1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
module GHC.Core.Reduction
(
-- * Reductions
Reduction(..), ReductionN, ReductionR, HetReduction(..),
Reductions(..),
mkReduction, mkReductions, mkHetReduction, coercionRedn,
reductionOriginalType,
downgradeRedn, mkSubRedn,
mkTransRedn, mkCoherenceRightRedn, mkCoherenceRightMRedn,
mkCastRedn1, mkCastRedn2,
mkReflRedn, mkGReflRightRedn, mkGReflRightMRedn,
mkGReflLeftRedn, mkGReflLeftMRedn,
mkAppRedn, mkAppRedns, mkFunRedn,
mkForAllRedn, mkHomoForAllRedn, mkTyConAppRedn, mkClassPredRedn,
mkProofIrrelRedn, mkReflCoRedn,
homogeniseHetRedn,
unzipRedns,
-- * Rewriting type arguments
ArgsReductions(..),
simplifyArgsWorker
) where
import GHC.Prelude
import GHC.Core.Class ( Class(classTyCon) )
import GHC.Core.Coercion
import GHC.Core.Predicate ( mkClassPred )
import GHC.Core.TyCon ( TyCon )
import GHC.Core.Type
import GHC.Data.Pair ( Pair(Pair) )
import GHC.Data.List.Infinite ( Infinite (..) )
import qualified GHC.Data.List.Infinite as Inf
import GHC.Types.Var ( setTyVarKind )
import GHC.Types.Var.Env ( mkInScopeSet )
import GHC.Types.Var.Set ( TyCoVarSet )
import GHC.Utils.Misc ( HasDebugCallStack, equalLength )
import GHC.Utils.Outputable
import GHC.Utils.Panic ( assertPpr )
{-
%************************************************************************
%* *
Reductions
%* *
%************************************************************************
Note [The Reduction type]
~~~~~~~~~~~~~~~~~~~~~~~~~
Many functions in the type-checker rewrite a type, using Given type equalitie
or type-family reductions, and return a Reduction, which is just a pair of the
coercion and the RHS type of the coercion:
data Reduction = Reduction Coercion !Type
The order of the arguments to the constructor serves as a reminder
of what the Type is. In
Reduction co ty
`ty` appears to the right of `co`, reminding us that we must have:
co :: unrewritten_ty ~ ty
Example functions that use this datatype:
GHC.Core.FamInstEnv.topNormaliseType_maybe
:: FamInstEnvs -> Type -> Maybe Reduction
GHC.Tc.Solver.Rewrite.rewrite
:: CtEvidence -> TcType -> TcS Reduction
Having Reduction as a data type, with a strict Type field, rather than using
a pair (Coercion,Type) gives several advantages (see #20161)
* The strictness in Type improved performance in rewriting of type families
(around 2.5% improvement in T9872),
* Compared to the situation before, it gives improved consistency around
orientation of rewritings, as a Reduction is always left-to-right
(the coercion's RHS type is always the type stored in the 'Reduction').
No more 'mkSymCo's needed to convert between left-to-right and right-to-left.
One could imagine storing the LHS type of the coercion in the Reduction as well,
but in fact `reductionOriginalType` is very seldom used, so it's not worth it.
-}
-- | A 'Reduction' is the result of an operation that rewrites a type @ty_in@.
-- The 'Reduction' includes the rewritten type @ty_out@ and a 'Coercion' @co@
-- such that @co :: ty_in ~ ty_out@, where the role of the coercion is determined
-- by the context. That is, the LHS type of the coercion is the original type
-- @ty_in@, while its RHS type is the rewritten type @ty_out@.
--
-- A Reduction is always homogeneous, unless it is wrapped inside a 'HetReduction',
-- which separately stores the kind coercion.
--
-- See Note [The Reduction type].
data Reduction =
Reduction
{ reductionCoercion :: Coercion
, reductionReducedType :: !Type
}
-- N.B. the 'Coercion' field must be lazy: see for instance GHC.Tc.Solver.Rewrite.rewrite_tyvar2
-- which returns an error in the 'Coercion' field when dealing with a Derived constraint
-- (which is OK as this Coercion gets ignored later).
-- We might want to revisit the strictness once Deriveds are removed.
-- | Stores a heterogeneous reduction.
--
-- The stored kind coercion must relate the kinds of the
-- stored reduction. That is, in @HetReduction (Reduction co xi) kco@,
-- we must have:
--
-- > co :: ty ~ xi
-- > kco :: typeKind ty ~ typeKind xi
data HetReduction =
HetReduction
Reduction
MCoercionN
-- N.B. strictness annotations don't seem to make a difference here
-- | Create a heterogeneous reduction.
--
-- Pre-condition: the provided kind coercion (second argument)
-- relates the kinds of the stored reduction.
-- That is, if the coercion stored in the 'Reduction' is of the form
--
-- > co :: ty ~ xi
--
-- Then the kind coercion supplied must be of the form:
--
-- > kco :: typeKind ty ~ typeKind xi
mkHetReduction :: Reduction -- ^ heterogeneous reduction
-> MCoercionN -- ^ kind coercion
-> HetReduction
mkHetReduction redn mco = HetReduction redn mco
{-# INLINE mkHetReduction #-}
-- | Homogenise a heterogeneous reduction.
--
-- Given @HetReduction (Reduction co xi) kco@, with
--
-- > co :: ty ~ xi
-- > kco :: typeKind(ty) ~ typeKind(xi)
--
-- this returns the homogeneous reduction:
--
-- > hco :: ty ~ ( xi |> sym kco )
homogeniseHetRedn :: Role -> HetReduction -> Reduction
homogeniseHetRedn role (HetReduction redn kco)
= mkCoherenceRightMRedn role redn (mkSymMCo kco)
{-# INLINE homogeniseHetRedn #-}
-- | Create a 'Reduction' from a pair of a 'Coercion' and a 'Type.
--
-- Pre-condition: the RHS type of the coercion matches the provided type
-- (perhaps up to zonking).
--
-- Use 'coercionRedn' when you only have the coercion.
mkReduction :: Coercion -> Type -> Reduction
mkReduction co ty = Reduction co ty
{-# INLINE mkReduction #-}
instance Outputable Reduction where
ppr redn =
braces $ vcat
[ text "reductionOriginalType:" <+> ppr (reductionOriginalType redn)
, text " reductionReducedType:" <+> ppr (reductionReducedType redn)
, text " reductionCoercion:" <+> ppr (reductionCoercion redn)
]
-- | A 'Reduction' in which the 'Coercion' has 'Nominal' role.
type ReductionN = Reduction
-- | A 'Reduction' in which the 'Coercion' has 'Representational' role.
type ReductionR = Reduction
-- | Get the original, unreduced type corresponding to a 'Reduction'.
--
-- This is obtained by computing the LHS kind of the stored coercion,
-- which may be slow.
reductionOriginalType :: Reduction -> Type
reductionOriginalType = coercionLKind . reductionCoercion
{-# INLINE reductionOriginalType #-}
-- | Turn a 'Coercion' into a 'Reduction'
-- by inspecting the RHS type of the coercion.
--
-- Prefer using 'mkReduction' when you already know
-- the RHS type of the coercion, to avoid computing it anew.
coercionRedn :: Coercion -> Reduction
coercionRedn co = Reduction co (coercionRKind co)
{-# INLINE coercionRedn #-}
-- | Downgrade the role of the coercion stored in the 'Reduction'.
downgradeRedn :: Role -- ^ desired role
-> Role -- ^ current role
-> Reduction
-> Reduction
downgradeRedn new_role old_role redn@(Reduction co _)
= redn { reductionCoercion = downgradeRole new_role old_role co }
{-# INLINE downgradeRedn #-}
-- | Downgrade the role of the coercion stored in the 'Reduction',
-- from 'Nominal' to 'Representational'.
mkSubRedn :: Reduction -> Reduction
mkSubRedn redn@(Reduction co _) = redn { reductionCoercion = mkSubCo co }
{-# INLINE mkSubRedn #-}
-- | Compose a reduction with a coercion on the left.
--
-- Pre-condition: the provided coercion's RHS type must match the LHS type
-- of the coercion that is stored in the reduction.
mkTransRedn :: Coercion -> Reduction -> Reduction
mkTransRedn co1 redn@(Reduction co2 _)
= redn { reductionCoercion = co1 `mkTransCo` co2 }
{-# INLINE mkTransRedn #-}
-- | The reflexive reduction.
mkReflRedn :: Role -> Type -> Reduction
mkReflRedn r ty = mkReduction (mkReflCo r ty) ty
-- | Create a 'Reduction' from a kind cast, in which
-- the casted type is the rewritten type.
--
-- Given @ty :: k1@, @mco :: k1 ~ k2@,
-- produces the 'Reduction' @ty ~res_co~> (ty |> mco)@
-- at the given 'Role'.
mkGReflRightRedn :: Role -> Type -> CoercionN -> Reduction
mkGReflRightRedn role ty co
= mkReduction
(mkGReflRightCo role ty co)
(mkCastTy ty co)
{-# INLINE mkGReflRightRedn #-}
-- | Create a 'Reduction' from a kind cast, in which
-- the casted type is the rewritten type.
--
-- Given @ty :: k1@, @mco :: k1 ~ k2@,
-- produces the 'Reduction' @ty ~res_co~> (ty |> mco)@
-- at the given 'Role'.
mkGReflRightMRedn :: Role -> Type -> MCoercionN -> Reduction
mkGReflRightMRedn role ty mco
= mkReduction
(mkGReflRightMCo role ty mco)
(mkCastTyMCo ty mco)
{-# INLINE mkGReflRightMRedn #-}
-- | Create a 'Reduction' from a kind cast, in which
-- the casted type is the original (non-rewritten) type.
--
-- Given @ty :: k1@, @mco :: k1 ~ k2@,
-- produces the 'Reduction' @(ty |> mco) ~res_co~> ty@
-- at the given 'Role'.
mkGReflLeftRedn :: Role -> Type -> CoercionN -> Reduction
mkGReflLeftRedn role ty co
= mkReduction
(mkGReflLeftCo role ty co)
ty
{-# INLINE mkGReflLeftRedn #-}
-- | Create a 'Reduction' from a kind cast, in which
-- the casted type is the original (non-rewritten) type.
--
-- Given @ty :: k1@, @mco :: k1 ~ k2@,
-- produces the 'Reduction' @(ty |> mco) ~res_co~> ty@
-- at the given 'Role'.
mkGReflLeftMRedn :: Role -> Type -> MCoercionN -> Reduction
mkGReflLeftMRedn role ty mco
= mkReduction
(mkGReflLeftMCo role ty mco)
ty
{-# INLINE mkGReflLeftMRedn #-}
-- | Apply a cast to the result of a 'Reduction'.
--
-- Given a 'Reduction' @ty1 ~co1~> (ty2 :: k2)@ and a kind coercion @kco@
-- with LHS kind @k2@, produce a new 'Reduction' @ty1 ~co2~> ( ty2 |> kco )@
-- of the given 'Role' (which must match the role of the coercion stored
-- in the 'Reduction' argument).
mkCoherenceRightRedn :: Role -> Reduction -> CoercionN -> Reduction
mkCoherenceRightRedn r (Reduction co1 ty2) kco
= mkReduction
(mkCoherenceRightCo r ty2 kco co1)
(mkCastTy ty2 kco)
{-# INLINE mkCoherenceRightRedn #-}
-- | Apply a cast to the result of a 'Reduction', using an 'MCoercionN'.
--
-- Given a 'Reduction' @ty1 ~co1~> (ty2 :: k2)@ and a kind coercion @mco@
-- with LHS kind @k2@, produce a new 'Reduction' @ty1 ~co2~> ( ty2 |> mco )@
-- of the given 'Role' (which must match the role of the coercion stored
-- in the 'Reduction' argument).
mkCoherenceRightMRedn :: Role -> Reduction -> MCoercionN -> Reduction
mkCoherenceRightMRedn r (Reduction co1 ty2) kco
= mkReduction
(mkCoherenceRightMCo r ty2 kco co1)
(mkCastTyMCo ty2 kco)
{-# INLINE mkCoherenceRightMRedn #-}
-- | Apply a cast to a 'Reduction', casting both the original and the reduced type.
--
-- Given @cast_co@ and 'Reduction' @ty ~co~> xi@, this function returns
-- the 'Reduction' @(ty |> cast_co) ~return_co~> (xi |> cast_co)@
-- of the given 'Role' (which must match the role of the coercion stored
-- in the 'Reduction' argument).
--
-- Pre-condition: the 'Type' passed in is the same as the LHS type
-- of the coercion stored in the 'Reduction'.
mkCastRedn1 :: Role
-> Type -- ^ original type
-> CoercionN -- ^ coercion to cast with
-> Reduction -- ^ rewritten type, with rewriting coercion
-> Reduction
mkCastRedn1 r ty cast_co (Reduction co xi)
-- co :: ty ~r ty'
-- return_co :: (ty |> cast_co) ~r (ty' |> cast_co)
= mkReduction
(castCoercionKind1 co r ty xi cast_co)
(mkCastTy xi cast_co)
{-# INLINE mkCastRedn1 #-}
-- | Apply casts on both sides of a 'Reduction' (of the given 'Role').
--
-- Use 'mkCastRedn1' when you want to cast both the original and reduced types
-- in a 'Reduction' using the same coercion.
--
-- Pre-condition: the 'Type' passed in is the same as the LHS type
-- of the coercion stored in the 'Reduction'.
mkCastRedn2 :: Role
-> Type -- ^ original type
-> CoercionN -- ^ coercion to cast with on the left
-> Reduction -- ^ rewritten type, with rewriting coercion
-> CoercionN -- ^ coercion to cast with on the right
-> Reduction
mkCastRedn2 r ty cast_co (Reduction nco nty) cast_co'
= mkReduction
(castCoercionKind2 nco r ty nty cast_co cast_co')
(mkCastTy nty cast_co')
{-# INLINE mkCastRedn2 #-}
-- | Apply one 'Reduction' to another.
--
-- Combines 'mkAppCo' and 'mkAppTy`.
mkAppRedn :: Reduction -> Reduction -> Reduction
mkAppRedn (Reduction co1 ty1) (Reduction co2 ty2)
= mkReduction (mkAppCo co1 co2) (mkAppTy ty1 ty2)
{-# INLINE mkAppRedn #-}
-- | Create a function 'Reduction'.
--
-- Combines 'mkFunCo' and 'mkFunTy'.
mkFunRedn :: Role
-> AnonArgFlag
-> ReductionN -- ^ multiplicity reduction
-> Reduction -- ^ argument reduction
-> Reduction -- ^ result reduction
-> Reduction
mkFunRedn r vis
(Reduction w_co w_ty)
(Reduction arg_co arg_ty)
(Reduction res_co res_ty)
= mkReduction
(mkFunCo r w_co arg_co res_co)
(mkFunTy vis w_ty arg_ty res_ty)
{-# INLINE mkFunRedn #-}
-- | Create a 'Reduction' associated to a Π type,
-- from a kind 'Reduction' and a body 'Reduction'.
--
-- Combines 'mkForAllCo' and 'mkForAllTy'.
mkForAllRedn :: ArgFlag
-> TyVar
-> ReductionN -- ^ kind reduction
-> Reduction -- ^ body reduction
-> Reduction
mkForAllRedn vis tv1 (Reduction h ki') (Reduction co ty)
= mkReduction
(mkForAllCo tv1 h co)
(mkForAllTy tv2 vis ty)
where
tv2 = setTyVarKind tv1 ki'
{-# INLINE mkForAllRedn #-}
-- | Create a 'Reduction' of a quantified type from a
-- 'Reduction' of the body.
--
-- Combines 'mkHomoForAllCos' and 'mkForAllTys'.
mkHomoForAllRedn :: [TyVarBinder] -> Reduction -> Reduction
mkHomoForAllRedn bndrs (Reduction co ty)
= mkReduction
(mkHomoForAllCos (binderVars bndrs) co)
(mkForAllTys bndrs ty)
{-# INLINE mkHomoForAllRedn #-}
-- | Create a 'Reduction' from a coercion between coercions.
--
-- Combines 'mkProofIrrelCo' and 'mkCoercionTy'.
mkProofIrrelRedn :: Role -- ^ role of the created coercion, "r"
-> CoercionN -- ^ co :: phi1 ~N phi2
-> Coercion -- ^ g1 :: phi1
-> Coercion -- ^ g2 :: phi2
-> Reduction -- ^ res_co :: g1 ~r g2
mkProofIrrelRedn role co g1 g2
= mkReduction
(mkProofIrrelCo role co g1 g2)
(mkCoercionTy g2)
{-# INLINE mkProofIrrelRedn #-}
-- | Create a reflexive 'Reduction' whose RHS is the given 'Coercion',
-- with the specified 'Role'.
mkReflCoRedn :: Role -> Coercion -> Reduction
mkReflCoRedn role co
= mkReduction
(mkReflCo role co_ty)
co_ty
where
co_ty = mkCoercionTy co
{-# INLINE mkReflCoRedn #-}
-- | A collection of 'Reduction's where the coercions and the types are stored separately.
--
-- Use 'unzipRedns' to obtain 'Reductions' from a list of 'Reduction's.
--
-- This datatype is used in 'mkAppRedns', 'mkClassPredRedns' and 'mkTyConAppRedn',
-- which expect separate types and coercions.
--
-- Invariant: the two stored lists are of the same length,
-- and the RHS type of each coercion is the corresponding type.
data Reductions = Reductions [Coercion] [Type]
-- | Create 'Reductions' from individual lists of coercions and types.
--
-- The lists should be of the same length, and the RHS type of each coercion
-- should match the specified type in the other list.
mkReductions :: [Coercion] -> [Type] -> Reductions
mkReductions cos tys = Reductions cos tys
{-# INLINE mkReductions #-}
-- | Combines 'mkAppCos' and 'mkAppTys'.
mkAppRedns :: Reduction -> Reductions -> Reduction
mkAppRedns (Reduction co ty) (Reductions cos tys)
= mkReduction (mkAppCos co cos) (mkAppTys ty tys)
{-# INLINE mkAppRedns #-}
-- | 'TyConAppCo' for 'Reduction's: combines 'mkTyConAppCo' and `mkTyConApp`.
mkTyConAppRedn :: Role -> TyCon -> Reductions -> Reduction
mkTyConAppRedn role tc (Reductions cos tys)
= mkReduction (mkTyConAppCo role tc cos) (mkTyConApp tc tys)
{-# INLINE mkTyConAppRedn #-}
-- | Reduce the arguments of a 'Class' 'TyCon'.
mkClassPredRedn :: Class -> Reductions -> Reduction
mkClassPredRedn cls (Reductions cos tys)
= mkReduction
(mkTyConAppCo Nominal (classTyCon cls) cos)
(mkClassPred cls tys)
{-# INLINE mkClassPredRedn #-}
-- | Obtain 'Reductions' from a list of 'Reduction's by unzipping.
unzipRedns :: [Reduction] -> Reductions
unzipRedns = foldr accRedn (Reductions [] [])
where
accRedn :: Reduction -> Reductions -> Reductions
accRedn (Reduction co xi) (Reductions cos xis)
= Reductions (co:cos) (xi:xis)
{-# INLINE unzipRedns #-}
-- NB: this function is currently used in two locations:
--
-- - GHC.Tc.Gen.Foreign.normaliseFfiType', with one call of the form:
--
-- unzipRedns <$> zipWithM f tys roles
--
-- - GHC.Tc.Solver.Monad.breakTyEqCycle_maybe, with two calls of the form:
--
-- unzipRedns <$> mapM f tys
--
-- It is possible to write 'mapAndUnzipM' functions to handle these cases,
-- but the above locations aren't performance critical, so it was deemed
-- to not be worth it.
{-
%************************************************************************
%* *
Simplifying types
%* *
%************************************************************************
The function below morally belongs in GHC.Tc.Solver.Rewrite, but it is used also in
FamInstEnv, and so lives here.
Note [simplifyArgsWorker]
~~~~~~~~~~~~~~~~~~~~~~~~~
Invariant (F2) of Note [Rewriting] in GHC.Tc.Solver.Rewrite says that
rewriting is homogeneous.
This causes some trouble when rewriting a function applied to a telescope
of arguments, perhaps with dependency. For example, suppose
type family F :: forall (j :: Type) (k :: Type). Maybe j -> Either j k -> Bool -> [k]
and we wish to rewrite the args of (with kind applications explicit)
F @a @b (Just @a c) (Right @a @b d) False
where all variables are skolems and
a :: Type
b :: Type
c :: a
d :: b
[G] aco :: a ~ fa
[G] bco :: b ~ fb
[G] cco :: c ~ fc
[G] dco :: d ~ fd
The first step is to rewrite all the arguments. This is done before calling
simplifyArgsWorker. We start from
a
b
Just @a c
Right @a @b d
False
and get left-to-right reductions whose coercions are as follows:
co1 :: a ~ fa
co2 :: b ~ fb
co3 :: (Just @a c) ~ (Just @fa (fc |> aco) |> co6)
co4 :: (Right @a @b d) ~ (Right @fa @fb (fd |> bco) |> co7)
co5 :: False ~ False
where
co6 = Maybe (sym aco) :: Maybe fa ~ Maybe a
co7 = Either (sym aco) (sym bco) :: Either fa fb ~ Either a b
We now process the rewritten args in left-to-right order. The first two args
need no further processing. But now consider the third argument. Let f3 = the rewritten
result, Just fa (fc |> aco) |> co6.
This f3 rewritten argument has kind (Maybe a), due to homogeneity of rewriting (F2).
And yet, when we build the application (F @fa @fb ...), we need this
argument to have kind (Maybe fa), not (Maybe a). We must cast this argument.
The coercion to use is determined by the kind of F:
we see in F's kind that the third argument has kind Maybe j.
Critically, we also know that the argument corresponding to j
(in our example, a) rewrote with a coercion co1. We can thus know the
coercion needed for the 3rd argument is (Maybe co1), thus building
(f3 |> Maybe co1)
More generally, we must use the Lifting Lemma, as implemented in
Coercion.liftCoSubst. As we work left-to-right, any variable that is a
dependent parameter (j and k, in our example) gets mapped in a lifting context
to the coercion that is output from rewriting the corresponding argument (co1
and co2, in our example). Then, after rewriting later arguments, we lift the
kind of these arguments in the lifting context that we've be building up.
This coercion is then used to keep the result of rewriting well-kinded.
Working through our example, this is what happens:
1. Extend the (empty) LC with [j |-> co1]. No new casting must be done,
because the binder associated with the first argument has a closed type (no
variables).
2. Extend the LC with [k |-> co2]. No casting to do.
3. Lifting the kind (Maybe j) with our LC
yields co8 :: Maybe a ~ Maybe fa. Use (f3 |> co8) as the argument to F.
4. Lifting the kind (Either j k) with our LC
yields co9 :: Either a b ~ Either fa fb. Use (f4 |> co9) as the 4th
argument to F, where f4 is the rewritten form of argument 4, written above.
5. We lift Bool with our LC, getting <Bool>; casting has no effect.
We're now almost done, but the new application
F @fa @fb (f3 |> co8) (f4 |> co9) False
has the wrong kind. Its kind is [fb], instead of the original [b].
So we must use our LC one last time to lift the result kind [k],
getting res_co :: [fb] ~ [b], and we cast our result.
Accordingly, the final result is
F
@fa
@fb
(Just @fa (fc |> aco) |> Maybe (sym aco) |> sym (Maybe (sym aco)))
(Right @fa @fb (fd |> bco) |> Either (sym aco) (sym bco) |> sym (Either (sym aco) (sym bco)))
False
|> [sym bco]
The res_co (in this case, [sym bco]) is the third component of the
tuple returned by simplifyArgsWorker.
Note [Last case in simplifyArgsWorker]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In writing simplifyArgsWorker's `go`, we know here that args cannot be empty,
because that case is first. We've run out of
binders. But perhaps inner_ki is a tyvar that has been instantiated with a
Π-type.
Here is an example.
a :: forall (k :: Type). k -> k
Proxy :: forall j. j -> Type
type family Star
axStar :: Star ~ Type
type family NoWay :: Bool
axNoWay :: NoWay ~ False
bo :: Type
[G] bc :: bo ~ Bool (in inert set)
co :: (forall j. j -> Type) ~ (forall (j :: Star). (j |> axStar) -> Star)
co = forall (j :: sym axStar). (<j> -> sym axStar)
We are rewriting:
a (forall (j :: Star). (j |> axStar) -> Star) -- 1
(Proxy |> co) -- 2
(bo |> sym axStar) -- 3
(NoWay |> sym bc) -- 4
:: Star
First, we rewrite all the arguments (before simplifyArgsWorker), like so:
co1 :: (forall (j :: Star). (j |> axStar) -> Star) ~ (forall j. j -> Type) -- 1
co2 :: (Proxy |> co) ~ (Proxy |> co) -- 2
co3 :: (bo |> sym axStar) ~ (Bool |> sym axStar) -- 3
co4 :: (NoWay |> sym bc) ~ (False |> sym bc) -- 4
Then we do the process described in Note [simplifyArgsWorker].
1. Lifting Type (the kind of the first arg) gives us a reflexive coercion, so we
don't use it. But we do build a lifting context [k -> co1] (where co1 is a
result of rewriting an argument, written above).
2. Lifting k gives us co1, so the second argument becomes (Proxy |> co |> co1).
This is not a dependent argument, so we don't extend the lifting context.
Now we need to deal with argument (3).
The way we normally proceed is to lift the kind of the binder, to see whether
it's dependent.
But here, the remainder of the kind of `a` that we're left with
after processing two arguments is just `k`.
The way forward is look up k in the lifting context, getting co1. If we're at
all well-typed, co1 will be a coercion between Π-types, with at least one binder.
So, let's decompose co1 with decomposePiCos. This decomposition needs arguments to use
to instantiate any kind parameters. Look at the type of co1. If we just
decomposed it, we would end up with coercions whose types include j, which is
out of scope here. Accordingly, decomposePiCos takes a list of types whose
kinds are the *unrewritten* types in the decomposed coercion. (See comments on
decomposePiCos.) Because the rewritten types have unrewritten kinds (because
rewriting is homogeneous), passing the list of rewritten types to decomposePiCos
just won't do: later arguments' kinds won't be as expected. So we need to get
the *unrewritten* types to pass to decomposePiCos. We can do this easily enough
by taking the kind of the argument coercions, passed in originally.
(Alternative 1: We could re-engineer decomposePiCos to deal with this situation.
But that function is already gnarly, and other call sites of decomposePiCos
would suffer from the change, even though they are much more common than this one.)
(Alternative 2: We could avoid calling decomposePiCos entirely, integrating its
behavior into simplifyArgsWorker. This would work, I think, but then all of the
complication of decomposePiCos would end up layered on top of all the complication
here. Please, no.)
(Alternative 3: We could pass the unrewritten arguments into simplifyArgsWorker
so that we don't have to recreate them. But that would complicate the interface
of this function to handle a very dark, dark corner case. Better to keep our
demons to ourselves here instead of exposing them to callers. This decision is
easily reversed if there is ever any performance trouble due to the call of
coercionKind.)
So we now call
decomposePiCos co1
(Pair (forall (j :: Star). (j |> axStar) -> Star) (forall j. j -> Type))
[bo |> sym axStar, NoWay |> sym bc]
to get
co5 :: Star ~ Type
co6 :: (j |> axStar) ~ (j |> co5), substituted to
(bo |> sym axStar |> axStar) ~ (bo |> sym axStar |> co5)
== bo ~ bo
res_co :: Type ~ Star
We then use these casts on (the rewritten) (3) and (4) to get
(Bool |> sym axStar |> co5 :: Type) -- (C3)
(False |> sym bc |> co6 :: bo) -- (C4)
We can simplify to
Bool -- (C3)
(False |> sym bc :: bo) -- (C4)
Of course, we still must do the processing in Note [simplifyArgsWorker] to finish
the job. We thus want to recur. Our new function kind is the left-hand type of
co1 (gotten, recall, by lifting the variable k that was the return kind of the
original function). Why the left-hand type (as opposed to the right-hand type)?
Because we have casted all the arguments according to decomposePiCos, which gets
us from the right-hand type to the left-hand one. We thus recur with that new
function kind, zapping our lifting context, because we have essentially applied
it.
This recursive call returns ([Bool, False], [...], Refl). The Bool and False
are the correct arguments we wish to return. But we must be careful about the
result coercion: our new, rewritten application will have kind Type, but we
want to make sure that the result coercion casts this back to Star. (Why?
Because we started with an application of kind Star, and rewriting is homogeneous.)
So, we have to twiddle the result coercion appropriately.
Let's check whether this is well-typed. We know
a :: forall (k :: Type). k -> k
a (forall j. j -> Type) :: (forall j. j -> Type) -> forall j. j -> Type
a (forall j. j -> Type)
Proxy
:: forall j. j -> Type
a (forall j. j -> Type)
Proxy
Bool
:: Bool -> Type
a (forall j. j -> Type)
Proxy
Bool
False
:: Type
a (forall j. j -> Type)
Proxy
Bool
False
|> res_co
:: Star
as desired.
Whew.
Historical note: I (Richard E) once thought that the final part of the kind
had to be a variable k (as in the example above). But it might not be: it could
be an application of a variable. Here is the example:
let f :: forall (a :: Type) (b :: a -> Type). b (Any @a)
k :: Type
x :: k
rewrite (f @Type @((->) k) x)
After instantiating [a |-> Type, b |-> ((->) k)], we see that `b (Any @a)`
is `k -> Any @a`, and thus the third argument of `x :: k` is well-kinded.
-}
-- | Stores 'Reductions' as well as a kind coercion.
--
-- Used when rewriting arguments to a type function @f@.
--
-- Invariant:
-- when the stored reductions are of the form
-- co_i :: ty_i ~ xi_i,
-- the kind coercion is of the form
-- kco :: typeKind (f ty_1 ... ty_n) ~ typeKind (f xi_1 ... xi_n)
--
-- The type function @f@ depends on context.
data ArgsReductions =
ArgsReductions
{-# UNPACK #-} !Reductions
!MCoercionN
-- The strictness annotations and UNPACK pragma here are crucial
-- to getting good performance in simplifyArgsWorker's tight loop.
-- This is shared between the rewriter and the normaliser in GHC.Core.FamInstEnv.
-- See Note [simplifyArgsWorker]
{-# INLINE simplifyArgsWorker #-}
-- NB. INLINE yields a ~1% decrease in allocations in T9872d compared to INLINEABLE
-- This function is only called in two locations, so the amount of code duplication
-- should be rather reasonable despite the size of the function.
simplifyArgsWorker :: HasDebugCallStack
=> [TyCoBinder] -> Kind
-- the binders & result kind (not a Π-type) of the function applied to the args
-- list of binders can be shorter or longer than the list of args
-> TyCoVarSet -- free vars of the args
-> Infinite Role-- list of roles, r
-> [Reduction] -- rewritten type arguments, arg_i
-- each comes with the coercion used to rewrite it,
-- arg_co_i :: ty_i ~ arg_i
-> ArgsReductions
-- Returns ArgsReductions (Reductions cos xis) res_co, where co_i :: ty_i ~ xi_i,
-- and res_co :: kind (f ty_1 ... ty_n) ~ kind (f xi_1 ... xi_n), where f is the function
-- that we are applying.
-- Precondition: if f :: forall bndrs. inner_ki (where bndrs and inner_ki are passed in),
-- then (f ty_1 ... ty_n) is well kinded. Note that (f arg_1 ... arg_n) might *not* be well-kinded.
-- Massaging the arg_i in order to make the function application well-kinded is what this
-- function is all about. That is, (f xi_1 ... xi_n), where xi_i are the returned arguments,
-- *is* well kinded.
simplifyArgsWorker orig_ki_binders orig_inner_ki orig_fvs
orig_roles orig_simplified_args
= go orig_lc
orig_ki_binders orig_inner_ki
orig_roles orig_simplified_args
where
orig_lc = emptyLiftingContext $ mkInScopeSet orig_fvs
go :: LiftingContext -- mapping from tyvars to rewriting coercions
-> [TyCoBinder] -- Unsubsted binders of function's kind
-> Kind -- Unsubsted result kind of function (not a Pi-type)
-> Infinite Role -- Roles at which to rewrite these ...
-> [Reduction] -- rewritten arguments, with their rewriting coercions
-> ArgsReductions
go !lc binders inner_ki _ []
-- The !lc makes the function strict in the lifting context
-- which means GHC can unbox that pair. A modest win.
= ArgsReductions
(mkReductions [] [])
kind_co
where
final_kind = mkPiTys binders inner_ki
kind_co | noFreeVarsOfType final_kind = MRefl
| otherwise = MCo $ liftCoSubst Nominal lc final_kind
go lc (binder:binders) inner_ki (Inf role roles) (arg_redn:arg_redns)
= -- We rewrite an argument ty with arg_redn = Reduction arg_co arg
-- By Note [Rewriting] in GHC.Tc.Solver.Rewrite invariant (F2),
-- tcTypeKind(ty) = tcTypeKind(arg).
-- However, it is possible that arg will be used as an argument to a function
-- whose kind is different, if earlier arguments have been rewritten.
-- We thus need to compose the reduction with a kind coercion to ensure
-- well-kindedness (see the call to mkCoherenceRightRedn below).
--
-- The bangs here have been observed to improve performance
-- significantly in optimized builds; see #18502
let !kind_co = liftCoSubst Nominal lc (tyCoBinderType binder)
!(Reduction casted_co casted_xi)
= mkCoherenceRightRedn role arg_redn kind_co
-- now, extend the lifting context with the new binding
!new_lc | Just tv <- tyCoBinderVar_maybe binder
= extendLiftingContextAndInScope lc tv casted_co
| otherwise
= lc
!(ArgsReductions (Reductions cos xis) final_kind_co)
= go new_lc binders inner_ki roles arg_redns
in ArgsReductions
(Reductions (casted_co:cos) (casted_xi:xis))
final_kind_co
-- See Note [Last case in simplifyArgsWorker]
go lc [] inner_ki roles arg_redns
= let co1 = liftCoSubst Nominal lc inner_ki
co1_kind = coercionKind co1
unrewritten_tys = map reductionOriginalType arg_redns
(arg_cos, res_co) = decomposePiCos co1 co1_kind unrewritten_tys
casted_args = assertPpr (equalLength arg_redns arg_cos)
(ppr arg_redns $$ ppr arg_cos)
$ zipWith3 mkCoherenceRightRedn (Inf.toList roles) arg_redns arg_cos
-- In general decomposePiCos can return fewer cos than tys,
-- but not here; because we're well typed, there will be enough
-- binders. Note that decomposePiCos does substitutions, so even
-- if the original substitution results in something ending with
-- ... -> k, that k will be substituted to perhaps reveal more
-- binders.
zapped_lc = zapLiftingContext lc
Pair rewritten_kind _ = co1_kind
(bndrs, new_inner) = splitPiTys rewritten_kind
ArgsReductions redns_out res_co_out
= go zapped_lc bndrs new_inner roles casted_args
in
ArgsReductions redns_out (res_co `mkTransMCoR` res_co_out)
|