summaryrefslogtreecommitdiff
path: root/compiler/GHC/Core/Opt/ConstantFold.hs
blob: 14d5c882627d07ee9266af5fa7b41bbf2049dd52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Conceptually, constant folding should be parameterized with the kind
of target machine to get identical behaviour during compilation time
and runtime. We cheat a little bit here...

ToDo:
   check boundaries before folding, e.g. we can fold the Float addition
   (i1 + i2) only if it results in a valid Float.
-}

{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ViewPatterns #-}

{-# OPTIONS_GHC -optc-DNON_POSIX_SOURCE -Wno-incomplete-uni-patterns #-}

-- | Constant Folder
module GHC.Core.Opt.ConstantFold
   ( primOpRules
   , builtinRules
   , caseRules
   )
where

import GHC.Prelude

import GHC.Platform

import GHC.Types.Id.Make ( unboxedUnitExpr )
import GHC.Types.Id
import GHC.Types.Literal
import GHC.Types.Name.Occurrence ( occNameFS )
import GHC.Types.Tickish
import GHC.Types.Name ( Name, nameOccName )
import GHC.Types.Basic

import GHC.Core
import GHC.Core.Make
import GHC.Core.SimpleOpt (  exprIsConApp_maybe, exprIsLiteral_maybe )
import GHC.Core.DataCon ( DataCon,dataConTagZ, dataConTyCon, dataConWrapId, dataConWorkId )
import GHC.Core.Utils  ( cheapEqExpr, exprIsHNF, exprType
                       , stripTicksTop, stripTicksTopT, mkTicks )
import GHC.Core.Multiplicity
import GHC.Core.Rules.Config
import GHC.Core.Type
import GHC.Core.TyCon
   ( tyConDataCons_maybe, isAlgTyCon, isEnumerationTyCon
   , isNewTyCon, tyConDataCons
   , tyConFamilySize )
import GHC.Core.Map.Expr ( eqCoreExpr )

import GHC.Builtin.PrimOps ( PrimOp(..), tagToEnumKey )
import GHC.Builtin.PrimOps.Ids (primOpId)
import GHC.Builtin.Types
import GHC.Builtin.Types.Prim
import GHC.Builtin.Names

import GHC.Data.FastString
import GHC.Data.Maybe      ( orElse )

import GHC.Utils.Outputable
import GHC.Utils.Misc
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Utils.Trace

import Control.Applicative ( Alternative(..) )
import Control.Monad
import Data.Functor (($>))
import qualified Data.ByteString as BS
import Data.Ratio
import Data.Word
import Data.Maybe (fromMaybe, fromJust)

{-
Note [Constant folding]
~~~~~~~~~~~~~~~~~~~~~~~
primOpRules generates a rewrite rule for each primop
These rules do what is often called "constant folding"
E.g. the rules for +# might say
        4 +# 5 = 9
Well, of course you'd need a lot of rules if you did it
like that, so we use a BuiltinRule instead, so that we
can match in any two literal values.  So the rule is really
more like
        (Lit x) +# (Lit y) = Lit (x+#y)
where the (+#) on the rhs is done at compile time

That is why these rules are built in here.
-}

primOpRules ::  Name -> PrimOp -> Maybe CoreRule
primOpRules nm = \case
   TagToEnumOp -> mkPrimOpRule nm 2 [ tagToEnumRule ]
   DataToTagOp -> mkPrimOpRule nm 2 [ dataToTagRule ]

   -- Int8 operations
   Int8AddOp   -> mkPrimOpRule nm 2 [ binaryLit (int8Op2 (+))
                                    , identity zeroI8
                                    , addFoldingRules Int8AddOp int8Ops
                                    ]
   Int8SubOp   -> mkPrimOpRule nm 2 [ binaryLit (int8Op2 (-))
                                    , rightIdentity zeroI8
                                    , equalArgs $> Lit zeroI8
                                    , subFoldingRules Int8SubOp int8Ops
                                    ]
   Int8MulOp   -> mkPrimOpRule nm 2 [ binaryLit (int8Op2 (*))
                                    , zeroElem
                                    , identity oneI8
                                    , mulFoldingRules Int8MulOp int8Ops
                                    ]
   Int8QuotOp  -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (int8Op2 quot)
                                    , leftZero
                                    , rightIdentity oneI8
                                    , equalArgs $> Lit oneI8 ]
   Int8RemOp   -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (int8Op2 rem)
                                    , leftZero
                                    , oneLit 1 $> Lit zeroI8
                                    , equalArgs $> Lit zeroI8 ]
   Int8NegOp   -> mkPrimOpRule nm 1 [ unaryLit negOp
                                    , semiInversePrimOp Int8NegOp ]
   Int8SllOp   -> mkPrimOpRule nm 2 [ shiftRule LitNumInt8 (const shiftL)
                                    , rightIdentity zeroI8 ]
   Int8SraOp   -> mkPrimOpRule nm 2 [ shiftRule LitNumInt8 (const shiftR)
                                    , rightIdentity zeroI8 ]
   Int8SrlOp   -> mkPrimOpRule nm 2 [ shiftRule LitNumInt8 $ const $ shiftRightLogical @Word8
                                    , rightIdentity zeroI8 ]

   -- Word8 operations
   Word8AddOp  -> mkPrimOpRule nm 2 [ binaryLit (word8Op2 (+))
                                    , identity zeroW8
                                    , addFoldingRules Word8AddOp word8Ops
                                    ]
   Word8SubOp  -> mkPrimOpRule nm 2 [ binaryLit (word8Op2 (-))
                                    , rightIdentity zeroW8
                                    , equalArgs $> Lit zeroW8
                                    , subFoldingRules Word8SubOp word8Ops
                                    ]
   Word8MulOp  -> mkPrimOpRule nm 2 [ binaryLit (word8Op2 (*))
                                    , identity oneW8
                                    , mulFoldingRules Word8MulOp word8Ops
                                    ]
   Word8QuotOp -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (word8Op2 quot)
                                    , rightIdentity oneW8 ]
   Word8RemOp  -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (word8Op2 rem)
                                    , leftZero
                                    , oneLit 1 $> Lit zeroW8
                                    , equalArgs $> Lit zeroW8 ]
   Word8AndOp  -> mkPrimOpRule nm 2 [ binaryLit (word8Op2 (.&.))
                                    , idempotent
                                    , zeroElem
                                    , identity (mkLitWord8 0xFF)
                                    , sameArgIdempotentCommut Word8AndOp
                                    , andFoldingRules word8Ops
                                    ]
   Word8OrOp   -> mkPrimOpRule nm 2 [ binaryLit (word8Op2 (.|.))
                                    , idempotent
                                    , identity zeroW8
                                    , sameArgIdempotentCommut Word8OrOp
                                    , orFoldingRules word8Ops
                                    ]
   Word8XorOp  -> mkPrimOpRule nm 2 [ binaryLit (word8Op2 xor)
                                    , identity zeroW8
                                    , equalArgs $> Lit zeroW8 ]
   Word8NotOp  -> mkPrimOpRule nm 1 [ unaryLit complementOp
                                    , semiInversePrimOp Word8NotOp ]
   Word8SllOp  -> mkPrimOpRule nm 2 [ shiftRule LitNumWord8 (const shiftL) ]
   Word8SrlOp  -> mkPrimOpRule nm 2 [ shiftRule LitNumWord8 $ const $ shiftRightLogical @Word8 ]


   -- Int16 operations
   Int16AddOp  -> mkPrimOpRule nm 2 [ binaryLit (int16Op2 (+))
                                    , identity zeroI16
                                    , addFoldingRules Int16AddOp int16Ops
                                    ]
   Int16SubOp  -> mkPrimOpRule nm 2 [ binaryLit (int16Op2 (-))
                                    , rightIdentity zeroI16
                                    , equalArgs $> Lit zeroI16
                                    , subFoldingRules Int16SubOp int16Ops
                                    ]
   Int16MulOp  -> mkPrimOpRule nm 2 [ binaryLit (int16Op2 (*))
                                    , zeroElem
                                    , identity oneI16
                                    , mulFoldingRules Int16MulOp int16Ops
                                    ]
   Int16QuotOp -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (int16Op2 quot)
                                    , leftZero
                                    , rightIdentity oneI16
                                    , equalArgs $> Lit oneI16 ]
   Int16RemOp  -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (int16Op2 rem)
                                    , leftZero
                                    , oneLit 1 $> Lit zeroI16
                                    , equalArgs $> Lit zeroI16 ]
   Int16NegOp  -> mkPrimOpRule nm 1 [ unaryLit negOp
                                    , semiInversePrimOp Int16NegOp ]
   Int16SllOp  -> mkPrimOpRule nm 2 [ shiftRule LitNumInt16 (const shiftL)
                                    , rightIdentity zeroI16 ]
   Int16SraOp  -> mkPrimOpRule nm 2 [ shiftRule LitNumInt16 (const shiftR)
                                    , rightIdentity zeroI16 ]
   Int16SrlOp  -> mkPrimOpRule nm 2 [ shiftRule LitNumInt16 $ const $ shiftRightLogical @Word16
                                    , rightIdentity zeroI16 ]

   -- Word16 operations
   Word16AddOp -> mkPrimOpRule nm 2 [ binaryLit (word16Op2 (+))
                                    , identity zeroW16
                                    , addFoldingRules Word16AddOp word16Ops
                                    ]
   Word16SubOp -> mkPrimOpRule nm 2 [ binaryLit (word16Op2 (-))
                                    , rightIdentity zeroW16
                                    , equalArgs $> Lit zeroW16
                                    , subFoldingRules Word16SubOp word16Ops
                                    ]
   Word16MulOp -> mkPrimOpRule nm 2 [ binaryLit (word16Op2 (*))
                                    , identity oneW16
                                    , mulFoldingRules Word16MulOp word16Ops
                                    ]
   Word16QuotOp-> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (word16Op2 quot)
                                    , rightIdentity oneW16 ]
   Word16RemOp -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (word16Op2 rem)
                                    , leftZero
                                    , oneLit 1 $> Lit zeroW16
                                    , equalArgs $> Lit zeroW16 ]
   Word16AndOp -> mkPrimOpRule nm 2 [ binaryLit (word16Op2 (.&.))
                                    , idempotent
                                    , zeroElem
                                    , identity (mkLitWord16 0xFFFF)
                                    , sameArgIdempotentCommut Word16AndOp
                                    , andFoldingRules word16Ops
                                    ]
   Word16OrOp  -> mkPrimOpRule nm 2 [ binaryLit (word16Op2 (.|.))
                                    , idempotent
                                    , identity zeroW16
                                    , sameArgIdempotentCommut Word16OrOp
                                    , orFoldingRules word16Ops
                                    ]
   Word16XorOp -> mkPrimOpRule nm 2 [ binaryLit (word16Op2 xor)
                                    , identity zeroW16
                                    , equalArgs $> Lit zeroW16 ]
   Word16NotOp -> mkPrimOpRule nm 1 [ unaryLit complementOp
                                    , semiInversePrimOp Word16NotOp ]
   Word16SllOp -> mkPrimOpRule nm 2 [ shiftRule LitNumWord16 (const shiftL) ]
   Word16SrlOp -> mkPrimOpRule nm 2 [ shiftRule LitNumWord16 $ const $ shiftRightLogical @Word16 ]


   -- Int32 operations
   Int32AddOp  -> mkPrimOpRule nm 2 [ binaryLit (int32Op2 (+))
                                    , identity zeroI32
                                    , addFoldingRules Int32AddOp int32Ops
                                    ]
   Int32SubOp  -> mkPrimOpRule nm 2 [ binaryLit (int32Op2 (-))
                                    , rightIdentity zeroI32
                                    , equalArgs $> Lit zeroI32
                                    , subFoldingRules Int32SubOp int32Ops
                                    ]
   Int32MulOp  -> mkPrimOpRule nm 2 [ binaryLit (int32Op2 (*))
                                    , zeroElem
                                    , identity oneI32
                                    , mulFoldingRules Int32MulOp int32Ops
                                    ]
   Int32QuotOp -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (int32Op2 quot)
                                    , leftZero
                                    , rightIdentity oneI32
                                    , equalArgs $> Lit oneI32 ]
   Int32RemOp  -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (int32Op2 rem)
                                    , leftZero
                                    , oneLit 1 $> Lit zeroI32
                                    , equalArgs $> Lit zeroI32 ]
   Int32NegOp  -> mkPrimOpRule nm 1 [ unaryLit negOp
                                    , semiInversePrimOp Int32NegOp ]
   Int32SllOp  -> mkPrimOpRule nm 2 [ shiftRule LitNumInt32 (const shiftL)
                                    , rightIdentity zeroI32 ]
   Int32SraOp  -> mkPrimOpRule nm 2 [ shiftRule LitNumInt32 (const shiftR)
                                    , rightIdentity zeroI32 ]
   Int32SrlOp  -> mkPrimOpRule nm 2 [ shiftRule LitNumInt32 $ const $ shiftRightLogical @Word32
                                    , rightIdentity zeroI32 ]

   -- Word32 operations
   Word32AddOp -> mkPrimOpRule nm 2 [ binaryLit (word32Op2 (+))
                                    , identity zeroW32
                                    , addFoldingRules Word32AddOp word32Ops
                                    ]
   Word32SubOp -> mkPrimOpRule nm 2 [ binaryLit (word32Op2 (-))
                                    , rightIdentity zeroW32
                                    , equalArgs $> Lit zeroW32
                                    , subFoldingRules Word32SubOp word32Ops
                                    ]
   Word32MulOp -> mkPrimOpRule nm 2 [ binaryLit (word32Op2 (*))
                                    , identity oneW32
                                    , mulFoldingRules Word32MulOp word32Ops
                                    ]
   Word32QuotOp-> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (word32Op2 quot)
                                    , rightIdentity oneW32 ]
   Word32RemOp -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (word32Op2 rem)
                                    , leftZero
                                    , oneLit 1 $> Lit zeroW32
                                    , equalArgs $> Lit zeroW32 ]
   Word32AndOp -> mkPrimOpRule nm 2 [ binaryLit (word32Op2 (.&.))
                                    , idempotent
                                    , zeroElem
                                    , identity (mkLitWord32 0xFFFFFFFF)
                                    , sameArgIdempotentCommut Word32AndOp
                                    , andFoldingRules word32Ops
                                    ]
   Word32OrOp  -> mkPrimOpRule nm 2 [ binaryLit (word32Op2 (.|.))
                                    , idempotent
                                    , identity zeroW32
                                    , sameArgIdempotentCommut Word32OrOp
                                    , orFoldingRules word32Ops
                                    ]
   Word32XorOp -> mkPrimOpRule nm 2 [ binaryLit (word32Op2 xor)
                                    , identity zeroW32
                                    , equalArgs $> Lit zeroW32 ]
   Word32NotOp -> mkPrimOpRule nm 1 [ unaryLit complementOp
                                    , semiInversePrimOp Word32NotOp ]
   Word32SllOp -> mkPrimOpRule nm 2 [ shiftRule LitNumWord32 (const shiftL) ]
   Word32SrlOp -> mkPrimOpRule nm 2 [ shiftRule LitNumWord32 $ const $ shiftRightLogical @Word32 ]

   -- Int64 operations
   Int64AddOp  -> mkPrimOpRule nm 2 [ binaryLit (int64Op2 (+))
                                    , identity zeroI64
                                    , addFoldingRules Int64AddOp int64Ops
                                    ]
   Int64SubOp  -> mkPrimOpRule nm 2 [ binaryLit (int64Op2 (-))
                                    , rightIdentity zeroI64
                                    , equalArgs $> Lit zeroI64
                                    , subFoldingRules Int64SubOp int64Ops
                                    ]
   Int64MulOp  -> mkPrimOpRule nm 2 [ binaryLit (int64Op2 (*))
                                    , zeroElem
                                    , identity oneI64
                                    , mulFoldingRules Int64MulOp int64Ops
                                    ]
   Int64QuotOp -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (int64Op2 quot)
                                    , leftZero
                                    , rightIdentity oneI64
                                    , equalArgs $> Lit oneI64 ]
   Int64RemOp  -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (int64Op2 rem)
                                    , leftZero
                                    , oneLit 1 $> Lit zeroI64
                                    , equalArgs $> Lit zeroI64 ]
   Int64NegOp  -> mkPrimOpRule nm 1 [ unaryLit negOp
                                    , semiInversePrimOp Int64NegOp ]
   Int64SllOp  -> mkPrimOpRule nm 2 [ shiftRule LitNumInt64 (const shiftL)
                                    , rightIdentity zeroI64 ]
   Int64SraOp  -> mkPrimOpRule nm 2 [ shiftRule LitNumInt64 (const shiftR)
                                    , rightIdentity zeroI64 ]
   Int64SrlOp  -> mkPrimOpRule nm 2 [ shiftRule LitNumInt64 $ const $ shiftRightLogical @Word64
                                    , rightIdentity zeroI64 ]

   -- Word64 operations
   Word64AddOp -> mkPrimOpRule nm 2 [ binaryLit (word64Op2 (+))
                                    , identity zeroW64
                                    , addFoldingRules Word64AddOp word64Ops
                                    ]
   Word64SubOp -> mkPrimOpRule nm 2 [ binaryLit (word64Op2 (-))
                                    , rightIdentity zeroW64
                                    , equalArgs $> Lit zeroW64
                                    , subFoldingRules Word64SubOp word64Ops
                                    ]
   Word64MulOp -> mkPrimOpRule nm 2 [ binaryLit (word64Op2 (*))
                                    , identity oneW64
                                    , mulFoldingRules Word64MulOp word64Ops
                                    ]
   Word64QuotOp-> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (word64Op2 quot)
                                    , rightIdentity oneW64 ]
   Word64RemOp -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (word64Op2 rem)
                                    , leftZero
                                    , oneLit 1 $> Lit zeroW64
                                    , equalArgs $> Lit zeroW64 ]
   Word64AndOp -> mkPrimOpRule nm 2 [ binaryLit (word64Op2 (.&.))
                                    , idempotent
                                    , zeroElem
                                    , identity (mkLitWord64 0xFFFFFFFFFFFFFFFF)
                                    , sameArgIdempotentCommut Word64AndOp
                                    , andFoldingRules word64Ops
                                    ]
   Word64OrOp  -> mkPrimOpRule nm 2 [ binaryLit (word64Op2 (.|.))
                                    , idempotent
                                    , identity zeroW64
                                    , sameArgIdempotentCommut Word64OrOp
                                    , orFoldingRules word64Ops
                                    ]
   Word64XorOp -> mkPrimOpRule nm 2 [ binaryLit (word64Op2 xor)
                                    , identity zeroW64
                                    , equalArgs $> Lit zeroW64 ]
   Word64NotOp -> mkPrimOpRule nm 1 [ unaryLit complementOp
                                    , semiInversePrimOp Word64NotOp ]
   Word64SllOp -> mkPrimOpRule nm 2 [ shiftRule LitNumWord64 (const shiftL) ]
   Word64SrlOp -> mkPrimOpRule nm 2 [ shiftRule LitNumWord64 $ const $ shiftRightLogical @Word64 ]

   -- Int operations
   IntAddOp    -> mkPrimOpRule nm 2 [ binaryLit (intOp2 (+))
                                    , identityPlatform zeroi
                                    , addFoldingRules IntAddOp intOps
                                    ]
   IntSubOp    -> mkPrimOpRule nm 2 [ binaryLit (intOp2 (-))
                                    , rightIdentityPlatform zeroi
                                    , equalArgs >> retLit zeroi
                                    , subFoldingRules IntSubOp intOps
                                    ]
   IntAddCOp   -> mkPrimOpRule nm 2 [ binaryLit (intOpC2 (+))
                                    , identityCPlatform zeroi ]
   IntSubCOp   -> mkPrimOpRule nm 2 [ binaryLit (intOpC2 (-))
                                    , rightIdentityCPlatform zeroi
                                    , equalArgs >> retLitNoC zeroi ]
   IntMulOp    -> mkPrimOpRule nm 2 [ binaryLit (intOp2 (*))
                                    , zeroElem
                                    , identityPlatform onei
                                    , mulFoldingRules IntMulOp intOps
                                    ]
   IntMul2Op   -> mkPrimOpRule nm 2 [ do
                                        [Lit (LitNumber _ l1), Lit (LitNumber _ l2)] <- getArgs
                                        platform <- getPlatform
                                        let r = l1 * l2
                                        pure $ mkCoreUbxTup [intPrimTy,intPrimTy,intPrimTy]
                                          [ Lit (if platformInIntRange platform r then zeroi platform else onei platform)
                                          , mkIntLitWrap platform (r `shiftR` platformWordSizeInBits platform)
                                          , mkIntLitWrap platform r
                                          ]

                                    , zeroElem >>= \z ->
                                        pure (mkCoreUbxTup [intPrimTy,intPrimTy,intPrimTy]
                                                           [z,z,z])

                                      -- timesInt2# 1# other
                                      -- ~~~>
                                      -- (# 0#, 0# -# (other >># (WORD_SIZE_IN_BITS-1)), other #)
                                      -- The second element is the sign bit
                                      -- repeated to fill a word.
                                    , identityPlatform onei >>= \other -> do
                                        platform <- getPlatform
                                        pure $ mkCoreUbxTup [intPrimTy,intPrimTy,intPrimTy]
                                          [ Lit (zeroi platform)
                                          , mkCoreApps (Var (primOpId IntSubOp))
                                              [ Lit (zeroi platform)
                                              , mkCoreApps (Var (primOpId IntSrlOp))
                                                [ other
                                                , mkIntLit platform (fromIntegral (platformWordSizeInBits platform - 1))
                                                ]
                                              ]
                                          , other
                                          ]
                                    ]
   IntQuotOp   -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (intOp2 quot)
                                    , leftZero
                                    , rightIdentityPlatform onei
                                    , equalArgs >> retLit onei ]
   IntRemOp    -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (intOp2 rem)
                                    , leftZero
                                    , oneLit 1 >> retLit zeroi
                                    , equalArgs >> retLit zeroi ]
   IntAndOp    -> mkPrimOpRule nm 2 [ binaryLit (intOp2 (.&.))
                                    , idempotent
                                    , zeroElem
                                    , identityPlatform (\p -> mkLitInt p (-1))
                                    , sameArgIdempotentCommut IntAndOp
                                    , andFoldingRules intOps
                                    ]
   IntOrOp     -> mkPrimOpRule nm 2 [ binaryLit (intOp2 (.|.))
                                    , idempotent
                                    , identityPlatform zeroi
                                    , sameArgIdempotentCommut IntOrOp
                                    , orFoldingRules intOps
                                    ]
   IntXorOp    -> mkPrimOpRule nm 2 [ binaryLit (intOp2 xor)
                                    , identityPlatform zeroi
                                    , equalArgs >> retLit zeroi ]
   IntNotOp    -> mkPrimOpRule nm 1 [ unaryLit complementOp
                                    , semiInversePrimOp IntNotOp ]
   IntNegOp    -> mkPrimOpRule nm 1 [ unaryLit negOp
                                    , semiInversePrimOp IntNegOp ]
   IntSllOp    -> mkPrimOpRule nm 2 [ shiftRule LitNumInt (const shiftL)
                                    , rightIdentityPlatform zeroi ]
   IntSraOp    -> mkPrimOpRule nm 2 [ shiftRule LitNumInt (const shiftR)
                                    , rightIdentityPlatform zeroi ]
   IntSrlOp    -> mkPrimOpRule nm 2 [ shiftRule LitNumInt shiftRightLogicalNative
                                    , rightIdentityPlatform zeroi ]

   -- Word operations
   WordAddOp   -> mkPrimOpRule nm 2 [ binaryLit (wordOp2 (+))
                                    , identityPlatform zerow
                                    , addFoldingRules WordAddOp wordOps
                                    ]
   WordSubOp   -> mkPrimOpRule nm 2 [ binaryLit (wordOp2 (-))
                                    , rightIdentityPlatform zerow
                                    , equalArgs >> retLit zerow
                                    , subFoldingRules WordSubOp wordOps
                                    ]
   WordAddCOp  -> mkPrimOpRule nm 2 [ binaryLit (wordOpC2 (+))
                                    , identityCPlatform zerow ]
   WordSubCOp  -> mkPrimOpRule nm 2 [ binaryLit (wordOpC2 (-))
                                    , rightIdentityCPlatform zerow
                                    , equalArgs >> retLitNoC zerow ]
   WordMulOp   -> mkPrimOpRule nm 2 [ binaryLit (wordOp2 (*))
                                    , identityPlatform onew
                                    , mulFoldingRules WordMulOp wordOps
                                    ]
   WordQuotOp  -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (wordOp2 quot)
                                    , rightIdentityPlatform onew ]
   WordRemOp   -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (wordOp2 rem)
                                    , leftZero
                                    , oneLit 1 >> retLit zerow
                                    , equalArgs >> retLit zerow ]
   WordAndOp   -> mkPrimOpRule nm 2 [ binaryLit (wordOp2 (.&.))
                                    , idempotent
                                    , zeroElem
                                    , identityPlatform (\p -> mkLitWord p (platformMaxWord p))
                                    , sameArgIdempotentCommut WordAndOp
                                    , andFoldingRules wordOps
                                    ]
   WordOrOp    -> mkPrimOpRule nm 2 [ binaryLit (wordOp2 (.|.))
                                    , idempotent
                                    , identityPlatform zerow
                                    , sameArgIdempotentCommut WordOrOp
                                    , orFoldingRules wordOps
                                    ]
   WordXorOp   -> mkPrimOpRule nm 2 [ binaryLit (wordOp2 xor)
                                    , identityPlatform zerow
                                    , equalArgs >> retLit zerow ]
   WordNotOp   -> mkPrimOpRule nm 1 [ unaryLit complementOp
                                    , semiInversePrimOp WordNotOp ]
   WordSllOp   -> mkPrimOpRule nm 2 [ shiftRule LitNumWord (const shiftL) ]
   WordSrlOp   -> mkPrimOpRule nm 2 [ shiftRule LitNumWord shiftRightLogicalNative ]

   PopCnt8Op   -> mkPrimOpRule nm 1 [ pop_count @Word8  ]
   PopCnt16Op  -> mkPrimOpRule nm 1 [ pop_count @Word16 ]
   PopCnt32Op  -> mkPrimOpRule nm 1 [ pop_count @Word32 ]
   PopCnt64Op  -> mkPrimOpRule nm 1 [ pop_count @Word64 ]
   PopCntOp    -> mkPrimOpRule nm 1 [ getWordSize >>= \case
                                        PW4 -> pop_count @Word32
                                        PW8 -> pop_count @Word64
                                    ]

   Ctz8Op      -> mkPrimOpRule nm 1 [ ctz @Word8  ]
   Ctz16Op     -> mkPrimOpRule nm 1 [ ctz @Word16 ]
   Ctz32Op     -> mkPrimOpRule nm 1 [ ctz @Word32 ]
   Ctz64Op     -> mkPrimOpRule nm 1 [ ctz @Word64 ]
   CtzOp       -> mkPrimOpRule nm 1 [ getWordSize >>= \case
                                        PW4 -> ctz @Word32
                                        PW8 -> ctz @Word64
                                    ]

   Clz8Op      -> mkPrimOpRule nm 1 [ clz @Word8  ]
   Clz16Op     -> mkPrimOpRule nm 1 [ clz @Word16 ]
   Clz32Op     -> mkPrimOpRule nm 1 [ clz @Word32 ]
   Clz64Op     -> mkPrimOpRule nm 1 [ clz @Word64 ]
   ClzOp       -> mkPrimOpRule nm 1 [ getWordSize >>= \case
                                        PW4 -> clz @Word32
                                        PW8 -> clz @Word64
                                    ]

   -- coercions

   Int8ToIntOp    -> mkPrimOpRule nm 1 [ liftLitPlatform convertToIntLit ]
   Int16ToIntOp   -> mkPrimOpRule nm 1 [ liftLitPlatform convertToIntLit ]
   Int32ToIntOp   -> mkPrimOpRule nm 1 [ liftLitPlatform convertToIntLit ]
   Int64ToIntOp   -> mkPrimOpRule nm 1 [ liftLitPlatform convertToIntLit ]
   IntToInt8Op    -> mkPrimOpRule nm 1 [ liftLit narrowInt8Lit
                                       , narrowSubsumesAnd IntAndOp IntToInt8Op 8 ]
   IntToInt16Op   -> mkPrimOpRule nm 1 [ liftLit narrowInt16Lit
                                       , narrowSubsumesAnd IntAndOp IntToInt16Op 16 ]
   IntToInt32Op   -> mkPrimOpRule nm 1 [ liftLit narrowInt32Lit
                                       , narrowSubsumesAnd IntAndOp IntToInt32Op 32 ]
   IntToInt64Op   -> mkPrimOpRule nm 1 [ liftLit narrowInt64Lit ]

   Word8ToWordOp  -> mkPrimOpRule nm 1 [ liftLitPlatform convertToWordLit
                                       , extendNarrowPassthrough WordToWord8Op 0xFF
                                       ]
   Word16ToWordOp -> mkPrimOpRule nm 1 [ liftLitPlatform convertToWordLit
                                       , extendNarrowPassthrough WordToWord16Op 0xFFFF
                                       ]
   Word32ToWordOp -> mkPrimOpRule nm 1 [ liftLitPlatform convertToWordLit
                                       , extendNarrowPassthrough WordToWord32Op 0xFFFFFFFF
                                       ]
   Word64ToWordOp -> mkPrimOpRule nm 1 [ liftLitPlatform convertToWordLit ]

   WordToWord8Op  -> mkPrimOpRule nm 1 [ liftLit narrowWord8Lit
                                       , narrowSubsumesAnd WordAndOp WordToWord8Op 8 ]
   WordToWord16Op -> mkPrimOpRule nm 1 [ liftLit narrowWord16Lit
                                       , narrowSubsumesAnd WordAndOp WordToWord16Op 16 ]
   WordToWord32Op -> mkPrimOpRule nm 1 [ liftLit narrowWord32Lit
                                       , narrowSubsumesAnd WordAndOp WordToWord32Op 32 ]
   WordToWord64Op -> mkPrimOpRule nm 1 [ liftLit narrowWord64Lit ]

   Word8ToInt8Op  -> mkPrimOpRule nm 1 [ liftLitPlatform (litNumCoerce LitNumInt8) ]
   Int8ToWord8Op  -> mkPrimOpRule nm 1 [ liftLitPlatform (litNumCoerce LitNumWord8) ]
   Word16ToInt16Op-> mkPrimOpRule nm 1 [ liftLitPlatform (litNumCoerce LitNumInt16) ]
   Int16ToWord16Op-> mkPrimOpRule nm 1 [ liftLitPlatform (litNumCoerce LitNumWord16) ]
   Word32ToInt32Op-> mkPrimOpRule nm 1 [ liftLitPlatform (litNumCoerce LitNumInt32) ]
   Int32ToWord32Op-> mkPrimOpRule nm 1 [ liftLitPlatform (litNumCoerce LitNumWord32) ]
   Word64ToInt64Op-> mkPrimOpRule nm 1 [ liftLitPlatform (litNumCoerce LitNumInt64) ]
   Int64ToWord64Op-> mkPrimOpRule nm 1 [ liftLitPlatform (litNumCoerce LitNumWord64) ]

   WordToIntOp    -> mkPrimOpRule nm 1 [ liftLitPlatform (litNumCoerce LitNumInt) ]
   IntToWordOp    -> mkPrimOpRule nm 1 [ liftLitPlatform (litNumCoerce LitNumWord) ]

   Narrow8IntOp   -> mkPrimOpRule nm 1 [ liftLitPlatform (litNumNarrow LitNumInt8)
                                       , subsumedByPrimOp Narrow8IntOp
                                       , Narrow8IntOp `subsumesPrimOp` Narrow16IntOp
                                       , Narrow8IntOp `subsumesPrimOp` Narrow32IntOp
                                       , narrowSubsumesAnd IntAndOp Narrow8IntOp 8 ]
   Narrow16IntOp  -> mkPrimOpRule nm 1 [ liftLitPlatform (litNumNarrow LitNumInt16)
                                       , subsumedByPrimOp Narrow8IntOp
                                       , subsumedByPrimOp Narrow16IntOp
                                       , Narrow16IntOp `subsumesPrimOp` Narrow32IntOp
                                       , narrowSubsumesAnd IntAndOp Narrow16IntOp 16 ]
   Narrow32IntOp  -> mkPrimOpRule nm 1 [ liftLitPlatform (litNumNarrow LitNumInt32)
                                       , subsumedByPrimOp Narrow8IntOp
                                       , subsumedByPrimOp Narrow16IntOp
                                       , subsumedByPrimOp Narrow32IntOp
                                       , removeOp32
                                       , narrowSubsumesAnd IntAndOp Narrow32IntOp 32 ]
   Narrow8WordOp  -> mkPrimOpRule nm 1 [ liftLitPlatform (litNumNarrow LitNumWord8)
                                       , subsumedByPrimOp Narrow8WordOp
                                       , Narrow8WordOp `subsumesPrimOp` Narrow16WordOp
                                       , Narrow8WordOp `subsumesPrimOp` Narrow32WordOp
                                       , narrowSubsumesAnd WordAndOp Narrow8WordOp 8 ]
   Narrow16WordOp -> mkPrimOpRule nm 1 [ liftLitPlatform (litNumNarrow LitNumWord16)
                                       , subsumedByPrimOp Narrow8WordOp
                                       , subsumedByPrimOp Narrow16WordOp
                                       , Narrow16WordOp `subsumesPrimOp` Narrow32WordOp
                                       , narrowSubsumesAnd WordAndOp Narrow16WordOp 16 ]
   Narrow32WordOp -> mkPrimOpRule nm 1 [ liftLitPlatform (litNumNarrow LitNumWord32)
                                       , subsumedByPrimOp Narrow8WordOp
                                       , subsumedByPrimOp Narrow16WordOp
                                       , subsumedByPrimOp Narrow32WordOp
                                       , removeOp32
                                       , narrowSubsumesAnd WordAndOp Narrow32WordOp 32 ]

   OrdOp          -> mkPrimOpRule nm 1 [ liftLit charToIntLit
                                       , semiInversePrimOp ChrOp ]
   ChrOp          -> mkPrimOpRule nm 1 [ do [Lit lit] <- getArgs
                                            guard (litFitsInChar lit)
                                            liftLit intToCharLit
                                       , semiInversePrimOp OrdOp ]
   FloatToIntOp    -> mkPrimOpRule nm 1 [ liftLit floatToIntLit ]
   IntToFloatOp    -> mkPrimOpRule nm 1 [ liftLit intToFloatLit ]
   DoubleToIntOp   -> mkPrimOpRule nm 1 [ liftLit doubleToIntLit ]
   IntToDoubleOp   -> mkPrimOpRule nm 1 [ liftLit intToDoubleLit ]
   -- SUP: Not sure what the standard says about precision in the following 2 cases
   FloatToDoubleOp -> mkPrimOpRule nm 1 [ liftLit floatToDoubleLit ]
   DoubleToFloatOp -> mkPrimOpRule nm 1 [ liftLit doubleToFloatLit ]

   -- Float
   FloatAddOp        -> mkPrimOpRule nm 2 [ binaryLit (floatOp2 (+))
                                          , identity zerof ]
   FloatSubOp        -> mkPrimOpRule nm 2 [ binaryLit (floatOp2 (-))
                                          , rightIdentity zerof ]
   FloatMulOp        -> mkPrimOpRule nm 2 [ binaryLit (floatOp2 (*))
                                          , identity onef
                                          , strengthReduction twof FloatAddOp  ]
             -- zeroElem zerof doesn't hold because of NaN
   FloatDivOp        -> mkPrimOpRule nm 2 [ guardFloatDiv >> binaryLit (floatOp2 (/))
                                          , rightIdentity onef ]
   FloatNegOp        -> mkPrimOpRule nm 1 [ unaryLit negOp
                                          , semiInversePrimOp FloatNegOp ]
   FloatDecode_IntOp -> mkPrimOpRule nm 1 [ unaryLit floatDecodeOp ]

   -- Double
   DoubleAddOp          -> mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (+))
                                             , identity zerod ]
   DoubleSubOp          -> mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (-))
                                             , rightIdentity zerod ]
   DoubleMulOp          -> mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (*))
                                             , identity oned
                                             , strengthReduction twod DoubleAddOp  ]
              -- zeroElem zerod doesn't hold because of NaN
   DoubleDivOp          -> mkPrimOpRule nm 2 [ guardDoubleDiv >> binaryLit (doubleOp2 (/))
                                             , rightIdentity oned ]
   DoubleNegOp          -> mkPrimOpRule nm 1 [ unaryLit negOp
                                             , semiInversePrimOp DoubleNegOp ]
   DoubleDecode_Int64Op -> mkPrimOpRule nm 1 [ unaryLit doubleDecodeOp ]

   -- Relational operators, equality

   Int8EqOp   -> mkRelOpRule nm (==) [ litEq True ]
   Int8NeOp   -> mkRelOpRule nm (/=) [ litEq False ]

   Int16EqOp  -> mkRelOpRule nm (==) [ litEq True ]
   Int16NeOp  -> mkRelOpRule nm (/=) [ litEq False ]

   Int32EqOp  -> mkRelOpRule nm (==) [ litEq True ]
   Int32NeOp  -> mkRelOpRule nm (/=) [ litEq False ]

   Int64EqOp  -> mkRelOpRule nm (==) [ litEq True ]
   Int64NeOp  -> mkRelOpRule nm (/=) [ litEq False ]

   IntEqOp    -> mkRelOpRule nm (==) [ litEq True ]
   IntNeOp    -> mkRelOpRule nm (/=) [ litEq False ]

   Word8EqOp  -> mkRelOpRule nm (==) [ litEq True ]
   Word8NeOp  -> mkRelOpRule nm (/=) [ litEq False ]

   Word16EqOp -> mkRelOpRule nm (==) [ litEq True ]
   Word16NeOp -> mkRelOpRule nm (/=) [ litEq False ]

   Word32EqOp -> mkRelOpRule nm (==) [ litEq True ]
   Word32NeOp -> mkRelOpRule nm (/=) [ litEq False ]

   Word64EqOp -> mkRelOpRule nm (==) [ litEq True ]
   Word64NeOp -> mkRelOpRule nm (/=) [ litEq False ]

   WordEqOp   -> mkRelOpRule nm (==) [ litEq True ]
   WordNeOp   -> mkRelOpRule nm (/=) [ litEq False ]

   CharEqOp   -> mkRelOpRule nm (==) [ litEq True ]
   CharNeOp   -> mkRelOpRule nm (/=) [ litEq False ]

   FloatEqOp  -> mkFloatingRelOpRule nm (==)
   FloatNeOp  -> mkFloatingRelOpRule nm (/=)

   DoubleEqOp -> mkFloatingRelOpRule nm (==)
   DoubleNeOp -> mkFloatingRelOpRule nm (/=)

   -- Relational operators, ordering

   Int8GtOp   -> mkRelOpRule nm (>)  [ boundsCmp Gt ]
   Int8GeOp   -> mkRelOpRule nm (>=) [ boundsCmp Ge ]
   Int8LeOp   -> mkRelOpRule nm (<=) [ boundsCmp Le ]
   Int8LtOp   -> mkRelOpRule nm (<)  [ boundsCmp Lt ]

   Int16GtOp  -> mkRelOpRule nm (>)  [ boundsCmp Gt ]
   Int16GeOp  -> mkRelOpRule nm (>=) [ boundsCmp Ge ]
   Int16LeOp  -> mkRelOpRule nm (<=) [ boundsCmp Le ]
   Int16LtOp  -> mkRelOpRule nm (<)  [ boundsCmp Lt ]

   Int32GtOp  -> mkRelOpRule nm (>)  [ boundsCmp Gt ]
   Int32GeOp  -> mkRelOpRule nm (>=) [ boundsCmp Ge ]
   Int32LeOp  -> mkRelOpRule nm (<=) [ boundsCmp Le ]
   Int32LtOp  -> mkRelOpRule nm (<)  [ boundsCmp Lt ]

   Int64GtOp  -> mkRelOpRule nm (>)  [ boundsCmp Gt ]
   Int64GeOp  -> mkRelOpRule nm (>=) [ boundsCmp Ge ]
   Int64LeOp  -> mkRelOpRule nm (<=) [ boundsCmp Le ]
   Int64LtOp  -> mkRelOpRule nm (<)  [ boundsCmp Lt ]

   IntGtOp    -> mkRelOpRule nm (>)  [ boundsCmp Gt ]
   IntGeOp    -> mkRelOpRule nm (>=) [ boundsCmp Ge ]
   IntLeOp    -> mkRelOpRule nm (<=) [ boundsCmp Le ]
   IntLtOp    -> mkRelOpRule nm (<)  [ boundsCmp Lt ]

   Word8GtOp  -> mkRelOpRule nm (>)  [ boundsCmp Gt ]
   Word8GeOp  -> mkRelOpRule nm (>=) [ boundsCmp Ge ]
   Word8LeOp  -> mkRelOpRule nm (<=) [ boundsCmp Le ]
   Word8LtOp  -> mkRelOpRule nm (<)  [ boundsCmp Lt ]

   Word16GtOp -> mkRelOpRule nm (>)  [ boundsCmp Gt ]
   Word16GeOp -> mkRelOpRule nm (>=) [ boundsCmp Ge ]
   Word16LeOp -> mkRelOpRule nm (<=) [ boundsCmp Le ]
   Word16LtOp -> mkRelOpRule nm (<)  [ boundsCmp Lt ]

   Word32GtOp -> mkRelOpRule nm (>)  [ boundsCmp Gt ]
   Word32GeOp -> mkRelOpRule nm (>=) [ boundsCmp Ge ]
   Word32LeOp -> mkRelOpRule nm (<=) [ boundsCmp Le ]
   Word32LtOp -> mkRelOpRule nm (<)  [ boundsCmp Lt ]

   Word64GtOp -> mkRelOpRule nm (>)  [ boundsCmp Gt ]
   Word64GeOp -> mkRelOpRule nm (>=) [ boundsCmp Ge ]
   Word64LeOp -> mkRelOpRule nm (<=) [ boundsCmp Le ]
   Word64LtOp -> mkRelOpRule nm (<)  [ boundsCmp Lt ]

   WordGtOp   -> mkRelOpRule nm (>)  [ boundsCmp Gt ]
   WordGeOp   -> mkRelOpRule nm (>=) [ boundsCmp Ge ]
   WordLeOp   -> mkRelOpRule nm (<=) [ boundsCmp Le ]
   WordLtOp   -> mkRelOpRule nm (<)  [ boundsCmp Lt ]

   CharGtOp   -> mkRelOpRule nm (>)  [ boundsCmp Gt ]
   CharGeOp   -> mkRelOpRule nm (>=) [ boundsCmp Ge ]
   CharLeOp   -> mkRelOpRule nm (<=) [ boundsCmp Le ]
   CharLtOp   -> mkRelOpRule nm (<)  [ boundsCmp Lt ]

   FloatGtOp  -> mkFloatingRelOpRule nm (>)
   FloatGeOp  -> mkFloatingRelOpRule nm (>=)
   FloatLeOp  -> mkFloatingRelOpRule nm (<=)
   FloatLtOp  -> mkFloatingRelOpRule nm (<)

   DoubleGtOp -> mkFloatingRelOpRule nm (>)
   DoubleGeOp -> mkFloatingRelOpRule nm (>=)
   DoubleLeOp -> mkFloatingRelOpRule nm (<=)
   DoubleLtOp -> mkFloatingRelOpRule nm (<)

   -- Misc

   AddrAddOp  -> mkPrimOpRule nm 2 [ rightIdentityPlatform zeroi ]

   SeqOp      -> mkPrimOpRule nm 4 [ seqRule ]
   SparkOp    -> mkPrimOpRule nm 4 [ sparkRule ]

   _          -> Nothing

{-
************************************************************************
*                                                                      *
\subsection{Doing the business}
*                                                                      *
************************************************************************
-}

-- useful shorthands
mkPrimOpRule :: Name -> Int -> [RuleM CoreExpr] -> Maybe CoreRule
mkPrimOpRule nm arity rules = Just $ mkBasicRule nm arity (msum rules)

mkRelOpRule :: Name -> (forall a . Ord a => a -> a -> Bool)
            -> [RuleM CoreExpr] -> Maybe CoreRule
mkRelOpRule nm cmp extra
  = mkPrimOpRule nm 2 $
    binaryCmpLit cmp : equal_rule : extra
  where
        -- x `cmp` x does not depend on x, so
        -- compute it for the arbitrary value 'True'
        -- and use that result
    equal_rule = do { equalArgs
                    ; platform <- getPlatform
                    ; return (if cmp True True
                              then trueValInt  platform
                              else falseValInt platform) }

{- Note [Rules for floating-point comparisons]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need different rules for floating-point values because for floats
it is not true that x = x (for NaNs); so we do not want the equal_rule
rule that mkRelOpRule uses.

Note also that, in the case of equality/inequality, we do /not/
want to switch to a case-expression.  For example, we do not want
to convert
   case (eqFloat# x 3.8#) of
     True -> this
     False -> that
to
  case x of
    3.8#::Float# -> this
    _            -> that
See #9238.  Reason: comparing floating-point values for equality
delicate, and we don't want to implement that delicacy in the code for
case expressions.  So we make it an invariant of Core that a case
expression never scrutinises a Float# or Double#.

This transformation is what the litEq rule does;
see Note [The litEq rule: converting equality to case].
So we /refrain/ from using litEq for mkFloatingRelOpRule.
-}

mkFloatingRelOpRule :: Name -> (forall a . Ord a => a -> a -> Bool)
                    -> Maybe CoreRule
-- See Note [Rules for floating-point comparisons]
mkFloatingRelOpRule nm cmp
  = mkPrimOpRule nm 2 [binaryCmpLit cmp]

-- common constants
zeroi, onei, zerow, onew :: Platform -> Literal
zeroi platform = mkLitInt  platform 0
onei  platform = mkLitInt  platform 1
zerow platform = mkLitWord platform 0
onew  platform = mkLitWord platform 1

zeroI8, oneI8, zeroW8, oneW8 :: Literal
zeroI8 = mkLitInt8  0
oneI8  = mkLitInt8  1
zeroW8 = mkLitWord8 0
oneW8  = mkLitWord8 1

zeroI16, oneI16, zeroW16, oneW16 :: Literal
zeroI16 = mkLitInt16  0
oneI16  = mkLitInt16  1
zeroW16 = mkLitWord16 0
oneW16  = mkLitWord16 1

zeroI32, oneI32, zeroW32, oneW32 :: Literal
zeroI32 = mkLitInt32  0
oneI32  = mkLitInt32  1
zeroW32 = mkLitWord32 0
oneW32  = mkLitWord32 1

zeroI64, oneI64, zeroW64, oneW64 :: Literal
zeroI64 = mkLitInt64  0
oneI64  = mkLitInt64  1
zeroW64 = mkLitWord64 0
oneW64  = mkLitWord64 1

zerof, onef, twof, zerod, oned, twod :: Literal
zerof = mkLitFloat 0.0
onef  = mkLitFloat 1.0
twof  = mkLitFloat 2.0
zerod = mkLitDouble 0.0
oned  = mkLitDouble 1.0
twod  = mkLitDouble 2.0

cmpOp :: Platform -> (forall a . Ord a => a -> a -> Bool)
      -> Literal -> Literal -> Maybe CoreExpr
cmpOp platform cmp = go
  where
    done True  = Just $ trueValInt  platform
    done False = Just $ falseValInt platform

    -- These compares are at different types
    go (LitChar i1)   (LitChar i2)   = done (i1 `cmp` i2)
    go (LitFloat i1)  (LitFloat i2)  = done (i1 `cmp` i2)
    go (LitDouble i1) (LitDouble i2) = done (i1 `cmp` i2)
    go (LitNumber nt1 i1) (LitNumber nt2 i2)
      | nt1 /= nt2 = Nothing
      | otherwise  = done (i1 `cmp` i2)
    go _               _               = Nothing

--------------------------

negOp :: RuleOpts -> Literal -> Maybe CoreExpr  -- Negate
negOp env = \case
   (LitFloat 0.0)  -> Nothing  -- can't represent -0.0 as a Rational
   (LitFloat f)    -> Just (mkFloatVal env (-f))
   (LitDouble 0.0) -> Nothing
   (LitDouble d)   -> Just (mkDoubleVal env (-d))
   (LitNumber nt i)
      | litNumIsSigned nt -> Just (Lit (mkLitNumberWrap (roPlatform env) nt (-i)))
   _ -> Nothing

complementOp :: RuleOpts -> Literal -> Maybe CoreExpr  -- Binary complement
complementOp env (LitNumber nt i) =
   Just (Lit (mkLitNumberWrap (roPlatform env) nt (complement i)))
complementOp _      _            = Nothing

int8Op2
  :: (Integral a, Integral b)
  => (a -> b -> Integer)
  -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
int8Op2 op _ (LitNumber LitNumInt8 i1) (LitNumber LitNumInt8 i2) =
  int8Result (fromInteger i1 `op` fromInteger i2)
int8Op2 _ _ _ _ = Nothing

int16Op2
  :: (Integral a, Integral b)
  => (a -> b -> Integer)
  -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
int16Op2 op _ (LitNumber LitNumInt16 i1) (LitNumber LitNumInt16 i2) =
  int16Result (fromInteger i1 `op` fromInteger i2)
int16Op2 _ _ _ _ = Nothing

int32Op2
  :: (Integral a, Integral b)
  => (a -> b -> Integer)
  -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
int32Op2 op _ (LitNumber LitNumInt32 i1) (LitNumber LitNumInt32 i2) =
  int32Result (fromInteger i1 `op` fromInteger i2)
int32Op2 _ _ _ _ = Nothing

int64Op2
  :: (Integral a, Integral b)
  => (a -> b -> Integer)
  -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
int64Op2 op _ (LitNumber LitNumInt64 i1) (LitNumber LitNumInt64 i2) =
  int64Result (fromInteger i1 `op` fromInteger i2)
int64Op2 _ _ _ _ = Nothing

intOp2 :: (Integral a, Integral b)
       => (a -> b -> Integer)
       -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
intOp2 = intOp2' . const

intOp2' :: (Integral a, Integral b)
        => (RuleOpts -> a -> b -> Integer)
        -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
intOp2' op env (LitNumber LitNumInt i1) (LitNumber LitNumInt i2) =
  let o = op env
  in  intResult (roPlatform env) (fromInteger i1 `o` fromInteger i2)
intOp2' _ _ _ _ = Nothing

intOpC2 :: (Integral a, Integral b)
        => (a -> b -> Integer)
        -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
intOpC2 op env (LitNumber LitNumInt i1) (LitNumber LitNumInt i2) =
  intCResult (roPlatform env) (fromInteger i1 `op` fromInteger i2)
intOpC2 _ _ _ _ = Nothing

shiftRightLogical :: forall t. (Integral t, Bits t) => Integer -> Int -> Integer
shiftRightLogical x n = fromIntegral (fromInteger x `shiftR` n :: t)

-- | Shift right, putting zeros in rather than sign-propagating as
-- 'Bits.shiftR' would do. Do this by converting to the appropriate Word
-- and back. Obviously this won't work for too-big values, but its ok as
-- we use it here.
shiftRightLogicalNative :: Platform -> Integer -> Int -> Integer
shiftRightLogicalNative platform =
    case platformWordSize platform of
      PW4 -> shiftRightLogical @Word32
      PW8 -> shiftRightLogical @Word64

--------------------------
retLit :: (Platform -> Literal) -> RuleM CoreExpr
retLit l = do platform <- getPlatform
              return $ Lit $ l platform

retLitNoC :: (Platform -> Literal) -> RuleM CoreExpr
retLitNoC l = do platform <- getPlatform
                 let lit = l platform
                 let ty = literalType lit
                 return $ mkCoreUbxTup [ty, ty] [Lit lit, Lit (zeroi platform)]

word8Op2
  :: (Integral a, Integral b)
  => (a -> b -> Integer)
  -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
word8Op2 op _ (LitNumber LitNumWord8 i1) (LitNumber LitNumWord8 i2) =
  word8Result (fromInteger i1 `op` fromInteger i2)
word8Op2 _ _ _ _ = Nothing

word16Op2
  :: (Integral a, Integral b)
  => (a -> b -> Integer)
  -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
word16Op2 op _ (LitNumber LitNumWord16 i1) (LitNumber LitNumWord16 i2) =
  word16Result (fromInteger i1 `op` fromInteger i2)
word16Op2 _ _ _ _ = Nothing

word32Op2
  :: (Integral a, Integral b)
  => (a -> b -> Integer)
  -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
word32Op2 op _ (LitNumber LitNumWord32 i1) (LitNumber LitNumWord32 i2) =
  word32Result (fromInteger i1 `op` fromInteger i2)
word32Op2 _ _ _ _ = Nothing

word64Op2
  :: (Integral a, Integral b)
  => (a -> b -> Integer)
  -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
word64Op2 op _ (LitNumber LitNumWord64 i1) (LitNumber LitNumWord64 i2) =
  word64Result (fromInteger i1 `op` fromInteger i2)
word64Op2 _ _ _ _ = Nothing

wordOp2 :: (Integral a, Integral b)
        => (a -> b -> Integer)
        -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
wordOp2 op env (LitNumber LitNumWord w1) (LitNumber LitNumWord w2)
    = wordResult (roPlatform env) (fromInteger w1 `op` fromInteger w2)
wordOp2 _ _ _ _ = Nothing

wordOpC2 :: (Integral a, Integral b)
        => (a -> b -> Integer)
        -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr
wordOpC2 op env (LitNumber LitNumWord w1) (LitNumber LitNumWord w2) =
  wordCResult (roPlatform env) (fromInteger w1 `op` fromInteger w2)
wordOpC2 _ _ _ _ = Nothing

shiftRule :: LitNumType
          -> (Platform -> Integer -> Int -> Integer)
          -> RuleM CoreExpr
-- Shifts take an Int; hence third arg of op is Int
-- Used for shift primops
--    IntSllOp, IntSraOp, IntSrlOp :: Int# -> Int# -> Int#
--    SllOp, SrlOp                 :: Word# -> Int# -> Word#
shiftRule lit_num_ty shift_op = do
  platform <- getPlatform
  [e1, Lit (LitNumber LitNumInt shift_len)] <- getArgs

  bit_size <- case litNumBitSize platform lit_num_ty of
   Nothing -> mzero
   Just bs -> pure (toInteger bs)

  case e1 of
    _ | shift_len == 0 -> pure e1

      -- See Note [Guarding against silly shifts]
    _ | shift_len < 0 || shift_len > bit_size
      -> pure $ Lit $ mkLitNumberWrap platform lit_num_ty 0
           -- Be sure to use lit_num_ty here, so we get a correctly typed zero.
           -- See #18589

    Lit (LitNumber nt x)
       | 0 < shift_len && shift_len <= bit_size
       -> assert (nt == lit_num_ty) $
          let op = shift_op platform
              -- Do the shift at type Integer, but shift length is Int.
              -- Using host's Int is ok even if target's Int has a different size
              -- because we test that shift_len <= bit_size (which is at most 64)
              y  = x `op` fromInteger shift_len
          in pure $ Lit $ mkLitNumberWrap platform nt y

    _ -> mzero

--------------------------
floatOp2 :: (Rational -> Rational -> Rational)
         -> RuleOpts -> Literal -> Literal
         -> Maybe (Expr CoreBndr)
floatOp2 op env (LitFloat f1) (LitFloat f2)
  = Just (mkFloatVal env (f1 `op` f2))
floatOp2 _ _ _ _ = Nothing

--------------------------
floatDecodeOp :: RuleOpts -> Literal -> Maybe CoreExpr
floatDecodeOp env (LitFloat ((decodeFloat . fromRational @Float) -> (m, e)))
  = Just $ mkCoreUbxTup [intPrimTy, intPrimTy]
                        [ mkIntVal (roPlatform env) (toInteger m)
                        , mkIntVal (roPlatform env) (toInteger e) ]
floatDecodeOp _   _
  = Nothing

--------------------------
doubleOp2 :: (Rational -> Rational -> Rational)
          -> RuleOpts -> Literal -> Literal
          -> Maybe (Expr CoreBndr)
doubleOp2 op env (LitDouble f1) (LitDouble f2)
  = Just (mkDoubleVal env (f1 `op` f2))
doubleOp2 _ _ _ _ = Nothing

--------------------------
doubleDecodeOp :: RuleOpts -> Literal -> Maybe CoreExpr
doubleDecodeOp env (LitDouble ((decodeFloat . fromRational @Double) -> (m, e)))
  = Just $ mkCoreUbxTup [iNT64Ty, intPrimTy]
                        [ Lit (mkLitINT64 (toInteger m))
                        , mkIntVal platform (toInteger e) ]
  where
    platform = roPlatform env
    (iNT64Ty, mkLitINT64)
      | platformWordSizeInBits platform < 64
      = (int64PrimTy, mkLitInt64Wrap)
      | otherwise
      = (intPrimTy  , mkLitIntWrap platform)
doubleDecodeOp _   _
  = Nothing

--------------------------
{- Note [The litEq rule: converting equality to case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This stuff turns
     n ==# 3#
into
     case n of
       3# -> True
       m  -> False

This is a Good Thing, because it allows case-of case things
to happen, and case-default absorption to happen.  For
example:

     if (n ==# 3#) || (n ==# 4#) then e1 else e2
will transform to
     case n of
       3# -> e1
       4# -> e1
       m  -> e2
(modulo the usual precautions to avoid duplicating e1)
-}

litEq :: Bool  -- True <=> equality, False <=> inequality
      -> RuleM CoreExpr
litEq is_eq = msum
  [ do [Lit lit, expr] <- getArgs
       platform <- getPlatform
       do_lit_eq platform lit expr
  , do [expr, Lit lit] <- getArgs
       platform <- getPlatform
       do_lit_eq platform lit expr ]
  where
    do_lit_eq platform lit expr = do
      guard (not (litIsLifted lit))
      return (mkWildCase expr (unrestricted $ literalType lit) intPrimTy
                    [ Alt DEFAULT      [] val_if_neq
                    , Alt (LitAlt lit) [] val_if_eq])
      where
        val_if_eq  | is_eq     = trueValInt  platform
                   | otherwise = falseValInt platform
        val_if_neq | is_eq     = falseValInt platform
                   | otherwise = trueValInt  platform


-- | Check if there is comparison with minBound or maxBound, that is
-- always true or false. For instance, an Int cannot be smaller than its
-- minBound, so we can replace such comparison with False.
boundsCmp :: Comparison -> RuleM CoreExpr
boundsCmp op = do
  platform <- getPlatform
  [a, b] <- getArgs
  liftMaybe $ mkRuleFn platform op a b

data Comparison = Gt | Ge | Lt | Le

mkRuleFn :: Platform -> Comparison -> CoreExpr -> CoreExpr -> Maybe CoreExpr
mkRuleFn platform Gt (Lit lit) _ | isMinBound platform lit = Just $ falseValInt platform
mkRuleFn platform Le (Lit lit) _ | isMinBound platform lit = Just $ trueValInt  platform
mkRuleFn platform Ge _ (Lit lit) | isMinBound platform lit = Just $ trueValInt  platform
mkRuleFn platform Lt _ (Lit lit) | isMinBound platform lit = Just $ falseValInt platform
mkRuleFn platform Ge (Lit lit) _ | isMaxBound platform lit = Just $ trueValInt  platform
mkRuleFn platform Lt (Lit lit) _ | isMaxBound platform lit = Just $ falseValInt platform
mkRuleFn platform Gt _ (Lit lit) | isMaxBound platform lit = Just $ falseValInt platform
mkRuleFn platform Le _ (Lit lit) | isMaxBound platform lit = Just $ trueValInt  platform
mkRuleFn _ _ _ _                                           = Nothing

-- | Create an Int literal expression while ensuring the given Integer is in the
-- target Int range
int8Result :: Integer -> Maybe CoreExpr
int8Result result = Just (int8Result' result)

int8Result' :: Integer -> CoreExpr
int8Result' result = Lit (mkLitInt8Wrap result)

-- | Create an Int literal expression while ensuring the given Integer is in the
-- target Int range
int16Result :: Integer -> Maybe CoreExpr
int16Result result = Just (int16Result' result)

int16Result' :: Integer -> CoreExpr
int16Result' result = Lit (mkLitInt16Wrap result)

-- | Create an Int literal expression while ensuring the given Integer is in the
-- target Int range
int32Result :: Integer -> Maybe CoreExpr
int32Result result = Just (int32Result' result)

int32Result' :: Integer -> CoreExpr
int32Result' result = Lit (mkLitInt32Wrap result)

intResult :: Platform -> Integer -> Maybe CoreExpr
intResult platform result = Just (intResult' platform result)

intResult' :: Platform -> Integer -> CoreExpr
intResult' platform result = Lit (mkLitIntWrap platform result)

-- | Create an unboxed pair of an Int literal expression, ensuring the given
-- Integer is in the target Int range and the corresponding overflow flag
-- (@0#@/@1#@) if it wasn't.
intCResult :: Platform -> Integer -> Maybe CoreExpr
intCResult platform result = Just (mkPair [Lit lit, Lit c])
  where
    mkPair = mkCoreUbxTup [intPrimTy, intPrimTy]
    (lit, b) = mkLitIntWrapC platform result
    c = if b then onei platform else zeroi platform

-- | Create a Word literal expression while ensuring the given Integer is in the
-- target Word range
word8Result :: Integer -> Maybe CoreExpr
word8Result result = Just (word8Result' result)

word8Result' :: Integer -> CoreExpr
word8Result' result = Lit (mkLitWord8Wrap result)

-- | Create a Word literal expression while ensuring the given Integer is in the
-- target Word range
word16Result :: Integer -> Maybe CoreExpr
word16Result result = Just (word16Result' result)

word16Result' :: Integer -> CoreExpr
word16Result' result = Lit (mkLitWord16Wrap result)

-- | Create a Word literal expression while ensuring the given Integer is in the
-- target Word range
word32Result :: Integer -> Maybe CoreExpr
word32Result result = Just (word32Result' result)

word32Result' :: Integer -> CoreExpr
word32Result' result = Lit (mkLitWord32Wrap result)

-- | Create a Word literal expression while ensuring the given Integer is in the
-- target Word range
wordResult :: Platform -> Integer -> Maybe CoreExpr
wordResult platform result = Just (wordResult' platform result)

wordResult' :: Platform -> Integer -> CoreExpr
wordResult' platform result = Lit (mkLitWordWrap platform result)

-- | Create an unboxed pair of a Word literal expression, ensuring the given
-- Integer is in the target Word range and the corresponding carry flag
-- (@0#@/@1#@) if it wasn't.
wordCResult :: Platform -> Integer -> Maybe CoreExpr
wordCResult platform result = Just (mkPair [Lit lit, Lit c])
  where
    mkPair = mkCoreUbxTup [wordPrimTy, intPrimTy]
    (lit, b) = mkLitWordWrapC platform result
    c = if b then onei platform else zeroi platform

int64Result :: Integer -> Maybe CoreExpr
int64Result result = Just (int64Result' result)

int64Result' :: Integer -> CoreExpr
int64Result' result = Lit (mkLitInt64Wrap result)

word64Result :: Integer -> Maybe CoreExpr
word64Result result = Just (word64Result' result)

word64Result' :: Integer -> CoreExpr
word64Result' result = Lit (mkLitWord64Wrap result)


-- | 'ambiant (primop x) = x', but not nececesarily 'primop (ambient x) = x'.
semiInversePrimOp :: PrimOp -> RuleM CoreExpr
semiInversePrimOp primop = do
  [Var primop_id `App` e] <- getArgs
  matchPrimOpId primop primop_id
  return e

subsumesPrimOp :: PrimOp -> PrimOp -> RuleM CoreExpr
this `subsumesPrimOp` that = do
  [Var primop_id `App` e] <- getArgs
  matchPrimOpId that primop_id
  return (Var (primOpId this) `App` e)

subsumedByPrimOp :: PrimOp -> RuleM CoreExpr
subsumedByPrimOp primop = do
  [e@(Var primop_id `App` _)] <- getArgs
  matchPrimOpId primop primop_id
  return e

-- | Transform `extendWordN (narrowWordN x)` into `x .&. 0xFF..FF`
extendNarrowPassthrough :: PrimOp -> Integer -> RuleM CoreExpr
extendNarrowPassthrough narrow_primop n = do
  [Var primop_id `App` x] <- getArgs
  matchPrimOpId narrow_primop primop_id
  return (Var (primOpId WordAndOp) `App` x `App` Lit (LitNumber LitNumWord n))

-- | narrow subsumes bitwise `and` with full mask (cf #16402):
--
--       narrowN (x .&. m)
--       m .&. (2^N-1) = 2^N-1
--       ==> narrowN x
--
-- e.g.  narrow16 (x .&. 0xFFFF)
--       ==> narrow16 x
--
narrowSubsumesAnd :: PrimOp -> PrimOp -> Int -> RuleM CoreExpr
narrowSubsumesAnd and_primop narrw n = do
  [Var primop_id `App` x `App` y] <- getArgs
  matchPrimOpId and_primop primop_id
  let mask = bit n -1
      g v (Lit (LitNumber _ m)) = do
         guard (m .&. mask == mask)
         return (Var (primOpId narrw) `App` v)
      g _ _ = mzero
  g x y <|> g y x

idempotent :: RuleM CoreExpr
idempotent = do [e1, e2] <- getArgs
                guard $ cheapEqExpr e1 e2
                return e1

-- | Match
--       (op (op v e) e)
--    or (op e (op v e))
--    or (op (op e v) e)
--    or (op e (op e v))
--  and return the innermost (op v e) or (op e v).
sameArgIdempotentCommut :: PrimOp -> RuleM CoreExpr
sameArgIdempotentCommut op = do
  [a,b] <- getArgs
  case (a,b) of
    (is_binop op -> Just (e1,e2), e3)
      | cheapEqExpr e2 e3 -> return a
      | cheapEqExpr e1 e3 -> return a
    (e3, is_binop op -> Just (e1,e2))
      | cheapEqExpr e2 e3 -> return b
      | cheapEqExpr e1 e3 -> return b
    _ -> mzero

{-
Note [Guarding against silly shifts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this code:

  import Data.Bits( (.|.), shiftL )
  chunkToBitmap :: [Bool] -> Word32
  chunkToBitmap chunk = foldr (.|.) 0 [ 1 `shiftL` n | (True,n) <- zip chunk [0..] ]

This optimises to:
Shift.$wgo = \ (w_sCS :: GHC.Prim.Int#) (w1_sCT :: [GHC.Types.Bool]) ->
    case w1_sCT of _ {
      [] -> 0##;
      : x_aAW xs_aAX ->
        case x_aAW of _ {
          GHC.Types.False ->
            case w_sCS of wild2_Xh {
              __DEFAULT -> Shift.$wgo (GHC.Prim.+# wild2_Xh 1) xs_aAX;
              9223372036854775807 -> 0## };
          GHC.Types.True ->
            case GHC.Prim.>=# w_sCS 64 of _ {
              GHC.Types.False ->
                case w_sCS of wild3_Xh {
                  __DEFAULT ->
                    case Shift.$wgo (GHC.Prim.+# wild3_Xh 1) xs_aAX of ww_sCW { __DEFAULT ->
                      GHC.Prim.or# (GHC.Prim.narrow32Word#
                                      (GHC.Prim.uncheckedShiftL# 1## wild3_Xh))
                                   ww_sCW
                     };
                  9223372036854775807 ->
                    GHC.Prim.narrow32Word#
!!!!-->                  (GHC.Prim.uncheckedShiftL# 1## 9223372036854775807)
                };
              GHC.Types.True ->
                case w_sCS of wild3_Xh {
                  __DEFAULT -> Shift.$wgo (GHC.Prim.+# wild3_Xh 1) xs_aAX;
                  9223372036854775807 -> 0##
                } } } }

Note the massive shift on line "!!!!".  It can't happen, because we've checked
that w < 64, but the optimiser didn't spot that. We DO NOT want to constant-fold this!
Moreover, if the programmer writes (n `uncheckedShiftL` 9223372036854775807), we
can't constant fold it, but if it gets to the assembler we get
     Error: operand type mismatch for `shl'

So the best thing to do is to rewrite the shift with a call to error,
when the second arg is large. However, in general we cannot do this; consider
this case

    let x = I# (uncheckedIShiftL# n 80)
    in ...

Here x contains an invalid shift and consequently we would like to rewrite it
as follows:

    let x = I# (error "invalid shift")
    in ...

This was originally done in the fix to #16449 but this breaks the let-can-float
invariant (see Note [Core let-can-float invariant] in GHC.Core) as noted in #16742.
For the reasons discussed in Note [Checking versus non-checking
primops] (in the PrimOp module) there is no safe way to rewrite the argument of I#
such that it bottoms.

Consequently we instead take advantage of the fact that large shifts are
undefined behavior (see associated documentation in primops.txt.pp) and
transform the invalid shift into an "obviously incorrect" value.

There are two cases:

- Shifting fixed-width things: the primops IntSll, Sll, etc
  These are handled by shiftRule.

  We are happy to shift by any amount up to wordSize but no more.

- Shifting Bignums (Integer, Natural): these are handled by bignum_shift.

  Here we could in principle shift by any amount, but we arbitrary
  limit the shift to 4 bits; in particular we do not want shift by a
  huge amount, which can happen in code like that above.

The two cases are more different in their code paths that is comfortable,
but that is only a historical accident.


************************************************************************
*                                                                      *
\subsection{Vaguely generic functions}
*                                                                      *
************************************************************************
-}

mkBasicRule :: Name -> Int -> RuleM CoreExpr -> CoreRule
-- Gives the Rule the same name as the primop itself
mkBasicRule op_name n_args rm
  = BuiltinRule { ru_name  = occNameFS (nameOccName op_name),
                  ru_fn    = op_name,
                  ru_nargs = n_args,
                  ru_try   = runRuleM rm }

newtype RuleM r = RuleM
  { runRuleM :: RuleOpts -> InScopeEnv -> Id -> [CoreExpr] -> Maybe r }
  deriving (Functor)

instance Applicative RuleM where
    pure x = RuleM $ \_ _ _ _ -> Just x
    (<*>) = ap

instance Monad RuleM where
  RuleM f >>= g
    = RuleM $ \env iu fn args ->
              case f env iu fn args of
                Nothing -> Nothing
                Just r  -> runRuleM (g r) env iu fn args

instance MonadFail RuleM where
    fail _ = mzero

instance Alternative RuleM where
  empty = RuleM $ \_ _ _ _ -> Nothing
  RuleM f1 <|> RuleM f2 = RuleM $ \env iu fn args ->
    f1 env iu fn args <|> f2 env iu fn args

instance MonadPlus RuleM

getPlatform :: RuleM Platform
getPlatform = roPlatform <$> getRuleOpts

getWordSize :: RuleM PlatformWordSize
getWordSize = platformWordSize <$> getPlatform

getRuleOpts :: RuleM RuleOpts
getRuleOpts = RuleM $ \rule_opts _ _ _ -> Just rule_opts

liftMaybe :: Maybe a -> RuleM a
liftMaybe Nothing = mzero
liftMaybe (Just x) = return x

liftLit :: (Literal -> Literal) -> RuleM CoreExpr
liftLit f = liftLitPlatform (const f)

liftLitPlatform :: (Platform -> Literal -> Literal) -> RuleM CoreExpr
liftLitPlatform f = do
  platform <- getPlatform
  [Lit lit] <- getArgs
  return $ Lit (f platform lit)

removeOp32 :: RuleM CoreExpr
removeOp32 = do
  platform <- getPlatform
  case platformWordSize platform of
    PW4 -> do
      [e] <- getArgs
      return e
    PW8 ->
      mzero

getArgs :: RuleM [CoreExpr]
getArgs = RuleM $ \_ _ _ args -> Just args

getInScopeEnv :: RuleM InScopeEnv
getInScopeEnv = RuleM $ \_ iu _ _ -> Just iu

getFunction :: RuleM Id
getFunction = RuleM $ \_ _ fn _ -> Just fn

isLiteral :: CoreExpr -> RuleM Literal
isLiteral e = do
    env <- getInScopeEnv
    case exprIsLiteral_maybe env e of
        Nothing -> mzero
        Just l  -> pure l

-- | Match BigNat#, Integer and Natural literals
isBignumLiteral :: CoreExpr -> RuleM Integer
isBignumLiteral e = isNumberLiteral e <|> isIntegerLiteral e <|> isNaturalLiteral e

-- | Match numeric literals
isNumberLiteral :: CoreExpr -> RuleM Integer
isNumberLiteral e = isLiteral e >>= \case
  LitNumber _ x -> pure x
  _             -> mzero

-- | Match the application of a DataCon to a numeric literal.
--
-- Can be used to match e.g.:
--  IS 123#
--  IP bigNatLiteral
--  W# 123##
isLitNumConApp :: CoreExpr -> RuleM (DataCon,Integer)
isLitNumConApp e = do
  env <- getInScopeEnv
  case exprIsConApp_maybe env e of
    Just (_env,_fb,dc,_tys,[arg]) -> case exprIsLiteral_maybe env arg of
      Just (LitNumber _ i) -> pure (dc,i)
      _                    -> mzero
    _ -> mzero

isIntegerLiteral :: CoreExpr -> RuleM Integer
isIntegerLiteral e = do
  (dc,i) <- isLitNumConApp e
  if | dc == integerISDataCon -> pure i
     | dc == integerINDataCon -> pure (negate i)
     | dc == integerIPDataCon -> pure i
     | otherwise              -> mzero

isBigIntegerLiteral :: CoreExpr -> RuleM Integer
isBigIntegerLiteral e = do
  (dc,i) <- isLitNumConApp e
  if | dc == integerINDataCon -> pure (negate i)
     | dc == integerIPDataCon -> pure i
     | otherwise              -> mzero

isNaturalLiteral :: CoreExpr -> RuleM Integer
isNaturalLiteral e = do
  (dc,i) <- isLitNumConApp e
  if | dc == naturalNSDataCon -> pure i
     | dc == naturalNBDataCon -> pure i
     | otherwise              -> mzero

-- return the n-th argument of this rule, if it is a literal
-- argument indices start from 0
getLiteral :: Int -> RuleM Literal
getLiteral n = RuleM $ \_ _ _ exprs -> case drop n exprs of
  (Lit l:_) -> Just l
  _ -> Nothing

unaryLit :: (RuleOpts -> Literal -> Maybe CoreExpr) -> RuleM CoreExpr
unaryLit op = do
  env <- getRuleOpts
  [Lit l] <- getArgs
  liftMaybe $ op env (convFloating env l)

binaryLit :: (RuleOpts -> Literal -> Literal -> Maybe CoreExpr) -> RuleM CoreExpr
binaryLit op = do
  env <- getRuleOpts
  [Lit l1, Lit l2] <- getArgs
  liftMaybe $ op env (convFloating env l1) (convFloating env l2)

binaryCmpLit :: (forall a . Ord a => a -> a -> Bool) -> RuleM CoreExpr
binaryCmpLit op = do
  platform <- getPlatform
  binaryLit (\_ -> cmpOp platform op)

leftIdentity :: Literal -> RuleM CoreExpr
leftIdentity id_lit = leftIdentityPlatform (const id_lit)

rightIdentity :: Literal -> RuleM CoreExpr
rightIdentity id_lit = rightIdentityPlatform (const id_lit)

identity :: Literal -> RuleM CoreExpr
identity lit = leftIdentity lit `mplus` rightIdentity lit

leftIdentityPlatform :: (Platform -> Literal) -> RuleM CoreExpr
leftIdentityPlatform id_lit = do
  platform <- getPlatform
  [Lit l1, e2] <- getArgs
  guard $ l1 == id_lit platform
  return e2

-- | Left identity rule for PrimOps like 'IntAddC' and 'WordAddC', where, in
-- addition to the result, we have to indicate that no carry/overflow occurred.
leftIdentityCPlatform :: (Platform -> Literal) -> RuleM CoreExpr
leftIdentityCPlatform id_lit = do
  platform <- getPlatform
  [Lit l1, e2] <- getArgs
  guard $ l1 == id_lit platform
  let no_c = Lit (zeroi platform)
  return (mkCoreUbxTup [exprType e2, intPrimTy] [e2, no_c])

rightIdentityPlatform :: (Platform -> Literal) -> RuleM CoreExpr
rightIdentityPlatform id_lit = do
  platform <- getPlatform
  [e1, Lit l2] <- getArgs
  guard $ l2 == id_lit platform
  return e1

-- | Right identity rule for PrimOps like 'IntSubC' and 'WordSubC', where, in
-- addition to the result, we have to indicate that no carry/overflow occurred.
rightIdentityCPlatform :: (Platform -> Literal) -> RuleM CoreExpr
rightIdentityCPlatform id_lit = do
  platform <- getPlatform
  [e1, Lit l2] <- getArgs
  guard $ l2 == id_lit platform
  let no_c = Lit (zeroi platform)
  return (mkCoreUbxTup [exprType e1, intPrimTy] [e1, no_c])

identityPlatform :: (Platform -> Literal) -> RuleM CoreExpr
identityPlatform lit =
  leftIdentityPlatform lit `mplus` rightIdentityPlatform lit

-- | Identity rule for PrimOps like 'IntAddC' and 'WordAddC', where, in addition
-- to the result, we have to indicate that no carry/overflow occurred.
identityCPlatform :: (Platform -> Literal) -> RuleM CoreExpr
identityCPlatform lit =
  leftIdentityCPlatform lit `mplus` rightIdentityCPlatform lit

leftZero :: RuleM CoreExpr
leftZero = do
  [Lit l1, _] <- getArgs
  guard $ isZeroLit l1
  return $ Lit l1

rightZero :: RuleM CoreExpr
rightZero = do
  [_, Lit l2] <- getArgs
  guard $ isZeroLit l2
  return $ Lit l2

zeroElem :: RuleM CoreExpr
zeroElem = leftZero `mplus` rightZero

equalArgs :: RuleM ()
equalArgs = do
  [e1, e2] <- getArgs
  guard $ e1 `cheapEqExpr` e2

nonZeroLit :: Int -> RuleM ()
nonZeroLit n = getLiteral n >>= guard . not . isZeroLit

oneLit :: Int -> RuleM ()
oneLit n = getLiteral n >>= guard . isOneLit

lift_bits_op :: forall a. (Num a, FiniteBits a) => (a -> Integer) -> RuleM CoreExpr
lift_bits_op op = do
  platform <- getPlatform
  [Lit (LitNumber _ l)] <- getArgs
  pure $ mkWordLit platform $ op (fromInteger l :: a)

pop_count :: forall a. (Num a, FiniteBits a) => RuleM CoreExpr
pop_count = lift_bits_op @a (fromIntegral . popCount)

ctz :: forall a. (Num a, FiniteBits a) => RuleM CoreExpr
ctz = lift_bits_op @a (fromIntegral . countTrailingZeros)

clz :: forall a. (Num a, FiniteBits a) => RuleM CoreExpr
clz = lift_bits_op @a (fromIntegral . countLeadingZeros)

-- When excess precision is not requested, cut down the precision of the
-- Rational value to that of Float/Double. We confuse host architecture
-- and target architecture here, but it's convenient (and wrong :-).
convFloating :: RuleOpts -> Literal -> Literal
convFloating env (LitFloat  f) | not (roExcessRationalPrecision env) =
   LitFloat  (toRational (fromRational f :: Float ))
convFloating env (LitDouble d) | not (roExcessRationalPrecision env) =
   LitDouble (toRational (fromRational d :: Double))
convFloating _ l = l

guardFloatDiv :: RuleM ()
guardFloatDiv = do
  [Lit (LitFloat f1), Lit (LitFloat f2)] <- getArgs
  guard $ (f1 /=0 || f2 > 0) -- see Note [negative zero]
       && f2 /= 0            -- avoid NaN and Infinity/-Infinity

guardDoubleDiv :: RuleM ()
guardDoubleDiv = do
  [Lit (LitDouble d1), Lit (LitDouble d2)] <- getArgs
  guard $ (d1 /=0 || d2 > 0) -- see Note [negative zero]
       && d2 /= 0            -- avoid NaN and Infinity/-Infinity
-- Note [negative zero]
-- ~~~~~~~~~~~~~~~~~~~~
-- Avoid (0 / -d), otherwise 0/(-1) reduces to
-- zero, but we might want to preserve the negative zero here which
-- is representable in Float/Double but not in (normalised)
-- Rational. (#3676) Perhaps we should generate (0 :% (-1)) instead?

strengthReduction :: Literal -> PrimOp -> RuleM CoreExpr
strengthReduction two_lit add_op = do -- Note [Strength reduction]
  arg <- msum [ do [arg, Lit mult_lit] <- getArgs
                   guard (mult_lit == two_lit)
                   return arg
              , do [Lit mult_lit, arg] <- getArgs
                   guard (mult_lit == two_lit)
                   return arg ]
  return $ Var (primOpId add_op) `App` arg `App` arg

-- Note [Strength reduction]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~
-- This rule turns floating point multiplications of the form 2.0 * x and
-- x * 2.0 into x + x addition, because addition costs less than multiplication.
-- See #7116

-- Note [What's true and false]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- trueValInt and falseValInt represent true and false values returned by
-- comparison primops for Char, Int, Word, Integer, Double, Float and Addr.
-- True is represented as an unboxed 1# literal, while false is represented
-- as 0# literal.
-- We still need Bool data constructors (True and False) to use in a rule
-- for constant folding of equal Strings

trueValInt, falseValInt :: Platform -> Expr CoreBndr
trueValInt  platform = Lit $ onei  platform -- see Note [What's true and false]
falseValInt platform = Lit $ zeroi platform

trueValBool, falseValBool :: Expr CoreBndr
trueValBool   = Var trueDataConId -- see Note [What's true and false]
falseValBool  = Var falseDataConId

ltVal, eqVal, gtVal :: Expr CoreBndr
ltVal = Var ordLTDataConId
eqVal = Var ordEQDataConId
gtVal = Var ordGTDataConId

mkIntVal :: Platform -> Integer -> Expr CoreBndr
mkIntVal platform i = Lit (mkLitInt platform i)
mkFloatVal :: RuleOpts -> Rational -> Expr CoreBndr
mkFloatVal env f = Lit (convFloating env (LitFloat  f))
mkDoubleVal :: RuleOpts -> Rational -> Expr CoreBndr
mkDoubleVal env d = Lit (convFloating env (LitDouble d))

matchPrimOpId :: PrimOp -> Id -> RuleM ()
matchPrimOpId op id = do
  op' <- liftMaybe $ isPrimOpId_maybe id
  guard $ op == op'

{-
************************************************************************
*                                                                      *
\subsection{Special rules for seq, tagToEnum, dataToTag}
*                                                                      *
************************************************************************

Note [tagToEnum#]
~~~~~~~~~~~~~~~~~
Nasty check to ensure that tagToEnum# is applied to a type that is an
enumeration TyCon.  Unification may refine the type later, but this
check won't see that, alas.  It's crude but it works.

Here's are two cases that should fail
        f :: forall a. a
        f = tagToEnum# 0        -- Can't do tagToEnum# at a type variable

        g :: Int
        g = tagToEnum# 0        -- Int is not an enumeration

We used to make this check in the type inference engine, but it's quite
ugly to do so, because the delayed constraint solving means that we don't
really know what's going on until the end. It's very much a corner case
because we don't expect the user to call tagToEnum# at all; we merely
generate calls in derived instances of Enum.  So we compromise: a
rewrite rule rewrites a bad instance of tagToEnum# to an error call,
and emits a warning.
-}

tagToEnumRule :: RuleM CoreExpr
-- If     data T a = A | B | C
-- then   tagToEnum# (T ty) 2# -->  B ty
tagToEnumRule = do
  [Type ty, Lit (LitNumber LitNumInt i)] <- getArgs
  case splitTyConApp_maybe ty of
    Just (tycon, tc_args) | isEnumerationTyCon tycon -> do
      let tag = fromInteger i
          correct_tag dc = (dataConTagZ dc) == tag
      (dc:rest) <- return $ filter correct_tag (tyConDataCons_maybe tycon `orElse` [])
      massert (null rest)
      return $ mkTyApps (Var (dataConWorkId dc)) tc_args

    -- See Note [tagToEnum#]
    _ -> warnPprTrace True "tagToEnum# on non-enumeration type" (ppr ty) $
         return $ mkRuntimeErrorApp rUNTIME_ERROR_ID ty "tagToEnum# on non-enumeration type"

------------------------------
dataToTagRule :: RuleM CoreExpr
-- See Note [dataToTag# magic].
dataToTagRule = a `mplus` b
  where
    -- dataToTag (tagToEnum x)   ==>   x
    a = do
      [Type ty1, Var tag_to_enum `App` Type ty2 `App` tag] <- getArgs
      guard $ tag_to_enum `hasKey` tagToEnumKey
      guard $ ty1 `eqType` ty2
      return tag

    -- dataToTag (K e1 e2)  ==>   tag-of K
    -- This also works (via exprIsConApp_maybe) for
    --   dataToTag x
    -- where x's unfolding is a constructor application
    b = do
      platform <- getPlatform
      [_, val_arg] <- getArgs
      in_scope <- getInScopeEnv
      (_,floats, dc,_,_) <- liftMaybe $ exprIsConApp_maybe in_scope val_arg
      massert (not (isNewTyCon (dataConTyCon dc)))
      return $ wrapFloats floats (mkIntVal platform (toInteger (dataConTagZ dc)))

{- Note [dataToTag# magic]
~~~~~~~~~~~~~~~~~~~~~~~~~~
The primop dataToTag# is unusual because it evaluates its argument.
Only `SeqOp` shares that property.  (Other primops do not do anything
as fancy as argument evaluation.)  The special handling for dataToTag#
is:

* GHC.Core.Utils.exprOkForSpeculation has a special case for DataToTagOp,
  (actually in app_ok).  Most primops with lifted arguments do not
  evaluate those arguments, but DataToTagOp and SeqOp are two
  exceptions.  We say that they are /never/ ok-for-speculation,
  regardless of the evaluated-ness of their argument.
  See GHC.Core.Utils Note [exprOkForSpeculation and SeqOp/DataToTagOp]

* There is a special case for DataToTagOp in GHC.StgToCmm.Expr.cgExpr,
  that evaluates its argument and then extracts the tag from
  the returned value.

* An application like (dataToTag# (Just x)) is optimised by
  dataToTagRule in GHC.Core.Opt.ConstantFold.

* A case expression like
     case (dataToTag# e) of <alts>
  gets transformed t
     case e of <transformed alts>
  by GHC.Core.Opt.ConstantFold.caseRules; see Note [caseRules for dataToTag]

See #15696 for a long saga.
-}

{- *********************************************************************
*                                                                      *
             unsafeEqualityProof
*                                                                      *
********************************************************************* -}

-- unsafeEqualityProof k t t  ==>  UnsafeRefl (Refl t)
-- That is, if the two types are equal, it's not unsafe!

unsafeEqualityProofRule :: RuleM CoreExpr
unsafeEqualityProofRule
  = do { [Type rep, Type t1, Type t2] <- getArgs
       ; guard (t1 `eqType` t2)
       ; fn <- getFunction
       ; let (_, ue) = splitForAllTyCoVars (idType fn)
             tc      = tyConAppTyCon ue  -- tycon:    UnsafeEquality
             (dc:_)  = tyConDataCons tc  -- data con: UnsafeRefl
             -- UnsafeRefl :: forall (r :: RuntimeRep) (a :: TYPE r).
             --               UnsafeEquality r a a
       ; return (mkTyApps (Var (dataConWrapId dc)) [rep, t1]) }


{- *********************************************************************
*                                                                      *
             Rules for seq# and spark#
*                                                                      *
********************************************************************* -}

{- Note [seq# magic]
~~~~~~~~~~~~~~~~~~~~
The primop
   seq# :: forall a s . a -> State# s -> (# State# s, a #)

is /not/ the same as the Prelude function seq :: a -> b -> b
as you can see from its type.  In fact, seq# is the implementation
mechanism for 'evaluate'

   evaluate :: a -> IO a
   evaluate a = IO $ \s -> seq# a s

The semantics of seq# is
  * evaluate its first argument
  * and return it

Things to note

* Why do we need a primop at all?  That is, instead of
      case seq# x s of (# x, s #) -> blah
  why not instead say this?
      case x of { DEFAULT -> blah)

  Reason (see #5129): if we saw
    catch# (\s -> case x of { DEFAULT -> raiseIO# exn s }) handler

  then we'd drop the 'case x' because the body of the case is bottom
  anyway. But we don't want to do that; the whole /point/ of
  seq#/evaluate is to evaluate 'x' first in the IO monad.

  In short, we /always/ evaluate the first argument and never
  just discard it.

* Why return the value?  So that we can control sharing of seq'd
  values: in
     let x = e in x `seq` ... x ...
  We don't want to inline x, so better to represent it as
       let x = e in case seq# x RW of (# _, x' #) -> ... x' ...
  also it matches the type of rseq in the Eval monad.

Implementing seq#.  The compiler has magic for SeqOp in

- GHC.Core.Opt.ConstantFold.seqRule: eliminate (seq# <whnf> s)

- GHC.StgToCmm.Expr.cgExpr, and cgCase: special case for seq#

- GHC.Core.Utils.exprOkForSpeculation;
  see Note [exprOkForSpeculation and SeqOp/DataToTagOp] in GHC.Core.Utils

- Simplify.addEvals records evaluated-ness for the result; see
  Note [Adding evaluatedness info to pattern-bound variables]
  in GHC.Core.Opt.Simplify
-}

seqRule :: RuleM CoreExpr
seqRule = do
  [Type ty_a, Type _ty_s, a, s] <- getArgs
  guard $ exprIsHNF a
  return $ mkCoreUbxTup [exprType s, ty_a] [s, a]

-- spark# :: forall a s . a -> State# s -> (# State# s, a #)
sparkRule :: RuleM CoreExpr
sparkRule = seqRule -- reduce on HNF, just the same
  -- XXX perhaps we shouldn't do this, because a spark eliminated by
  -- this rule won't be counted as a dud at runtime?

{-
************************************************************************
*                                                                      *
\subsection{Built in rules}
*                                                                      *
************************************************************************

Note [Scoping for Builtin rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When compiling a (base-package) module that defines one of the
functions mentioned in the RHS of a built-in rule, there's a danger
that we'll see

        f = ...(eq String x)....

        ....and lower down...

        eqString = ...

Then a rewrite would give

        f = ...(eqString x)...
        ....and lower down...
        eqString = ...

and lo, eqString is not in scope.  This only really matters when we
get to code generation.  But the occurrence analyser does a GlomBinds
step when necessary, that does a new SCC analysis on the whole set of
bindings (see occurAnalysePgm), which sorts out the dependency, so all
is fine.
-}

builtinRules :: [CoreRule]
-- Rules for non-primops that can't be expressed using a RULE pragma
builtinRules
  = [BuiltinRule { ru_name = fsLit "CStringFoldrLit",
                   ru_fn = unpackCStringFoldrName,
                   ru_nargs = 4, ru_try = match_cstring_foldr_lit_C },
     BuiltinRule { ru_name = fsLit "CStringFoldrLitUtf8",
                   ru_fn = unpackCStringFoldrUtf8Name,
                   ru_nargs = 4, ru_try = match_cstring_foldr_lit_utf8 },
     BuiltinRule { ru_name = fsLit "CStringAppendLit",
                   ru_fn = unpackCStringAppendName,
                   ru_nargs = 2, ru_try = match_cstring_append_lit_C },
     BuiltinRule { ru_name = fsLit "CStringAppendLitUtf8",
                   ru_fn = unpackCStringAppendUtf8Name,
                   ru_nargs = 2, ru_try = match_cstring_append_lit_utf8 },
     BuiltinRule { ru_name = fsLit "EqString", ru_fn = eqStringName,
                   ru_nargs = 2, ru_try = match_eq_string },
     BuiltinRule { ru_name = fsLit "CStringLength", ru_fn = cstringLengthName,
                   ru_nargs = 1, ru_try = match_cstring_length },
     BuiltinRule { ru_name = fsLit "Inline", ru_fn = inlineIdName,
                   ru_nargs = 2, ru_try = \_ _ _ -> match_inline },

     mkBasicRule unsafeEqualityProofName 3 unsafeEqualityProofRule,

     mkBasicRule divIntName 2 $ msum
        [ nonZeroLit 1 >> binaryLit (intOp2 div)
        , leftZero
        , do
          [arg, Lit (LitNumber LitNumInt d)] <- getArgs
          Just n <- return $ exactLog2 d
          platform <- getPlatform
          return $ Var (primOpId IntSraOp) `App` arg `App` mkIntVal platform n
        ],

     mkBasicRule modIntName 2 $ msum
        [ nonZeroLit 1 >> binaryLit (intOp2 mod)
        , leftZero
        , do
          [arg, Lit (LitNumber LitNumInt d)] <- getArgs
          Just _ <- return $ exactLog2 d
          platform <- getPlatform
          return $ Var (primOpId IntAndOp)
            `App` arg `App` mkIntVal platform (d - 1)
        ]
     ]
 ++ builtinBignumRules
{-# NOINLINE builtinRules #-}
-- there is no benefit to inlining these yet, despite this, GHC produces
-- unfoldings for this regardless since the floated list entries look small.

builtinBignumRules :: [CoreRule]
builtinBignumRules =
  [ -- conversions
    lit_to_integer "Word# -> Integer"   integerFromWordName
  , lit_to_integer "Int64# -> Integer"  integerFromInt64Name
  , lit_to_integer "Word64# -> Integer" integerFromWord64Name
  , lit_to_integer "Natural -> Integer" integerFromNaturalName

  , integer_to_lit "Integer -> Word# (wrap)"   integerToWordName   mkWordLitWrap
  , integer_to_lit "Integer -> Int# (wrap)"    integerToIntName    mkIntLitWrap
  , integer_to_lit "Integer -> Word64# (wrap)" integerToWord64Name (\_ -> mkWord64LitWord64 . fromInteger)
  , integer_to_lit "Integer -> Int64# (wrap)"  integerToInt64Name  (\_ -> mkInt64LitInt64 . fromInteger)
  , integer_to_lit "Integer -> Float#"         integerToFloatName  (\_ -> mkFloatLitFloat . fromInteger)
  , integer_to_lit "Integer -> Double#"        integerToDoubleName (\_ -> mkDoubleLitDouble . fromInteger)

  , integer_to_natural "Integer -> Natural (clamp)" integerToNaturalClampName False True
  , integer_to_natural "Integer -> Natural (wrap)"  integerToNaturalName      False False
  , integer_to_natural "Integer -> Natural (throw)" integerToNaturalThrowName True False

  , natural_to_word "Natural -> Word# (wrap)"  naturalToWordName

    -- comparisons (return an unlifted Int#)
  , bignum_bin_pred "bigNatEq#"  bignatEqName (==)

    -- comparisons (return an Ordering)
  , bignum_compare "bignatCompare"      bignatCompareName
  , bignum_compare "bignatCompareWord#" bignatCompareWordName

    -- binary operations
  , integer_binop "integerAdd" integerAddName (+)
  , integer_binop "integerSub" integerSubName (-)
  , integer_binop "integerMul" integerMulName (*)
  , integer_binop "integerGcd" integerGcdName gcd
  , integer_binop "integerLcm" integerLcmName lcm
  , integer_binop "integerAnd" integerAndName (.&.)
  , integer_binop "integerOr"  integerOrName  (.|.)
  , integer_binop "integerXor" integerXorName xor

  , natural_binop "naturalAdd" naturalAddName (+)
  , natural_binop "naturalMul" naturalMulName (*)
  , natural_binop "naturalGcd" naturalGcdName gcd
  , natural_binop "naturalLcm" naturalLcmName lcm
  , natural_binop "naturalAnd" naturalAndName (.&.)
  , natural_binop "naturalOr"  naturalOrName  (.|.)
  , natural_binop "naturalXor" naturalXorName xor

    -- Natural subtraction: it's a binop but it can fail because of underflow so
    -- we have several primitives to handle here.
  , natural_sub "naturalSubUnsafe" naturalSubUnsafeName
  , natural_sub "naturalSubThrow"  naturalSubThrowName
  , mkRule "naturalSub" naturalSubName 2 $ do
        [a0,a1] <- getArgs
        x <- isNaturalLiteral a0
        y <- isNaturalLiteral a1
        -- return an unboxed sum: (# (# #) | Natural #)
        let ret n v = pure $ mkCoreUbxSum 2 n [unboxedUnitTy,naturalTy] v
        platform <- getPlatform
        if x < y
            then ret 1 unboxedUnitExpr
            else ret 2 $ mkNaturalExpr platform (x - y)

    -- unary operations
  , bignum_unop "integerNegate"     integerNegateName     mkIntegerExpr negate
  , bignum_unop "integerAbs"        integerAbsName        mkIntegerExpr abs
  , bignum_unop "integerComplement" integerComplementName mkIntegerExpr complement

  , bignum_popcount "integerPopCount" integerPopCountName mkLitIntWrap
  , bignum_popcount "naturalPopCount" naturalPopCountName mkLitWordWrap

    -- Bits.bit
  , bignum_bit "integerBit" integerBitName mkIntegerExpr
  , bignum_bit "naturalBit" naturalBitName mkNaturalExpr

    -- Bits.testBit
  , bignum_testbit "integerTestBit" integerTestBitName
  , bignum_testbit "naturalTestBit" naturalTestBitName

    -- Bits.shift
  , bignum_shift "integerShiftL" integerShiftLName shiftL mkIntegerExpr
  , bignum_shift "integerShiftR" integerShiftRName shiftR mkIntegerExpr
  , bignum_shift "naturalShiftL" naturalShiftLName shiftL mkNaturalExpr
  , bignum_shift "naturalShiftR" naturalShiftRName shiftR mkNaturalExpr

    -- division
  , divop_one  "integerQuot"    integerQuotName    quot    mkIntegerExpr
  , divop_one  "integerRem"     integerRemName     rem     mkIntegerExpr
  , divop_one  "integerDiv"     integerDivName     div     mkIntegerExpr
  , divop_one  "integerMod"     integerModName     mod     mkIntegerExpr
  , divop_both "integerDivMod"  integerDivModName  divMod  mkIntegerExpr integerTy
  , divop_both "integerQuotRem" integerQuotRemName quotRem mkIntegerExpr integerTy

  , divop_one  "naturalQuot"    naturalQuotName    quot    mkNaturalExpr
  , divop_one  "naturalRem"     naturalRemName     rem     mkNaturalExpr
  , divop_both "naturalQuotRem" naturalQuotRemName quotRem mkNaturalExpr naturalTy

    -- conversions from Rational for Float/Double literals
  , rational_to "rationalToFloat"  rationalToFloatName  mkFloatExpr
  , rational_to "rationalToDouble" rationalToDoubleName mkDoubleExpr

    -- conversions from Integer for Float/Double literals
  , integer_encode_float "integerEncodeFloat"  integerEncodeFloatName  mkFloatLitFloat
  , integer_encode_float "integerEncodeDouble" integerEncodeDoubleName mkDoubleLitDouble
  ]
  where
    mkRule str name nargs f = BuiltinRule
      { ru_name = fsLit str
      , ru_fn = name
      , ru_nargs = nargs
      , ru_try = runRuleM $ do
          env <- getRuleOpts
          guard (roBignumRules env)
          f
      }

    integer_to_lit str name convert = mkRule str name 1 $ do
      [a0] <- getArgs
      platform <- getPlatform
      -- we only match on Big Integer literals. Small literals
      -- are matched by the "Int# -> Integer -> *" rules
      x <- isBigIntegerLiteral a0
      pure (convert platform x)

    natural_to_word str name = mkRule str name 1 $ do
      [a0] <- getArgs
      n <- isNaturalLiteral a0
      platform <- getPlatform
      pure (Lit (mkLitWordWrap platform n))

    integer_to_natural str name thrw clamp = mkRule str name 1 $ do
      [a0] <- getArgs
      x <- isIntegerLiteral a0
      platform <- getPlatform
      if | x >= 0    -> pure $ mkNaturalExpr platform x
         | thrw      -> mzero
         | clamp     -> pure $ mkNaturalExpr platform 0       -- clamp to 0
         | otherwise -> pure $ mkNaturalExpr platform (abs x) -- negate/wrap

    lit_to_integer str name = mkRule str name 1 $ do
      [a0] <- getArgs
      platform <- getPlatform
      i <- isBignumLiteral a0
      -- convert any numeric literal into an Integer literal
      pure (mkIntegerExpr platform i)

    integer_binop str name op = mkRule str name 2 $ do
      [a0,a1] <- getArgs
      x <- isIntegerLiteral a0
      y <- isIntegerLiteral a1
      platform <- getPlatform
      pure (mkIntegerExpr platform (x `op` y))

    natural_binop str name op = mkRule str name 2 $ do
      [a0,a1] <- getArgs
      x <- isNaturalLiteral a0
      y <- isNaturalLiteral a1
      platform <- getPlatform
      pure (mkNaturalExpr platform (x `op` y))

    natural_sub str name = mkRule str name 2 $ do
      [a0,a1] <- getArgs
      x <- isNaturalLiteral a0
      y <- isNaturalLiteral a1
      guard (x >= y)
      platform <- getPlatform
      pure (mkNaturalExpr platform (x - y))

    bignum_bin_pred str name op = mkRule str name 2 $ do
      platform <- getPlatform
      [a0,a1] <- getArgs
      x <- isBignumLiteral a0
      y <- isBignumLiteral a1
      pure $ if x `op` y
              then trueValInt platform
              else falseValInt platform

    bignum_compare str name = mkRule str name 2 $ do
      [a0,a1] <- getArgs
      x <- isBignumLiteral a0
      y <- isBignumLiteral a1
      pure $ case x `compare` y of
              LT -> ltVal
              EQ -> eqVal
              GT -> gtVal

    bignum_unop str name mk_lit op = mkRule str name 1 $ do
      [a0] <- getArgs
      x <- isBignumLiteral a0
      platform <- getPlatform
      pure $ mk_lit platform (op x)

    bignum_popcount str name mk_lit = mkRule str name 1 $ do
      platform <- getPlatform
      -- We use a host Int to compute the popCount. If we compile on a 32-bit
      -- host for a 64-bit target, the result may be different than if computed
      -- by the target. So we disable this rule if sizes don't match.
      guard (platformWordSizeInBits platform == finiteBitSize (0 :: Word))
      [a0] <- getArgs
      x <- isBignumLiteral a0
      pure $ Lit (mk_lit platform (fromIntegral (popCount x)))

    bignum_bit str name mk_lit = mkRule str name 1 $ do
      [a0] <- getArgs
      platform <- getPlatform
      n <- isNumberLiteral a0
      -- Make sure n is positive and small enough to yield a decently
      -- small number. Attempting to construct the Integer for
      --    (integerBit 9223372036854775807#)
      -- would be a bad idea (#14959)
      guard (n >= 0 && n <= fromIntegral (platformWordSizeInBits platform))
      -- it's safe to convert a target Int value into a host Int value
      -- to perform the "bit" operation because n is very small (<= 64).
      pure $ mk_lit platform (bit (fromIntegral n))

    bignum_testbit str name = mkRule str name 2 $ do
      [a0,a1] <- getArgs
      platform <- getPlatform
      x <- isBignumLiteral a0
      n <- isNumberLiteral a1
      -- ensure that we can store 'n' in a host Int
      guard (n >= 0 && n <= fromIntegral (maxBound :: Int))
      pure $ if testBit x (fromIntegral n)
              then trueValInt platform
              else falseValInt platform

    bignum_shift str name shift_op mk_lit = mkRule str name 2 $ do
      [a0,a1] <- getArgs
      x <- isBignumLiteral a0
      n <- isNumberLiteral a1
      -- See Note [Guarding against silly shifts]
      -- Restrict constant-folding of shifts on Integers, somewhat arbitrary.
      -- We can get huge shifts in inaccessible code (#15673)
      guard (n <= 4)
      platform <- getPlatform
      pure $ mk_lit platform (x `shift_op` fromIntegral n)

    divop_one str name divop mk_lit = mkRule str name 2 $ do
      [a0,a1] <- getArgs
      n <- isBignumLiteral a0
      d <- isBignumLiteral a1
      guard (d /= 0)
      platform <- getPlatform
      pure $ mk_lit platform (n `divop` d)

    divop_both str name divop mk_lit ty = mkRule str name 2 $ do
      [a0,a1] <- getArgs
      n <- isBignumLiteral a0
      d <- isBignumLiteral a1
      guard (d /= 0)
      let (r,s) = n `divop` d
      platform <- getPlatform
      pure $ mkCoreUbxTup [ty,ty] [mk_lit platform r, mk_lit platform s]

    integer_encode_float :: RealFloat a => String -> Name -> (a -> CoreExpr) -> CoreRule
    integer_encode_float str name mk_lit = mkRule str name 2 $ do
      [a0,a1] <- getArgs
      x <- isIntegerLiteral a0
      y <- isNumberLiteral a1
      -- check that y (a target Int) is in the host Int range
      guard (y <= fromIntegral (maxBound :: Int))
      pure (mk_lit $ encodeFloat x (fromInteger y))

    rational_to :: RealFloat a => String -> Name -> (a -> CoreExpr) -> CoreRule
    rational_to str name mk_lit = mkRule str name 2 $ do
      -- This turns `rationalToFloat n d` where `n` and `d` are literals into
      -- a literal Float (and similarly for Double).
      [a0,a1] <- getArgs
      n <- isIntegerLiteral a0
      d <- isIntegerLiteral a1
      -- it's important to not match d == 0, because that may represent a
      -- literal "0/0" or similar, and we can't produce a literal value for
      -- NaN or +-Inf
      guard (d /= 0)
      pure $ mk_lit (fromRational (n % d))


---------------------------------------------------
-- The rules are:
--      unpackAppendCString*# "foo"# (unpackCString*# "baz"#)
--      =  unpackCString*# "foobaz"#
--
--      unpackAppendCString*# "foo"# (unpackAppendCString*# "baz"# e)
--      =  unpackAppendCString*# "foobaz"# e
--

-- CString version
match_cstring_append_lit_C :: RuleFun
match_cstring_append_lit_C = match_cstring_append_lit unpackCStringAppendIdKey unpackCStringIdKey

-- CStringUTF8 version
match_cstring_append_lit_utf8 :: RuleFun
match_cstring_append_lit_utf8 = match_cstring_append_lit unpackCStringAppendUtf8IdKey unpackCStringUtf8IdKey

{-# INLINE match_cstring_append_lit #-}
match_cstring_append_lit :: Unique -> Unique -> RuleFun
match_cstring_append_lit append_key unpack_key _ env _ [lit1, e2]
  | Just (LitString s1) <- exprIsLiteral_maybe env lit1
  , (strTicks, Var unpk `App` lit2) <- stripStrTopTicks env e2
  , unpk `hasKey` unpack_key
  , Just (LitString s2) <- exprIsLiteral_maybe env lit2
  = Just $ mkTicks strTicks
         $ Var unpk `App` Lit (LitString (s1 `BS.append` s2))

  | Just (LitString s1) <- exprIsLiteral_maybe env lit1
  , (strTicks, Var appnd `App` lit2 `App` e) <- stripStrTopTicks env e2
  , appnd `hasKey` append_key
  , Just (LitString s2) <- exprIsLiteral_maybe env lit2
  = Just $ mkTicks strTicks
         $ Var appnd `App` Lit (LitString (s1 `BS.append` s2)) `App` e

match_cstring_append_lit _ _ _ _ _ _ = Nothing

---------------------------------------------------
-- The rule is this:
--      unpackFoldrCString*# "foo"# c (unpackFoldrCString*# "baz"# c n)
--      =  unpackFoldrCString*# "foobaz"# c n
--
-- See also Note [String literals in GHC] in CString.hs

-- CString version
match_cstring_foldr_lit_C :: RuleFun
match_cstring_foldr_lit_C = match_cstring_foldr_lit unpackCStringFoldrIdKey

-- CStringUTF8 version
match_cstring_foldr_lit_utf8 :: RuleFun
match_cstring_foldr_lit_utf8 = match_cstring_foldr_lit unpackCStringFoldrUtf8IdKey

{-# INLINE match_cstring_foldr_lit #-}
match_cstring_foldr_lit :: Unique -> RuleFun
match_cstring_foldr_lit foldVariant _ env _
        [ Type ty1
        , lit1
        , c1
        , e2
        ]
  | (strTicks, Var unpk `App` Type ty2
                        `App` lit2
                        `App` c2
                        `App` n) <- stripStrTopTicks env e2
  , unpk `hasKey` foldVariant
  , Just (LitString s1) <- exprIsLiteral_maybe env lit1
  , Just (LitString s2) <- exprIsLiteral_maybe env lit2
  , eqCoreExpr c1 c2
  , (c1Ticks, c1') <- stripStrTopTicks env c1
  , c2Ticks <- stripStrTopTicksT c2
  = assert (ty1 `eqType` ty2) $
    Just $ mkTicks strTicks
         $ Var unpk `App` Type ty1
                    `App` Lit (LitString (s1 `BS.append` s2))
                    `App` mkTicks (c1Ticks ++ c2Ticks) c1'
                    `App` n

match_cstring_foldr_lit _ _ _ _ _ = Nothing


-- N.B. Ensure that we strip off any ticks (e.g. source notes) from the
-- argument, lest this may fail to fire when building with -g3. See #16740.
--
-- Also, look into variable's unfolding just in case the expression we look for
-- is in a top-level thunk.
stripStrTopTicks :: InScopeEnv -> CoreExpr -> ([CoreTickish], CoreExpr)
stripStrTopTicks (_,id_unf) e = case e of
  Var v
    | Just rhs <- expandUnfolding_maybe (id_unf v)
    -> stripTicksTop tickishFloatable rhs
  _ -> stripTicksTop tickishFloatable e

stripStrTopTicksT :: CoreExpr -> [CoreTickish]
stripStrTopTicksT e = stripTicksTopT tickishFloatable e

---------------------------------------------------
-- The rule is this:
--      eqString (unpackCString# (Lit s1)) (unpackCString# (Lit s2)) = s1==s2
-- Also  matches unpackCStringUtf8#

match_eq_string :: RuleFun
match_eq_string _ env _ [e1, e2]
  | (ticks1, Var unpk1 `App` lit1) <- stripStrTopTicks env e1
  , (ticks2, Var unpk2 `App` lit2) <- stripStrTopTicks env e2
  , unpk_key1 <- getUnique unpk1
  , unpk_key2 <- getUnique unpk2
  , unpk_key1 == unpk_key2
  -- For now we insist the literals have to agree in their encoding
  -- to keep the rule simple. But we could check if the decoded strings
  -- compare equal in here as well.
  , unpk_key1 `elem` [unpackCStringUtf8IdKey, unpackCStringIdKey]
  , Just (LitString s1) <- exprIsLiteral_maybe env lit1
  , Just (LitString s2) <- exprIsLiteral_maybe env lit2
  = Just $ mkTicks (ticks1 ++ ticks2)
         $ (if s1 == s2 then trueValBool else falseValBool)

match_eq_string _ _ _ _ = Nothing

-----------------------------------------------------------------------
-- Illustration of this rule:
--
-- cstringLength# "foobar"# --> 6
-- cstringLength# "fizz\NULzz"# --> 4
--
-- Nota bene: Addr# literals are suffixed by a NUL byte when they are
-- compiled to read-only data sections. That's why cstringLength# is
-- well defined on Addr# literals that do not explicitly have an embedded
-- NUL byte.
--
-- See GHC issue #5218, MR 2165, and bytestring PR 191. This is particularly
-- helpful when using OverloadedStrings to create a ByteString since the
-- function computing the length of such ByteStrings can often be constant
-- folded.
match_cstring_length :: RuleFun
match_cstring_length rule_env env _ [lit1]
  | Just (LitString str) <- exprIsLiteral_maybe env lit1
    -- If elemIndex returns Just, it has the index of the first embedded NUL
    -- in the string. If no NUL bytes are present (the common case) then use
    -- full length of the byte string.
  = let len = fromMaybe (BS.length str) (BS.elemIndex 0 str)
     in Just (Lit (mkLitInt (roPlatform rule_env) (fromIntegral len)))
match_cstring_length _ _ _ _ = Nothing

{- Note [inlineId magic]
~~~~~~~~~~~~~~~~~~~~~~~~
The call 'inline f' arranges that 'f' is inlined, regardless of
its size. More precisely, the call 'inline f' rewrites to the
right-hand side of 'f's definition. This allows the programmer to
control inlining from a particular call site rather than the
definition site of the function.

The moving parts are simple:

* A very simple definition in the library base:GHC.Magic
     {-# NOINLINE[0] inline #-}
     inline :: a -> a
     inline x = x
  So in phase 0, 'inline' will be inlined, so its use imposes
  no overhead.

* A rewrite rule, in GHC.Core.Opt.ConstantFold, which makes
  (inline f) inline, implemented by match_inline.
  The rule for the 'inline' function is this:
     inline f_ty (f a b c) = <f's unfolding> a b c
  (if f has an unfolding, EVEN if it's a loop breaker)

  It's important to allow the argument to 'inline' to have args itself
  (a) because its more forgiving to allow the programmer to write
      either  inline f a b c
      or      inline (f a b c)
  (b) because a polymorphic f wll get a type argument that the
      programmer can't avoid, so the call may look like
        inline (map @Int @Bool) g xs

  Also, don't forget about 'inline's type argument!
-}

match_inline :: [Expr CoreBndr] -> Maybe (Expr CoreBndr)
match_inline (Type _ : e : _)
  | (Var f, args1) <- collectArgs e,
    Just unf <- maybeUnfoldingTemplate (realIdUnfolding f)
             -- Ignore the IdUnfoldingFun here!
  = Just (mkApps unf args1)

match_inline _ = Nothing

--------------------------------------------------------
-- Note [Constant folding through nested expressions]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- We use rewrites rules to perform constant folding. It means that we don't
-- have a global view of the expression we are trying to optimise. As a
-- consequence we only perform local (small-step) transformations that either:
--    1) reduce the number of operations
--    2) rearrange the expression to increase the odds that other rules will
--    match
--
-- We don't try to handle more complex expression optimisation cases that would
-- require a global view. For example, rewriting expressions to increase
-- sharing (e.g., Horner's method); optimisations that require local
-- transformations increasing the number of operations; rearrangements to
-- cancel/factorize terms (e.g., (a+b-a-b) isn't rearranged to reduce to 0).
--
-- We already have rules to perform constant folding on expressions with the
-- following shape (where a and/or b are literals):
--
--          D)    op
--                /\
--               /  \
--              /    \
--             a      b
--
-- To support nested expressions, we match three other shapes of expression
-- trees:
--
-- A)   op1          B)       op1       C)       op1
--      /\                    /\                 /\
--     /  \                  /  \               /  \
--    /    \                /    \             /    \
--   a     op2            op2     c          op2    op3
--          /\            /\                 /\      /\
--         /  \          /  \               /  \    /  \
--        b    c        a    b             a    b  c    d
--
--
-- R1) +/- simplification:
--    ops = + or -, two literals (not siblings)
--
--    Examples:
--       A: 5 + (10-x)  ==> 15-x
--       B: (10+x) + 5  ==> 15+x
--       C: (5+a)-(5-b) ==> 0+(a+b)
--
-- R2) *, `and`, `or`  simplification
--    ops = *, `and`, `or` two literals (not siblings)
--
--    Examples:
--       A: 5 * (10*x)  ==> 50*x
--       B: (10*x) * 5  ==> 50*x
--       C: (5*a)*(5*b) ==> 25*(a*b)
--
-- R3) * distribution over +/-
--    op1 = *, op2 = + or -, two literals (not siblings)
--
--    This transformation doesn't reduce the number of operations but switches
--    the outer and the inner operations so that the outer is (+) or (-) instead
--    of (*). It increases the odds that other rules will match after this one.
--
--    Examples:
--       A: 5 * (10-x)  ==> 50 - (5*x)
--       B: (10+x) * 5  ==> 50 + (5*x)
--       C: Not supported as it would increase the number of operations:
--          (5+a)*(5-b) ==> 25 - 5*b + 5*a - a*b
--
-- R4) Simple factorization
--
--    op1 = + or -, op2/op3 = *,
--    one literal for each innermost * operation (except in the D case),
--    the two other terms are equals
--
--    Examples:
--       A: x - (10*x)  ==> (-9)*x
--       B: (10*x) + x  ==> 11*x
--       C: (5*x)-(x*3) ==> 2*x
--       D: x+x         ==> 2*x
--
-- R5) +/- propagation
--
--    ops = + or -, one literal
--
--    This transformation doesn't reduce the number of operations but propagates
--    the constant to the outer level. It increases the odds that other rules
--    will match after this one.
--
--    Examples:
--       A: x - (10-y)  ==> (x+y) - 10
--       B: (10+x) - y  ==> 10 + (x-y)
--       C: N/A (caught by the A and B cases)
--
--------------------------------------------------------

-- Rules to perform constant folding into nested expressions
--
--See Note [Constant folding through nested expressions]

addFoldingRules :: PrimOp -> NumOps -> RuleM CoreExpr
addFoldingRules op num_ops = do
   massert (op == numAdd num_ops)
   env <- getRuleOpts
   guard (roNumConstantFolding env)
   [arg1,arg2] <- getArgs
   platform <- getPlatform
   liftMaybe
      -- commutativity for + is handled here
      (addFoldingRules' platform arg1 arg2 num_ops
       <|> addFoldingRules' platform arg2 arg1 num_ops)

subFoldingRules :: PrimOp -> NumOps -> RuleM CoreExpr
subFoldingRules op num_ops = do
   massert (op == numSub num_ops)
   env <- getRuleOpts
   guard (roNumConstantFolding env)
   [arg1,arg2] <- getArgs
   platform <- getPlatform
   liftMaybe (subFoldingRules' platform arg1 arg2 num_ops)

mulFoldingRules :: PrimOp -> NumOps -> RuleM CoreExpr
mulFoldingRules op num_ops = do
   massert (op == numMul num_ops)
   env <- getRuleOpts
   guard (roNumConstantFolding env)
   [arg1,arg2] <- getArgs
   platform <- getPlatform
   liftMaybe
      -- commutativity for * is handled here
      (mulFoldingRules' platform arg1 arg2 num_ops
       <|> mulFoldingRules' platform arg2 arg1 num_ops)

andFoldingRules :: NumOps -> RuleM CoreExpr
andFoldingRules num_ops = do
   env <- getRuleOpts
   guard (roNumConstantFolding env)
   [arg1,arg2] <- getArgs
   platform <- getPlatform
   liftMaybe
      -- commutativity for `and` is handled here
      (andFoldingRules' platform arg1 arg2 num_ops
       <|> andFoldingRules' platform arg2 arg1 num_ops)

orFoldingRules :: NumOps -> RuleM CoreExpr
orFoldingRules num_ops = do
   env <- getRuleOpts
   guard (roNumConstantFolding env)
   [arg1,arg2] <- getArgs
   platform <- getPlatform
   liftMaybe
      -- commutativity for `or` is handled here
      (orFoldingRules' platform arg1 arg2 num_ops
       <|> orFoldingRules' platform arg2 arg1 num_ops)

addFoldingRules' :: Platform -> CoreExpr -> CoreExpr -> NumOps -> Maybe CoreExpr
addFoldingRules' platform arg1 arg2 num_ops = case (arg1, arg2) of

      -- x + (-y) ==> x-y
      (x, is_neg num_ops -> Just y)
         -> Just (x `sub` y)

      -- R1) +/- simplification

      -- l1 + (l2 + x) ==> (l1+l2) + x
      (L l1, is_lit_add num_ops -> Just (l2,x))
         -> Just (mkL (l1+l2) `add` x)

      -- l1 + (l2 - x) ==> (l1+l2) - x
      (L l1, is_sub num_ops -> Just (L l2,x))
         -> Just (mkL (l1+l2) `sub` x)

      -- l1 + (x - l2) ==> (l1-l2) + x
      (L l1, is_sub num_ops -> Just (x,L l2))
         -> Just (mkL (l1-l2) `add` x)

      -- (l1 + x) + (l2 + y) ==> (l1+l2) + (x+y)
      (is_lit_add num_ops -> Just (l1,x), is_lit_add num_ops -> Just (l2,y))
         -> Just (mkL (l1+l2) `add` (x `add` y))

      -- (l1 + x) + (l2 - y) ==> (l1+l2) + (x-y)
      (is_lit_add num_ops -> Just (l1,x), is_sub num_ops -> Just (L l2,y))
         -> Just (mkL (l1+l2) `add` (x `sub` y))

      -- (l1 + x) + (y - l2) ==> (l1-l2) + (x+y)
      (is_lit_add num_ops -> Just (l1,x), is_sub num_ops -> Just (y,L l2))
         -> Just (mkL (l1-l2) `add` (x `add` y))

      -- (l1 - x) + (l2 - y) ==> (l1+l2) - (x+y)
      (is_sub num_ops -> Just (L l1,x), is_sub num_ops -> Just (L l2,y))
         -> Just (mkL (l1+l2) `sub` (x `add` y))

      -- (l1 - x) + (y - l2) ==> (l1-l2) + (y-x)
      (is_sub num_ops -> Just (L l1,x), is_sub num_ops -> Just (y,L l2))
         -> Just (mkL (l1-l2) `add` (y `sub` x))

      -- (x - l1) + (y - l2) ==> (0-l1-l2) + (x+y)
      (is_sub num_ops -> Just (x,L l1), is_sub num_ops -> Just (y,L l2))
         -> Just (mkL (0-l1-l2) `add` (x `add` y))

      -- R4) Simple factorization

      -- x + x ==> 2 * x
      _ | Just l1 <- is_expr_mul num_ops arg1 arg2
        -> Just (mkL (l1+1) `mul` arg1)

      -- (l1 * x) + x ==> (l1+1) * x
      _ | Just l1 <- is_expr_mul num_ops arg2 arg1
        -> Just (mkL (l1+1) `mul` arg2)

      -- (l1 * x) + (l2 * x) ==> (l1+l2) * x
      (is_lit_mul num_ops -> Just (l1,x), is_expr_mul num_ops x -> Just l2)
         -> Just (mkL (l1+l2) `mul` x)

      -- R5) +/- propagation: these transformations push literals outwards
      -- with the hope that other rules can then be applied.

      -- In the following rules, x can't be a literal otherwise another
      -- rule would have combined it with the other literal in arg2. So we
      -- don't have to check this to avoid loops here.

      -- x + (l1 + y) ==> l1 + (x + y)
      (_, is_lit_add num_ops -> Just (l1,y))
         -> Just (mkL l1 `add` (arg1 `add` y))

      -- x + (l1 - y) ==> l1 + (x - y)
      (_, is_sub num_ops -> Just (L l1,y))
         -> Just (mkL l1 `add` (arg1 `sub` y))

      -- x + (y - l1) ==> (x + y) - l1
      (_, is_sub num_ops -> Just (y,L l1))
         -> Just ((arg1 `add` y) `sub` mkL l1)

      _ -> Nothing

   where
      mkL = Lit . mkNumLiteral platform num_ops
      add x y = BinOpApp x (numAdd num_ops) y
      sub x y = BinOpApp x (numSub num_ops) y
      mul x y = BinOpApp x (numMul num_ops) y

subFoldingRules' :: Platform -> CoreExpr -> CoreExpr -> NumOps -> Maybe CoreExpr
subFoldingRules' platform arg1 arg2 num_ops = case (arg1,arg2) of
      -- x - (-y) ==> x+y
      (x, is_neg num_ops -> Just y)
         -> Just (x `add` y)

      -- R1) +/- simplification

      -- l1 - (l2 + x) ==> (l1-l2) - x
      (L l1, is_lit_add num_ops -> Just (l2,x))
         -> Just (mkL (l1-l2) `sub` x)

      -- l1 - (l2 - x) ==> (l1-l2) + x
      (L l1, is_sub num_ops -> Just (L l2,x))
         -> Just (mkL (l1-l2) `add` x)

      -- l1 - (x - l2) ==> (l1+l2) - x
      (L l1, is_sub num_ops -> Just (x, L l2))
         -> Just (mkL (l1+l2) `sub` x)

      -- (l1 + x) - l2 ==> (l1-l2) + x
      (is_lit_add num_ops -> Just (l1,x), L l2)
         -> Just (mkL (l1-l2) `add` x)

      -- (l1 - x) - l2 ==> (l1-l2) - x
      (is_sub num_ops -> Just (L l1,x), L l2)
         -> Just (mkL (l1-l2) `sub` x)

      -- (x - l1) - l2 ==> x - (l1+l2)
      (is_sub num_ops -> Just (x,L l1), L l2)
         -> Just (x `sub` mkL (l1+l2))


      -- (l1 + x) - (l2 + y) ==> (l1-l2) + (x-y)
      (is_lit_add num_ops -> Just (l1,x), is_lit_add num_ops -> Just (l2,y))
         -> Just (mkL (l1-l2) `add` (x `sub` y))

      -- (l1 + x) - (l2 - y) ==> (l1-l2) + (x+y)
      (is_lit_add num_ops -> Just (l1,x), is_sub num_ops -> Just (L l2,y))
         -> Just (mkL (l1-l2) `add` (x `add` y))

      -- (l1 + x) - (y - l2) ==> (l1+l2) + (x-y)
      (is_lit_add num_ops -> Just (l1,x), is_sub num_ops -> Just (y,L l2))
         -> Just (mkL (l1+l2) `add` (x `sub` y))

      -- (l1 - x) - (l2 + y) ==> (l1-l2) - (x+y)
      (is_sub num_ops -> Just (L l1,x), is_lit_add num_ops -> Just (l2,y))
         -> Just (mkL (l1-l2) `sub` (x `add` y))

      -- (x - l1) - (l2 + y) ==> (0-l1-l2) + (x-y)
      (is_sub num_ops -> Just (x,L l1), is_lit_add num_ops -> Just (l2,y))
         -> Just (mkL (0-l1-l2) `add` (x `sub` y))

      -- (l1 - x) - (l2 - y) ==> (l1-l2) + (y-x)
      (is_sub num_ops -> Just (L l1,x), is_sub num_ops -> Just (L l2,y))
         -> Just (mkL (l1-l2) `add` (y `sub` x))

      -- (l1 - x) - (y - l2) ==> (l1+l2) - (x+y)
      (is_sub num_ops -> Just (L l1,x), is_sub num_ops -> Just (y,L l2))
         -> Just (mkL (l1+l2) `sub` (x `add` y))

      -- (x - l1) - (l2 - y) ==> (0-l1-l2) + (x+y)
      (is_sub num_ops -> Just (x,L l1), is_sub num_ops -> Just (L l2,y))
         -> Just (mkL (0-l1-l2) `add` (x `add` y))

      -- (x - l1) - (y - l2) ==> (l2-l1) + (x-y)
      (is_sub num_ops -> Just (x,L l1), is_sub num_ops -> Just (y,L l2))
         -> Just (mkL (l2-l1) `add` (x `sub` y))

       -- R4) Simple factorization

      -- x - (l1 * x) ==> (1-l1) * x
      _ | Just l1 <- is_expr_mul num_ops arg1 arg2
        -> Just (mkL (1-l1) `mul` arg1)

      -- (l1 * x) - x ==> (l1-1) * x
      _ | Just l1 <- is_expr_mul num_ops arg2 arg1
        -> Just (mkL (l1-1) `mul` arg2)

      -- (l1 * x) - (l2 * x) ==> (l1-l2) * x
      (is_lit_mul num_ops -> Just (l1,x), is_expr_mul num_ops x -> Just l2)
         -> Just (mkL (l1-l2) `mul` x)

      -- R5) +/- propagation: these transformations push literals outwards
      -- with the hope that other rules can then be applied.

      -- In the following rules, x can't be a literal otherwise another
      -- rule would have combined it with the other literal in arg2. So we
      -- don't have to check this to avoid loops here.

      -- x - (l1 + y) ==> (x - y) - l1
      (_, is_lit_add num_ops -> Just (l1,y))
         -> Just ((arg1 `sub` y) `sub` mkL l1)

      -- (l1 + x) - y ==> l1 + (x - y)
      (is_lit_add num_ops -> Just (l1,x), _)
         -> Just (mkL l1 `add` (x `sub` arg2))

      -- x - (l1 - y) ==> (x + y) - l1
      (_, is_sub num_ops -> Just (L l1,y))
         -> Just ((arg1 `add` y) `sub` mkL l1)

      -- x - (y - l1) ==> l1 + (x - y)
      (_, is_sub num_ops -> Just (y,L l1))
         -> Just (mkL l1 `add` (arg1 `sub` y))

      -- (l1 - x) - y ==> l1 - (x + y)
      (is_sub num_ops -> Just (L l1,x), _)
         -> Just (mkL l1 `sub` (x `add` arg2))

      -- (x - l1) - y ==> (x - y) - l1
      (is_sub num_ops -> Just (x,L l1), _)
         -> Just ((x `sub` arg2) `sub` mkL l1)

      _ -> Nothing
   where
      mkL = Lit . mkNumLiteral platform num_ops
      add x y = BinOpApp x (numAdd num_ops) y
      sub x y = BinOpApp x (numSub num_ops) y
      mul x y = BinOpApp x (numMul num_ops) y

mulFoldingRules' :: Platform -> CoreExpr -> CoreExpr -> NumOps -> Maybe CoreExpr
mulFoldingRules' platform arg1 arg2 num_ops = case (arg1,arg2) of
   -- (-x) * (-y) ==> x*y
   (is_neg num_ops -> Just x, is_neg num_ops -> Just y)
      -> Just (x `mul` y)

   -- l1 * (-x) ==> (-l1) * x
   (L l1, is_neg num_ops -> Just x)
      -> Just (mkL (-l1) `mul` x)

   -- l1 * (l2 * x) ==> (l1*l2) * x
   (L l1, is_lit_mul num_ops -> Just (l2,x))
      -> Just (mkL (l1*l2) `mul` x)

   -- l1 * (l2 + x) ==> (l1*l2) + (l1 * x)
   (L l1, is_lit_add num_ops -> Just (l2,x))
      -> Just (mkL (l1*l2) `add` (arg1 `mul` x))

   -- l1 * (l2 - x) ==> (l1*l2) - (l1 * x)
   (L l1, is_sub num_ops -> Just (L l2,x))
      -> Just (mkL (l1*l2) `sub` (arg1 `mul` x))

   -- l1 * (x - l2) ==> (l1 * x) - (l1*l2)
   (L l1, is_sub num_ops -> Just (x, L l2))
      -> Just ((arg1 `mul` x) `sub` mkL (l1*l2))

   -- (l1 * x) * (l2 * y) ==> (l1*l2) * (x * y)
   (is_lit_mul num_ops -> Just (l1,x), is_lit_mul num_ops -> Just (l2,y))
      -> Just (mkL (l1*l2) `mul` (x `mul` y))

   _ -> Nothing
   where
      mkL = Lit . mkNumLiteral platform num_ops
      add x y = BinOpApp x (numAdd num_ops) y
      sub x y = BinOpApp x (numSub num_ops) y
      mul x y = BinOpApp x (numMul num_ops) y

andFoldingRules' :: Platform -> CoreExpr -> CoreExpr -> NumOps -> Maybe CoreExpr
andFoldingRules' platform arg1 arg2 num_ops = case (arg1, arg2) of
    -- R2) * `or` `and` simplications
    -- l1 and (l2 and x) ==> (l1 and l2) and x
    (L l1, is_lit_and num_ops -> Just (l2, x))
       -> Just (mkL (l1 .&. l2) `and` x)

    -- l1 and (l2 or x) ==> (l1 and l2) or (l1 and x)
    -- does not decrease operations

    -- (l1 and x) and (l2 and y) ==> (l1 and l2) and (x and y)
    (is_lit_and num_ops -> Just (l1, x), is_lit_and num_ops -> Just (l2, y))
       -> Just (mkL (l1 .&. l2) `and` (x `and` y))

    -- (l1 and x) and (l2 or y) ==> (l1 and l2 and x) or (l1 and x and y)
    -- (l1 or x) and (l2 or y) ==> (l1 and l2) or (x and l2) or (l1 and y) or (x and y)
    -- increase operation numbers

    _ -> Nothing
    where
      mkL = Lit . mkNumLiteral platform num_ops
      and x y = BinOpApp x (fromJust (numAnd num_ops)) y

orFoldingRules' :: Platform -> CoreExpr -> CoreExpr -> NumOps -> Maybe CoreExpr
orFoldingRules' platform arg1 arg2 num_ops = case (arg1, arg2) of
    -- R2) *  `or` `and` simplications
    -- l1 or (l2 or x) ==> (l1 or l2) or x
    (L l1, is_lit_or num_ops -> Just (l2, x))
       -> Just (mkL (l1 .|. l2) `or` x)

    -- l1 or (l2 and x) ==> (l1 or l2) and (l1 and x)
    -- does not decrease operations

    -- (l1 or x) or (l2 or y) ==> (l1 or l2) or (x or y)
    (is_lit_or num_ops -> Just (l1, x), is_lit_or num_ops -> Just (l2, y))
       -> Just (mkL (l1 .|. l2) `or` (x `or` y))

    -- (l1 and x) or (l2 or y) ==> (l1 and l2 and x) or (l1 and x and y)
    -- (l1 and x) or (l2 and y) ==> (l1 and l2) or (x and l2) or (l1 and y) or (x and y)
    -- increase operation numbers

    _ -> Nothing
    where
      mkL = Lit . mkNumLiteral platform num_ops
      or x y = BinOpApp x (fromJust (numOr num_ops)) y

is_binop :: PrimOp -> CoreExpr -> Maybe (Arg CoreBndr, Arg CoreBndr)
is_binop op e = case e of
 BinOpApp x op' y | op == op' -> Just (x,y)
 _                            -> Nothing

is_op :: PrimOp -> CoreExpr -> Maybe (Arg CoreBndr)
is_op op e = case e of
 App (OpVal op') x | op == op' -> Just x
 _                             -> Nothing

is_add, is_sub, is_mul, is_and, is_or :: NumOps -> CoreExpr -> Maybe (Arg CoreBndr, Arg CoreBndr)
is_add num_ops e = is_binop (numAdd num_ops) e
is_sub num_ops e = is_binop (numSub num_ops) e
is_mul num_ops e = is_binop (numMul num_ops) e
is_and num_ops e = numAnd num_ops >>= \op -> is_binop op e
is_or  num_ops e = numOr  num_ops >>= \op -> is_binop op e

is_neg :: NumOps -> CoreExpr -> Maybe (Arg CoreBndr)
is_neg num_ops e = numNeg num_ops >>= \op -> is_op op e

-- match operation with a literal (handles commutativity)
is_lit_add, is_lit_mul, is_lit_and, is_lit_or :: NumOps -> CoreExpr -> Maybe (Integer, Arg CoreBndr)
is_lit_add num_ops e = is_lit' is_add num_ops e
is_lit_mul num_ops e = is_lit' is_mul num_ops e
is_lit_and num_ops e = is_lit' is_and num_ops e
is_lit_or  num_ops e = is_lit' is_or  num_ops e

is_lit' :: (NumOps -> CoreExpr -> Maybe (Arg CoreBndr, Arg CoreBndr)) -> NumOps -> CoreExpr -> Maybe (Integer, Arg CoreBndr)
is_lit' f num_ops e = case f num_ops e of
  Just (L l, x  ) -> Just (l,x)
  Just (x  , L l) -> Just (l,x)
  _               -> Nothing

-- match given "x": return 1
-- match "lit * x": return lit value (handles commutativity)
is_expr_mul :: NumOps -> Expr CoreBndr -> Expr CoreBndr -> Maybe Integer
is_expr_mul num_ops x e = if
   | x `cheapEqExpr` e
   -> Just 1
   | Just (k,x') <- is_lit_mul num_ops e
   , x `cheapEqExpr` x'
   -> return k
   | otherwise
   -> Nothing


-- | Match the application of a binary primop
pattern BinOpApp :: Arg CoreBndr -> PrimOp -> Arg CoreBndr -> CoreExpr
pattern BinOpApp x op y = OpVal op `App` x `App` y

-- | Match a primop
pattern OpVal:: PrimOp  -> Arg CoreBndr
pattern OpVal op <- Var (isPrimOpId_maybe -> Just op) where
   OpVal op = Var (primOpId op)

-- | Match a literal
pattern L :: Integer -> Arg CoreBndr
pattern L i <- Lit (LitNumber _ i)

-- | Explicit "type-class"-like dictionary for numeric primops
data NumOps = NumOps
   { numAdd     :: !PrimOp         -- ^ Add two numbers
   , numSub     :: !PrimOp         -- ^ Sub two numbers
   , numMul     :: !PrimOp         -- ^ Multiply two numbers
   , numAnd     :: !(Maybe PrimOp) -- ^ And two numbers
   , numOr      :: !(Maybe PrimOp) -- ^ Or two numbers
   , numNeg     :: !(Maybe PrimOp) -- ^ Negate a number
   , numLitType :: !LitNumType     -- ^ Literal type
   }

-- | Create a numeric literal
mkNumLiteral :: Platform -> NumOps -> Integer -> Literal
mkNumLiteral platform ops i = mkLitNumberWrap platform (numLitType ops) i

int8Ops :: NumOps
int8Ops = NumOps
   { numAdd     = Int8AddOp
   , numSub     = Int8SubOp
   , numMul     = Int8MulOp
   , numLitType = LitNumInt8
   , numAnd     = Nothing
   , numOr      = Nothing
   , numNeg     = Just Int8NegOp
   }

word8Ops :: NumOps
word8Ops = NumOps
   { numAdd     = Word8AddOp
   , numSub     = Word8SubOp
   , numMul     = Word8MulOp
   , numAnd     = Just Word8AndOp
   , numOr      = Just Word8OrOp
   , numNeg     = Nothing
   , numLitType = LitNumWord8
   }

int16Ops :: NumOps
int16Ops = NumOps
   { numAdd     = Int16AddOp
   , numSub     = Int16SubOp
   , numMul     = Int16MulOp
   , numLitType = LitNumInt16
   , numAnd     = Nothing
   , numOr      = Nothing
   , numNeg     = Just Int16NegOp
   }

word16Ops :: NumOps
word16Ops = NumOps
   { numAdd     = Word16AddOp
   , numSub     = Word16SubOp
   , numMul     = Word16MulOp
   , numAnd     = Just Word16AndOp
   , numOr      = Just Word16OrOp
   , numNeg     = Nothing
   , numLitType = LitNumWord16
   }

int32Ops :: NumOps
int32Ops = NumOps
   { numAdd     = Int32AddOp
   , numSub     = Int32SubOp
   , numMul     = Int32MulOp
   , numLitType = LitNumInt32
   , numAnd     = Nothing
   , numOr      = Nothing
   , numNeg     = Just Int32NegOp
   }

word32Ops :: NumOps
word32Ops = NumOps
   { numAdd     = Word32AddOp
   , numSub     = Word32SubOp
   , numMul     = Word32MulOp
   , numAnd     = Just Word32AndOp
   , numOr      = Just Word32OrOp
   , numNeg     = Nothing
   , numLitType = LitNumWord32
   }

int64Ops :: NumOps
int64Ops = NumOps
   { numAdd     = Int64AddOp
   , numSub     = Int64SubOp
   , numMul     = Int64MulOp
   , numLitType = LitNumInt64
   , numAnd     = Nothing
   , numOr      = Nothing
   , numNeg     = Just Int64NegOp
   }

word64Ops :: NumOps
word64Ops = NumOps
   { numAdd     = Word64AddOp
   , numSub     = Word64SubOp
   , numMul     = Word64MulOp
   , numAnd     = Just Word64AndOp
   , numOr      = Just Word64OrOp
   , numNeg     = Nothing
   , numLitType = LitNumWord64
   }

intOps :: NumOps
intOps = NumOps
   { numAdd     = IntAddOp
   , numSub     = IntSubOp
   , numMul     = IntMulOp
   , numAnd     = Just IntAndOp
   , numOr      = Just IntOrOp
   , numNeg     = Just IntNegOp
   , numLitType = LitNumInt
   }

wordOps :: NumOps
wordOps = NumOps
   { numAdd     = WordAddOp
   , numSub     = WordSubOp
   , numMul     = WordMulOp
   , numAnd     = Just WordAndOp
   , numOr      = Just WordOrOp
   , numNeg     = Nothing
   , numLitType = LitNumWord
   }

--------------------------------------------------------
-- Constant folding through case-expressions
--
-- cf Scrutinee Constant Folding in simplCore/GHC.Core.Opt.Simplify.Utils
--------------------------------------------------------

-- | Match the scrutinee of a case and potentially return a new scrutinee and a
-- function to apply to each literal alternative.
caseRules :: Platform
          -> CoreExpr                       -- Scrutinee
          -> Maybe ( CoreExpr               -- New scrutinee
                   , AltCon -> Maybe AltCon -- How to fix up the alt pattern
                                            --   Nothing <=> Unreachable
                                            -- See Note [Unreachable caseRules alternatives]
                   , Id -> CoreExpr)        -- How to reconstruct the original scrutinee
                                            -- from the new case-binder
-- e.g  case e of b {
--         ...;
--         con bs -> rhs;
--         ... }
--  ==>
--      case e' of b' {
--         ...;
--         fixup_altcon[con] bs -> let b = mk_orig[b] in rhs;
--         ... }

caseRules platform (App (App (Var f) v) (Lit l))   -- v `op` x#
  | Just op <- isPrimOpId_maybe f
  , LitNumber _ x <- l
  , Just adjust_lit <- adjustDyadicRight op x
  = Just (v, tx_lit_con platform adjust_lit
           , \v -> (App (App (Var f) (Var v)) (Lit l)))

caseRules platform (App (App (Var f) (Lit l)) v)   -- x# `op` v
  | Just op <- isPrimOpId_maybe f
  , LitNumber _ x <- l
  , Just adjust_lit <- adjustDyadicLeft x op
  = Just (v, tx_lit_con platform adjust_lit
           , \v -> (App (App (Var f) (Lit l)) (Var v)))


caseRules platform (App (Var f) v              )   -- op v
  | Just op <- isPrimOpId_maybe f
  , Just adjust_lit <- adjustUnary op
  = Just (v, tx_lit_con platform adjust_lit
           , \v -> App (Var f) (Var v))

-- See Note [caseRules for tagToEnum]
caseRules platform (App (App (Var f) type_arg) v)
  | Just TagToEnumOp <- isPrimOpId_maybe f
  = Just (v, tx_con_tte platform
           , \v -> (App (App (Var f) type_arg) (Var v)))

-- See Note [caseRules for dataToTag]
caseRules _ (App (App (Var f) (Type ty)) v)       -- dataToTag x
  | Just DataToTagOp <- isPrimOpId_maybe f
  , Just (tc, _) <- tcSplitTyConApp_maybe ty
  , isAlgTyCon tc
  = Just (v, tx_con_dtt ty
           , \v -> App (App (Var f) (Type ty)) (Var v))

caseRules _ _ = Nothing


tx_lit_con :: Platform -> (Integer -> Integer) -> AltCon -> Maybe AltCon
tx_lit_con _        _      DEFAULT    = Just DEFAULT
tx_lit_con platform adjust (LitAlt l) = Just $ LitAlt (mapLitValue platform adjust l)
tx_lit_con _        _      alt        = pprPanic "caseRules" (ppr alt)
   -- NB: mapLitValue uses mkLitIntWrap etc, to ensure that the
   -- literal alternatives remain in Word/Int target ranges
   -- (See Note [Word/Int underflow/overflow] in GHC.Types.Literal and #13172).

adjustDyadicRight :: PrimOp -> Integer -> Maybe (Integer -> Integer)
-- Given (x `op` lit) return a function 'f' s.t.  f (x `op` lit) = x
adjustDyadicRight op lit
  = case op of
         WordAddOp -> Just (\y -> y-lit      )
         IntAddOp  -> Just (\y -> y-lit      )
         WordSubOp -> Just (\y -> y+lit      )
         IntSubOp  -> Just (\y -> y+lit      )
         WordXorOp -> Just (\y -> y `xor` lit)
         IntXorOp  -> Just (\y -> y `xor` lit)
         _         -> Nothing

adjustDyadicLeft :: Integer -> PrimOp -> Maybe (Integer -> Integer)
-- Given (lit `op` x) return a function 'f' s.t.  f (lit `op` x) = x
adjustDyadicLeft lit op
  = case op of
         WordAddOp -> Just (\y -> y-lit      )
         IntAddOp  -> Just (\y -> y-lit      )
         WordSubOp -> Just (\y -> lit-y      )
         IntSubOp  -> Just (\y -> lit-y      )
         WordXorOp -> Just (\y -> y `xor` lit)
         IntXorOp  -> Just (\y -> y `xor` lit)
         _         -> Nothing


adjustUnary :: PrimOp -> Maybe (Integer -> Integer)
-- Given (op x) return a function 'f' s.t.  f (op x) = x
adjustUnary op
  = case op of
         WordNotOp -> Just (\y -> complement y)
         IntNotOp  -> Just (\y -> complement y)
         IntNegOp  -> Just (\y -> negate y    )
         _         -> Nothing

tx_con_tte :: Platform -> AltCon -> Maybe AltCon
tx_con_tte _        DEFAULT         = Just DEFAULT
tx_con_tte _        alt@(LitAlt {}) = pprPanic "caseRules" (ppr alt)
tx_con_tte platform (DataAlt dc)  -- See Note [caseRules for tagToEnum]
  = Just $ LitAlt $ mkLitInt platform $ toInteger $ dataConTagZ dc

tx_con_dtt :: Type -> AltCon -> Maybe AltCon
tx_con_dtt _  DEFAULT = Just DEFAULT
tx_con_dtt ty (LitAlt (LitNumber LitNumInt i))
   | tag >= 0
   , tag < n_data_cons
   = Just (DataAlt (data_cons !! tag))   -- tag is zero-indexed, as is (!!)
   | otherwise
   = Nothing
   where
     tag         = fromInteger i :: ConTagZ
     tc          = tyConAppTyCon ty
     n_data_cons = tyConFamilySize tc
     data_cons   = tyConDataCons tc

tx_con_dtt _ alt = pprPanic "caseRules" (ppr alt)


{- Note [caseRules for tagToEnum]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to transform
   case tagToEnum x of
     False -> e1
     True  -> e2
into
   case x of
     0# -> e1
     1# -> e2

This rule eliminates a lot of boilerplate. For
  if (x>y) then e2 else e1
we generate
  case tagToEnum (x ># y) of
    False -> e1
    True  -> e2
and it is nice to then get rid of the tagToEnum.

Beware (#14768): avoid the temptation to map constructor 0 to
DEFAULT, in the hope of getting this
  case (x ># y) of
    DEFAULT -> e1
    1#      -> e2
That fails utterly in the case of
   data Colour = Red | Green | Blue
   case tagToEnum x of
      DEFAULT -> e1
      Red     -> e2

We don't want to get this!
   case x of
      DEFAULT -> e1
      DEFAULT -> e2

Instead, we deal with turning one branch into DEFAULT in GHC.Core.Opt.Simplify.Utils
(add_default in mkCase3).

Note [caseRules for dataToTag]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also Note [dataToTag# magic].

We want to transform
  case dataToTag x of
    DEFAULT -> e1
    1# -> e2
into
  case x of
    DEFAULT -> e1
    (:) _ _ -> e2

Note the need for some wildcard binders in
the 'cons' case.

For the time, we only apply this transformation when the type of `x` is a type
headed by a normal tycon. In particular, we do not apply this in the case of a
data family tycon, since that would require carefully applying coercion(s)
between the data family and the data family instance's representation type,
which caseRules isn't currently engineered to handle (#14680).

Note [Unreachable caseRules alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Take care if we see something like
  case dataToTag x of
    DEFAULT -> e1
    -1# -> e2
    100 -> e3
because there isn't a data constructor with tag -1 or 100. In this case the
out-of-range alternative is dead code -- we know the range of tags for x.

Hence caseRules returns (AltCon -> Maybe AltCon), with Nothing indicating
an alternative that is unreachable.

You may wonder how this can happen: check out #15436.
-}