nukeAnnotsBind binds}
  -- Perform pass with all changes applied. Drop the simple count so it doesn't
  -- effect the total also
  dropSimplCount $ withoutFlag $ pass (nukeAnnotsMod guts)