1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
|
{-# LANGUAGE CPP #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-- | Handy functions for creating much Core syntax
module GHC.Core.Make (
-- * Constructing normal syntax
mkCoreLet, mkCoreLets,
mkCoreApp, mkCoreApps, mkCoreConApps,
mkCoreLams, mkWildCase, mkIfThenElse,
mkWildValBinder, mkWildEvBinder,
mkSingleAltCase,
sortQuantVars, castBottomExpr,
-- * Constructing boxed literals
mkWordExpr, mkWordExprWord,
mkIntExpr, mkIntExprInt, mkUncheckedIntExpr,
mkIntegerExpr, mkNaturalExpr,
mkFloatExpr, mkDoubleExpr,
mkCharExpr, mkStringExpr, mkStringExprFS, mkStringExprFSWith,
-- * Floats
FloatBind(..), wrapFloat, wrapFloats, floatBindings,
-- * Constructing small tuples
mkCoreVarTupTy, mkCoreTup, mkCoreUbxTup,
mkCoreTupBoxity, unitExpr,
-- * Constructing big tuples
mkBigCoreVarTup, mkBigCoreVarTup1,
mkBigCoreVarTupTy, mkBigCoreTupTy,
mkBigCoreTup,
-- * Deconstructing small tuples
mkSmallTupleSelector, mkSmallTupleCase,
-- * Deconstructing big tuples
mkTupleSelector, mkTupleSelector1, mkTupleCase,
-- * Constructing list expressions
mkNilExpr, mkConsExpr, mkListExpr,
mkFoldrExpr, mkBuildExpr,
-- * Constructing Maybe expressions
mkNothingExpr, mkJustExpr,
-- * Error Ids
mkRuntimeErrorApp, mkImpossibleExpr, mkAbsentErrorApp, errorIds,
rEC_CON_ERROR_ID, rUNTIME_ERROR_ID,
nON_EXHAUSTIVE_GUARDS_ERROR_ID, nO_METHOD_BINDING_ERROR_ID,
pAT_ERROR_ID, rEC_SEL_ERROR_ID, aBSENT_ERROR_ID,
tYPE_ERROR_ID, aBSENT_SUM_FIELD_ERROR_ID
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Types.Id
import GHC.Types.Var ( EvVar, setTyVarUnique )
import GHC.Core
import GHC.Core.Utils ( exprType, needsCaseBinding, mkSingleAltCase, bindNonRec )
import GHC.Types.Literal
import GHC.Driver.Types
import GHC.Platform
import GHC.Builtin.Types
import GHC.Builtin.Names
import GHC.Hs.Utils ( mkChunkified, chunkify )
import GHC.Core.Type
import GHC.Core.Coercion ( isCoVar )
import GHC.Core.DataCon ( DataCon, dataConWorkId )
import GHC.Core.Multiplicity
import GHC.Builtin.Types.Prim
import GHC.Types.Id.Info
import GHC.Types.Demand
import GHC.Types.Cpr
import GHC.Types.Name hiding ( varName )
import GHC.Utils.Outputable
import GHC.Data.FastString
import GHC.Types.Unique.Supply
import GHC.Types.Basic
import GHC.Utils.Misc
import Data.List
import Data.Char ( ord )
infixl 4 `mkCoreApp`, `mkCoreApps`
{-
************************************************************************
* *
\subsection{Basic GHC.Core construction}
* *
************************************************************************
-}
sortQuantVars :: [Var] -> [Var]
-- Sort the variables, putting type and covars first, in scoped order,
-- and then other Ids
-- It is a deterministic sort, meaining it doesn't look at the values of
-- Uniques. For explanation why it's important See Note [Unique Determinism]
-- in GHC.Types.Unique.
sortQuantVars vs = sorted_tcvs ++ ids
where
(tcvs, ids) = partition (isTyVar <||> isCoVar) vs
sorted_tcvs = scopedSort tcvs
-- | Bind a binding group over an expression, using a @let@ or @case@ as
-- appropriate (see "GHC.Core#let_app_invariant")
mkCoreLet :: CoreBind -> CoreExpr -> CoreExpr
mkCoreLet (NonRec bndr rhs) body -- See Note [Core let/app invariant]
= bindNonRec bndr rhs body
mkCoreLet bind body
= Let bind body
-- | Create a lambda where the given expression has a number of variables
-- bound over it. The leftmost binder is that bound by the outermost
-- lambda in the result
mkCoreLams :: [CoreBndr] -> CoreExpr -> CoreExpr
mkCoreLams = mkLams
-- | Bind a list of binding groups over an expression. The leftmost binding
-- group becomes the outermost group in the resulting expression
mkCoreLets :: [CoreBind] -> CoreExpr -> CoreExpr
mkCoreLets binds body = foldr mkCoreLet body binds
-- | Construct an expression which represents the application of a number of
-- expressions to that of a data constructor expression. The leftmost expression
-- in the list is applied first
mkCoreConApps :: DataCon -> [CoreExpr] -> CoreExpr
mkCoreConApps con args = mkCoreApps (Var (dataConWorkId con)) args
-- | Construct an expression which represents the application of a number of
-- expressions to another. The leftmost expression in the list is applied first
-- Respects the let/app invariant by building a case expression where necessary
-- See Note [Core let/app invariant] in "GHC.Core"
mkCoreApps :: CoreExpr -> [CoreExpr] -> CoreExpr
mkCoreApps fun args
= fst $
foldl' (mkCoreAppTyped doc_string) (fun, fun_ty) args
where
doc_string = ppr fun_ty $$ ppr fun $$ ppr args
fun_ty = exprType fun
-- | Construct an expression which represents the application of one expression
-- to the other
-- Respects the let/app invariant by building a case expression where necessary
-- See Note [Core let/app invariant] in "GHC.Core"
mkCoreApp :: SDoc -> CoreExpr -> CoreExpr -> CoreExpr
mkCoreApp s fun arg
= fst $ mkCoreAppTyped s (fun, exprType fun) arg
-- | Construct an expression which represents the application of one expression
-- paired with its type to an argument. The result is paired with its type. This
-- function is not exported and used in the definition of 'mkCoreApp' and
-- 'mkCoreApps'.
-- Respects the let/app invariant by building a case expression where necessary
-- See Note [Core let/app invariant] in "GHC.Core"
mkCoreAppTyped :: SDoc -> (CoreExpr, Type) -> CoreExpr -> (CoreExpr, Type)
mkCoreAppTyped _ (fun, fun_ty) (Type ty)
= (App fun (Type ty), piResultTy fun_ty ty)
mkCoreAppTyped _ (fun, fun_ty) (Coercion co)
= (App fun (Coercion co), funResultTy fun_ty)
mkCoreAppTyped d (fun, fun_ty) arg
= ASSERT2( isFunTy fun_ty, ppr fun $$ ppr arg $$ d )
(mkValApp fun arg (Scaled mult arg_ty) res_ty, res_ty)
where
(mult, arg_ty, res_ty) = splitFunTy fun_ty
mkValApp :: CoreExpr -> CoreExpr -> Scaled Type -> Type -> CoreExpr
-- Build an application (e1 e2),
-- or a strict binding (case e2 of x -> e1 x)
-- using the latter when necessary to respect the let/app invariant
-- See Note [Core let/app invariant] in GHC.Core
mkValApp fun arg (Scaled w arg_ty) res_ty
| not (needsCaseBinding arg_ty arg)
= App fun arg -- The vastly common case
| otherwise
= mkStrictApp fun arg (Scaled w arg_ty) res_ty
{- *********************************************************************
* *
Building case expressions
* *
********************************************************************* -}
mkWildEvBinder :: PredType -> EvVar
mkWildEvBinder pred = mkWildValBinder Many pred
-- | Make a /wildcard binder/. This is typically used when you need a binder
-- that you expect to use only at a *binding* site. Do not use it at
-- occurrence sites because it has a single, fixed unique, and it's very
-- easy to get into difficulties with shadowing. That's why it is used so little.
-- See Note [WildCard binders] in "GHC.Core.Opt.Simplify.Env"
mkWildValBinder :: Mult -> Type -> Id
mkWildValBinder w ty = mkLocalIdOrCoVar wildCardName w ty
-- "OrCoVar" since a coercion can be a scrutinee with -fdefer-type-errors
-- (e.g. see test T15695). Ticket #17291 covers fixing this problem.
mkWildCase :: CoreExpr -> Scaled Type -> Type -> [CoreAlt] -> CoreExpr
-- Make a case expression whose case binder is unused
-- The alts and res_ty should not have any occurrences of WildId
mkWildCase scrut (Scaled w scrut_ty) res_ty alts
= Case scrut (mkWildValBinder w scrut_ty) res_ty alts
mkStrictApp :: CoreExpr -> CoreExpr -> Scaled Type -> Type -> CoreExpr
-- Build a strict application (case e2 of x -> e1 x)
mkStrictApp fun arg (Scaled w arg_ty) res_ty
= Case arg arg_id res_ty [(DEFAULT,[],App fun (Var arg_id))]
-- mkDefaultCase looks attractive here, and would be sound.
-- But it uses (exprType alt_rhs) to compute the result type,
-- whereas here we already know that the result type is res_ty
where
arg_id = mkWildValBinder w arg_ty
-- Lots of shadowing, but it doesn't matter,
-- because 'fun' and 'res_ty' should not have a free wild-id
--
-- This is Dangerous. But this is the only place we play this
-- game, mkStrictApp returns an expression that does not have
-- a free wild-id. So the only way 'fun' could get a free wild-id
-- would be if you take apart this case expression (or some other
-- expression that uses mkWildValBinder, of which there are not
-- many), and pass a fragment of it as the fun part of a 'mkStrictApp'.
mkIfThenElse :: CoreExpr -> CoreExpr -> CoreExpr -> CoreExpr
mkIfThenElse guard then_expr else_expr
-- Not going to be refining, so okay to take the type of the "then" clause
= mkWildCase guard (linear boolTy) (exprType then_expr)
[ (DataAlt falseDataCon, [], else_expr), -- Increasing order of tag!
(DataAlt trueDataCon, [], then_expr) ]
castBottomExpr :: CoreExpr -> Type -> CoreExpr
-- (castBottomExpr e ty), assuming that 'e' diverges,
-- return an expression of type 'ty'
-- See Note [Empty case alternatives] in GHC.Core
castBottomExpr e res_ty
| e_ty `eqType` res_ty = e
| otherwise = Case e (mkWildValBinder One e_ty) res_ty []
where
e_ty = exprType e
{-
************************************************************************
* *
\subsection{Making literals}
* *
************************************************************************
-}
-- | Create a 'CoreExpr' which will evaluate to the given @Int@
mkIntExpr :: Platform -> Integer -> CoreExpr -- Result = I# i :: Int
mkIntExpr platform i = mkCoreConApps intDataCon [mkIntLit platform i]
-- | Create a 'CoreExpr' which will evaluate to the given @Int@. Don't check
-- that the number is in the range of the target platform @Int@
mkUncheckedIntExpr :: Integer -> CoreExpr -- Result = I# i :: Int
mkUncheckedIntExpr i = mkCoreConApps intDataCon [Lit (mkLitIntUnchecked i)]
-- | Create a 'CoreExpr' which will evaluate to the given @Int@
mkIntExprInt :: Platform -> Int -> CoreExpr -- Result = I# i :: Int
mkIntExprInt platform i = mkCoreConApps intDataCon [mkIntLitInt platform i]
-- | Create a 'CoreExpr' which will evaluate to the a @Word@ with the given value
mkWordExpr :: Platform -> Integer -> CoreExpr
mkWordExpr platform w = mkCoreConApps wordDataCon [mkWordLit platform w]
-- | Create a 'CoreExpr' which will evaluate to the given @Word@
mkWordExprWord :: Platform -> Word -> CoreExpr
mkWordExprWord platform w = mkCoreConApps wordDataCon [mkWordLitWord platform w]
-- | Create a 'CoreExpr' which will evaluate to the given @Integer@
mkIntegerExpr :: Integer -> CoreExpr -- Result :: Integer
mkIntegerExpr i = Lit (mkLitInteger i)
-- | Create a 'CoreExpr' which will evaluate to the given @Natural@
mkNaturalExpr :: Integer -> CoreExpr
mkNaturalExpr i = Lit (mkLitNatural i)
-- | Create a 'CoreExpr' which will evaluate to the given @Float@
mkFloatExpr :: Float -> CoreExpr
mkFloatExpr f = mkCoreConApps floatDataCon [mkFloatLitFloat f]
-- | Create a 'CoreExpr' which will evaluate to the given @Double@
mkDoubleExpr :: Double -> CoreExpr
mkDoubleExpr d = mkCoreConApps doubleDataCon [mkDoubleLitDouble d]
-- | Create a 'CoreExpr' which will evaluate to the given @Char@
mkCharExpr :: Char -> CoreExpr -- Result = C# c :: Int
mkCharExpr c = mkCoreConApps charDataCon [mkCharLit c]
-- | Create a 'CoreExpr' which will evaluate to the given @String@
mkStringExpr :: MonadThings m => String -> m CoreExpr -- Result :: String
-- | Create a 'CoreExpr' which will evaluate to a string morally equivalent to the given @FastString@
mkStringExprFS :: MonadThings m => FastString -> m CoreExpr -- Result :: String
mkStringExpr str = mkStringExprFS (mkFastString str)
mkStringExprFS = mkStringExprFSWith lookupId
mkStringExprFSWith :: Monad m => (Name -> m Id) -> FastString -> m CoreExpr
mkStringExprFSWith lookupM str
| nullFS str
= return (mkNilExpr charTy)
| all safeChar chars
= do unpack_id <- lookupM unpackCStringName
return (App (Var unpack_id) lit)
| otherwise
= do unpack_utf8_id <- lookupM unpackCStringUtf8Name
return (App (Var unpack_utf8_id) lit)
where
chars = unpackFS str
safeChar c = ord c >= 1 && ord c <= 0x7F
lit = Lit (LitString (bytesFS str))
{-
************************************************************************
* *
\subsection{Tuple constructors}
* *
************************************************************************
-}
{-
Creating tuples and their types for Core expressions
@mkBigCoreVarTup@ builds a tuple; the inverse to @mkTupleSelector@.
* If it has only one element, it is the identity function.
* If there are more elements than a big tuple can have, it nests
the tuples.
Note [Flattening one-tuples]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This family of functions creates a tuple of variables/expressions/types.
mkCoreTup [e1,e2,e3] = (e1,e2,e3)
What if there is just one variable/expression/type in the argument?
We could do one of two things:
* Flatten it out, so that
mkCoreTup [e1] = e1
* Build a one-tuple (see Note [One-tuples] in GHC.Builtin.Types)
mkCoreTup1 [e1] = Solo e1
We use a suffix "1" to indicate this.
Usually we want the former, but occasionally the latter.
NB: The logic in tupleDataCon knows about () and Solo and (,), etc.
Note [Don't flatten tuples from HsSyn]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we get an explicit 1-tuple from HsSyn somehow (likely: Template Haskell),
we should treat it really as a 1-tuple, without flattening. Note that a
1-tuple and a flattened value have different performance and laziness
characteristics, so should just do what we're asked.
This arose from discussions in #16881.
One-tuples that arise internally depend on the circumstance; often flattening
is a good idea. Decisions are made on a case-by-case basis.
-}
-- | Build the type of a small tuple that holds the specified variables
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkCoreVarTupTy :: [Id] -> Type
mkCoreVarTupTy ids = mkBoxedTupleTy (map idType ids)
-- | Build a small tuple holding the specified expressions
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkCoreTup :: [CoreExpr] -> CoreExpr
mkCoreTup [c] = c
mkCoreTup cs = mkCoreTup1 cs -- non-1-tuples are uniform
-- | Build a small tuple holding the specified expressions
-- One-tuples are *not* flattened; see Note [Flattening one-tuples]
-- See also Note [Don't flatten tuples from HsSyn]
mkCoreTup1 :: [CoreExpr] -> CoreExpr
mkCoreTup1 cs = mkCoreConApps (tupleDataCon Boxed (length cs))
(map (Type . exprType) cs ++ cs)
-- | Build a small unboxed tuple holding the specified expressions,
-- with the given types. The types must be the types of the expressions.
-- Do not include the RuntimeRep specifiers; this function calculates them
-- for you.
-- Does /not/ flatten one-tuples; see Note [Flattening one-tuples]
mkCoreUbxTup :: [Type] -> [CoreExpr] -> CoreExpr
mkCoreUbxTup tys exps
= ASSERT( tys `equalLength` exps)
mkCoreConApps (tupleDataCon Unboxed (length tys))
(map (Type . getRuntimeRep) tys ++ map Type tys ++ exps)
-- | Make a core tuple of the given boxity; don't flatten 1-tuples
mkCoreTupBoxity :: Boxity -> [CoreExpr] -> CoreExpr
mkCoreTupBoxity Boxed exps = mkCoreTup1 exps
mkCoreTupBoxity Unboxed exps = mkCoreUbxTup (map exprType exps) exps
-- | Build a big tuple holding the specified variables
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkBigCoreVarTup :: [Id] -> CoreExpr
mkBigCoreVarTup ids = mkBigCoreTup (map Var ids)
mkBigCoreVarTup1 :: [Id] -> CoreExpr
-- Same as mkBigCoreVarTup, but one-tuples are NOT flattened
-- see Note [Flattening one-tuples]
mkBigCoreVarTup1 [id] = mkCoreConApps (tupleDataCon Boxed 1)
[Type (idType id), Var id]
mkBigCoreVarTup1 ids = mkBigCoreTup (map Var ids)
-- | Build the type of a big tuple that holds the specified variables
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkBigCoreVarTupTy :: [Id] -> Type
mkBigCoreVarTupTy ids = mkBigCoreTupTy (map idType ids)
-- | Build a big tuple holding the specified expressions
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkBigCoreTup :: [CoreExpr] -> CoreExpr
mkBigCoreTup = mkChunkified mkCoreTup
-- | Build the type of a big tuple that holds the specified type of thing
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkBigCoreTupTy :: [Type] -> Type
mkBigCoreTupTy = mkChunkified mkBoxedTupleTy
-- | The unit expression
unitExpr :: CoreExpr
unitExpr = Var unitDataConId
{-
************************************************************************
* *
\subsection{Tuple destructors}
* *
************************************************************************
-}
-- | Builds a selector which scrutises the given
-- expression and extracts the one name from the list given.
-- If you want the no-shadowing rule to apply, the caller
-- is responsible for making sure that none of these names
-- are in scope.
--
-- If there is just one 'Id' in the tuple, then the selector is
-- just the identity.
--
-- If necessary, we pattern match on a \"big\" tuple.
--
-- A tuple selector is not linear in its argument. Consequently, the case
-- expression built by `mkTupleSelector` must consume its scrutinee 'Many'
-- times. And all the argument variables must have multiplicity 'Many'.
mkTupleSelector, mkTupleSelector1
:: [Id] -- ^ The 'Id's to pattern match the tuple against
-> Id -- ^ The 'Id' to select
-> Id -- ^ A variable of the same type as the scrutinee
-> CoreExpr -- ^ Scrutinee
-> CoreExpr -- ^ Selector expression
-- mkTupleSelector [a,b,c,d] b v e
-- = case e of v {
-- (p,q) -> case p of p {
-- (a,b) -> b }}
-- We use 'tpl' vars for the p,q, since shadowing does not matter.
--
-- In fact, it's more convenient to generate it innermost first, getting
--
-- case (case e of v
-- (p,q) -> p) of p
-- (a,b) -> b
mkTupleSelector vars the_var scrut_var scrut
= mk_tup_sel (chunkify vars) the_var
where
mk_tup_sel [vars] the_var = mkSmallTupleSelector vars the_var scrut_var scrut
mk_tup_sel vars_s the_var = mkSmallTupleSelector group the_var tpl_v $
mk_tup_sel (chunkify tpl_vs) tpl_v
where
tpl_tys = [mkBoxedTupleTy (map idType gp) | gp <- vars_s]
tpl_vs = mkTemplateLocals tpl_tys
[(tpl_v, group)] = [(tpl,gp) | (tpl,gp) <- zipEqual "mkTupleSelector" tpl_vs vars_s,
the_var `elem` gp ]
-- ^ 'mkTupleSelector1' is like 'mkTupleSelector'
-- but one-tuples are NOT flattened (see Note [Flattening one-tuples])
mkTupleSelector1 vars the_var scrut_var scrut
| [_] <- vars
= mkSmallTupleSelector1 vars the_var scrut_var scrut
| otherwise
= mkTupleSelector vars the_var scrut_var scrut
-- | Like 'mkTupleSelector' but for tuples that are guaranteed
-- never to be \"big\".
--
-- > mkSmallTupleSelector [x] x v e = [| e |]
-- > mkSmallTupleSelector [x,y,z] x v e = [| case e of v { (x,y,z) -> x } |]
mkSmallTupleSelector, mkSmallTupleSelector1
:: [Id] -- The tuple args
-> Id -- The selected one
-> Id -- A variable of the same type as the scrutinee
-> CoreExpr -- Scrutinee
-> CoreExpr
mkSmallTupleSelector [var] should_be_the_same_var _ scrut
= ASSERT(var == should_be_the_same_var)
scrut -- Special case for 1-tuples
mkSmallTupleSelector vars the_var scrut_var scrut
= mkSmallTupleSelector1 vars the_var scrut_var scrut
-- ^ 'mkSmallTupleSelector1' is like 'mkSmallTupleSelector'
-- but one-tuples are NOT flattened (see Note [Flattening one-tuples])
mkSmallTupleSelector1 vars the_var scrut_var scrut
= ASSERT( notNull vars )
Case scrut scrut_var (idType the_var)
[(DataAlt (tupleDataCon Boxed (length vars)), vars, Var the_var)]
-- | A generalization of 'mkTupleSelector', allowing the body
-- of the case to be an arbitrary expression.
--
-- To avoid shadowing, we use uniques to invent new variables.
--
-- If necessary we pattern match on a \"big\" tuple.
mkTupleCase :: UniqSupply -- ^ For inventing names of intermediate variables
-> [Id] -- ^ The tuple identifiers to pattern match on
-> CoreExpr -- ^ Body of the case
-> Id -- ^ A variable of the same type as the scrutinee
-> CoreExpr -- ^ Scrutinee
-> CoreExpr
-- ToDo: eliminate cases where none of the variables are needed.
--
-- mkTupleCase uniqs [a,b,c,d] body v e
-- = case e of v { (p,q) ->
-- case p of p { (a,b) ->
-- case q of q { (c,d) ->
-- body }}}
mkTupleCase uniqs vars body scrut_var scrut
= mk_tuple_case uniqs (chunkify vars) body
where
-- This is the case where don't need any nesting
mk_tuple_case _ [vars] body
= mkSmallTupleCase vars body scrut_var scrut
-- This is the case where we must make nest tuples at least once
mk_tuple_case us vars_s body
= let (us', vars', body') = foldr one_tuple_case (us, [], body) vars_s
in mk_tuple_case us' (chunkify vars') body'
one_tuple_case chunk_vars (us, vs, body)
= let (uniq, us') = takeUniqFromSupply us
scrut_var = mkSysLocal (fsLit "ds") uniq Many
(mkBoxedTupleTy (map idType chunk_vars))
body' = mkSmallTupleCase chunk_vars body scrut_var (Var scrut_var)
in (us', scrut_var:vs, body')
-- | As 'mkTupleCase', but for a tuple that is small enough to be guaranteed
-- not to need nesting.
mkSmallTupleCase
:: [Id] -- ^ The tuple args
-> CoreExpr -- ^ Body of the case
-> Id -- ^ A variable of the same type as the scrutinee
-> CoreExpr -- ^ Scrutinee
-> CoreExpr
mkSmallTupleCase [var] body _scrut_var scrut
= bindNonRec var scrut body
mkSmallTupleCase vars body scrut_var scrut
-- One branch no refinement?
= Case scrut scrut_var (exprType body)
[(DataAlt (tupleDataCon Boxed (length vars)), vars, body)]
{-
************************************************************************
* *
Floats
* *
************************************************************************
-}
data FloatBind
= FloatLet CoreBind
| FloatCase CoreExpr Id AltCon [Var]
-- case e of y { C ys -> ... }
-- See Note [Floating single-alternative cases] in GHC.Core.Opt.SetLevels
instance Outputable FloatBind where
ppr (FloatLet b) = text "LET" <+> ppr b
ppr (FloatCase e b c bs) = hang (text "CASE" <+> ppr e <+> ptext (sLit "of") <+> ppr b)
2 (ppr c <+> ppr bs)
wrapFloat :: FloatBind -> CoreExpr -> CoreExpr
wrapFloat (FloatLet defns) body = Let defns body
wrapFloat (FloatCase e b con bs) body = mkSingleAltCase e b con bs body
-- | Applies the floats from right to left. That is @wrapFloats [b1, b2, …, bn]
-- u = let b1 in let b2 in … in let bn in u@
wrapFloats :: [FloatBind] -> CoreExpr -> CoreExpr
wrapFloats floats expr = foldr wrapFloat expr floats
bindBindings :: CoreBind -> [Var]
bindBindings (NonRec b _) = [b]
bindBindings (Rec bnds) = map fst bnds
floatBindings :: FloatBind -> [Var]
floatBindings (FloatLet bnd) = bindBindings bnd
floatBindings (FloatCase _ b _ bs) = b:bs
{-
************************************************************************
* *
\subsection{Common list manipulation expressions}
* *
************************************************************************
Call the constructor Ids when building explicit lists, so that they
interact well with rules.
-}
-- | Makes a list @[]@ for lists of the specified type
mkNilExpr :: Type -> CoreExpr
mkNilExpr ty = mkCoreConApps nilDataCon [Type ty]
-- | Makes a list @(:)@ for lists of the specified type
mkConsExpr :: Type -> CoreExpr -> CoreExpr -> CoreExpr
mkConsExpr ty hd tl = mkCoreConApps consDataCon [Type ty, hd, tl]
-- | Make a list containing the given expressions, where the list has the given type
mkListExpr :: Type -> [CoreExpr] -> CoreExpr
mkListExpr ty xs = foldr (mkConsExpr ty) (mkNilExpr ty) xs
-- | Make a fully applied 'foldr' expression
mkFoldrExpr :: MonadThings m
=> Type -- ^ Element type of the list
-> Type -- ^ Fold result type
-> CoreExpr -- ^ "Cons" function expression for the fold
-> CoreExpr -- ^ "Nil" expression for the fold
-> CoreExpr -- ^ List expression being folded acress
-> m CoreExpr
mkFoldrExpr elt_ty result_ty c n list = do
foldr_id <- lookupId foldrName
return (Var foldr_id `App` Type elt_ty
`App` Type result_ty
`App` c
`App` n
`App` list)
-- | Make a 'build' expression applied to a locally-bound worker function
mkBuildExpr :: (MonadFail m, MonadThings m, MonadUnique m)
=> Type -- ^ Type of list elements to be built
-> ((Id, Type) -> (Id, Type) -> m CoreExpr) -- ^ Function that, given information about the 'Id's
-- of the binders for the build worker function, returns
-- the body of that worker
-> m CoreExpr
mkBuildExpr elt_ty mk_build_inside = do
n_tyvar <- newTyVar alphaTyVar
let n_ty = mkTyVarTy n_tyvar
c_ty = mkVisFunTysMany [elt_ty, n_ty] n_ty
[c, n] <- sequence [mkSysLocalM (fsLit "c") Many c_ty, mkSysLocalM (fsLit "n") Many n_ty]
build_inside <- mk_build_inside (c, c_ty) (n, n_ty)
build_id <- lookupId buildName
return $ Var build_id `App` Type elt_ty `App` mkLams [n_tyvar, c, n] build_inside
where
newTyVar tyvar_tmpl = do
uniq <- getUniqueM
return (setTyVarUnique tyvar_tmpl uniq)
{-
************************************************************************
* *
Manipulating Maybe data type
* *
************************************************************************
-}
-- | Makes a Nothing for the specified type
mkNothingExpr :: Type -> CoreExpr
mkNothingExpr ty = mkConApp nothingDataCon [Type ty]
-- | Makes a Just from a value of the specified type
mkJustExpr :: Type -> CoreExpr -> CoreExpr
mkJustExpr ty val = mkConApp justDataCon [Type ty, val]
{-
************************************************************************
* *
Error expressions
* *
************************************************************************
-}
mkRuntimeErrorApp
:: Id -- Should be of type (forall a. Addr# -> a)
-- where Addr# points to a UTF8 encoded string
-> Type -- The type to instantiate 'a'
-> String -- The string to print
-> CoreExpr
mkRuntimeErrorApp err_id res_ty err_msg
= mkApps (Var err_id) [ Type (getRuntimeRep res_ty)
, Type res_ty, err_string ]
where
err_string = Lit (mkLitString err_msg)
mkImpossibleExpr :: Type -> CoreExpr
mkImpossibleExpr res_ty
= mkRuntimeErrorApp rUNTIME_ERROR_ID res_ty "Impossible case alternative"
{-
************************************************************************
* *
Error Ids
* *
************************************************************************
GHC randomly injects these into the code.
@patError@ is just a version of @error@ for pattern-matching
failures. It knows various ``codes'' which expand to longer
strings---this saves space!
@absentErr@ is a thing we put in for ``absent'' arguments. They jolly
well shouldn't be yanked on, but if one is, then you will get a
friendly message from @absentErr@ (rather than a totally random
crash).
@parError@ is a special version of @error@ which the compiler does
not know to be a bottoming Id. It is used in the @_par_@ and @_seq_@
templates, but we don't ever expect to generate code for it.
-}
errorIds :: [Id]
errorIds
= [ rUNTIME_ERROR_ID,
nON_EXHAUSTIVE_GUARDS_ERROR_ID,
nO_METHOD_BINDING_ERROR_ID,
pAT_ERROR_ID,
rEC_CON_ERROR_ID,
rEC_SEL_ERROR_ID,
aBSENT_ERROR_ID,
aBSENT_SUM_FIELD_ERROR_ID,
tYPE_ERROR_ID, -- Used with Opt_DeferTypeErrors, see #10284
rAISE_OVERFLOW_ID,
rAISE_UNDERFLOW_ID,
rAISE_DIVZERO_ID
]
recSelErrorName, runtimeErrorName, absentErrorName :: Name
recConErrorName, patErrorName :: Name
nonExhaustiveGuardsErrorName, noMethodBindingErrorName :: Name
typeErrorName :: Name
absentSumFieldErrorName :: Name
raiseOverflowName, raiseUnderflowName, raiseDivZeroName :: Name
recSelErrorName = err_nm "recSelError" recSelErrorIdKey rEC_SEL_ERROR_ID
absentErrorName = err_nm "absentError" absentErrorIdKey aBSENT_ERROR_ID
runtimeErrorName = err_nm "runtimeError" runtimeErrorIdKey rUNTIME_ERROR_ID
recConErrorName = err_nm "recConError" recConErrorIdKey rEC_CON_ERROR_ID
patErrorName = err_nm "patError" patErrorIdKey pAT_ERROR_ID
typeErrorName = err_nm "typeError" typeErrorIdKey tYPE_ERROR_ID
noMethodBindingErrorName = err_nm "noMethodBindingError"
noMethodBindingErrorIdKey nO_METHOD_BINDING_ERROR_ID
nonExhaustiveGuardsErrorName = err_nm "nonExhaustiveGuardsError"
nonExhaustiveGuardsErrorIdKey nON_EXHAUSTIVE_GUARDS_ERROR_ID
err_nm :: String -> Unique -> Id -> Name
err_nm str uniq id = mkWiredInIdName cONTROL_EXCEPTION_BASE (fsLit str) uniq id
rEC_SEL_ERROR_ID, rUNTIME_ERROR_ID, rEC_CON_ERROR_ID :: Id
pAT_ERROR_ID, nO_METHOD_BINDING_ERROR_ID, nON_EXHAUSTIVE_GUARDS_ERROR_ID :: Id
tYPE_ERROR_ID, aBSENT_ERROR_ID, aBSENT_SUM_FIELD_ERROR_ID :: Id
rAISE_OVERFLOW_ID, rAISE_UNDERFLOW_ID, rAISE_DIVZERO_ID :: Id
rEC_SEL_ERROR_ID = mkRuntimeErrorId recSelErrorName
rUNTIME_ERROR_ID = mkRuntimeErrorId runtimeErrorName
rEC_CON_ERROR_ID = mkRuntimeErrorId recConErrorName
pAT_ERROR_ID = mkRuntimeErrorId patErrorName
nO_METHOD_BINDING_ERROR_ID = mkRuntimeErrorId noMethodBindingErrorName
nON_EXHAUSTIVE_GUARDS_ERROR_ID = mkRuntimeErrorId nonExhaustiveGuardsErrorName
tYPE_ERROR_ID = mkRuntimeErrorId typeErrorName
-- Note [aBSENT_SUM_FIELD_ERROR_ID]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- Unboxed sums are transformed into unboxed tuples in GHC.Stg.Unarise.mkUbxSum
-- and fields that can't be reached are filled with rubbish values. It's easy to
-- come up with rubbish literal values: we use 0 (ints/words) and 0.0
-- (floats/doubles). Coming up with a rubbish pointer value is more delicate:
--
-- 1. it needs to be a valid closure pointer for the GC (not a NULL pointer)
--
-- 2. it is never used in Core, only in STG; and even then only for filling a
-- GC-ptr slot in an unboxed sum (see GHC.Stg.Unarise.ubxSumRubbishArg).
-- So all we need is a pointer, and its levity doesn't matter. Hence we
-- can safely give it the (lifted) type:
--
-- absentSumFieldError :: forall a. a
--
-- despite the fact that Unarise might instantiate it at non-lifted
-- types.
--
-- 3. it can't take arguments because it's used in unarise and applying an
-- argument would require allocating a thunk.
--
-- 4. it can't be CAFFY because that would mean making some non-CAFFY
-- definitions that use unboxed sums CAFFY in unarise.
--
-- Getting this wrong causes hard-to-debug runtime issues, see #15038.
--
-- 5. it can't be defined in `base` package.
--
-- Defining `absentSumFieldError` in `base` package introduces a
-- dependency on `base` for any code using unboxed sums. It became an
-- issue when we wanted to use unboxed sums in boot libraries used by
-- `base`, see #17791.
--
--
-- * Most runtime-error functions throw a proper Haskell exception, which can be
-- caught in the usual way. But these functions are defined in
-- `base:Control.Exception.Base`, hence, they cannot be directly invoked in
-- any library compiled before `base`. Only exceptions that have been wired
-- in the RTS can be thrown (indirectly, via a call into the RTS) by libraries
-- compiled before `base`.
--
-- However wiring exceptions in the RTS is a bit annoying because we need to
-- explicitly import exception closures via their mangled symbol name (e.g.
-- `import CLOSURE base_GHCziIOziException_heapOverflow_closure`) in Cmm files
-- and every imported symbol must be indicated to the linker in a few files
-- (`package.conf`, `rts.cabal`, `win32/libHSbase.def`, `Prelude.h`...). It
-- explains why exceptions are only wired in the RTS when necessary.
--
-- * `absentSumFieldError` is defined in ghc-prim:GHC.Prim.Panic, hence, it can
-- be invoked in libraries compiled before `base`. It does not throw a Haskell
-- exception; instead, it calls `stg_panic#`, which immediately halts
-- execution. A runtime invocation of `absentSumFieldError` indicates a GHC
-- bug. Unlike (say) pattern-match errors, it cannot be caused by a user
-- error. That's why it is OK for it to be un-catchable.
--
absentSumFieldErrorName
= mkWiredInIdName
gHC_PRIM_PANIC
(fsLit "absentSumFieldError")
absentSumFieldErrorIdKey
aBSENT_SUM_FIELD_ERROR_ID
raiseOverflowName
= mkWiredInIdName
gHC_PRIM_EXCEPTION
(fsLit "raiseOverflow")
raiseOverflowIdKey
rAISE_OVERFLOW_ID
raiseUnderflowName
= mkWiredInIdName
gHC_PRIM_EXCEPTION
(fsLit "raiseUnderflow")
raiseUnderflowIdKey
rAISE_UNDERFLOW_ID
raiseDivZeroName
= mkWiredInIdName
gHC_PRIM_EXCEPTION
(fsLit "raiseDivZero")
raiseDivZeroIdKey
rAISE_DIVZERO_ID
aBSENT_SUM_FIELD_ERROR_ID = mkExceptionId absentSumFieldErrorName
rAISE_OVERFLOW_ID = mkExceptionId raiseOverflowName
rAISE_UNDERFLOW_ID = mkExceptionId raiseUnderflowName
rAISE_DIVZERO_ID = mkExceptionId raiseDivZeroName
-- | Exception with type \"forall a. a\"
mkExceptionId :: Name -> Id
mkExceptionId name
= mkVanillaGlobalWithInfo name
(mkSpecForAllTys [alphaTyVar] (mkTyVarTy alphaTyVar)) -- forall a . a
(vanillaIdInfo `setStrictnessInfo` mkClosedStrictSig [] botDiv
`setCprInfo` mkCprSig 0 botCpr
`setArityInfo` 0
`setCafInfo` NoCafRefs) -- #15038
mkRuntimeErrorId :: Name -> Id
-- Error function
-- with type: forall (r:RuntimeRep) (a:TYPE r). Addr# -> a
-- with arity: 1
-- which diverges after being given one argument
-- The Addr# is expected to be the address of
-- a UTF8-encoded error string
mkRuntimeErrorId name
= mkVanillaGlobalWithInfo name runtimeErrorTy bottoming_info
where
bottoming_info = vanillaIdInfo `setStrictnessInfo` strict_sig
`setCprInfo` mkCprSig 1 botCpr
`setArityInfo` 1
-- Make arity and strictness agree
-- Do *not* mark them as NoCafRefs, because they can indeed have
-- CAF refs. For example, pAT_ERROR_ID calls GHC.Err.untangle,
-- which has some CAFs
-- In due course we may arrange that these error-y things are
-- regarded by the GC as permanently live, in which case we
-- can give them NoCaf info. As it is, any function that calls
-- any pc_bottoming_Id will itself have CafRefs, which bloats
-- SRTs.
strict_sig = mkClosedStrictSig [evalDmd] botDiv
runtimeErrorTy :: Type
-- forall (rr :: RuntimeRep) (a :: rr). Addr# -> a
-- See Note [Error and friends have an "open-tyvar" forall]
runtimeErrorTy = mkSpecForAllTys [runtimeRep1TyVar, openAlphaTyVar]
(mkVisFunTyMany addrPrimTy openAlphaTy)
{- Note [Error and friends have an "open-tyvar" forall]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'error' and 'undefined' have types
error :: forall (v :: RuntimeRep) (a :: TYPE v). String -> a
undefined :: forall (v :: RuntimeRep) (a :: TYPE v). a
Notice the runtime-representation polymorphism. This ensures that
"error" can be instantiated at unboxed as well as boxed types.
This is OK because it never returns, so the return type is irrelevant.
************************************************************************
* *
aBSENT_ERROR_ID
* *
************************************************************************
Note [aBSENT_ERROR_ID]
~~~~~~~~~~~~~~~~~~~~~~
We use aBSENT_ERROR_ID to build dummy values in workers. E.g.
f x = (case x of (a,b) -> b) + 1::Int
The demand analyser figures ot that only the second component of x is
used, and does a w/w split thus
f x = case x of (a,b) -> $wf b
$wf b = let a = absentError "blah"
x = (a,b)
in <the original RHS of f>
After some simplification, the (absentError "blah") thunk goes away.
------ Tricky wrinkle -------
#14285 had, roughly
data T a = MkT a !a
{-# INLINABLE f #-}
f x = case x of MkT a b -> g (MkT b a)
It turned out that g didn't use the second component, and hence f doesn't use
the first. But the stable-unfolding for f looks like
\x. case x of MkT a b -> g ($WMkT b a)
where $WMkT is the wrapper for MkT that evaluates its arguments. We
apply the same w/w split to this unfolding (see Note [Worker-wrapper
for INLINEABLE functions] in GHC.Core.Opt.WorkWrap) so the template ends up like
\b. let a = absentError "blah"
x = MkT a b
in case x of MkT a b -> g ($WMkT b a)
After doing case-of-known-constructor, and expanding $WMkT we get
\b -> g (case absentError "blah" of a -> MkT b a)
Yikes! That bogusly appears to evaluate the absentError!
This is extremely tiresome. Another way to think of this is that, in
Core, it is an invariant that a strict data constructor, like MkT, must
be applied only to an argument in HNF. So (absentError "blah") had
better be non-bottom.
So the "solution" is to add a special case for absentError to exprIsHNFlike.
This allows Simplify.rebuildCase, in the Note [Case to let transformation]
branch, to convert the case on absentError into a let. We also make
absentError *not* be diverging, unlike the other error-ids, so that we
can be sure not to remove the case branches before converting the case to
a let.
If, by some bug or bizarre happenstance, we ever call absentError, we should
throw an exception. This should never happen, of course, but we definitely
can't return anything. e.g. if somehow we had
case absentError "foo" of
Nothing -> ...
Just x -> ...
then if we return, the case expression will select a field and continue.
Seg fault city. Better to throw an exception. (Even though we've said
it is in HNF :-)
It might seem a bit surprising that seq on absentError is simply erased
absentError "foo" `seq` x ==> x
but that should be okay; since there's no pattern match we can't really
be relying on anything from it.
-}
aBSENT_ERROR_ID
= mkVanillaGlobalWithInfo absentErrorName absent_ty arity_info
where
absent_ty = mkSpecForAllTys [alphaTyVar] (mkVisFunTyMany addrPrimTy alphaTy)
-- Not runtime-rep polymorphic. aBSENT_ERROR_ID is only used for
-- lifted-type things; see Note [Absent errors] in GHC.Core.Opt.WorkWrap.Utils
arity_info = vanillaIdInfo `setArityInfo` 1
-- NB: no bottoming strictness info, unlike other error-ids.
-- See Note [aBSENT_ERROR_ID]
mkAbsentErrorApp :: Type -- The type to instantiate 'a'
-> String -- The string to print
-> CoreExpr
mkAbsentErrorApp res_ty err_msg
= mkApps (Var aBSENT_ERROR_ID) [ Type res_ty, err_string ]
where
err_string = Lit (mkLitString err_msg)
|