1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
{-# LANGUAGE DerivingStrategies #-}
{-
Describes predicates as they are considered by the solver.
-}
module GHC.Core.Predicate (
Pred(..), classifyPredType,
isPredTy, isEvVarType,
-- Equality predicates
EqRel(..), eqRelRole,
isEqPrimPred, isEqPred,
getEqPredTys, getEqPredTys_maybe, getEqPredRole,
predTypeEqRel,
mkPrimEqPred, mkReprPrimEqPred, mkPrimEqPredRole,
mkHeteroPrimEqPred, mkHeteroReprPrimEqPred,
-- Class predicates
mkClassPred, isDictTy, typeDeterminesValue,
isClassPred, isEqPredClass, isCTupleClass,
getClassPredTys, getClassPredTys_maybe,
classMethodTy, classMethodInstTy,
-- Implicit parameters
isIPLikePred, hasIPSuperClasses, isIPTyCon, isIPClass,
isCallStackTy, isCallStackPred, isCallStackPredTy,
isIPPred_maybe,
-- Evidence variables
DictId, isEvVar, isDictId
) where
import GHC.Prelude
import GHC.Core.Type
import GHC.Core.Class
import GHC.Core.TyCon
import GHC.Core.TyCon.RecWalk
import GHC.Types.Var
import GHC.Core.Coercion
import GHC.Core.Multiplicity ( scaledThing )
import GHC.Builtin.Names
import GHC.Utils.Outputable
import GHC.Utils.Misc
import GHC.Utils.Panic
import GHC.Data.FastString
import Control.Monad ( guard )
-- | A predicate in the solver. The solver tries to prove Wanted predicates
-- from Given ones.
data Pred
-- | A typeclass predicate.
= ClassPred Class [Type]
-- | A type equality predicate.
| EqPred EqRel Type Type
-- | An irreducible predicate.
| IrredPred PredType
-- | A quantified predicate.
--
-- See Note [Quantified constraints] in GHC.Tc.Solver.Canonical
| ForAllPred [TyVar] [PredType] PredType
-- NB: There is no TuplePred case
-- Tuple predicates like (Eq a, Ord b) are just treated
-- as ClassPred, as if we had a tuple class with two superclasses
-- class (c1, c2) => (%,%) c1 c2
classifyPredType :: PredType -> Pred
classifyPredType ev_ty = case splitTyConApp_maybe ev_ty of
Just (tc, [_, _, ty1, ty2])
| tc `hasKey` eqReprPrimTyConKey -> EqPred ReprEq ty1 ty2
| tc `hasKey` eqPrimTyConKey -> EqPred NomEq ty1 ty2
Just (tc, tys)
| Just clas <- tyConClass_maybe tc
-> ClassPred clas tys
_ | (tvs, rho) <- splitForAllTyCoVars ev_ty
, (theta, pred) <- splitFunTys rho
, not (null tvs && null theta)
-> ForAllPred tvs (map scaledThing theta) pred
| otherwise
-> IrredPred ev_ty
-- --------------------- Dictionary types ---------------------------------
mkClassPred :: Class -> [Type] -> PredType
mkClassPred clas tys = mkTyConApp (classTyCon clas) tys
isDictTy :: Type -> Bool
isDictTy = isClassPred
typeDeterminesValue :: Type -> Bool
-- See Note [Type determines value]
typeDeterminesValue ty = isDictTy ty && not (isIPLikePred ty)
getClassPredTys :: HasDebugCallStack => PredType -> (Class, [Type])
getClassPredTys ty = case getClassPredTys_maybe ty of
Just (clas, tys) -> (clas, tys)
Nothing -> pprPanic "getClassPredTys" (ppr ty)
getClassPredTys_maybe :: PredType -> Maybe (Class, [Type])
getClassPredTys_maybe ty = case splitTyConApp_maybe ty of
Just (tc, tys) | Just clas <- tyConClass_maybe tc -> Just (clas, tys)
_ -> Nothing
classMethodTy :: Id -> Type
-- Takes a class selector op :: forall a. C a => meth_ty
-- and returns the type of its method, meth_ty
-- The selector can be a superclass selector, in which case
-- you get back a superclass
classMethodTy sel_id
= funResultTy $ -- meth_ty
dropForAlls $ -- C a => meth_ty
varType sel_id -- forall a. C n => meth_ty
classMethodInstTy :: Id -> [Type] -> Type
-- Takes a class selector op :: forall a b. C a b => meth_ty
-- and the types [ty1, ty2] at which it is instantiated,
-- returns the instantiated type of its method, meth_ty[t1/a,t2/b]
-- The selector can be a superclass selector, in which case
-- you get back a superclass
classMethodInstTy sel_id arg_tys
= funResultTy $
piResultTys (varType sel_id) arg_tys
{- Note [Type determines value]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Only specialise on non-impicit-parameter predicates, because these
are the ones whose *type* determines their *value*. In particular,
with implicit params, the type args *don't* say what the value of the
implicit param is! See #7101.
So we treat implicit params just like ordinary arguments for the
purposes of specialisation. Note that we still want to specialise
functions with implicit params if they have *other* dicts which are
class params; see #17930.
-}
-- --------------------- Equality predicates ---------------------------------
-- | A choice of equality relation. This is separate from the type 'Role'
-- because 'Phantom' does not define a (non-trivial) equality relation.
data EqRel = NomEq | ReprEq
deriving (Eq, Ord)
instance Outputable EqRel where
ppr NomEq = text "nominal equality"
ppr ReprEq = text "representational equality"
eqRelRole :: EqRel -> Role
eqRelRole NomEq = Nominal
eqRelRole ReprEq = Representational
getEqPredTys :: PredType -> (Type, Type)
getEqPredTys ty
= case splitTyConApp_maybe ty of
Just (tc, [_, _, ty1, ty2])
| tc `hasKey` eqPrimTyConKey
|| tc `hasKey` eqReprPrimTyConKey
-> (ty1, ty2)
_ -> pprPanic "getEqPredTys" (ppr ty)
getEqPredTys_maybe :: PredType -> Maybe (Role, Type, Type)
getEqPredTys_maybe ty
= case splitTyConApp_maybe ty of
Just (tc, [_, _, ty1, ty2])
| tc `hasKey` eqPrimTyConKey -> Just (Nominal, ty1, ty2)
| tc `hasKey` eqReprPrimTyConKey -> Just (Representational, ty1, ty2)
_ -> Nothing
getEqPredRole :: PredType -> Role
getEqPredRole ty = eqRelRole (predTypeEqRel ty)
-- | Get the equality relation relevant for a pred type.
predTypeEqRel :: PredType -> EqRel
predTypeEqRel ty
| Just (tc, _) <- splitTyConApp_maybe ty
, tc `hasKey` eqReprPrimTyConKey
= ReprEq
| otherwise
= NomEq
{-------------------------------------------
Predicates on PredType
--------------------------------------------}
{-
Note [Evidence for quantified constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The superclass mechanism in GHC.Tc.Solver.Canonical.makeSuperClasses risks
taking a quantified constraint like
(forall a. C a => a ~ b)
and generate superclass evidence
(forall a. C a => a ~# b)
This is a funny thing: neither isPredTy nor isCoVarType are true
of it. So we are careful not to generate it in the first place:
see Note [Equality superclasses in quantified constraints]
in GHC.Tc.Solver.Canonical.
-}
isEvVarType :: Type -> Bool
-- True of (a) predicates, of kind Constraint, such as (Eq a), and (a ~ b)
-- (b) coercion types, such as (t1 ~# t2) or (t1 ~R# t2)
-- See Note [Types for coercions, predicates, and evidence] in GHC.Core.TyCo.Rep
-- See Note [Evidence for quantified constraints]
isEvVarType ty = isCoVarType ty || isPredTy ty
isEqPredClass :: Class -> Bool
-- True of (~) and (~~)
isEqPredClass cls = cls `hasKey` eqTyConKey
|| cls `hasKey` heqTyConKey
isClassPred, isEqPred, isEqPrimPred :: PredType -> Bool
isClassPred ty = case tyConAppTyCon_maybe ty of
Just tyCon | isClassTyCon tyCon -> True
_ -> False
isEqPred ty -- True of (a ~ b) and (a ~~ b)
-- ToDo: should we check saturation?
| Just tc <- tyConAppTyCon_maybe ty
, Just cls <- tyConClass_maybe tc
= isEqPredClass cls
| otherwise
= False
isEqPrimPred ty = isCoVarType ty
-- True of (a ~# b) (a ~R# b)
isCTupleClass :: Class -> Bool
isCTupleClass cls = isTupleTyCon (classTyCon cls)
{- *********************************************************************
* *
Implicit parameters
* *
********************************************************************* -}
isIPTyCon :: TyCon -> Bool
isIPTyCon tc = tc `hasKey` ipClassKey
-- Class and its corresponding TyCon have the same Unique
isIPClass :: Class -> Bool
isIPClass cls = cls `hasKey` ipClassKey
isIPLikePred :: Type -> Bool
-- See Note [Local implicit parameters]
isIPLikePred = is_ip_like_pred initIPRecTc
is_ip_like_pred :: RecTcChecker -> Type -> Bool
is_ip_like_pred rec_clss ty
| Just (tc, tys) <- splitTyConApp_maybe ty
, Just rec_clss' <- if isTupleTyCon tc -- Tuples never cause recursion
then Just rec_clss
else checkRecTc rec_clss tc
, Just cls <- tyConClass_maybe tc
= isIPClass cls || has_ip_super_classes rec_clss' cls tys
| otherwise
= False -- Includes things like (D []) where D is
-- a Constraint-ranged family; #7785
hasIPSuperClasses :: Class -> [Type] -> Bool
-- See Note [Local implicit parameters]
hasIPSuperClasses = has_ip_super_classes initIPRecTc
has_ip_super_classes :: RecTcChecker -> Class -> [Type] -> Bool
has_ip_super_classes rec_clss cls tys
= any ip_ish (classSCSelIds cls)
where
-- Check that the type of a superclass determines its value
-- sc_sel_id :: forall a b. C a b -> <superclass type>
ip_ish sc_sel_id = is_ip_like_pred rec_clss $
classMethodInstTy sc_sel_id tys
initIPRecTc :: RecTcChecker
initIPRecTc = setRecTcMaxBound 1 initRecTc
-- --------------------- CallStack predicates ---------------------------------
isCallStackPredTy :: Type -> Bool
-- True of HasCallStack, or IP "blah" CallStack
isCallStackPredTy ty
| Just (tc, tys) <- splitTyConApp_maybe ty
, Just cls <- tyConClass_maybe tc
, Just {} <- isCallStackPred cls tys
= True
| otherwise
= False
-- | Is a 'PredType' a 'CallStack' implicit parameter?
--
-- If so, return the name of the parameter.
isCallStackPred :: Class -> [Type] -> Maybe FastString
isCallStackPred cls tys
| [ty1, ty2] <- tys
, isIPClass cls
, isCallStackTy ty2
= isStrLitTy ty1
| otherwise
= Nothing
-- | Is a type a 'CallStack'?
isCallStackTy :: Type -> Bool
isCallStackTy ty
| Just tc <- tyConAppTyCon_maybe ty
= tc `hasKey` callStackTyConKey
| otherwise
= False
-- | Decomposes a predicate if it is an implicit parameter. Does not look in
-- superclasses. See also [Local implicit parameters].
isIPPred_maybe :: Type -> Maybe (FastString, Type)
isIPPred_maybe ty =
do (tc,[t1,t2]) <- splitTyConApp_maybe ty
guard (isIPTyCon tc)
x <- isStrLitTy t1
return (x,t2)
{- Note [Local implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The function isIPLikePred tells if this predicate, or any of its
superclasses, is an implicit parameter.
Why are implicit parameters special? Unlike normal classes, we can
have local instances for implicit parameters, in the form of
let ?x = True in ...
So in various places we must be careful not to assume that any value
of the right type will do; we must carefully look for the innermost binding.
So isIPLikePred checks whether this is an implicit parameter, or has
a superclass that is an implicit parameter.
Several wrinkles
* We must be careful with superclasses, as #18649 showed. Haskell
doesn't allow an implicit parameter as a superclass
class (?x::a) => C a where ...
but with a constraint tuple we might have
(% Eq a, ?x::Int %)
and /its/ superclasses, namely (Eq a) and (?x::Int), /do/ include an
implicit parameter.
With ConstraintKinds this can apply to /any/ class, e.g.
class sc => C sc where ...
Then (C (?x::Int)) has (?x::Int) as a superclass. So we must
instantiate and check each superclass, one by one, in
hasIPSuperClasses.
* With -XUndecidableSuperClasses, the superclass hunt can go on forever,
so we need a RecTcChecker to cut it off.
* Another apparent additional complexity involves type families. For
example, consider
type family D (v::*->*) :: Constraint
type instance D [] = ()
f :: D v => v Char -> Int
If we see a call (f "foo"), we'll pass a "dictionary"
() |> (g :: () ~ D [])
and it's good to specialise f at this dictionary.
So the question is: can an implicit parameter "hide inside" a
type-family constraint like (D a). Well, no. We don't allow
type instance D Maybe = ?x:Int
Hence the umbrella 'otherwise' case in is_ip_like_pred. See #7785.
Small worries (Sept 20):
* I don't see what stops us having that 'type instance'. Indeed I
think nothing does.
* I'm a little concerned about type variables; such a variable might
be instantiated to an implicit parameter. I don't think this
matters in the cases for which isIPLikePred is used, and it's pretty
obscure anyway.
* The superclass hunt stops when it encounters the same class again,
but in principle we could have the same class, differently instantiated,
and the second time it could have an implicit parameter
I'm going to treat these as problems for another day. They are all exotic. -}
{- *********************************************************************
* *
Evidence variables
* *
********************************************************************* -}
isEvVar :: Var -> Bool
isEvVar var = isEvVarType (varType var)
isDictId :: Id -> Bool
isDictId id = isDictTy (varType id)
|