1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# OPTIONS_GHC -Wno-orphans #-}
-- Eq (DeBruijn CoreExpr) and Eq (DeBruijn CoreAlt)
module GHC.Core.Map.Expr (
-- * Maps over Core expressions
CoreMap, emptyCoreMap, extendCoreMap, lookupCoreMap, foldCoreMap,
-- * Alpha equality
eqDeBruijnExpr, eqCoreExpr,
-- * 'TrieMap' class reexports
TrieMap(..), insertTM, deleteTM,
lkDFreeVar, xtDFreeVar,
lkDNamed, xtDNamed,
(>.>), (|>), (|>>),
) where
import GHC.Prelude
import GHC.Data.TrieMap
import GHC.Core.Map.Type
import GHC.Core
import GHC.Core.Type
import GHC.Types.Tickish
import GHC.Types.Var
import GHC.Utils.Misc
import GHC.Utils.Outputable
import qualified Data.Map as Map
import GHC.Types.Name.Env
import Control.Monad( (>=>) )
{-
This module implements TrieMaps over Core related data structures
like CoreExpr or Type. It is built on the Tries from the TrieMap
module.
The code is very regular and boilerplate-like, but there is
some neat handling of *binders*. In effect they are deBruijn
numbered on the fly.
-}
----------------------
-- Recall that
-- Control.Monad.(>=>) :: (a -> Maybe b) -> (b -> Maybe c) -> a -> Maybe c
-- The CoreMap makes heavy use of GenMap. However the CoreMap Types are not
-- known when defining GenMap so we can only specialize them here.
{-# SPECIALIZE lkG :: Key CoreMapX -> CoreMapG a -> Maybe a #-}
{-# SPECIALIZE xtG :: Key CoreMapX -> XT a -> CoreMapG a -> CoreMapG a #-}
{-# SPECIALIZE mapG :: (a -> b) -> CoreMapG a -> CoreMapG b #-}
{-# SPECIALIZE fdG :: (a -> b -> b) -> CoreMapG a -> b -> b #-}
{-
************************************************************************
* *
CoreMap
* *
************************************************************************
-}
{-
Note [Binders]
~~~~~~~~~~~~~~
* In general we check binders as late as possible because types are
less likely to differ than expression structure. That's why
cm_lam :: CoreMapG (TypeMapG a)
rather than
cm_lam :: TypeMapG (CoreMapG a)
* We don't need to look at the type of some binders, notably
- the case binder in (Case _ b _ _)
- the binders in an alternative
because they are totally fixed by the context
Note [Empty case alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* For a key (Case e b ty (alt:alts)) we don't need to look the return type
'ty', because every alternative has that type.
* For a key (Case e b ty []) we MUST look at the return type 'ty', because
otherwise (Case (error () "urk") _ Int []) would compare equal to
(Case (error () "urk") _ Bool [])
which is utterly wrong (#6097)
We could compare the return type regardless, but the wildly common case
is that it's unnecessary, so we have two fields (cm_case and cm_ecase)
for the two possibilities. Only cm_ecase looks at the type.
See also Note [Empty case alternatives] in GHC.Core.
-}
-- | @CoreMap a@ is a map from 'CoreExpr' to @a@. If you are a client, this
-- is the type you want.
newtype CoreMap a = CoreMap (CoreMapG a)
-- TODO(22292): derive
instance Functor CoreMap where
fmap f = \ (CoreMap m) -> CoreMap (fmap f m)
{-# INLINE fmap #-}
instance TrieMap CoreMap where
type Key CoreMap = CoreExpr
emptyTM = CoreMap emptyTM
lookupTM k (CoreMap m) = lookupTM (deBruijnize k) m
alterTM k f (CoreMap m) = CoreMap (alterTM (deBruijnize k) f m)
foldTM k (CoreMap m) = foldTM k m
filterTM f (CoreMap m) = CoreMap (filterTM f m)
-- | @CoreMapG a@ is a map from @DeBruijn CoreExpr@ to @a@. The extended
-- key makes it suitable for recursive traversal, since it can track binders,
-- but it is strictly internal to this module. If you are including a 'CoreMap'
-- inside another 'TrieMap', this is the type you want.
type CoreMapG = GenMap CoreMapX
-- | @CoreMapX a@ is the base map from @DeBruijn CoreExpr@ to @a@, but without
-- the 'GenMap' optimization.
data CoreMapX a
= CM { cm_var :: VarMap a
, cm_lit :: LiteralMap a
, cm_co :: CoercionMapG a
, cm_type :: TypeMapG a
, cm_cast :: CoreMapG (CoercionMapG a)
, cm_tick :: CoreMapG (TickishMap a)
, cm_app :: CoreMapG (CoreMapG a)
, cm_lam :: CoreMapG (BndrMap a) -- Note [Binders]
, cm_letn :: CoreMapG (CoreMapG (BndrMap a))
, cm_letr :: ListMap CoreMapG (CoreMapG (ListMap BndrMap a))
, cm_case :: CoreMapG (ListMap AltMap a)
, cm_ecase :: CoreMapG (TypeMapG a) -- Note [Empty case alternatives]
}
instance Eq (DeBruijn CoreExpr) where
(==) = eqDeBruijnExpr
eqDeBruijnExpr :: DeBruijn CoreExpr -> DeBruijn CoreExpr -> Bool
eqDeBruijnExpr (D env1 e1) (D env2 e2) = go e1 e2 where
go (Var v1) (Var v2) = eqDeBruijnVar (D env1 v1) (D env2 v2)
go (Lit lit1) (Lit lit2) = lit1 == lit2
go (Type t1) (Type t2) = eqDeBruijnType (D env1 t1) (D env2 t2)
-- See Note [Alpha-equality for Coercion arguments]
go (Coercion {}) (Coercion {}) = True
go (Cast e1 co1) (Cast e2 co2) = D env1 co1 == D env2 co2 && go e1 e2
go (App f1 a1) (App f2 a2) = go f1 f2 && go a1 a2
go (Tick n1 e1) (Tick n2 e2)
= eqDeBruijnTickish (D env1 n1) (D env2 n2)
&& go e1 e2
go (Lam b1 e1) (Lam b2 e2)
= eqDeBruijnType (D env1 (varType b1)) (D env2 (varType b2))
&& D env1 (varMultMaybe b1) == D env2 (varMultMaybe b2)
&& eqDeBruijnExpr (D (extendCME env1 b1) e1) (D (extendCME env2 b2) e2)
go (Let (NonRec v1 r1) e1) (Let (NonRec v2 r2) e2)
= go r1 r2 -- See Note [Alpha-equality for let-bindings]
&& eqDeBruijnExpr (D (extendCME env1 v1) e1) (D (extendCME env2 v2) e2)
go (Let (Rec ps1) e1) (Let (Rec ps2) e2)
= equalLength ps1 ps2
-- See Note [Alpha-equality for let-bindings]
&& all2 (\b1 b2 -> eqDeBruijnType (D env1 (varType b1))
(D env2 (varType b2)))
bs1 bs2
&& D env1' rs1 == D env2' rs2
&& eqDeBruijnExpr (D env1' e1) (D env2' e2)
where
(bs1,rs1) = unzip ps1
(bs2,rs2) = unzip ps2
env1' = extendCMEs env1 bs1
env2' = extendCMEs env2 bs2
go (Case e1 b1 t1 a1) (Case e2 b2 t2 a2)
| null a1 -- See Note [Empty case alternatives]
= null a2 && go e1 e2 && D env1 t1 == D env2 t2
| otherwise
= go e1 e2 && D (extendCME env1 b1) a1 == D (extendCME env2 b2) a2
go _ _ = False
eqDeBruijnTickish :: DeBruijn CoreTickish -> DeBruijn CoreTickish -> Bool
eqDeBruijnTickish (D env1 t1) (D env2 t2) = go t1 t2 where
go (Breakpoint lext lid lids) (Breakpoint rext rid rids)
= lid == rid
&& D env1 lids == D env2 rids
&& lext == rext
go l r = l == r
-- Compares for equality, modulo alpha
eqCoreExpr :: CoreExpr -> CoreExpr -> Bool
eqCoreExpr e1 e2 = eqDeBruijnExpr (deBruijnize e1) (deBruijnize e2)
{- Note [Alpha-equality for Coercion arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The 'Coercion' constructor only appears in argument positions, and so, if the
functions are equal, then the arguments must have equal types. Because the
comparison for coercions (correctly) checks only their types, checking for
alpha-equality of the coercions is redundant.
-}
{- Note [Alpha-equality for let-bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For /recursive/ let-bindings we need to check that the types of the binders
are alpha-equivalent. Otherwise
letrec (x : Bool) = x in x
and
letrec (y : Char) = y in y
would be considered alpha-equivalent, which they are obviously not.
For /non-recursive/ let-bindings, we do not have to check that the types of
the binders are alpha-equivalent. When the RHSs (the expressions) of the
non-recursive let-binders are well-formed and well-typed (which we assume they
are at this point in the compiler), and the RHSs are alpha-equivalent, then the
bindings must have the same type.
In addition, it is also worth pointing out that
letrec { x = e1; y = e2 } in b
is NOT considered equal to
letrec { y = e2; x = e1 } in b
-}
emptyE :: CoreMapX a
emptyE = CM { cm_var = emptyTM, cm_lit = emptyTM
, cm_co = emptyTM, cm_type = emptyTM
, cm_cast = emptyTM, cm_app = emptyTM
, cm_lam = emptyTM, cm_letn = emptyTM
, cm_letr = emptyTM, cm_case = emptyTM
, cm_ecase = emptyTM, cm_tick = emptyTM }
-- TODO(22292): derive
instance Functor CoreMapX where
fmap f CM
{ cm_var = cvar, cm_lit = clit, cm_co = cco, cm_type = ctype, cm_cast = ccast
, cm_app = capp, cm_lam = clam, cm_letn = cletn, cm_letr = cletr, cm_case = ccase
, cm_ecase = cecase, cm_tick = ctick } = CM
{ cm_var = fmap f cvar, cm_lit = fmap f clit, cm_co = fmap f cco, cm_type = fmap f ctype
, cm_cast = fmap (fmap f) ccast, cm_app = fmap (fmap f) capp, cm_lam = fmap (fmap f) clam
, cm_letn = fmap (fmap (fmap f)) cletn, cm_letr = fmap (fmap (fmap f)) cletr
, cm_case = fmap (fmap f) ccase, cm_ecase = fmap (fmap f) cecase
, cm_tick = fmap (fmap f) ctick }
instance TrieMap CoreMapX where
type Key CoreMapX = DeBruijn CoreExpr
emptyTM = emptyE
lookupTM = lkE
alterTM = xtE
foldTM = fdE
filterTM = ftE
--------------------------
ftE :: (a->Bool) -> CoreMapX a -> CoreMapX a
ftE f (CM { cm_var = cvar, cm_lit = clit
, cm_co = cco, cm_type = ctype
, cm_cast = ccast , cm_app = capp
, cm_lam = clam, cm_letn = cletn
, cm_letr = cletr, cm_case = ccase
, cm_ecase = cecase, cm_tick = ctick })
= CM { cm_var = filterTM f cvar, cm_lit = filterTM f clit
, cm_co = filterTM f cco, cm_type = filterTM f ctype
, cm_cast = fmap (filterTM f) ccast, cm_app = fmap (filterTM f) capp
, cm_lam = fmap (filterTM f) clam, cm_letn = fmap (fmap (filterTM f)) cletn
, cm_letr = fmap (fmap (filterTM f)) cletr, cm_case = fmap (filterTM f) ccase
, cm_ecase = fmap (filterTM f) cecase, cm_tick = fmap (filterTM f) ctick }
--------------------------
lookupCoreMap :: CoreMap a -> CoreExpr -> Maybe a
lookupCoreMap cm e = lookupTM e cm
extendCoreMap :: CoreMap a -> CoreExpr -> a -> CoreMap a
extendCoreMap m e v = alterTM e (\_ -> Just v) m
foldCoreMap :: (a -> b -> b) -> b -> CoreMap a -> b
foldCoreMap k z m = foldTM k m z
emptyCoreMap :: CoreMap a
emptyCoreMap = emptyTM
instance Outputable a => Outputable (CoreMap a) where
ppr m = text "CoreMap elts" <+> ppr (foldTM (:) m [])
-------------------------
fdE :: (a -> b -> b) -> CoreMapX a -> b -> b
fdE k m
= foldTM k (cm_var m)
. foldTM k (cm_lit m)
. foldTM k (cm_co m)
. foldTM k (cm_type m)
. foldTM (foldTM k) (cm_cast m)
. foldTM (foldTM k) (cm_tick m)
. foldTM (foldTM k) (cm_app m)
. foldTM (foldTM k) (cm_lam m)
. foldTM (foldTM (foldTM k)) (cm_letn m)
. foldTM (foldTM (foldTM k)) (cm_letr m)
. foldTM (foldTM k) (cm_case m)
. foldTM (foldTM k) (cm_ecase m)
-- lkE: lookup in trie for expressions
lkE :: DeBruijn CoreExpr -> CoreMapX a -> Maybe a
lkE (D env expr) cm = go expr cm
where
go (Var v) = cm_var >.> lkVar env v
go (Lit l) = cm_lit >.> lookupTM l
go (Type t) = cm_type >.> lkG (D env t)
go (Coercion c) = cm_co >.> lkG (D env c)
go (Cast e c) = cm_cast >.> lkG (D env e) >=> lkG (D env c)
go (Tick tickish e) = cm_tick >.> lkG (D env e) >=> lkTickish tickish
go (App e1 e2) = cm_app >.> lkG (D env e2) >=> lkG (D env e1)
go (Lam v e) = cm_lam >.> lkG (D (extendCME env v) e)
>=> lkBndr env v
go (Let (NonRec b r) e) = cm_letn >.> lkG (D env r)
>=> lkG (D (extendCME env b) e) >=> lkBndr env b
go (Let (Rec prs) e) = let (bndrs,rhss) = unzip prs
env1 = extendCMEs env bndrs
in cm_letr
>.> lkList (lkG . D env1) rhss
>=> lkG (D env1 e)
>=> lkList (lkBndr env1) bndrs
go (Case e b ty as) -- See Note [Empty case alternatives]
| null as = cm_ecase >.> lkG (D env e) >=> lkG (D env ty)
| otherwise = cm_case >.> lkG (D env e)
>=> lkList (lkA (extendCME env b)) as
xtE :: DeBruijn CoreExpr -> XT a -> CoreMapX a -> CoreMapX a
xtE (D env (Var v)) f m = m { cm_var = cm_var m
|> xtVar env v f }
xtE (D env (Type t)) f m = m { cm_type = cm_type m
|> xtG (D env t) f }
xtE (D env (Coercion c)) f m = m { cm_co = cm_co m
|> xtG (D env c) f }
xtE (D _ (Lit l)) f m = m { cm_lit = cm_lit m |> alterTM l f }
xtE (D env (Cast e c)) f m = m { cm_cast = cm_cast m |> xtG (D env e)
|>> xtG (D env c) f }
xtE (D env (Tick t e)) f m = m { cm_tick = cm_tick m |> xtG (D env e)
|>> xtTickish t f }
xtE (D env (App e1 e2)) f m = m { cm_app = cm_app m |> xtG (D env e2)
|>> xtG (D env e1) f }
xtE (D env (Lam v e)) f m = m { cm_lam = cm_lam m
|> xtG (D (extendCME env v) e)
|>> xtBndr env v f }
xtE (D env (Let (NonRec b r) e)) f m = m { cm_letn = cm_letn m
|> xtG (D (extendCME env b) e)
|>> xtG (D env r)
|>> xtBndr env b f }
xtE (D env (Let (Rec prs) e)) f m = m { cm_letr =
let (bndrs,rhss) = unzip prs
env1 = extendCMEs env bndrs
in cm_letr m
|> xtList (xtG . D env1) rhss
|>> xtG (D env1 e)
|>> xtList (xtBndr env1)
bndrs f }
xtE (D env (Case e b ty as)) f m
| null as = m { cm_ecase = cm_ecase m |> xtG (D env e)
|>> xtG (D env ty) f }
| otherwise = m { cm_case = cm_case m |> xtG (D env e)
|>> let env1 = extendCME env b
in xtList (xtA env1) as f }
-- TODO: this seems a bit dodgy, see 'eqTickish'
type TickishMap a = Map.Map CoreTickish a
lkTickish :: CoreTickish -> TickishMap a -> Maybe a
lkTickish = lookupTM
xtTickish :: CoreTickish -> XT a -> TickishMap a -> TickishMap a
xtTickish = alterTM
------------------------
data AltMap a -- A single alternative
= AM { am_deflt :: CoreMapG a
, am_data :: DNameEnv (CoreMapG a)
, am_lit :: LiteralMap (CoreMapG a) }
-- TODO(22292): derive
instance Functor AltMap where
fmap f AM { am_deflt = adeflt, am_data = adata, am_lit = alit } = AM
{ am_deflt = fmap f adeflt, am_data = fmap (fmap f) adata, am_lit = fmap (fmap f) alit }
instance TrieMap AltMap where
type Key AltMap = CoreAlt
emptyTM = AM { am_deflt = emptyTM
, am_data = emptyDNameEnv
, am_lit = emptyTM }
lookupTM = lkA emptyCME
alterTM = xtA emptyCME
foldTM = fdA
filterTM = ftA
instance Eq (DeBruijn CoreAlt) where
D env1 a1 == D env2 a2 = go a1 a2 where
go (Alt DEFAULT _ rhs1) (Alt DEFAULT _ rhs2)
= D env1 rhs1 == D env2 rhs2
go (Alt (LitAlt lit1) _ rhs1) (Alt (LitAlt lit2) _ rhs2)
= lit1 == lit2 && D env1 rhs1 == D env2 rhs2
go (Alt (DataAlt dc1) bs1 rhs1) (Alt (DataAlt dc2) bs2 rhs2)
= dc1 == dc2 &&
D (extendCMEs env1 bs1) rhs1 == D (extendCMEs env2 bs2) rhs2
go _ _ = False
ftA :: (a->Bool) -> AltMap a -> AltMap a
ftA f (AM { am_deflt = adeflt, am_data = adata, am_lit = alit })
= AM { am_deflt = filterTM f adeflt
, am_data = fmap (filterTM f) adata
, am_lit = fmap (filterTM f) alit }
lkA :: CmEnv -> CoreAlt -> AltMap a -> Maybe a
lkA env (Alt DEFAULT _ rhs) = am_deflt >.> lkG (D env rhs)
lkA env (Alt (LitAlt lit) _ rhs) = am_lit >.> lookupTM lit >=> lkG (D env rhs)
lkA env (Alt (DataAlt dc) bs rhs) = am_data >.> lkDNamed dc
>=> lkG (D (extendCMEs env bs) rhs)
xtA :: CmEnv -> CoreAlt -> XT a -> AltMap a -> AltMap a
xtA env (Alt DEFAULT _ rhs) f m =
m { am_deflt = am_deflt m |> xtG (D env rhs) f }
xtA env (Alt (LitAlt l) _ rhs) f m =
m { am_lit = am_lit m |> alterTM l |>> xtG (D env rhs) f }
xtA env (Alt (DataAlt d) bs rhs) f m =
m { am_data = am_data m |> xtDNamed d
|>> xtG (D (extendCMEs env bs) rhs) f }
fdA :: (a -> b -> b) -> AltMap a -> b -> b
fdA k m = foldTM k (am_deflt m)
. foldTM (foldTM k) (am_data m)
. foldTM (foldTM k) (am_lit m)
|